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DIAGONALLY DOMINANT MATRICES

MirosLAav FIEDLER and VLASTIMIL PTAK, Praha

(Received April 22, 1966)

Introduction. A. Ostrowsk1 [5] has introduced the notion of an H-matrix as
a complex-valued square matrix 4 = (a,,) such that the class of all matrices D~'4D
diagonally similar to 4 contains a matrix C = (cik) with the following property

[ciil > Z |cik| fOl" all i.
k*i

For this class the name strongly diagonally dominant matrices has also been
suggested.

In the present remark we intend to investigate a class of matrices which is, in
a certain sense, dual to the class of H-matrices. It will be the class of matrices which are
diagonally dominant in the following weaker sense. The class of all matrices D~ 1AD
diagonally similar to 4 contains a matrix C = (c;) for which

lei] > |cu| forall i k,i+k.

These matrices, which we propose to call W-matrices, may be characterized, roughly
speaking, by the fact that the operation of taking the Schur product of a matrix and
a W-matrix transforms the class of H-matrices into itself. The precise formulation of
this characterization is contained in Theorem (3.1) of the present remark. This
theorem also contains generalizations of some results of Lyn~ [4].

1. Definitions and Notation. We shall denote by N the set {1, 2, ..., n} where n is
a fixed positive integer. A matrix is a complex-valued functionon N x N or N' x N’
where N’ < N. The principal submatrix of a matrix 4 on N x N whose rows and
columns correspond to indices from N’ < N is denoted by 4(N’). Given a vector
ay, ..., a, we shall denote by diag {a,, ..., a,} the diagonal matrix with a; on the
main diagonal.

Throughout the present paper we shall be using the properties of two classes of
matrices, K and K,. We intend to list now the most important properties of these
two classes; for the proofs, the reader is referred to [2].

The class K, is defined as the class of those real-valued matrices A = (a;) which
satisfy a;,, < Ofor i % k and such that all principal minors of 4 are nonnegative. The
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class K is defined by the postulates that K < K, and the principal minors are required
to be positive. It may be shown that a matrix 4 € K, which is nonsingular already
belongs to K. It follows from this that there exists, for each matrix 4 € K, a subset
F < N such that

1° M < F implies det A(M) > 0,

2° M o F, M = F implies det A(M) = 0.

Further, let us recall a well-known fact. Every matrix may be brought to the
“irreducible block triangular form™. The precise meaning of this statement is as
follows: given a matrix B, there exists a permutation matrix P and a decomposition
of N, N=N;u...u N, such that the corresponding block decomposition of
C = PBP* has the following properties:

1° the C;; are irreducible,

2° C;;=0for j>i
The decomposition N, U ... U N, is uniquely determined. We shall say that a matrix A
is generalized triangular if there exists a permutation matrix P such that PAP™! is
triangular.

Let us introduce the following abbreviations. With each matrix A we associate two
real matrices M(A) and H(A) with elements m;, and h;, defined as follows

my, = la,k[ forall ik,

hy = lag| if i=k and hy = —la,| for i*k.

(1,1) Let A and B be two matrices of the same order. Then
M(AB) z H(A) M(B).
Proof. Denote by C the product AB. Let i and k be given. Then
icih[ = laiib[k + 2 aijbjkl =
JFi
P [aiibikl - [Zaijbjk! Z laiibxhl - 2 ]aijhjkl =
j*i j¥i
= hymy + Y hymy,
i*i
which completes the proof.
We shall denote by H the class of all matrices A such that H(4) e K. Similarly the

class H,, is defined by the postulate A € H, if and only if H(A4) e K.
Further, we define H, to be the class of those A € H, for which all a;; + 0.

(1,2) A matrix A belongs to H if and only if B = D™ 'AD satisfies |b”»] >y
kFi

bl

for each i where D is a suitable diagonal matrix with positive diagonal elements.
If Ae Hand D is a diagonal matrix with positive diagonal elements, then D™'AD e
e H as well.

Proof. An immediate consequence of the properties of the class K.
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{1,3) Suppose that the matrices A and B belong to K and that A = B. Then

1° det A = det B,
2° if det A = det B and B is irreducible then 4 = B.

Proof. The first statement is a well-known property of the class K. A proof may
be found in [2]. To prove the second statement, suppose that 4 & B. Then there
exists a matrix C such that 4 = C = B and the matrices C and B differ exactly in
one entry, ¢, # by. Since B is irreducible, we have B™* > 0 and, consequently,
adj B > 0.

