DIAGONAL EQUIVALENCE TO MATRICES WITH PRESCRIBED ROW AND COLUMN SUMS. II

RICHARD SINKKHORN

Abstract

Let A be a nonnegative $m \times n$ matrix and let $r=$ $\left(r_{1}, \cdots, r_{m}\right)$ and $c=\left(c_{1}, \cdots, c_{n}\right)$ be positive vectors such that $\Sigma_{i=1}^{m} r_{i}=\Sigma_{j=1}^{n} c_{j}$. It is well known that if there exists a nonnegative $m \times n$ matrix B with the same zero pattern as A having the i th row sum r_{i} and j th column sum c_{j}, there exist diagonal matrices D_{1} and D_{2} with positive main diagonals such that $D_{1} A D_{2}$ has i th row sum r_{i} and j th column sum c_{j}. However the known proofs are at best cumbersome. It is shown here that this result can be obtained by considering the minimum of a certain real-valued function of n positive variables.

It has been shown originally by Sinkhorn and Knopp [8] and Brualdi, Parter, and Schneider [3] that if A is a nonnegative fully indecomposable matrix, i.e. A contains no $s \times(n-s)$ zero submatrix, then there exists a doubly stochastic matrix of the form $D_{1} A D_{2}$ where D_{1} and D_{2} are diagonal matrices with positive main diagonals. Later Djoković [4], and independently, London [5], proved the same theorem by considering the minimum of

$$
\begin{equation*}
f(x)=\prod_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) / \prod_{j=1}^{n} x_{j} \tag{1}
\end{equation*}
$$

for vectors $x=\left(x_{1}, \cdots, x_{n}\right)$ with positive coordinates.
In the meantime Menon [6] had obtained the following modification of this result.

Theorem 1. Let A be a nonnegative $m \times n$ matrix and let $r=\left(r_{1}, \cdots\right.$, $\left.r_{m}\right)$ and $c=\left(c_{1}, \cdots, c_{n}\right)$ be positive vectors such that $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$. If there exists a nonnegative $m \times n$ matrix B with the same zero pattern as A, i.e. $b_{i j}=0 \Leftrightarrow a_{i j}=0$, having ith row sum r_{i} and j th column sum c_{j}, then

Received by the editors September 17, 1973 and, in revised form, October 31, 1973.

AMS (MOS) subject classifications (1970). Primary 15A15, 15A21; Secondary 15A51.

Key words and phrases. Nonnegative matrix, diagonal equivalence, fully indecomposable matrix, zero pattern.
there exist diagonal matrices D_{1} and D_{2} with positive main diagonals such that $D_{1} A D_{2}$ has ith row sum r_{i} and j th column sum c_{j}.

Brualdi [2] showed that the existence of B in Theorem 1 is equivalent to the conditions that
(1) $A[E \mid F)=0, A(E \mid F] \neq 0 \Rightarrow \Sigma_{i \in E} r_{i}<\Sigma_{j \in F} c_{j}$, and
(2) $A[E \mid F)=0, A(E \mid F]=0 \Rightarrow \Sigma_{i \in E} r_{i}=\Sigma_{j \in F} c_{j}$,
if $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$ holds.
The notation used has the following meaning. If E is a proper nonvoid subset of $M=\{1, \cdots, m\}$ and F is a proper nonvoid subset of $N=\{1, \cdots$, $n\}$, then $A[E \mid F)$ is that submatrix of A obtained by deleting from A those rows whose indices do not belong to E and those columns whose indices belong to F. The rows and columns of this submatrix appear in the same order as in A : rows are counted from top to bottom; columns are counted from left to right. $A(E \mid F]$ is that submatrix of A obtained by deleting from A those rows whose indices be long to E and those columns whose indices do not belong to F, where, as before, the rows and columns of this submatrix appear in the same order as in A. Observe that the submatrix $A(E \mid F]$ is the same as the submatrix $A[M-E \mid N-F)$. In the course of the paper two other submatrix notations are used. $A[E \mid F]$ is used to denote the submatrix $A[E \mid N-F)=A(M-E \mid F]$ in $A ; A(E \mid F)$ is used to denote the submatrix $A[M-E \mid F)=A(E \mid N-F]$ in A.

Menon and Schneider [7] have given another proof of the Menon-Brualdi results.

It is the intent of this paper to show how the Djoković-London formula can be modified to yield the Menon-Brualdi-Schneider results.

We shall require the following lemma which follows at once from the concavity of the logarithm function. See [1, p. 7].

Lemma. Let $x_{1}, \cdots, x_{n}, \lambda_{1}, \cdots, \lambda_{n}$ be nonnegative real numbers and put $\lambda_{1}+\cdots+\lambda_{n}=\lambda$. Then if 0^{0} is taken to be 1 ,

$$
\left(\sum_{k=1}^{n} \lambda_{k} x_{k}\right)^{\lambda} \geq \lambda^{\lambda}\left(\prod_{k=1}^{n} x_{k}^{\lambda_{k}}\right)
$$

We now prove the intended result. We shall assume that whenever there is a submatrix $A[E \mid F)=0$ in $A, A(E \mid F] \neq 0$, for otherwise we could establish the result for the submatrices $A[E \mid F]$ and $A(E \mid F)$. We assume that Brualdi's condition (1) holds and that $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$.

$$
\phi(x)=\prod_{i=1}^{m}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{r_{i}} / \prod_{j=1}^{n} x_{j}^{c_{j}}
$$

where $x=\left(x_{1}, \cdots, x_{n}\right)$ is positive, i.e. $x \in\left(R^{n}\right)^{+}$. We shall consider the problem of determining the minimum of ϕ on $\left(R^{n}\right)^{+}$. Since $\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} c_{j}$, $\phi(\lambda x)=\phi(x)$ for all $\lambda>0$ and thus we can restrict our attention to the set K of $x \in\left(R^{n}\right)^{+}$for which $\|x\|=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2}=1$.

