
Diagonal Tuple Space Search in Two Dimensions

Mikko Alutoin and Pertti Raatikainen

VTT Information Technology

P.O. Box 1202, FIN-02044

Finland
{mikkocalutoin , pertti.raatikainen}@vtt.fi

Abstract. Due to the evolution of the Internet and its services, the process of

forwarding packets in routers is becoming more complex. In order to execute

the sophisticated routing logic of modern firewalls, multidimensional packet

classification is required. Unfortunately, the multidimensional packet classifi

cation algorithms are known to be either time or storage hungry in the general

case. It has been anticipated that more feasible algorithms could be obtained for

conflict-free classifiers. This paper proposes a novel two-dimensional packet

classification algorithrn applicable to the conflict-free classifiers. lt derives

from the well-known tuple space paradigm and it has the search cost of O(log

w) and storage complexity of O{n2w log w), where w is the width of the proto

col fields given in bits and n is the number of rules in the classifier. This is re

markable because without the conflict-free constraint the search cost in the two

dimensional tup!e space is E>(w).

1 Introduction

Traditional packet forwarding in the Internet is based on one-dimensional route Iook

ups: destination IP address is used as the key when the Forwarding Information Base

(FIB) is searched for matehing routes. The routes are stored in the FIB by using a

network prefix as the key. A route matches a packet if its network prefix is a prefix of

the packet's destination IP address. In the event that several routes match the packet,

the one with the Iongest prefix prevails.

This well-know process does not inherently meet requirements of some of the new

routing techniques. For example, in firewalling, QoS based routing, programmable

and active networking [1] as well as in application Level routing the forwarding deci

sion is based on multiple protocol fields [2]. The forwarding is no Ionger based on

just the destination IP address, but other attributes are considered as weil. In fire

walling, for example, the packet may be matched against a 5-tuple, composed of the

source and destination IP address, source and destination port and the protocol field

of the IP header. In application Ievel routing, a URL can be used as an attribute when

making the forwarding decision. In summary, all these new routing techniques re

quire multidimensional packet classification [3, 4].

N. Mitrou et al. (Eds.): NETWORKING 2004, LNCS 3042, pp. 308-319, 2004.

© IFIP International Federation for Information Processing 2004

Diagonal Tuple Space Search in Two Dimensions 309

When it comes to the methods of packet classification, linear search through the

FIB is an option. In the linear search, all FIB entries are compared with the packet

one by one in order to elirninate the non-matehing entries. Among the matehing en

tries, the one with the highest priority (e.g. the one with the Iongest network prefix in

the case of one-dimensional packet classification) is the best matehing entry. Unfor

tunately, the linear search is too time-consurning for backhone routers, which have to

make tens of rnillions of forwarding decisions per second in order to keep up with the

line speed. Thus packet classification algorithms are called for.

Efficient algorithms that facilitate wire-speed route look-ups have been developed

for the problern of one-dimensional packet classification [5]. When the nurober of

dimensions grows, so does the search complexity. A generat k-dimensional (k > 3)

packet classification algorithm has O(log n) search complexity with O(nk) memory

space or O(lol-1n) search complexity with O(n) memory space, where n is the nuro

ber of FIB entries [6]. This is impractical for a high-speed router. In [7], it has been

suggested that more efficient packet classification algorithms could be developed for

the conflict-free FIBs. To support this claim, a two-dimensional packet classification

algorithm, which exploits the conflict-free constraint, has been provided. The algo

rithm is based on Tuple Space Search [8].

The work reported in [7] inspired us to study the subject more deeply. After a care

ful study, we came to the conclusion that the proposed algorithm does not work.

However, by elaborating the ideas in [7] and by adding some new ones, it was possi

ble to come up with an algorithm that makes use of the conflict-free constraint. The

algorithm is shown to have the search cost of O(log w) and the storage requirement of

O(n2w log w). This is remarkable, because without the conflict-free constraint the

nurober of search steps has been shown tobe exactly 2w-1, i.e., 8(w) [8].

Rest of the paper is organized as follows. Section 2 explains the concept of con

flict-free constraint and section 3 describes the concept of tuple space. Section 4 in

troduces our contribution, the diagonal tuple space search in two dimensions, section

5 includes performance evaluation and section 6 concludes the paper.

