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O. Introduction

   A groph is a topological space consisting of finitely many points, called

vertices, and of simple arcs, called edges, each of which joins a pair of vertices.

In particular, an edge is called a selfloop if both two ends coincide, and a pair

of edges are called multiple eciges if they join the same pair of vertices. Our

graph is usually assumed to be simple, that is, to have neither self-loops nor

multiple edges.

   Our main object in this paper is an embedding of a graph G into or on a
closed surface F2. To specify how G is embedded on F2, it is effective to

regard an embedding as an injective continuous map f:G->F2. We however

deal with G and f(G) as the same one intuitively. Thus, G=f(G) is a subset or

a subspace of F2. An embedding of G on F2 is called a 2-cell embedding if each

component of F2-G, called a face of G, is homeomorphic to the open 2-cell

{(x, y)ER2:x2+y2<1} and G is said to be 2-cell embedded on F2 in this case.

   Let G be a graph 2-cell embedded on F2 and choose two faces A and B of

G so that they share an edge e. Then A UBUe forms an open 2-cell region
on F2 with circular boundary and e is placed in this region as one of its

diagonals. Roughly speaking, the diagonal transtbrmation appearing in the title

is to replace this diagonal e with another diagonal. In particular, we focus the

diagonal transformations in triangulations and in quadrangulations and discuss

the equivalence over such classes of graphs under diagonal transformations.

This paper presents a survey and several observations for further research on
this topic, with Negami's and Nakamoto's recent results in '[9] and [6].
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   Our terminology for graph theory is quite standard. For example, we use

the notations K., K.., C. and so on to denote the complete groph with n
vertices, the complete bipartite gmph with partite sets of size m and n, the aycle

of length n and et al. See [4] for topological graph theory.

1. Classical results on triangulations

   A triangulation on a closed surface F2 is a simple graph G embedded on F2

so that (i) each face of G is bounded by a cycle of length 3 and that (ii) any

two faces have at most one edge in common. Roughly speaking, a triangula-
tion divides a closed surface into several triangles. In topology, a triangulation

on a closed surface is regarded as a 2-dimensional simplicial complex together

with faces, but our triangulation is only the 1-skeleton of such a complex.

   The smallest example of such triangulations is the complete graph K4 with

four vertices on the sphere, which looks like the tetrahedron. The complete

graPh K3 with three vertices on the sphere also divides the sphere into two

triangular faces, but K3 is not a triangulation under our definition since those

faces share the three edges. Observe that if two triangular faces share twb

edges, then the other two edges, not shared, will form a pair of multiple edges

if they don't coincide. This implies that if G is a simple graph embedded on

a closed surface with Condition (i) but not (ii), then G has only two faces

which meet each other along their whole boundary. Thus, we can define a
triangulation on F2 as a simple graph embedded on F2 with only triangular

faces, allowing the unique exception, K3 on the sphere.
   Now let G be a triangulation on a closed surface F2 and consider an edge

ac which two faces abc and acd share in G. A diagonal flij) is to replace ac

with another diagonal bd of the rectangle abca, as shown in Figure 1. This is
just a local deformation of G and the resulting graph G! also divides F2 into

                      bb
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Figure 1: Diagonal flip
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triangular faces. However, if there is an edge bd in G, the diagonal flip at ac

yields multiple edges between b and d, and hence G' is not a triangulation.

We forbit such a diagoanl flip not to break the simpleness of graphs.

   The question is whether or not any two triangulations on a closed surface

can be transformed into each other by diagonal flips. They are said to be

equivalent under diagonal flips if they can. Of cource, they must have the

same number of vertices and of edges if they are equivalent to each other.

Note that triangulations with the same number of vertices have the same
number of edges by Euler's formula.

   The following theorem is the origin of this topic and was proved by
Wagner in his paper [16] written in German. An article introducing this
theorem can be found in Ore's book [11] on Four Color Problem. His proof is

very easy and constructive as shown below, (The meanings of "up to ambient

isotopy" and "up to homeomorphism" will be explained later in the next
setction.)

THEOREM1(Wagner, 1936). Any two triangulations on the sphere with the
same number of vertices a7? equivalent to each other under diagonal flips, mp to

ambient isotQPy.

17oof Let G be any triangulation of the sphere. We represent it as a plane

graph, so that there is a big triangle uovw of G and the triangular region with

boundary uovw contains the whole of G. Let v, oq y; z,..., zu be the neighbors

of uo, lying clockwise in this order. First suppose that uo has degree at least

4. (If deguo==4, then g=w.) If y is not adjacent to v, then we replace uox with

yv to decrease the degree of uo. Otherwise, the edge yv is placed outside the

rectangle uovxzy and the cycle uotuy separates x and z. Thus, x is not adjacent to

g and hence uoy can be replaced with xe by a diagonal flip. Repeating these

deformations, we can reduce the degree of uo to 3.

   Now suppose that uo has precisely three neighbors v, ui, w and consider

the subgraph Gi of G bounded by the triangle uivw. By the same arguments,

we can deform Gi by diagonal flips inside uivw so that ui has degree 3 in Gi

and hence degree 4 in G afterward. Repeating these arguments with sub-
graphs Gi, G2,･･･, we get finally the triangulation which consists of the

triangle uovw and the path uiu2･･･u. of vertices of degree 4 adjacent to both

v and w. This is the standard form of the spherical triangulations, as shown

in Figure 2. Therefore, any two triangulations of the sphere with the same

number of vertices can be transformed into each other by diagonal flips via

this standard form. -
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Figure 2: The standart form A. of spherical triangulations
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             Figure 3: The unique embedding of K7 on the torus

   The following three theorems have been proved by Dewdney in [3] and by

Negami and Watanabe in [10], as natural generalizations of Wagner's theorem

for other surfaces.

THEOREM2(Dewdney, 1973). Any tzvo triangulations on the torus with the
same number of vertices are equivagent to each other under diagonal flips, mp to

homeomorphism.

THEOREM3(Negami and Watanabe, 1990). Any tzvo tn'angulations on the
projective plane with the same number of vertices are equivalent to each other

under diagonal flij)s, mp to ambient isotopy.