Further

det C = det B + (¢ — by) By > det B

since ¢;; — by, > 0 and By, > 0. Since 4 = C it follows from the first statement of
the present result that det 4 = det C. Combining this with the inequality det C >
> det B just proved, we arrive at a contradiction.

(1,4) Let A > B and A, Be K. Assume that B is written in the block form (B;)
with irreducible B;; and B;; = O for j > i. Hence A;; = 0 for j > i as well. Then
the following two statements are equivalent:

1° det A = det B,

2° A;; = By, for alli.

Proof. It suffices to prove the implication 1° — 2° only. To prove that, let us recall
that the inequality A;; = B;; implies det 4;; = det B;; for each i by (1,3). Since det A
and det B are equal to the products of the det A4;; and det B, respectively, the equation
det A = det B implies det 4;; = det B;; for each i. By (1,3) it follows that 4;;, = B;;.

2. Preliminary results. In this section, we collect some results which will be used
in the proofs of the main theorems.

(2,1) Let A = (ay)eH, and suppose that a; = O for some i. Then for any
indices ky, ky, .., kg

Qi Oky -+ Oig_ k Ciyi = 0.
Consequently, if S is a subset of N such that i € S then det A(S) = 0.

Proof. Suppose that ay ay ., --. ar,_4,9,; = 0 for some indices ky, ..., k; and
that there is no shorter product of this type which is different from zero. Then the
mdices i, ky, ..., k, are different from each other. Let N’ be the set consisting of the
indices i, ky, ..., k,. Since 4 € H,, we have

0 < det H(A(N')) = Z( Y%, 8, - ”p,,iml .

N Iaqxqzaqw)s e atlmqil e

Ay lyspy oo a,nkni
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where the sum is extended over all permutations 7 of indices in N” written as products
of cycles

Py oo Po) (@1 0oy -y oo F) s

r(n) being the number of cycles with at least two elements. According to our assump-
tion, all terms in this sum are equal to zero except possibly for those corresponding to
exactly one cycle. All these terms are nonpositive since N’ contains at least two
elements and hence r{r) = 1. At least one of these terms being different from zero,
we have a contradiction.

(2,2) Let G be a finite directed graph (without loops and multiple edges) with
vertices 1,2, .... n, every edge ik of which is labelled with a real number p,. Then

19 p is subpotential, i.e. for some fixed real numbers c,, ..., ¢, holds
P T ¢ — ¢

for each edge ij € G, if and only if the sum 3. pu < Owhenever the sum is extended
ikeC
over a cycle C of G.

2° pis strongly subpotential, i.e. for some fixed real numbers cy, ..., ¢, holds
Pix < € — ¢

for each edge ik € G, if and only if the sum > piu < 0over any cycle C < G.
tkeC
Proof. It suffices to prove the “if” part, the “only if”” being obvious. Let us show
this in the case 1°, first.
In G, there exists (C. Berge [1]) a basis B, i.e. a subset of the set of all vertices of G

with the following two properties:

(i) if i, j e B, i * j, then there exists no {directed) path in G from i to j;
(ii) whenever k is a vertex of G then there exists a vertex i € B such that there is
a (directed) path from i to k in G.

Define for k=1,...,n

(*) €= —max 9. Py

P(B k) rseP(B.k)

where P(B, k) denotes a general (directed) path beginning in any vertex in B and
ending in k. Paths with just one vertex are here included, the corresponding sum
being zero. Since a general path with repeating vertices can be decomposed into cycles
and a path without repeating vertices, it follows from the fact that the sum of p,, on
each cycle is nonpositive that the maximum in (*) exists. Let now ik be an edge in G.
Then. if we join ik to any path P(B, i) from B to i, we obtain a path from B to k.
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Hence

max Y Prs = Max Y Pt P

P(B,k) rseP(B k) P(B,i) rseP(B,i)
so that
Dk = ¢ = ¢

It remains to prove the analogous part in 2°, In C there is a finite number of cycles
with distinct vertices. Thus, there exists a number ¢ > 0 such that the function
Pu + € still satisfies Y (p,-,( + €) < 0 on every cycle C of G.

ikeG
According to 1°, there exist real numbers ¢y, ..., ¢, such that

Pautesc— o
for each edge ik € G. Hence
D <€ — ¢

for each edge ik € G. The proof is complete.

