DIAGONALIZING MATRICES OVER OPERATOR ALGEBRAS

BY RICHARD V. KADISON

1. Introduction. Let A_{0} be a C^{*}-algebra and A be the algebra of $n \times n$ matrices with entries in A_{0}. If A_{0} acting on a (complex) Hilbert space H_{0} is a faithful representation of A_{0}, then A acting as matrices on the n-fold direct sum H of H_{0} with itself is a faithful representation of A. As a subalgebra of $B(H)$, the algebra of all bounded operators on H, A acquires an adjoint and norm structure relative to which it is a C^{*}-algebra. This structure can be described independently of the representations-in particular, the operator in $B(H)$ adjoint to $\left(a_{j k}\right)$ is the element of A whose matrix has $a_{k j}^{*}$ as its j, k entry. If A_{0} is the (algebra of) complex numbers C, then A is the algebra of $n \times n$ complex matrices and each normal element a can be "diagonalized"that is, there is a unitary element u in A such that $u a u^{-1}$ has all its nonzero entries on the diagonal.

With A_{0} a general C^{*}-algebra, can each normal element of A be diagonalized?
In $\S 2$, we give a construction (based on homotopy groups of spheres) to show that this (general) question has a negative answer. The main result is discussed in §3. If A_{0} is a von Neumann algebra, diagonalization of normal operators is always possible. More generally,

Theorem. If R_{0} is a von Neumann algebra, R is the algebra of $n \times n$ matrices over R_{0}, and S is a commutative subset of R with the property that a^{*} is in S if a is in S, then there is a unitary element u in R such that uau ${ }^{-1}$ has all its nonzero entries on the diagonal for each a in S.
2. An example. Let A_{0} be the algebra $C\left(S^{4}\right)$ of continuous complex-valued functions on the 4 -sphere S^{4} and let A be the algebra of 2×2 matrices with entries in A_{0}. View S^{3} as the unit sphere in two-dimensional Hilbert space C^{2} and consider the standard action of $S U(2)$ (the group of 2×2 unitary matrices of determinant 1) on C^{2}. The mapping that takes u in $S U(2)$ to the vector $u(1,0)$ is a homeomorphism of $S U(2)$ onto S^{3}. From [2], $\pi_{4}\left(S^{3}\right)$ is the additive group of integers modulo 2 . Let u_{0} be an essential mapping of S^{4} into $S U(2)$ (that is, into S^{3}). The algebra A can be viewed as continuous mappings of S^{4} into $B\left(C^{2}\right)$. Thus u_{0} is a unitary (hence normal) element of A. Suppose u is a unitary element of A that diagonalizes u_{0}. Then $u(p) u_{0}(p) u(p)^{-1}$ is a 2×2 diagonal matrix over C for each p in S^{4}. Let $\theta(p)$ be the complex conjugate of the determinant of $u(p)$, let $u_{1}(p)$ be $\left[\begin{array}{cc}\theta(p) & 0 \\ 0 & 1\end{array}\right]$, and let $v(p)$ be $u_{1}(p) u(p)$.

[^0]Then $v(p)$ is in $S U(2), v(p) u_{0}(p) v(p)^{-1}=u(p) u_{0}(p) u(p)^{-1}$, and v is a unitary element in A. Let f and g be two continuous mappings of S^{4} into $S U(2)$ that take a "base point" p_{0} in S^{4} onto (the base point) I in $S U(2)$. Let $f g$ denote the mapping that assigns to p in S^{4} the group product $f(p) g(p)$ in $S U(2)$. Let $\{f\},\{g\}$, and $\{f g\}$ be the corresponding elements (homotopy classes) in $\pi_{4}(S U(2))\left(=\pi_{4}\left(S^{3}\right)\right)$. From [1], $\{f\}\{g\}=\{f g\}$. Moreover $\pi_{4}(S U(2))$ is abelian. Thus

$$
\left\{v u_{0} v^{-1}\right\}=\{v\}\left\{u_{0}\right\}\left\{v^{-1}\right\}=\left\{u_{0}\right\}\{v\}\left\{v^{-1}\right\}=\left\{u_{0}\right\}\left\{v v^{-1}\right\}=\left\{u_{0}\right\} \neq 0 .
$$