THEOREM 4 (Negami and Watanabe, 1990). Any two tn'angulations on the
Klein bottle with the same number of vertices are equivalent to each other under

diagonal flij)s, mp to homeomozPhism.

   As shown in the proof of Wagner's theorem, we have the "standard form"
of the spherical triangulations with notation A. and all the triangulations with

m+3 vertices on the sphere can be generated from A. by diagonal flips.
Similarly to the spherical case, we can choose suitably some standard forms

for the torus, the projective plane and the Klein bottle,
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   For example, the unique embedding of K7 on the torus, given in Figure 3,

is a unique minimal triangulation of the torus. Here a triangulation of a
closed surface F2 is said to be minimal if it has the fewest vertices among all

the possible triangulations on F2. Add A. (m>-O) to one face of K7 arbitrarily

chosen. The resulting graph, denoted by K7+A., is obviously a triangulation
of the torus which has precisely 7+m vertices. (Define K7+Ao formally as K7.)

If we believe Theorem 2, any triangulation with 7+m vertices on the torus

will be obtained from K7+A. by diagonal flips. Thus, we may call K7+A. the

standard form of the toroidal triangulations.

   Similarly, we have the unique eMbedding of K6 on the projective plane, as

the unique minimal triangulation of the projective plane (see the left in the

Figure 10) and call K6+A. the standard form of the projective-planar triangu-

lations with 6+m vertices. On the other hand, there are precisely three
minimal triangulations on the Klein bottle, shown in Figure 4. Negami and

Watanabe have chosen the first one from the three as the standard form of the

Klein-bottlal triangulations in [10], but we can choose any one from the other
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Figure 6: Finding pseudo-minimal triangulations

vertex v of G with degv=6(G)==n and let ui,..., u. be the neighbors of v

lying around v in this cyclic order. If ui and ui+2 were not adjacent in G, then

we could switch the diagonal vui+i to uiui+2 in the rectangle vuiui+iui+2 and the

degree of v would be reduced by one. This contradicts the assumption of G

after the deformation and the choice of v. Thus, G must have edges uiu3, ...,

Un-2Un, Un-iui, unu2･ Then let F;, denote the wheel structure around v with

these chords. It is clear that,if n is sufliciently large, then F. cannot be

embedded on the torus, the projective plane and the Klein bottle.

   For example, F7 cannot be embedded on the torus and moreover the
embedding of F6 is strictly restricted on the torus. In fact, it is unique as

shown in Figure 6. Discussing what happens in quadrilateral regions, we can

conclude that the whole G including this embedding of F6 is isomorphic to K7.

On the other hand, if v lies on either F4 or Fs, we can find a sequence of

diagonal flips to make a vertex of degree 3, but this is contrary to the
assumption of G being pseudo-minimal. Thus, K7 is the unique pseudo-minimal

triangulation of the torus. This implies that the initial stage of our induction

is trivial for the torus and that the required assumption holds for any toroidal

triangulation with 8 or more vertices.

   By similar arguments, Negami and Watanabe [10] proved Theorems 3 and
4 for the projective plane and the Klein bottle. Note that those depend on what

the surfaces are and the higher the genus of a closed surafce is, the harder the

arguments are. They will not work to prove Wagner's theorems for general
surfaces.

2. Equivalence of graphs on surfaces

   In the previous section, we did not refer to how we compare two given
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triangulations. What does it mean that two triangulations are the same? Here

we will discuss it to understand the more delicate meaning of Wagner's

theorem. ･   More generally, let Gi and G2 be two graphs embedded on closed surfaces
F? and F;, respectively. They are said to be homeomorphic to each other if there

is a homeomorphism h:Fl->F; with h(Gi)=G2 which induces an isomorphism

from Gi to G2. In this case, we say that Gi and G2 are the same one, mp to

homeomorPhism.

   For example, consider the unique embedding of K7 on the torus, given in

Figure 3. First, identify the top and bottom edges of the rectangle to get a

cylinder horizontally placed and next identify the both ends of this cylinder to

get one embedding of K7 on the torus. Now twist one end of the cylinder
several times before identifying the two ends in the second step and identify

them. Then we obtain another embedding of K7 ort the torus, which looks
more complicated than the first one. It is clear that the natural correspond-

ence between the two K7's extends to a homeomorphism between the two tori.

That is, these two embeddings of K7 on the tori are homeomorphic to each
other even if their appearances are completely different.

   Now recall the statement of Dewdney's theorem, Theorem 2 in the previ-
ous section. This must guarantee the existence of a sequence of diagonal flips

which transforms the first embedding of K7 into the second. However, any
diagonal flip cannot be applied to any edge of K7 since any pair of vertices are

already joined by an edge in K7. That is, it is impossible to transform the first

K7 into the second only by diagonal flips. Thus, these two K7's must be the

same one to solve this dilemma. That is the reason why the phrase "up to
homeomorphism" is added to the statement of Theorem 2, as well as Theorem 4.

   0n the other hand, such a modification is not needed for the original

version of Wagner's theorem since the proof gives us an algorithm which
deforms a given triangulation on the sphere directly into the standard form.

Precisely speaking, we need continuous deformations, in addition to diagonal

flips, to move a triangulation freely around the sphere and to adjust the
                     ･1curvatures of its edges. Such a deformation will be formulated as follows.

   An ambient isotQpy H:F2xl-->F2 is a continuous map such that the map
h,:F2.F2, defined by h,(x) ==H(x, t), is a homeomorphism over F2 for each tE

I with ho the identity map of F2, where I stands for the interval [O, 1]. Two

graphs Gi and G2 embedded on F2 are said to be ambient isotopic or simply

isotopic to each other if there is an ambient isotopy H:F2xl.F2 such that

hi(Gi) =G2. By definition, ho(Gi)=:Gi. Intuitively, we can say that an ambient

isotopy H deforms Gi into G2 continuously, regarding h,(Gi) as the position of

                     t///t

I

I
l
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Gi at time t.

   Note that we classified the pseudo-minimal triangulations up to homeo-

morphism by a tacit consent in the sketch of proofs in the previous section.