3. Weakly diagonally dominant matrices. In this section, we intend to prove the
equivalence of a certain number of properties of a matrix which are, in a certain
sense, dual to the properties of the class H.

(3,1) Theorem. Let n = 2. The following properties of a matrix B = (b,) are
equivalent:

1° for any indices ki, ..., k, different from each other

]bkxkzbkzka bks»lksbkskl < ibkxkxbkzkz v bkn"s

2° there exists a diagonal matrix D with positive diagonal elements such that
the matrix C = D™'BD satisfies ]cii[ > [c,-,‘l foralli, k, i+ k.
3° whenever A H, then Ao BeH and

det H(A o B) = |by,] ... |b,,| det H(4),
equality being attained (if and) only if A is generalized triangular.
4° whenever A € H then

det H(A o B) = |by,] ... |b,,| det H(4),

equality being attained (if and) only if A is generalized triangular.
5° for any A € H, the matrix A o B belongs to H.
6° for any A€ H, the matrix Ao B is nonsingular.
7° for any A e H, the determinant det H(A « B) > 0.
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Proof. We intend to prove the following cycle of implications 17 — 2° — 37 —
—4° 5 5 5 6°>7° > 1°

1° — 2° Let 1° be satisfied. Denote by G the labelled graph with vertices 1, 2, ..., n
and those edges ik(i + k) for which b, + 0, labelled with p, = log (1bulf D).
This is possible since [b,-,-i #+ 0 for all i. From 1 it follows that the function p on G
is strongly subpotential, i.e. according to 2° of lemma (2,2), there exist real numbers
Cy, - .., ¢, such that

Pie < € — €
for each edge ikeG.
Put d; = expc;. Then d; > 0 and [b,-k‘”bi,-‘ = exp py < exp(c; — ¢) = d/d.
Hence
Aoyl d; > d; byl d for ikeG:

this is true for any i, k, i + k.

If we denote D = diag {d,, ..., d,} and C = D™'BD, the last inequality implies
[c”| > ]c,-kl forall i, k, i + k.

2° — 3° Suppose there exists a diagonal matrix D with positive diagonal elements
such that the matrix C = D~ !BD satisfies [ciil > 'Cikl for all i & k. Let Ae H, and
suppose that 'a,-,.i > 0 for all i. To prove that A. Be H it suffices to show that
D{'(A+B)D, eH for some diagonal matrices D, and D, with positive diagonal
elements. There exists an a > 0 such that

lea| = (1 + ) [eaf forall ik, i+ k.

Foranye, 0 < ¢ = o, put

W(e) = diag %lj—e s e }——'—f—:} .
Ued] Com
We have
W()D™(AoB)D = A - W(e)D™'BD = A . W(e) C,
whence

H(W(e) D~ (4« B) D) = H(A) - M(W(g) C) = H(A + & diag(|c,] ...

)

so that H(W(e) D™'(4 - B) D) belongs to K for any ¢ > 0. Hence 4. BeH. It
remains to prove the inequality for the determinants: Especially, for ¢ = 0, we obtain
the inequality

Cun

H(W(0) D™ '(4 - B) D) = H(4).

Let us distinguish two cases. If det H(4) = 0, there is nothing to prove since
det H(A o B) > 0. The inequality det H(4) > 0, together with H(A)e K,, implies
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that H(A) € K. By (1,3) we obtain
det H(W(0) D™*(A4 o B) D) = det H(A4)

whence

det H(W(0) D™'(4  B) D) _ det H(A)

det H(A - B) = y :
et W(0) det W(0)

= [by] -

by

det H(4) .

Since det H(A o B) > 0, equality can be attained only in the case that det H(4) > 0.
In this case we have by (1,4) that equality holds if and only if 4 is generalized trian-
gular.

The implication 3° — 4° is formal.

4° — 5°. Suppose that 4° is satisfied and let us show first that all b;; are different
from zero. Without loss of generality, let us assume that by; = 0. Choose 4 = (a),
a;=1for ieN, aj; =a,; = —1. Since AeK, @ H, and A is not generalized
triangular

— |by2| |bas] |b33] - |bus| = det H(A o B) > || ... |b,,| det H(4) = 0

which is a contradiction.