2 Conflict-Free Constraint

Multiple FIB entries can match a packet at each look-up and thus some arbitration

must be done to deterrnine the best matehing one. In the aue-dimensional look-ups,

the length of the prefix is used for this purpose. FIB entries with a Ionger network

prefix get priority. In the multidimensionallook-ups, the principles remain the same,

i.e., the Iongermatch gets priority. Nevertheless, it is not always that simple to deter

rnine which match is the Iongest one. From now on, a FIB entry is referred to as a

rule- a commonly used terminpacket classification [3]. Consider what happens if a

FIB contains the following rules:

Rule l From network a .b. c . * t o network n.*.*.*

DENY packets

310 M. Alutoin and P. Raatikainen

Rule2 From network a.*o*o* to net work noboco*
PERMIT packets

Let's suppose that a packet arrives from network a ob o c o * and its destination is

in network n 0 b 0 c 0 * 0 Both rules match the packet, but which one is the Ionger

matcho It is impossible to say, because both are Ionger in one dimension but shorter in

the othero So, the two rules are in conflict. Generally, two rules are in conflict when

they overlap and neither one encloses the other (9]. Overlap means that all the pre

fixes of the two rules are non-disjointo This is true in the example case, because

a 0 b 0 c 0 * is a subset of a 0 * 0 * 0 * and n ob 0 c . * is a subset of n o * o * o *. En

closure means that one of the rules is at least as specific as the other one in all dimen

sionso Clearly neither Rulel or Rule2 encloses the other oneo

Before a rule can be inserted into a FIB, all conflicts between the rule and the al

ready inserted rules need tobe detected [10] and resolvedo There are two methods for

resolving conflicts, ioeo, implicit conflict resolution and explicit conflict resolution [9]0

In the former case, the conflicting rules are assigned priorities that are used to arbi

trate between the matehing rules. In the explicit conflict resolution, a resolving rule is

required for each conflict. A resolving rule specifies explicitly the action that prevails

in the conflict regiono Resolving rules are no different than the ordinary rules in the

FIB, except that they are removed when either one of the conflicting rules is re

movedo A pseudo-code for computing prefixes of a resolving rule is given belowo It is

adapted from [9]0

Function ResolvingRule (Ra, Rb)

for i = 1 to k do

end for

return (Re)
end Function

Re [i] = Longer (Ra [i] , Rb [i))

In the above example, the resolving rule would be:

Rule3 From network aoboco* to network noboco*
ACTION (= PERMIT packets or DENY packets)

Whenever a packet matches both Rulel and Rule2, it will also match the resolving

rule (Rule3)o In such cases, the resolving rule is the best match, because it is always at

least as specific as either one of the conflicting rules in every dimensiono The action

part of the resolving rule is decided by the entity that handles the conflict resolution.

The conflict-free constraint on the FIB means that there is a resolving rule for each

conflicting rule pair in the FIB. This is a mandatory requirement for the algorithm

which is put forward in this paper.

Diagonal Tuple Space Search in Two Dimensions 311

3 Tuple Space Search

The tuple space search [8] is a scheme proposed for multidimensional packet classifi

cation applications. Next, the basic features of the scheme and its major tools are ex

plained.

3.1 Tuple Space Paradigm

In the tuple space search, rules are grouped based on their prefix length and a group is

referred to as a tuple [8]. The groups are stored in hash tables and each group forms a

separate hash table. In a k-dimensional FIB, the tuples are vectors of length k. For ex

ample, in a two-dimensional tuple space, rules R1 = (100*, 11 *) and R2 = (001 *, 01 *)

both map to tuple T1 = [3, 2], while R3 = (*, 110*) maps to tuple T2 = [0, 3].

The key idea is that rules are hashed by using the concatenation of the prefix

strings. When a packet is being classified, each tuple is probed for a matehing rule.

The concatenation of bits from the packet's header fields forms the hash key. The tu

ple vector indicates the number of bits taken in each dimension. Note that a probe re

sults in finding either one or none matehing tuple entries.

The search complexity of this packet classification method is proportional to m, the

number of tuples. This is an improvement to the basic linear search through the FIB,

for which the search cost is proportional to N, the number of rules in the FIB. How

ever, the worst case bound is still O(N).