Thus, our combinatorial arguments usually conclude everything only up to

homeomorphism. In particular, it can be proved in a standard topological
argument that any homeomorphisim h:P2->P2 over the projective plane p2
extends to an ambient isotopy H:P2XI->P2 so that hi=h. This implies that

any fact up to homeomorphism also holds up to ambient isotopy for the
projective plane, as well as Theorem 3.

   Recall that we apply any diagonal flip to a triangulation only if it pre-

serves the simpleness of the triangulation. Note that if we do not mind
diqgonal fiips' breaking the simpleness, our problem will be easy, so that we

can prove a general theorem up to ambient isotopy, as below.

   Up to the end of this section, we allow graphs to have loops and multiple
edges. Such a graph G embedded on a closed surface F2 is called a pseudo-

triangulation on F2 if the boundary of each face of G is just a closed walk of

length 3, possibly not a cycle. Thus, Kl] on the sphere is now a pseudo-

triangulation. Place a vertex vo with one loop eo on the sphere so that eo

divides the sphere into two monogonal regions Ri and R2, and put a vertex vi

to Ri and v2 to R2 with edges vovi and vov2 added. The resulting graph is also

a pseudo-triangulation on the sphere.

   A diagonal fiips in a pseudo-triangulation is defined as well as in a usual

triangulation, but is not required to preserve the simpleness of graphs.

THEOREM5Any two Pseudo-triangulations on a closed sutuce zvith the same
number of vertices a7e equivalent to each other under diagonag flips, mp to ambient

zsotopy.

thoof Let Gi and G2 be two pseudo-triangulations on a closed surface F2. We

shall deform Gi by diagonal flips and G2 by an ambient isotopy of F2, as

follows. Put Gi and G2 together on F2 so that V(Gi)=V(G2).

   First deform G2 by an ambient isotopy fixing V(G2) to minimize the
crossings of edges of Gi and G2. For example, let A be a face of Gi with
boundary cycle uvzu and e an edge of G2 incident to u which goes through A.

If e reaches to an inner point x of the edge uv, then we push the arc. of e

between u and x toward uv and push it off moreover to eliminate the crossing

point x. After these deformations, we can assume either that e is placed along

uv or uw in parallel, or that e crosses the opposite edge vzv.

   In the latter case, if vw is shared by two distinct faces A and B (Figure 7

(i)), then we replace vw with the other diagonal uz of the rectangular region
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Figure 7: Eliminating crossings

AUB with boundary uzzgw, by the diagonal flip, so that the arc e n(AUB) is

contained in one of trianglar faces with boundaries uvg and uwg. If both sides

of vw are incident to the face A (Figure 7 (ii)), then vw has to coincide with

vu and is contained in the 2-cell region bounded by the self-loop uw. The arc

of e starting from u goes around v, crossing uv several times, and either

terminates at v or comes back. In this case, we can find an ambient isotopy

which eliminates all the crossings on uv.

   Eliminating crossings in the above ways, we can assume finally that the

edges of Gi and G2 do not meet each other except at their ends and are placed

in parallel in pairs. Now there is an ambient isotopy which carries each edge

of G2 onto the corresponding edge of Gi. 1

3. Irreducible triangulations

   As is mentioned in Section 1, the final stages of their proofs of Theorems

2, 3 and 4 depend strongly on the individual surfaces although they have a

large common part. This causes the difficulty in generalizing those theorems

for other surfaces. To solve this problem, Negami has proposed recently a nice

idea which connects the diagonal flip with the contraction of edges and proved

the following for general surfaces in [9].

THEOREM 6 (Negami, 1992). Fbr any closed sutuce F2, there exists a positive

integer N=N(F2) such that ijC Gi and G2 are two triangulations on F2 with

lV(Gi)1 =1V(G2)1}})AL then Gi and G2 are equivalent under diagonal 77ips, mp to

homeomorphism.

For example, the integers N for the sphere, the torus, the projective plane and
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the Klen bottle are 4, 7, 6, 8 in order, which follows from Theorems 1, 2, 3 and

4. Each of these values is equal to the minimum number of vertices that- the
triangulations in each surface have, here denoted by A(F2). Of cource, if any

two triangulations on F2 with the same number of vertices are equivalent to

each other under diagonal flips, the value of N(F2) will coincide with A(F2).

   In general, Ringel det-ermined in [12] and [14] the precise values of A(F2)
                       'J..
for all the closed surfaces and showed that the complete graphs attain those

values in most of cases. Since the complete graph cannot be' deformed into
any other graph by diagonal flips, if KA(F2) triangulates F2 and has two or more

embeddings of different homeomorphism types, then N(l72) must be greater
than A(F2).

   Theorem 6 says nothing about the value of N(F2) but 'only its existence,

while Negami's proof in [9] suggests how to determine N(F2), related t6 the

notion of irreducible triangulations, defined below.

   Let G be a triangulation on a closed surface F2 and ac an edge of G. Then

there are two triangles abc and acd sharing this edge ac in G. The 'contraction

of the edge ac is to shrink ac to a point a==c until the two faces abc and acd

degenerate to edges ab=cb and ad=:cd, as shown in Figure 8, so that we
obtain another triangular embedding of a graph Gi. However we forbit our-

selves to carry out a contraction of an edge, as well as a diagonal flip, if it

deforms a given triangulation into a non-simple graph, that is, if a and c have

another common neighbor other than b and d. If a triangulation G can be
transformed into another Gi by contracting edges under this rule, then G is
said'to be contractible to G!.

   A triangulation G on a closed surface F2 is said to be ineducible if G is not

contractible to any other triangulation on F2. For example, the complete'graph

K4 on the sphere is irreducible since the contraction of each edge yields K3 on

the sphere, which is not a triangulation. However, this example is so special.

a

b

c

d

...-..-
l)"'

ba;

d

Figure 8: Contraction of an edge
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In fact, an irreducible triangulation can be defined, with the unique exception

K4, as one each of whose edge is contained in at least three triangles, two of

which bound faces but the other do not. Obviously by defintion, any triangu-
lation on F2 is contractible to one of irreducible triangulations of F2.