Suppose on $K, x \rightarrow \Delta$, the boundary of $\left(R^{n}\right)^{+}$. Let $F=\left\{j \mid x_{j} \rightarrow 0\right\}$ and then set $E=\left\{i \mid a_{i j}=0\right.$ for all $\left.j \notin F\right\}$. Since $x \rightarrow \Delta$ on K, F is a nonvoid proper subset of $\{1, \cdots, n\}$. Since every $c_{j}>0, E$ is a proper subset of $\{1, \cdots, m\}$. If $E=\varnothing, \phi(x) \rightarrow \infty$ as $x \rightarrow \Delta$. If $E \neq \varnothing$, we write $\phi(x)=$ $\phi_{1}(x) \phi_{2}(x)$ where

$$
\begin{equation*}
\phi_{1}(x)=\prod_{i \in E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{r_{i}} / \prod_{j \in F} x_{j}^{c_{j}}=\prod_{i \in E}\left(\sum_{j \in F} a_{i j} x_{j}\right)^{r_{i}} / \prod_{j \in F} x_{j}^{c_{j}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{2}(x)=\prod_{i \notin E}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{r_{i}} / \prod_{j \notin F} x_{j}^{c_{j}} \tag{4}
\end{equation*}
$$

Since ϕ_{2} has a positive limit as $x \rightarrow \Delta$, we concentrate on ϕ_{1}.
Let B be as in Theorem 1. Then $B[E \mid F)=0$ and therefore $\Sigma_{j \in F} b_{i j}=$ r_{i} for each $i \in E$ and hence from the Lemma

$$
\begin{equation*}
\left(\sum_{i \in F} a_{i j} x_{j}\right)^{r_{i}} \geq r_{i}^{r_{i} \Pi_{j \epsilon F} a_{i j}^{b_{i j}}} \frac{\Pi_{j \in F} b_{i j}^{b_{i j}}}{\prod_{j \in F}} x_{j}^{b_{i j}}=\theta_{i} \prod_{j \in F} x_{j}^{b_{i j}} \tag{5}
\end{equation*}
$$

for all $i \in E$, where 0^{0} is taken to be 1 . Whence

$$
\begin{equation*}
\phi_{1}(x) \geq \prod_{i \in E} \theta_{i} / \prod_{j \in F} x_{j}^{c_{j}-\Sigma_{i \epsilon E} b_{i j}} \tag{6}
\end{equation*}
$$

Since $\Sigma_{i=1}^{m} b_{i j}=c_{j}, j=1, \cdots, n$, certainly $\Sigma_{i \in E} b_{i j} \leq c_{j}$ for every $j \in F$. However since $\Sigma_{j \in F} c_{j}>\Sigma_{i \in E} r_{i}=\Sigma_{i \in E} \Sigma_{j \in F} b_{i j}, \Sigma_{i \in E} b_{i j_{0}}<c_{j_{0}}$ for at least one $j_{0} \in F$. Thus $\phi_{1}(x) \rightarrow \infty$ and so $\phi(x) \rightarrow \infty$ as $x \rightarrow \Delta$.

It follows that ϕ achieves a minimum on $\left(R^{n}\right)^{+}$. At such a point $\bar{x}=$ $\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right), \partial \ln \phi(x) / \partial x_{k}=0$ for $k=1, \cdots, n$. Whence

$$
\begin{equation*}
\sum_{i=1}^{m} r_{i}\left(a_{i k} / \sum_{i=1}^{n} a_{i j} \bar{x}_{j}\right)-c_{k} / \bar{x}_{k}=0 \tag{7}
\end{equation*}
$$

$k=1, \cdots, n$. Put $\bar{y}_{i}=r_{i} / \sum_{j=1}^{n} a_{i j} \bar{x}_{j}, i=1, \cdots, m$, and then set $D_{1}=$ $\operatorname{diag}\left(\bar{y}_{1}, \cdots, \bar{y}_{m}\right), D_{2}=\operatorname{diag}\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)$. Then $D_{1} A D_{2}$ satisfies the conclusion of Theorem 1 .

REFERENCES

1. E. F. Beckenbach and R. Bellman, Inequalities, 2nd rev. ed., Ergebnisse der Math. und ihrer Grenzgebiete, Heft 30, Springer-Verlag, New York, 1965. MR 33 \#236.
2. R. A. Brualdi, Convex sets of nonnegative matrices, Canad. J. Math. 20 (1968), 144-157. MR 36 \#2636.
3. R. A. Brualdi, S. V. Parter and H. Schneider, The diagonal equivalence of a nonnegative matrix to a stochastic matrix, J. Math. Anal. Appl. 16 (1966), 31-50. MR 34 \#5844.
4. D. Z. Djoković, Note on nonnegative matrices, Proc. Amer. Math. Soc. 25 (1970), 80-82. MR 41 \#1768.
5. D. London, On matrices with a doubly stochastic pattern, J. Math. Anal. Appl. 34 (1971), 648-652. MR 43 \#7448.
6. M. V. Menon, Matrix links, an extremization problem, and the reduction of a nonnegative matrix to one with prescribed row and column sums, Canad. J. Math. 20 (1968), 225-232. MR 36 \#3804.
7. M. V. Menon and H. Schneider, The spectrum of a nonlinear operator associated with a matrix, Linear Algebra and Appl. 2 (1969), 321-334. MR 40 \#162.
8. R. Sinkhorn and P. Knopp, Concerning nonnegative matrices and doubly stochastic matrices, Pacific J. Math. 21 (1967), 343-348. MR 35 \#1617.
de partment of mathematics, university of houston, houston, texas 77004