3.2 Markers and Pre-computation

Markers and pre-computation were introduced in [5] to carry out binary search for

one-dimensional IP route Iook-ups. The FIB in [5] can be thought of as one

dimensional tuple space: the FIB entries are routes to networks and they are grouped

to tuples by the length of the destination IP address prefixes. A hash key is generated

for each tuple by taking as many most significant bits of the destination IP address as

the hash table is wide. The basic linear search through the tuples has a search cost of

O(w), w being the width of the destination IP address in bits. However, a much better

bound O(logw) can be obtained by using binary search for the hash table probes. The

binary search can be applied by employing markers and pre-computation.

Markers are used to direct the binary search to Iook for matehing routes with even

Ionger network prefixes. The idea is that adding a route that has a network prefix of

length l will result not only in insertion of the route in the hash table of width l but

also in insertion of a marker in each hash table of width shorter than l. For example,

addition of rautethat has prefix 1101 will produce markers 110, 11 and 1, which are

inserted in hash tables of width 3, 2 and 1, respectively. Thus an entry in a tuple can

be associated with one route and one marker. Note that routes whose network prefixes

start with the same l-bit sequence share markers in the hash tables that have width ~ l.

312 M. Alutein and P. Raatikainen

When a hash table (width l) is probed during a binary seareh, the other hash tables
ean be divided into two groups: Ionger half (width > l) and shorter half (width :::; l). If

no matehing marker is found, the Ionger half ean be eliminated and the seareh foeuses

on the shorter half. This ean be done beeause every matehing route in the Ionger half

would have left a matehing marker in the probed hash table. If instead a matehing

marker is found, the binary seareh is direeted to the Ionger half. Now, the shorter half

eannot be dismissed straight away, beeause there is no guarantee that the Ionger half

will eventually eontain any matehing routes. This situation is dealt with pre

eomputation.

The idea of pre-eomputation is that one ean eompute the best matehing route in the

shorter half for eaeh marker beforehand and store it in the marker. In this way, one

ean dismiss the shorter half sinee the matehing marker has already yielded the best

matehing route in that set. The algorithm must keep traek of the eurrent best matehing

route all along the seareh and update it eaeh time a new matehing marker is found. If

the matehing entry is assoeiated with a route, but not with a marker, the seareh stops

and that route is the best matehing one.

To summarize, the markers and pre-eomputation ean be used to trade off memory

spaee and route/rule insertion time for faster look-up time.

3.3 Markers and Pre-computation in Multidimensional Tuple Space

To understand how markers and pre-eomputation work in the multidimensional tuple

spaee, eonsider a tuple T, = [11, 12, ••• , lJ The tuple spaee ean be partitioned into three

disjoint sets with respeet to T,, i.e., Short(T,), Long(T) and Incomparable(T,) [8]. Set
Short(T) eontains the tuples that are no Ionger than T, in any dimension, i.e., tuple ~

= [hl' h2 , ••• , hk] belongs to set Short(T,) if and only if h, :::; l, (1 :::; i :::; k) and ~ -::1- T,.

Similarly, tuple ~ = [hl' h2 , ••• , hk] belongs to set Long(T,) if and only if h, :<:: l, (1 :::; i :::;

k) and ~ -::1- T,. The rest of the tuple spaee belongs to set Incomparable(T,). Note par

tieularly that if two overlapping rules R, and Rj map to tuples T, and ~, respeetively,
and if tuple ~ belongs to set /ncomparable(T) then the two rules are in eonfliet.

Eaeh rule that maps to tuple T, ean leave a marker in tuples in set Short(T,). Mark

ers in T, in turn eontain their best matehing rule, obtained by pre-eomputation, in set

Short(T,). It follows that if tuple T, is being probed and it does not eontain a matehing

marker, set Long(T,) ean be dismissed and the seareh ean be restrieted to sets Short(T) ·

and Incomparable(T,). Let us eall the union of these sets as Fail(T,). If instead there is

a matehing marker in T, then one ean dismiss set Short(T,) by pre-eomputation and re

striet the seareh to sets Long(T) and lncomparable(T,). Let's eall the union of these

sets as Success(T).