   One of the key facts in Negami's proof is that if a,triangulation G is

contractible to another triangulation T, then G is equivalent to T+A. under

diagonal flips with lV(G)1=lV(T)1+m, where T+A. denotes any triangula-
tion obtained from T by adding the standard form A. of the spherical triangu-

lation with m+3 vertices to any face of Tl Note that this notation T+A. is

so ambjguous since jt depends on the choice of a face to which A. js added,

but clearly any two triangulations denoted by T+A. are equivalent to each

otherunderdiagonalflips. , -
   Figure 9 illustrates how a contraction of an edge is related to diagonal

flips, which is the essence of his proof. Roughly speaking, the contraction of

an edge can be realized by deleting a vertex of degree 3 following diagonal

flips. This implies that if G is not irreducible, then G is not pseudo-minimal.

   Another key fact is that for any two triangulations Gi and G2, there is a

non-negative integer mi and m2 such that Gi+A., is equivalent to G2+Am,
under diagonal flips, where Gi and G2 are not assumed to have the same
number of vertices. In this case, Gi and G2 are said to be stably equivalent to

each other under diagonal flips. To prove this fact, consider a common
refinement G of Gi and G2, and observe that G is contracitible to both Gi and

G2. By the first fact, G is equivalent to both Gi+A., and G2+A., and hence so

they are. Note that if Gi+A., is equivalent to G2+A.,, then Gi+A.,+le is
equjvalent to G2+A.,+le for any posjtjve jnteger le>O.

   To complete the proof of Theorem 6, we need one more fact that there

,

-･-> .
,

Figure 9: Edge contraction and diagonal flips
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Figure 10: Irreducible triangulations of the projective plane

exist only finitely many irreducible triangulations Of a given closed surface.

To show this, Negami used Wagner's conjecture, whose affirmative solution is

given in [15]. In general, a graph H is called a minor of a graph G if H can

be obtained from G by deleting and contracting edges. Wagner's conjecture

states that every infinite series of graphs includes a pair of graphs one of

which is a minor of the other and this fact is known to be independent of

Peano's axioms. It will be interesting to try an elementary proof of the
finiteness of the irreducible triangulations.

   For example, it is easy to show in an elementary way that the sphere has
unique irreducible triangulation as K4. Barnette also showed in [2] that there

are precisely two irreducible triangulations of the projective plane, given in

Figure 10, one of which is the unique embedding of K6 on the projective plane.

It is easy to see that the second one with 7 vertices can be transformed into

K6+Ai by three diagonal flips. This implies that any triangulation on the
projective plane is contractible to one of these and hence is equivalent to K6+

A. under diagonal flips in either case, which follows from the arguments in

Section 1.

   On the other hand, there exist precisely 21 irreducible triangulations of the

torus. Lavrenchenko determined their complete list in [5]. The only pseudo-

minimal one among those is the unique embedding of K7 as is mentioned at
the end of Section 1 and hence any triangulation is equivalent to K7+A..

   The irreducible triangulations of the Klein bottle have never been classi-

fied yet. For example, prepare two copies of irreducible. triangulations in

Figure 10 and glue them together along a pair of faces. Then we obtain an
irreducible triangulation with 9, 10 or 11 vertices on the connected sum of two

projective plane, which is homeomorphic to the Klein bottle. There will be

another type of irreducible triangulations on the Klein bottle which do not

split in this way.
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   In general, let Ti,..., 71, be all the irreducible triangulations of a given

closed surface F2. Then there is a posivite interger N=N(F2) such that if

lV(Ti+A.,)l=1V(71i+A.,)1})IV] then 7>+A.,. i's equivalent to 71i+A.e,. under

diagonal flips, since they are stably equivalent to each other and finite in
number. Choose any triangulation G on F2 so that G has at least N vertices

and suppose that, G is contractible to 71i. Then G is equivalent to 71i+A., with

a suitable mi and hence to Ti+A., with fi V(G)l=1V(Ti)l+mi by the first key
fact and the property of AL Therefore, any two triangulations on F2 with at

least N and the same number of vertices can be transformed into each other

by diagonal flips via the standard form Ti+A., chosen here.

   These arguments suggest that if we have the complete list of irreducible
triangulations of a closed surface F2, then the value of N(F2) in Theorem 6

will be determined. More precisely, the number IV(l72) is equal to the mini-

mum number N such that for any two of pseudo-minimal triangulations Tt and
71i, if IV(71i+A.,)l=IV(7}f+A.,)1}}iA7] then 71i+A., i's equivalent to 7">+A.,,

under diagonal flips. Note that the complete list of pseudo-minimal triangula-

tions is a subset of that of irreducible triangulations and that any triangula-

tion obtaited from a pseudo-minimal one by diagonal flips is also pseudo-
minimal. Thus, if N(F2) >A(F2), then there will be a class of pseudo-minimal

triangulations, but not minimal, which is closed under diagonal flips. However,

we conjecture that any pseudo-minimal triangulation is minimaL See [9] for

the details.

4. Bipartite quadrangulations

   Now we will deal with a new class of graphs on closed surfaces, called

quadrangulations and describe Nakamoto's results on them in [6] with ad-

ditional observations. Some part goes in parallel to the previous arguments on

triangulations, but there are several phenomena peculiar to quadrangulations.
   A graph G 2-cell embedded on a closed surface F2 is called a quadrangula-

tion on F2 if G is simple and if each face of G is bounded by a cycle of length

4. Thus, the simplest example of quadrangulations is the cycle C4 of lenght 4

on the sphere. Recall that we exclude K3==C3 on the sphere in case of
triangulations. If we respected this convention, then we should exclude C4 and

should take the complete bipartite graph K2,3 on the sphere with three faces as

the smallest quadrangulation on the sphere. However, any choice from these

does not play an essential role in our arguments below.

   To construct another example of a typical quadrangulation, consider a

rectangle subdivided by an (n+1)× (m+1) grid so that its vertical and hori-
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zontal edges have length n and m respectively and identify each opposite pair

of edges. Then we obtain a quadrangulation on the torus which is isomorphic

to C.XC. as a graph. If both n qnd m are even, then C.XC. is bij)antte, that

is, we can assign black and white to its vertices so that any pair of adjacent

vertices get different colors. Otherwise, C.XC. contains an odd cycle. This

example guarantees the existence of non-bipartite quadrangulations although

all the quadrangulations on the sphere are bipartite.