Now let 4 € H, and suppose that [anl > O for all i. Let S be a subset of the set N.
Let us define a matrix 4 by the following requirements

dy = ay if both i and k belong to S,

dy = 0if i & k and at least one of them does not belong to S,

d;; = 1for all i notin S.

It follows from 4° that det H(4 - B) = 0. Suppose that det H(4 - B) = 0. Then
we must have equality in

det H(A o B) = |byy| ... b,

det H(A).
It follows from 4° that 4 is generalized triangular whence

>

det H(A « B) =112 Iaiil‘r}J |b,;
2 JE

this is a contradiction since all a,; and b;; are different from zero. It follows that
det H(A ¢ B) > 0. If we denote by ¥ the matrix H(A o B), we have

det V(S) I [b;| = det H(A o B) > 0
ieN—-S§

so that det V(S) is positive for any S. This proves that 4 - B € H.

The implication 5° — 6° is immediate.

6° — 7°. Suppose that 6° is satisfied and let us show first that this implies b;; & 0
for all i. To see that, it suffices to take 4 = E. Suppose now that det H(4 . B) < 0
for scme A € H, with Ial-,-l > 0. Put Q = diag {a,, ..., a,,}. Since det H(Q - B) > 0,
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there exists a real @, 0 < o < 1, such that det H((4 + «Q)o B) = 0. Now 4 +
+ aQ € H, since H(A4 + aQ) = H(A) + « H(Q). The diagonal elements of 4 + «Q
being (1 + «) a;; * 0, we have a contradiction.

7° = 1°. Since E o B has to be nonsingular by 6°, the diagonal elements b;; have
to be 0. Let ky, ..., k; be a sequence of indices different from each other. Denote
by C the matrix with elements ¢;, defined by

g =1ifi=k;k=k;., forsomej=1,..s5s~1ori=k,k=k,
¢y = 0 otherwise.

Since E — Ce H, and has positive diagonal elements, det H((E — C)s B) > 0
whence

Iblll IbZZi bnn -

lbks—lksl Ibksh

I k.‘lbnl (|bsia] [Bacis )>0.

JEHL 5000

This proves 1°. The proof is complete.

(3,2) Definition. Let n = 2. We shall denote by W the class of all square matrices
which satisfy one (and hence all) of the conditions of the preceding theorem; a matrix
consisting of a single element belongs to W if and only if this element is different
from zero. :

(3,3) If A € W then the transpose of A belongs to W as well.

Proof. Condition 1° of (3,1) does not change if we replace 4 by A"

(3,4) If A is positive definite, then A € W.

Proof. If k, + k,, we have

101«11‘2] < Iakml”z ]akzkzlllz .

This immediately implies condition 1° of (3,1).

(3,5) If A< H then A" exists and A~ e W.

Proof. The existence of 471 is a well-known property of the class H. Since 4 € H
there exists a diagonal matrix D with positive diagonal elements such that B =
= D 'AD satisfies Ib“ >y lb,-k , ieN.Since A" = DB~'D~" it suffices by (3,1)

k+i

to prove that B~! € W. By (3,3), it suffices to prove that the transpose of B™! belongs
to W. We intend to show that the elements f;, of B™* satisfy the inequalities ‘ﬂi,-l >
> ]ﬂj,-‘ whenever i % j,i,j = 1,2, ..., n. To prove this, take a fixed index i and sup-
pose that there exists a j different from i such that |8;;| = |8, for all s. Tt follows
that |, > 0. By (1,1), we have

E = M(E) = M(BB™") 2 H(ByM(B™").
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Upon writing down the (j, i)-th elements of E and H(B) M(B '), we obtain the
inequality

02 [b, | 8] - 3 b 8]
s¥)

whence

ijil {BJ"'! s ;;}_Ibis

This contradiction proves the theorem.

ﬂsi} = Iﬁjilsgjlbj.\‘l < ’bj.i] ‘ﬁji|'

4. In this section we intend to study two classes of matrices containing the class W
which are obtained by loosening some of the postulates: roughly speaking. they are
obtained by replacing strict inequalities by =.