Can binary seareh work for k-dimensional tuple spaees? It turns out that it eannot,

beeause set Incomparable(T,) is included bothin Success(T) and Fail(T,). Due to this

overlap, the binary seareh eannot work. In faet, it has been proved in [8] that the best

ease seareh eost for any algorithm, whieh performs a seareh in k-dimensional tuple

spaee (k>2), is Q(wk-1). A related result has been provided in [11], where it has been

stated that by deploying markers and pre-eomputation the worst ease seareh eost is

Diagonal Tuple Space Search in Two Dimensions 313

O(wk·l log w). For the special case oftwo-dimensional tuple space, the search cost has

been shown tobe exactly 2w-1, i.e., 8 (w) [8].

Despite these rather disturbing results, it has been suggested in [7J that by impos

ing the conflict-free constraint on the FIB faster search algorithms can be obtained.

To prove their claim the authors put forward an algorithm for two-dimensional packet

classification for the conflict-free FIBs [7]. After a careful study, we came to the con

clusion that the proposed algorithm does not work. However, by refining some of the

given ideas and adding new ones, we were able to come up with an algorithm that

seems to work. This algorithm is named as the diagonal tuple space search in two di

mensions and indeed, it has the search cost lower than O(w).

4 Diagonal Tuple Space Search in Two Dimensions

The diagonal tuple space search algorithm uses markers inanewand innovative way,

i.e., markers are inserted diagonally. The pseudo-code below describes the procedure

of inserting the markers. This procedure is executed each time a new rule is added

into the FIB.

Function SetMarkers(Rule R)
/* Tuple T is initially the tuple

* to which the rule maps to */

TupleT= CiR[lJI, IR[2JIJ;

/* One marker is inserted in each iteration * /

while (T ! = [0, 0])
if (T[l] > T[2])

T(l] = T[l) - 1 ;
else

if (T[2] > T[l])
T[2] = T[2] - 1;

else /* T[l] equals T[2] * /

T[l] = T[1] - 1;
T[2] = T[2] - 1;

InsertMarkerAtTuple(T, R);
end while

end Function

An example of a two-dimensional FIB is shown in Fig. 1. The arrows describe the

way the rules place their markers. For example, if a rule maps to the shadowed tuple

Td = [2, 2] markers are inserted into tuples [1, 1] and [0, OJ. A rule mapping to tuple

[0, 5] inserts markers to tuples [0, 4] , [0, 3], [0, 2] , [0, 1] and [0, 0]. Tuple [0, 0] is a

virtual tuple which contains the default rule R d,Jau/t = (*, *). Fig. 1 also shows how the

rest of the tuple space is divided into sets Short(T), Long(T) and lncomparable(T)

314 M. Alutoin and P. Raatikainen

with respeet to diagonal tuple Td = [2, 2]. Definitions of the sets were given in the
previous seetion.

y

~1!~ ~~11 ! ~ ~ /
if~f~ f f ! ~ / -
@:~~ ! ~ ~ / 1--

~ ~/---
1 . i - ~ ~ :~ f :~

~ ·::. WNNNN r ~=· t ~~;
• N,H,NN UNUHN ,,,NUH'J

X

[I] Td

D Short(Td)

~ lncomparable(Td)

D Long(Td)

Fig. 1. Two-dimensional tuple space with respect to diagonal tuple [x, y]=[2, 2]

The algorithm starts with a binary seareh over the diagonal tuples in order to find

the Iongest diagonal tuple Td, whieh eontains a matehing entry. The following theo

rem states where the best matehing rule resides with respeet to tuple Td.

Theorem 1

lf the langest diagonal tuple, whieh eontains a matehing entry, is Td = [d, d] then

the best matehing rule resides in set Short(Td+) u /ncomparable(Td+), where Td+I =

[d+l, d+l].

Proof.

Any matehing rule in set Long(Td+I) plaees a matehing marker in the diagonal tuple

Td+r If Td is the Iongest diagonal tuple, eontaining a matehing entry then set Td+I u

Long(Td+) eontains no matehing rules. Sinee Td+I u Long(Td+) u Short(Td+) u /n

comparable(Td+) = 1, it follows that the best matehing rule resides in union

Short(Td+) u Ineomparable(Td+).

Reeall that set Short(T) is eovered by pre-eomputation and Td has already been

probed. Thus the seareh ean be restrieted even further. Excluding set Td u Short(T)

yields seareh area (Short(Td+I) u Ineomparable(Td+I)) n (Long(T) u /neompara

ble(T)). This remaining seareh area eonsists of two reetangles (see Fig. 2). Later we

will show that if the matehing entry in Td, let this entry be Ed, is not assoeiated with a

marker, but a rule only, then that rule isthebest matehing rule. For now, suppose that

a marker is assoeiated with Ed in step 1 and the algorithm eontinues to step 2.