   Here we define two diagonal transformations for the quadrangulations as

follows. Let viv2v3v4 and viv4vsv6 be the boundary cycles of two faces sharing

an edge viv4. Then the diagonal slide is to replace viv4 with another diagonal

v2vs (or v6v3) of the hexagonal region bounded by the cycle viv2v3v4vsv6, as

shown in Figure 11. We do not carry out the diagonal slide, as well as a
diagonal flips, if it yields a non-simple graph.

   Another transformation is called the diagonal rotation, which generalizes

the notion defined in [6]. Let v be a vertex of degree n in a quadrangulation

G and let vwibiw2, vzv2b2w3,..., vw.b.wi be the boundary cycles of the n faces

incident to v in G. The diagonal rotaiton around v is to rotate the n edges vwi,

...
, vw. around v to be vbi,..., vb. in the 2n-gonal region bounded by the

cycle wibi･･･w.b.. Clearly, this does not destroy the simpleness of a quad-

rangulation. Nakamoto has introduced only a diagonal rotation around a
vertex of degree 2 and we also will use only it in this section.

   Notice that both a diagonal slide and a diagonal rotation preserve the

bipartiteness of quadrangulations, as the coloring of vertices with black and

white suggests in both Figures 11 and 12. That is, a quadrangulation G is
bipartite if and only if so is any quadrangulation G' obtained from G by one

of these deformations. Thus, it is impossible to transform a bipartite quad-

rangulation into a non-bipartite one. It is another important fact that any

diagenal slide does not change the number of black vertices and of white

         '

               V2 V3 V2 V3

             Vl V4 --I' Vl V4
                                         '

                                            '               V6' V5 V6･ V5
                        '                                                     '
                        Figure11:Diagonalslide .,
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Figure 12: Diagonal rotation

vertices while a diagonal rotation around v changes the color of v in a
bipartite quadrangulation with black and white vertices. This implies that two

bipartite quadrangulations with partite sets of different sizes cannot be

transformed into each other by only diagonal slides. Therefore, we need also

diagonal rotations to establish the following theorem.

THEOREM 7 (Nakamoto, 1993). Fbr any closed sutuce F2, there exists a positive

intager M=M(F2) such that of Gi and G2 are two bipartite quadrangulations on F2

with lV(Gi)l=lV(G2)l2Mi then Gi and G2 ar2 equivalent unaer diagonal slides

and diagonal rotations around ventces of dagree 2, mp to homeomofPhism

   The diagonal rotation plays the role to change the sizes of partite sets of

a quadrangulation, so we can expect that only diagonal slides are needed to

transform bipartite quadrangulations with partite sets of the same size. The

following theorem can be regarded as a refinement of Theorem 7 and is the

one as we expect. Here we assume that any bipartite quadrangulation G has

a fixed coloring of vertices with black and white and denote the sets of black

and white vertices by VB(G) and Vw(G), respectively.

THEOREM 8 (Nakamoto, 1993). Fbr any closed sutuce F2, there exist a pair of

positive integers B==B(F2) and W=W(F2) such that ijC Gi and G2 are two bij)artite

quadrangulations on F2 zvith lVb(Gi)1=lV)?(G2)1;}iB and 1Vw(Gi)1 ==1Vw(G2)1})

VV] then Gi and G2 am2 equivalent under diagonal slides, mp to homeomorphism.

   Let G be a quadrangulation on a closed surface F2 and abcd the boundary

cycle of a face A of G. The contraction of the face A at a and c is to shrink

the region of A until the two paths bad and bcd coincide, as shown in Figure

13. There are two ways to contract one face at two diagonal pairs of vertices

on its boundary. A face A with boundary cycle abcd as above is said to be
contractible (at a and c) if the contraction of A (at a and c) yields another
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Figure 13: Contraction of a face

quadrangulation G', that is, if Gi is simple. A quadrangulation G is said to be

conrmctible to another quadrangulation Gi if we can transform G into G! by

contractions of faces, preserving the simpleness of quadrangulations.

   As the reader might expect, the contraction of a face corresponds to the

contraction of an edge in a triangulation and plays the same role. Thus, an

ir7fieducible quadrangulation on a closed surface is defined as one that is not

contractible to any other quadrangulation on the same surface, and a quad-

rangulation G is irreducible if and only either if any diagonal pair of vertices

a and c on the boundary cycle abcd of each face has the third common
neighbor other than b and d or if they are joined by an edge ac in G. The

second condition however implies that G is not bipartite, and hence any
irreducible bipartite quadrangulation, we deal with here, satisfies only the first

one.

   Figure 14 suggests how the face contraction is related to the diagonal

slides, which is very similar to the relationship between the edge contraction

and the diagonal fiips for triangulations. Roughly speaking, any face contrac-

tion can be realized by deletion of a vertex of degree 2 following several

diagonal slides. From this, we can conclude that if a quadrangulation G is

contractible to an irreducible quadrangulation T, then G is equivalent to T

'with a suitable number of vertices of degree 2 added in order, denoted by T+

r., under diagonal slides and diagonal rotations. Note that we need here the

diagonal rotations to modify the sizes of partite sets.

   For example, every quadrangulation G on the sphere is contractible to the

smallest quadrangulation C4 and is equivalent to C4+r. with IV(G)1==m+4.

Thus, any two quadrangulations on the sphere are eq'uivalent to each other

under diagenal slides and diagonal rotations around vertices of degree 2, We

shall show a similar observation for the projective plane at the end of this
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. .
,

              Figure 14: Face contraction and diagonal slides

paper. . ,   To carry out the same arguments as for the triangulations in the previous

section, the finiteness of irreducible quadrangulations on a closed surface plays

the important role as well as that of irreducible triangulations and can be
proved easily if we restrict those to only bipartite ones, assuming Wagner's

conjecture. For we can translate the problem into that within the graph-
minor arguments in this case, as follows.
   Let G be a bipartite quadrangulation on a closed surface F2 with partite

sets Vb(G) and Vw(G) and let GB be the graph with vertex set V(GB)=Vb(G)

and with edges each of which joins two black vertices in the boundary
cycle of each face of G. We can also define Gw similarly as one with V(Gw) =

Vw(G). Then GB and Gw are the duals of each other, that is, (GB)"=Gw and

GB == (G vv) *･ '
   Conversely, given a 2-cell embedding of "a graph H on a closed surface F2

with dual H*, we can construct a quadrilateral embedding of a bipartite graph,

denoted by R(H), with partite sets V(H) and V(H*) by drawing edges radially

from each vertex v'EV(H*) to all the vertices vEV(H) on the boundary of
the face which contains v*. This bipartite graph R(H) is called the radial

graph of H on F2. The radial graph R(H*) of the dual H* of H clearly

coincides with R(H). Note that･the quadrilateral embedding R(H) is a
quadrangulation o.f F2 if and,only if the boundary of any face of H is a cycle;

otherwise, R(H) would nQt be simple.