(4,1) Theorem. Let n = 2. Then the following properties of an n x n matrix
B = (b,) are equivalent:

1° For any indices k,, ..., k;

+0;

Ibklkzbkzka bk5~1i\’sbk,k1 é lbkdqbkzkz Tee bksks‘

2° there exists a diagonal matrix D with positive diagonal elements such that the
matrix C = D™ 'BD satisfies 0 Ic,-,-[ > Icik| foralli,keN;
3° whenever Ae H then A Be H and

det H(A o B) Z |byy] ... |b,| det H(A) ;
4° whenever A e H then
det H(A o B) = |by,] ... |b,,| det H(A) + 0 ;

5° whenever A e H then A . Be H;

6° whenever A€ H then A o B is nonsingular;

7° whenever A € H then det H(4 s B) > 0;

8° whenever Ce W then B, C e W, .

9°Bo(U + ¢E)e W for all & > 0 where uy, = 1 for all i, k;

10° by; =+ O for each i and whenever A € H, then det H(A - B) Z 0;
11° whenever Ae Hy then 4. BeH,,.

Proof. 1° — 2° Let 1° be fulfilled. Let G be the labelled graph with vertices 1, 2, ...
..., n and those edges ik, i = k, for which b,, =+ 0, labelled with p; = log (Ibi,‘|/|b“5)‘
From 1° it follows that the function p on G is subpotential, i.e. according to 1° of
lemma (2,2) there exist real numbers c,. ,.., ¢, such that

P S ¢ — ¢

for each edge ikeG.
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If we put d;, = exp ¢;, we have d; > 0 and
lbik]/lbir‘| = exp py < difd, .
Hence
di bl d; 2 d7 by d,

for ik € G; but this holds for any i, k.

It follows that C = D™ 'BD where D = diag {d,, ....d,} has the property

0+ lcnl = |C.'A~!

forall i, ke N, i + k.

2° 5 3% Let C = D™ 'BD satisfy 0 + ]c,»,-’ = Ic[,‘l for all i, k e N. Then lb"i| + 0.
Let A = (a,,) belong to H. Define W = diag {.I/Ic“ + -+ 1)fe,|} so that the diagonal

elements of WC are equal to 1 in modulus and the off-diagonal elements less or equal
to 1 in modulus.

We have

WD"'(A ° B)D = Ao WD 'BD = A, WC
whence
H(WD" (A, B) D) = H(A - WC) = H(A) o M(WC) = H(A).
1t follows that H(WD ™ '(A - B) D) belongs to K and therefore 4. Be H. By (1,3),
det H(WD~'(A o B) D) = det H(4)
so that

, det HWD™Y(A o B) D) _ det H(A
det H(A.B) = I(WD™(4 - B) D) , det H(4) _ 1b1] ...
det W det W

by

det H(4) .
3° — 4° being immediate, let us show that

4° — 5% Observe that 4° implies that all b; are different from zero. Let thus A e H
so that ]a,»,-| > 0 for all i. Let S be a non-void subset of the set N. Define a matrix
A= (éik) by

d, = ay if both i and k belong to S;

d, = 0if i # k and at least one of them does not belong to S;

d,; = IforallinotinS.

Since A4 € H, it follows from 4° that det H(4 - B) > 0. If we denote by V the
matrix H(A o B), we have

(det ¥(S)) TI |b;;| = det H(A - B) > 0
JjeN—§
so that det V(S) is positive for any S. This proves that 4 - Be H.
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The implication 5° — 6° is immediate.

6° — 7°. Let 6° be satisfied. If we choose A = E we obtain that b;; # 0 for all i.
Suppose now that det H(A4 - B) < 0 for some 4 e H.

Put Q = diag {ay,, ..., ,,}. Since det H(Q o B) > 0, there exists a real , 0 <
< a < 1, such that det H((A + aQ). B) = 0. This is a contradiction since 4 + aQ e H.

7° — 8°. Let us suppose that B satisfies 7° and let C be a matrix from W. This
means according to 5° of Theorem (3,1) that for any matrix A € H, the matrix A. C
belongs to H whence det H({A o C) o B) > 0 according to 7°. But (4.C)oB =
= A+ (Bo C) so that, according to 7° of Theorem (3,1), we obtain that Bo Ce W.

Since 8° — 9° follows easily from the fact that U + ¢E € W for & > 0, let us show
that 9° — 10°. First, b;(1 + ¢) = 0 for all i and all ¢ > 0 so that we have b;; + 0.
Let now AeH, If a; =0 for some i, det H{AoB)= 0 according to (2,1).
Thus, assume that a; %0 for all i. According to 7° of Theorem (3,1),
det H(A o (B o (U + ¢E))) > 0 for all ¢ > 0 so that det H(A - B) = 0.