Diagonal Tuple Space Search in Two Dimensions 315

y

X

(Short(T d+l) v lncomparable(T d+1)) r1 (Long(Td) v lncomparable(Td))

Fig. 2. Remaining search area after step 1 of the algorithm

In order to keep the search cost low, the algorithm uses a new technique that we

call mirroring. Due to mirroring, only two additional binary searches are needed to

conclude the packet classification. These two binary searches are performed on tuples

[d, y ~ d] and tuples (x ~ d, d]. This results in the search cost of O(log w), because

three binary searches are enough to classify a packet. The basic need for mirroring is

that it must be ensured that every matehing rule in any tuple (x < d, y > d] is repre

sented among the tuples (d, y > d] and that every matehing rule in any tuple (x > d, y

< d] is represented among the tuples [x > d, d]. This representation is achieved by

using mirror rules.

Mirror rules are called for, when a conflict arises between a rule and a diagonal

marker (i.e. a marker that resides in a diagonal tuple). The mirror rules are updated

each time the FIB is changed. The condition part of a mirror rule is computed in the
sarne way as the condition part of a resolving rule (see the Resol vingRule pro

cedure in section 2). The action part of a mirror rule is the sarne as that of the rule,

which is used to produce it. For example, if a rule R1 = (*, 110*) has a conflicting

marker M = (00*, 11 *) at tuple [2, 2], a mirror rule Rm = (00*, 110*) is produced in

tuple [2, 3] to represent R1 in colurnn 2. If multiple rules produce a mirror in the same

entry, the mirror that is produced by the Iongest rule prevails. For example, if there is

another rule R2 = (0*, 110*), which is also in conflict with marker M , then the action

part of mirror rule Rm is that of R2•

Let us concentrate on explaining how mirroring works in the upper rectangle.

From now on, the term original rufe is used to refer to the rules which are not mirror

rules. In other words, an original rule is either an ordinary rule or a resolving rule.

Step 2 of the algorithm is to perform binary search on tuples [d, y ~ d] . Suppose

step 2 returns a matehing entry that is in tuple T. = [d, yJ, T. ::;.: Td. Now, tuples [x::; d,

y > yJ can be dismissed from the search, because all the matehing rules in that part of

the tuple space are either in column d or have a corresponding mirror rule in column

316 M. Alutoin and P. Raatikainen

d. This is contradictory to the fact that [d, yJ was found to be the Iongest tuple in col

umn d. Hence, the tuples [x::; d, y > yJ do not contain a matehing rule.

At this point, it is clear that if the upper reetangle contains a matehing rule, it will

be in set T. u Short(T.). lf T. contains an original rule, this is clearly the best mateh

ing rule in the upper rectangle. lf it does not contain the original rule but contains a

mirror rule, the mirror rule is the best match in the upper rectangle. lf T. contains no

rules but only a matehing marker, pre-computation is used to determine whether the

upper reetangle contains matehing rules at all.

The next theorem shows that if a matehing rule is found in the upper rectangle, it is

the best matehing rule in the whole tuple space.

Theorem 2

lf tuple Tm eontains a matehing rule and set Long(Tm) eontains no matehing rules

then no tuple in set Ineomparable(Tm) eontains a matehing rule.

Proof.

lf two matehing rules Rm and R. reside in pair-wise incomparable tuples Tm and T.

then, by the conflict-free constraint, there is a third matehing rule R, which belongs to

set Long(Tm) n Long(T.). Now, if set Long(Tm) contains no matehing rules then set

Long(Tm) n Long(T.) contains no matehing rules either. This is contradictory to the

assumption that both tuples contain a matehing rule. Thus if tuple Tm eontains a

matehing rule and set Long(Tm) eontains no matehing rules then no tuple in set In

eomparable(T) contains a matehing rule.

The algorithm as a whole is as follows.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5.1:

Step 5.2:

Step 6:

Step 7:

Perform binary seareh on the diagonal tuples in order to find the Iongest

matehing entry Ed among them. Let Ed reside in Td = [d, d]. If Ed is asso

eiated with a marker proeeed to step 2, otherwise return the ru1e which

eaused the mateh in Td as the best matehing rule.