 , In･the previous notation and this terminology, we can say that G is the
radial graph of both GB and Gw, that is, G==R(GB) ==R(Gva). Observe that the
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contraction of a face abcd of G at a pair of black vertices a and c induces the

contraction of the edge ac in GB while that at a pair of white vertices b and a

induces the deletion of the edge ac in GB. This implies that the graph GB!

whose radial graph is the result G! of any face contraction is q minor of GB.

Thus, the finiteness of irreducible quadrangulations on F2 can be translated

into the finiteness of the minimal elements, with respect to the minor relation,

among those graphs on F2 each of whose faces has a cycle boundary.
Wagner's conjecture guarantees the latter.

   This argument does not work for the non-bipartite quadrangulation even if

the same fact holds for them. However, the essential difficulty in our proof

for the non-bipartite ones arises in the arguments of the stable equivalence.

Two quadrangulations Gi and G2 are said to be stably equivalent to each other

if there exist a pair of non-negative integers mi and m2 such that Gi+r., and

G2+r., are equivalent to each other under diagonal slides and rotations, where

G+r. denotes a quadrangulation obtained from G by adding m vertices of
degree 2 to faces in order.

   Recall the argument on the stable equivalence over the triangulations,

which is quite simple. Negami [9] found a common refinement of any two
triangulations and showed that this is contractible to both of them. In our

case, we,can also find easily a common refinement of any two quad-
rangulations on the same closed surface, but it is hardly possible to find their

common refinement contractible to both of them. In fact, we can construct a

pair of non-bipartite quadrangulations which makes it impossible, accroding to

the theory of cycle parities in the next section.

   Under this situation, Nakamoto [6] found two bipartite quadrangulations

Gi and G2, with the same number of vertices, other than a common refinement

G for any pair of quadrangulations Gi and G2 so that each of Gi i's contractible

to Gi and both of them are contractible to G, not requiring G to be contractible

to both Gi and G2. Then Gi is equivalent to both Gi+r., and G+r., for each

i, and hence Gi+r., and G2+r., can be transformed into each other via G+

rn,=G+rn, by diagonal slides and rotations.

   Now we have prepared the same facts as what we need to prove Negami's
theorem for the triangulations and hence the same logic works for the proof of

Theorem 7. However, we have to discuss more carefully to prove Theorem 8.
See [6] for the details.

   Nakamoto also has shown in [6] examples of non-bipartite quadrangu-
lations on the Klein bottle which have the same and arbitrarily large number

of vertices but which are not equivalent under diagonal slides. We shall

discuss,,these with more general arguments in the next section. Here we
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. .

Figure 15: Moving a vertex of degree 2

should note that the diagonal rotation around a vertex of degree 2 is not

needed for non-bipartite quadrangulations. For it can be realized as a se-

quence of diagonal slides.

   In his theory, the vertices of degree 2 in quadrangulations play the same

role as ones of degree 3 in triangulations. For example, a vertex v of degree

2 can be moved to any place in a quadrangulation only by diagonal slides, as

shown in Figure 15, but we cannot control freely the possition of the two

edges around v without diagonal rotations. However, moving v along an odd

cycle takes the same effect as the diagonal rotation around v. If the vertex v

is not incident to such a cycle C, then we add diagonal slides before and after

this so that they carry v to a face incident to C and back to the quadrilateral

region where v was placed. This operation is always possible when the
quadrangulation is not bipartite, since it contains an odd cycle.

   Finally; '･we shall show another observation on bipartite quadrangulations
in [6]. A quadrangulation G on a closed surface'F2 is said to be pseudo-

minimal if G cannot be transformed into one which has a vertex of degree 2

by diagonal slides, similarly to the definition of pseudo-minimal triangulations.

For example, the complete bipartite graph Kin, . is clearly pseudo-minimal on a

closed surface F2 if it can quadrangulate F2 since no diagonal slide can be

applied to it.

   In case of triangulations, we have never found inequivalent pseudo-
minimal ones on the same closed surface. However, it is easy to find such

examples for quadrangulations. To do this, consider the following formula of

the genus of Kb,,., given by Ringel in [13].

                r(K..)==[(M-2)4("-2)1 (m,ni)2)

Moreover, the complete bipartite graph K.. quadrangulates the orientable
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closed surface Sg of genus g if

                              (m - 2) (n - 2)
                          9=                                  4

is an integer. Thus, for all the pairs (m, n) with this condition, K.,.'s are

pseudo-minimal on F2 and are not equivalent to one another under diagonal

slides and diagonal rotations around vertices of degree 2.

   For example, Ka6 and K44 are inequivalent pseudo-minimal quadrangu-
lations on the torus Si. Of cource, they are stably equivalent and indeed K36 +

r. is equivalent to K44+r. if and only if 3+6+n==4+4+m and if n, m > O.
This implies that the number M(Si) for the torus in Theorem 7 must be equal
to or greater than 10. Thus, M(F2) does not coincide with the number of
vertices of the minimal quadrangulations on F2 in general, in contrast to our

conjecture on the triangulations.

5. Cycle parity of even embeddings

   In this section, we shall work in a more geneal situation. Our theory below

will enable us to discuss more accurately on non-bipartite quadrangulations in

terms of algebraic topology.