But $v(p) u_{0}(p) v(p)^{-1}$ is diagonal and in $S U(2)$ and hence has the form $\left[\begin{array}{cc}\lambda(p) & 0 \\ 0 & \lambda(p)\end{array}\right]$, where $|\lambda(p)|=1$. Thus $v u_{0} v^{-1}$ maps S^{4} into a subset of $S U(2)$ homeomorphic to S^{1} and $\left\{v u_{0} v^{-1}\right\}=0$-a contradiction. Hence u_{0} cannot be diagonalized.
3. Matrices over von Neumann algebras. Let R_{0}, R, and S be as in the theorem of $\S 1$. Let e_{j} be the element in R whose only nonzero entry is the identity at the j, j position. Then e_{1}, \ldots, e_{n} are n orthogonal equivalent projections in R with sum the identity element of R. Suppose we can find n orthogonal equivalent projections f_{1}, \ldots, f_{n} in R with sum the identity element such that each f_{j} commutes with every element of S. From various results in the comparison theory of projections in von Neumann algebras, we can conclude that e_{j} and f_{j} are equivalent in R for j in $\{1, \ldots, n\}$. Let v_{j} be a partial isometry in R with initial projection f_{j} and final projection e_{j}. Then $\sum_{j=1}^{n} v_{j}$ is a unitary element u in R such that $u f_{j} u^{-1}=e_{j}$ for j in $\{1, \ldots, n\}$. Since f_{j} commutes with each a in S (by assumption), uau ${ }^{-1}$ commutes with $e_{j}\left(=u f_{j} u^{-1}\right)$ for each j in $\{1, \ldots, n\}$. Hence $u a u^{-1}$ is diagonal for each a in S.

The problem then is: Can we find f_{1}, \ldots, f_{n} with the properties described? Does the "relative commutant" of S in R contain n orthogonal equivalent projections with sum the identity? We have little control over this relative commutant. From Zorn's lemma, S is contained in some maximal abelian (selfadjoint) subalgebra A of R. Each such A is contained in the relative commutant. But S may itself be such an A, in which case, the relative commutant is a maximal abelian subalgebra of R. Thus we must be prepared to (and it suffices to) find f_{1}, \ldots, f_{n} as described in an arbitrary maximal abelian subalgebra of R. In effect, we must develop a comparison theory of projections in a maximal abelian subalgebra of R relative to R. The last of a series of results leading to such a theory is

THEOREM. If R is a von Neumann algebra and each type I_{k} central summand of R is such that k is divisible by n, then each maximal abelian subalgebra of R contains n orthogonal equivalent projections with sum the identity element of R. In particular, this is true of the von Neumann algebra of $n \times n$ matrices over a von Neumann algebra.

The full account of these results deals with the case where R_{0} is countably decomposable to avoid complicated but peripheral higher cardinality considerations.
4. Related questions. There are a number of other avenues of study indicated by the foregoing discussion and results. We mention a few. For which compact Hausdorff spaces X is diagonalization of normal matrices over $C(X)$ possible in general? For 2×2 matrices? For 3×3 matrices? What is the relation between " n-diagonalizability" and " m-diagonalizability"? Certain types of normal elements may be diagonalizable in all circumstances-which are they? What "relative comparison theory" is possible for other von Neumann subalgebras of von Neumann algebras? For C^{*}-subalgebras of a von Neumann algebra?

Bibliography

[^1]
[^0]: Received by the editors August 9, 1982.
 1980 Mathematics Subject Classification. Primary 46Lxx, 47Cxx, 47Dxx.
 ${ }^{1}$ Completed with partial support of NSF.

[^1]: 1. B. Eckmann, Über die Homotopiegruppen von Gruppenräumen, Comment. Math. Helv. 14 (1942), 234-256.
 2. H. Freudenthal, Über die Klassen der Sphärenabbildungen, Compositio Math. 5 (1937), 299-314.

 Department of Mathematics, University of Pennsylvania, PhiladelPhia, Pennsylvania 19104