Perform binary search on tupies [d, y 2: d] to find the Iongest matehing

entry E. among them. Let E. reside in tupie T •.

lf T. -:;:. Td, go to step 4, eise go to step 6.

If E. is not associated with any rule (but a marker oniy), go to step 5.1,

eise go to step 5.2.

Find the best matehing rule in set Short(T.) by pre-eomputation. If the

rule is in reetangle [x ::; d, y > d], return this rule, eise go to step 6.

If E. is associated with an original ruie, return that rule, eise return the

mirror rule.

Perform binary seareh on tupies [x 2: d, d] to find the Iongest matehing

entry E1 among them. Let E1 reside in tuple Tr

If T1 '# Td, go to step 8, eise go to step 10.

Step 8:

Step 9.1:

Step 9.2:

Step 10:

Diagonal Tuple Space Search in Two Dimensions 317

If E1 is not assoeiated with any rule (but a marker only), go to step 9.1,

eise go to step 9.2.

Return the best matehing rule residing in set Short(T).

If E1 is assoeiated with an original rule, return that rule, eise return the

mirror rule.

If Td eontains an original rule, return that rule, eise return the best

matehing rule residing in set Short(T) (and whieh is found by pre

eomputation).

Sinee the two reetangles are pair-wise ineomparable, the seareh eontinues to the

lower reetangle only when no matehing rule is found in the upper reetangle. Due to

the symrnetrical nature of the problem, there is no need to explain steps 6 to 9 in de

tail. Step 10 is reaehed only if neither of the reetangles eontains a matehing rule.

To eonclude the explanation, reeall that the proof of step 1 was partly postponed to

a later stage. Sinee Theorem 2 is now available, it is relatively easy to finalize the

proof. The claim was that if Ed in step 1 is not assoeiated with a marker, but with a

rule only, then that rule is the best matehing rule. Now, Td obviously eontains a

matehing rule while set Long(T) eontains no matehing rules. Consequently, set ln

eomparable(T) is also dismissed by Theorem 2.

As a final remark, a short explanation is provided why the algorithm in [7] does

not work. The reasoning in [7] is based on the assumption that ean be formulated as

follows: "lf a matehing marker resides in tuple T., and a matehing rule R, resides in

tuple T. and tuples Tm and T. are pair-wise ineomparable then, by the eonjliet-free

eonstraint, there is a matehing resolving rule R, in set Long(T"')". This theorem does

not hold, beeause a matehing marker in tuple Tm does not guarantee that there is a

matehing rule in set Long(Tm). Namely, it is possible for a rule to insert a matehing

marker even if the rule itself does not mateh. Our algorithm taekles this problern via

mirroring.

5 Performance Evaluation

In this section, the seareh and storage eomplexities of the algorithm are evaluated.

When it eomes to other lookup algorithms [5, 7, 8, 11], which deploy hash tables, the

search complexity/cost has been evaluated in terms of the asymptotic tight bound on

the number of hash probes required to classify a packet. The storage complexity is

generally evaluated by deriving asymptotic tight bound on the number of hash table

entries needed to store the FIB and its associated data structures. These measures are

used in the following analysis as weil.

Thesearcheost of the diagonal tuple space search in two dimensions is O(log w),

because three binary searehes at most are needed to classify a packet. This Iooks very

good, recalling that without the eonfliet-free eonstraint the theoretical best bound is

O(w). What can we say about the storage eomplexity? Recall that an original rule re

quires one mirror rule for each conflicting diagonal tuple. Within an incomparable di
agonal tuple Td = [d, d] a rule that maps to tuple [x < d, y > d] may have up to 2<d·•>

318 M. Alutoin and P. Raatikainen

conflicting markers. At first glance, this yields the storage complexity of O(n2ww),

where n is the number of rules in the FIB. However, the binary search on a col

umn/row does not require that markers are created in all the tuples. It is enough to

create them only in the tuples, which may be visited during the binary search [5].

Thus any rule leaves log w markers at most. This gives the storage complexity of

O(n2w log w). Table 1 contains a comparison between the search and storage com

plexities of packet classification algorithms, which are usable for two-dimensional

FIBs.