   A face A of a graph G on a closed Surface F2 is said to be even (or odd)

if its boundary walk has an even (or odd) length and an embedding of G on
F2 is said to be even if each face of G is a 2-cell and even. For example, any

2-cell embedding of a bipartite graph on a closed surface is even since it

contains no odd cycle. In particular, a connected graph has an even embedding

on the sphere if and only if it is planar and bipartite. Negami has shown in

[7] and [8] a characterization of those graphs that have even embeddings on

the projective plane, using the notion of "coverings" of graphs. It is so diMcult

to prove its analogy for other surfaces.

   An even embedding of a graph on a closed surface has a nice property
from a point of view of algebraic topology, as shown below, which is based on
the next lemma. In general, a closed curve on a surface F2 can be represented

as the image of the unit circle Si={(c y)ER2: x2+y2=1} by a continuous map

7:Si->F2. Two closed curves represented with 7o, ri are said to be homotopic

to each other if there is a continuous map ¢:SiXIL->F2 such that ¢o=ro and Oi

=7i, where ¢t:S2->F2 is the continuous map defined by ¢,(x)=¢(c t) for each
tE I. Since any cycle in a graph G embedded on F2 can be regarded as a
closed curve on F2, we can say whether or not two given cycles in G are
homotopic to each other on F2.
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LEMMA 9. Let G be a groph 2-cell embedded on a closed suhace F2 with only

even faces. 71hen the lengths of two aycles in G have the same Pan'ty ijr the37 a7e

homotQPic to each other on F2. -

   We need some technical arguments if we want to prove this lemma in a
strict way. The phenomenon is however quite simple. We can understand that
any two homotopic cycles in G can be transformed into each other on F2 by a

sequence of the following elementary deformation, which preserves the parity

of their lengths; Let C be a closed walk and W the bgundary walk of a face A,

and suppose that a segment of VV is contained in C. Then we can carry this

segment continuously across A to the opposite segment of W, fixing its ends.

It is obvious that if VV has an even length, then the length of the closed walk

obtained from C by this deformation has the same parity as that of C.
   Let F2 be a closed surface and G a graph 2-cell embedded on F2. Roughly

speaking, the fundamental group zi(F2) of F2 (with a suitable base point) is a

group consisting of all the closed curves on F2, classified up to homotopy, with

natural compositions as its multiplication. Since each face of G is simply
connected, any closed curve on F2 can be carried homotopically into G'. That is,

it is homotopic to a closed walk in G. This implies that some cycles in G
generate zi(F2).

   By the above lemma, any two cycles of G have the same parity if they
represent the same element of zi(F2). Thus, we can assign "O" or "1" to each

element of zi(F2), according to whether the element can be represented as an

even cycle or an odd cycle. Denote this assignment by pNG:zi(F2)-->Z2. This

map PG is a group homomorphism and depends only on the embedding of G on
F2. (In other words, if we re-embed G on F2, then PG also changes in general.)

   By well-known facts on homotopy and homology groups, pNc factors
through Hi(F2; Z2) uniquely, that is, there is a unique homomorphism pG:
Hi(F2; Z2)->Z2 such that PG=pG･q, where q:zi(F2)->Hi(F2; Z2) is the composi-

tion of the abelianization and reduction modulo 2. This homomorphism pc can
be regarded as an element of the cohomology group Hi(F2; Z2). We shall call

this the cycle parity of G on F2.

   It is easy to see that both the diagonal slide'and the diagonal rotation

aroud a vertex of any degree preserve the parity of the length of cycles with
the same homotopy type on F2. Thus, we have the following theorem.

THEOREM 10. Let Gi ana G2 be tzvo quadrangulations on a closed suhace F2. if

Gi is equivalent to G2 under diagonal sliaes and rotations mp to ambient isotopy,
then pG,==pc, in lli(F2; z2). -
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   For example, the sphere S2 has the trivial cohomology Hi(S2; Z2) =O, so all

the quadrangulations on the sphere have the same cycle parity, which assigns

O to all of their cycles. This corresponds to the fact that every quadrangula-
tion on the sphere is bipartite. On the other hand, Hi(P2; Z2):):Z2 for the

projective plane P2 and this consists of two elements, one of which assigns O

to all the cycles and the other assigns 1 to each essential cycle in P2. They

are the cycle parities of bipartite and non-bipartite quadrangulations on the

projective plane, respectively, which are not equivalent, as we have seen in the
previous section. (A cycle is said to be essential on a closed surface F2 if it

does not bound any 2-cell region on F2. In this case, the cycle represents a

non-trivial element in zi(F2).) ･'
   It should be noticed that two quadrangulations equivalent up to homeo-

morphism might have distinct cycle parities. In general, two elements pi and
p2 in Hi(F2; Z2) are said here to be congraent if there is a homeomorphism h:F2

-i. F2 which induces a homomorphism h':Hi(F2; Z2) . Hi(F2; Z2) with h'(P2) =

pi. In this case, for each clQsed curve r on F2, p2 assigns the same parity to

h(7) as pi assigns to r Thus, the cycle parities pG and ph(G) of quad-
rangulations G and h(G) are congruent for any homeomorphism h:F2->F2,

and we have:

THEOREM 11. Let Gi and G2 be two quadrangulations on a closed sudece F2. IZf

Gi is equivalent to G2 under diagonal slides and rotations mp to homeomoTphism,
then the cycle parity pG, is congruent to pc, in Hi(F2; Z2). -

   Note that the number of congruence classes of Hi(F2; Z2) depends on the

homeomorphism type of the surface F2 rather than the algebraic struture of

Hi(F2; Z2). For example, the torus T2 and the Klein bottle K2 have the same

cohomology ' '
        Hi(T2; z,) =.Hi(K2; Z2) =-Z2eZ2

but the numbers of their congruence classes are different, as shown beiow.

   Choose any two simple closed curves on the torus which cross each other

at only one point and call them the meridian and the longitude, respectively.
Then Hi(T2; Z2) consists of four elements (O, O), (1, O), (O, 1), (1, 1) and can

be generated by (1, O) and (O, 1), one of which assigns 1 to the meridian and

O to the longitude and the other assigns O to the meridain and 1 to the
longitude. It is easy to see that all the three non-trivial elements are congru-

ent to each other. Thus, the torus has precisely two congruence classes of
cycle parities.

   The above is based on the fact that any system of two simple closed
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         Figure 16: Inequivalent quadrangulations on the Klein bottle

curves on the torus crossing each other at a point can be chosen as a
"meridian-longitude system". On the other hand, a simple closed curve on the

Klein bottle which cuts open the Klein bottle into an annulus is unique up to

ambient isotopy and is called the mendian of the Klein bottle. This implies
that (1, O) is congruent to (1, 1) but is not to (O, 1). Thus, thetKlein bottle

has three congruence classes of cycle parities. The trivial one (O, O) corre-

sponds to the class of bipartite quadrangulations and the other two correspond

to those of non-bipartite ones, which are not equivalent up to homeomorphism.

   For example, Figure 16 gives us two inequivalent non-bipartite quad-
ga,;,gzi/t/ro".s,,o,"fihs,5izih",b.otg.ie6.9bos/l:･,e,dg,'8M,,geg5a."//,.･,/g/2,Zf8,/'.'2.M,･:",,Z".d.O.f

get the whole Klein bottle from each rectangle, identifY''each horizontal pair of
paths in parallel and each vertical pair of patfiis̀ifi" tihti-parallel to be the

meridian. They have the same number of vertices,, namely mXn vertices but

cannot be transformed into each other by diagonal slides since their cycle

                                                                  'parities(1,O)and(O,1)arenotcongruent. ･ '･
   It is easy to see that any element in Hi(F2; Z2) can be the cycle parity pG

of a certain quadrangulation G on the closed surface F2. Prepare a 4g-gonal
disk 94g for the orientable closed surface Sg of genus g (-6fi'S 2'd-gonal one for

the non-orientale closed surface Alb of genus g) and label its edges with ai, bi,
ai-i, bi'i, ..., a,, b,, a,-i, b,Mi (or ci, ci, ..., c,, c,) in this cyclic order. Identify

each pair of edges with the same lables, taking:',their directions into accoUnt as

we usually do. Then we obtain the surface Sg and the cycles ai, bi, ... ., ag, bg

generate Hi(S,; Z2). Given an element pGHi(F2; Z2), subdivide ai and ･bi?to be

paths whose lengths have the same parities as p(ai) and p(bi).,have, and

subdivide the whole S24g into quadrilaterals. It is clear that pG=p'for the

resulting quadrangulation G on Sg. The same argument works fOr..nhe non-

orientable closed surface AIg with ci,..., cg. ･" ･'', -･
   From these observations, a natural question arises; Does the}number of

!

i

:

1
!
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equivalence classes of quadrangulations on a closed surface F2 with the same

number of vertices up to homeomorphism coincide with the number of congru-
ence classes in Hi(F2; Z2)? Equivalently, are two non-bipartite quadrangulations

on F2 equivalent under diagonal slides up to homeomorphism if their cycle

parities are congruent? Following Negami's and Nakamoto's style, we conjec-

ture that this is the case for quadrangultations with sufficiently many vertices.

   It also is easy to see that the contraction of any face of a quadrangulation

G does not change the cycle parity pG. Thus, if the cycle parities of two
quadrangulations Gi and G2 on a closed surface F2 are not congruent in Hi(F2;

Z2), then neither Gi nor G2 is contractible to the other. This implies that the

number of congruence classes in Hi(F2; Z2) gives us a lower bound for the

number of the pseudo-minimal quadrangulations on F2.

   As an application of the cycle parity, we shall classify the irreducible

quadrangulations on the projective plane.

THEOREM 12. There are precisely tzuo ineducible quadrangulations on the Projec-

tive Plane, as shown in Figure 1Z one of which is not bipartite and is isomorphic

to K4 and the other is bipartite and is isomo71)htc 'to 'K3,4

P?roof Let G be an irreducible quadrangulation on the projective plane P2 and

A a face of G with boundary cycle abcd. Then there is either (i) an edge ac

or (ii) a path axc of length 2 in G since G is irreducible.

   In Case (i), G contains an odd cycle abc, which has to be essential on P2.

This implies that the cycle parity pG of G is the non-trivial one and hence

every essential cycle has an odd length in this case. The diagonal pair of b

and d also are joined by an edge bd or a path byd of length 2. The latter is

not the case however; otherwise, the even cycle bcdy would be essential. Thus,
we have found K4 with vertices a, b, c, d embedded on P2 so that abcd bounds
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a face. This is the same one as the left in Figure 17 and has three quadrilat-

eral faces, one of which is a face of G. The other two also are faces of G by

Lemma 3 in [6]. This lemma implies in general that a cycle of length 4

bounds a face in an irreducible quadrangulation if it bounds a 2-cell region.

Therefore, this embedding of K4 coincides with the whole G.

   In Case (ii), G contains an even cycle abex which is essential and hence pG

has to be trivial. This implies that G is a bipartite quadrangulation on P2. By

Euler's formula, we can conclude that G has a vertex v of degree 3. Then the

union of the three faces incident to v forms a hexagonal region containing v at

the center. Let viv2v3v4vsv6 be the boundary cycle of this region with vi, v3 and

vs adjacent to v. Since these three faces are not contractible, there are edges

viv4, u2vs, v3v6 in G. Now we have found Ka4 with partite sets {v2, v4, v6} and

{v, vi, v3, vs}. This Ka4 is embedded on P2 with six faces in the same way as

given in the right of Figure 17. By Lemma 3 in [6] again, we conclude that

this embedding coincides with the whole G. -

   Combining the above theorem with Nakamoto's arguments introduced in
Section 4, we can prove the following concrete theorem for the projective
plane.

COROLLARY 13. Two quadrangulations on the Pr(ij'ective Plane afl? equivalent to

each other under diagonal slides and diagonal rotations around vertices of dagree

2, mp to ambient isotopy, of and only of both or neither of them are bij)artite.

Proof Any quadrangulation G on the projective plane is contractible to one of

two irreducible quadrangulations classified above, denoted simply by K4 and

Ka4 respectively. As is shown in Section 4, this implies that G is equivalent to

either K4+r. or K34+T., where IV(G)1=m+4=n+7, and G is not bipartite in

the former case while G is bipartite in the latter case. Thus, the theorem

follows. -
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