Table 1. Comparison between two-dimensional packet classification algorithms

Algorithm Search Storage

Grid of tries O(w) O(nw)

Cross-producting O(log w) O(n1)

Tuple space search O(w1) O(n)

Reetangle search O(w) O(nw)

Diagonal tuple space search O(log w) O(n2w log w)

The grid of tries and cross-producting have been described in [12). Our algorithm

exploits the conflict-free constraint in reducing the search cost dramatically, while the

storage still remains linear with respect to the number of rules in the FIB. The down

side is that the storage complexity grows drastically as the protocol fields get wider.

6 Conclusions

New routing techniques, such as firewalling and application Ievel routing, require

multidimensional packet classification in routers. Unfortunately, the general k

dimensional packet classification problern has been found to be either time or storage

hungry. This fact hassteered the research on packet classification algorithms towards

hardware based as weil as heuristic schemes. Nevertheless, it has recently been an

ticipated [7] that more efficient look-up algorithms could be achieved by imposing

the conflict-free constraint on the Forwarding Information Base (FIB).

This paper proposes a novel search algorithm, named as the diagonal tuple space

search in two dimensions, applicable to the conflict-free FIBs. The algorithm derives

from the tuple space paradigm [8] and its search complexity is O(log w). This is re

markable, because without the conflict-free constraint the number of search steps in a

two-dimensional tuple space is known to be 2w-1, i.e., E>(w) [8).

The algorithm scales well with respect to the size of the FIB, because its storage

complexity is O(n2w log w). Nonetheless, the worst case storage requirement grows

drastically with respect to the width of the protocol fields. Yet, it has to be stated that

the derived worst-case storage complexity is overly pessimistic and we believe that

Diagonal Tuple Space Search in Two Dimensions 319

for real-life FIBs the scalability of the algorithm would be clearly better. It is for fur

ther study to develop estimates for the practical storage requirement.

Characteristics of the developed search algorithm support the claim that in some

cases the conflict-free constraint can be leveraged in finding more efficient packet

classification algorithms. At present, the algorithm is applied in two dimensions and

further work concentrates on analyzing the implications of the conflict-free constraint

for the tuple space in three or more dimensions.

References

[1] Alutoin, M., Raatikainen, P.: Control Interface for Router Extension. Proceedings of 21st

lASTED Conference on Applied Informatics (2003) 697-702

[2] Gupta, P., McKeown, N.: Packet Classification on Multiple Fields. Proceedings of ACM

SIGCOMM'99, vol. 29, no. 4 (1999) 147-160

[3] Gupta, P., McKeown, N.: Algorithms for Packet Classification. IEEE Network, vol. 15,

issue 2 (2001) 24-32

[4] Chao, H.J. : Next Generation Routers. Proceedings of the IEEE, vol. 90, no. 9 (2002)

1518-1558

[5] Waldvogel, M., Varghese, G., Turner, J., Plattner, B.: Sealahle High Speed IP Routing

Lookups. Proceedings of ACM SIGCOMM'97 (1997) 25-36

[6] Overmars, M.H., van der Stappen, A.F.: Range Searching and Point Location Among Fat

Ohjects. Journal of Algorithms, 21(3) (1996) 629-656

[7] Warkhede, P., Suri, S., Varghese, G.: Fast Packet Classification for Two-Dimensional

Conflict-Free Filters. Proceedings of 20th IEEE Infocom, vol. 3 (2001) 1434-1443

[8] Srinivasan, V., Suri, S., Varghese, G.: Packet Classification using Tuple Space Search.

Proceedings of ACM SIGCOMM'99 (1999) 135-146

[9] Hari, A., Suri, S., Palkar, G.: Detecting and Resolving Packet Filter Conflicts. Proceed

ings of 19th IEEE Infocom, vol. 3 (2000) 1203-1212

[10] Baboescu, F., Varghese, G: Fast and Sealahle Conflict Detection for Packet Classifiers,

IEEE Computer Networks, vol. 42 (2003) 717-735

[11] Waldvogel, M.: Multi-dimensional Prefix Matehing Using Line Search. Proceedings of

IEEE Local Computer Networks (2000) 200-207

[12] Srinivasan, V., Varghese, G., Suri, S., M. Waldvogel: Fast and Sealahle Layer Four

Switching. Proceedings of ACM SIGCOMM'98 (1998) 191-202