10° — 11°, Let A e H* and denote C = A . B. Since b;; & 0 for each i, we have
¢;; = 0 as well. Let M = N. Define a matrix @ in the following manner: if both i, k
belong to M then g, = ay, if ie N — M then g;; = 1, ¢, = 0 for all other pairs of
indices. Hence Q € H,. According to 10° it follows det H(Q - B) = 0 so that

0 < det H(Q o B) = det H(C(M)). p

where p is the product of the elements |b,| for ie N — M. Since H(C(M)) =
= H(C)(M), it follows that H(C) € K, so that C € H,.
It remains to prove the implication 11° — 1°. It is easy to see that it suffices to prove

lbklkzbkzh bk_Jc,[ = 1bk1k1bk7_k2 con by,

for any mutually disjoint indices k,, ..., k, since b;; & 0 and these inequalities imply
the remaining ones.

Denote by C the matrix (c;;) wWith ¢z, = Cigpy = -+ = i, = 1, ¢;; = 0 otherwise.
The matrix 4 = E — C belongs to H,, so that 4 . B € H,, as well. Hence the principal
minor of H(/To B) with indices ky, ..., k, is nonnegative. But an easy computation

shows that this minor is equal to

Ibklkll ‘b"lkll 1bksks - Ibkxkzl [bkzkal lbks’nl .

This implies the required inequality. The proof is complete.

(4,2) Definition. Let n = 2. We shall denote by W, the class of all n by » matrices
which satisfy one (and hence all) of the conditions of the preceding theorem. A matrix
consisting of a single element belongs to W, if and only if this element is different
from zero.
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(4,3) Theorem. Let n = 2. Then the following properties of an n by n matrix
B = (by) are equivalent:

1° For any indices ky, ..., k;

<

lblixkzbkzh ce bks«xksbkskx = lbkxkr koky * bk 13 l

2° whenever D is a diagonal matrix with positive diagonal elements then M(B) +
+ DeW,;

3° whenever ¢ > 0 then M(B) + ¢Ee W,
4° whenever Ae H, then Ao BeH, and

det H(A(S) - B(S)) = I |b,| det H(A(S))

where S is the set of all indices i for which b;; = 0;

5% if by = O then by b, ,, ... b, £ 0 for every nonvoid set of indices ki, ..., k,
and, for each Ae H,

det H(A(S) o B(S)) Z I1 |, | det H(A(S))

where S is the set of all indices i for which b;; % 0;
6° whenever Ae Hy then A.BeH,;
7° if S is the set of all indices i for which b;; + O then B(S)e W, and b,; =0
implies

by, brgy - by =0

s

for every nonvoid set of indices ky, ..., k..

s

Proof. 1° - 2°. Let D = diag {d,, ..., d,} where d,, ..., d, are positive numbers.
Let k;, ..., k, be indices different from each other. Since

Dea] [Pratal -+ [Bre ] [kl S 1Bk [Bioie] -+ [ D]

it follows that

Ibkxkz’ !bkzksy Ibkskll < (lbkm] +dy) (|bkzkz +dz) ... (]bksks

whence M(B) + D e W according to 1° of Theorem (3,1).

The implication 2° — 3° is immediate. To prove 3° — 4°, choose 4 € H,, and denote
by S, the set of all indices for which [a [ > 0. Since C, = M(B) + ¢E e W for any
g > 0, it follows from 3° of (3,1) that A(Sl) C,(S;) € H whence A(S;) o Cy(S,) € H,.
Hence A(S,) o B(S,) € Ho. Moreover, if § is any subset of N which is not contained
in S, then an easy application of (2,1) shows that det (4(S) . B(S)) = 0. Hence
AsBeH,.

+ dy)
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If S is not contained in S,, the inequality det H(A(S) o B(S)) = T1|b;| det H(A(S))
1s fulfilled in a trivial manner since both sides are equal to zero. Let now S < S;.
Since A(S) e Hy and M(B(S) + ¢ E(S)) € W for any ¢ > 0, we have according to 4°
of Theorem (3,1)

det H(A(S) « (M(B(S) + ¢ E(S))) 2 TL([by] + ¢) det H(A(S))

so that

det H(A(S) o B(S)) = T |b;,| det H(A(S)) .
ieS

4° — 5° The first part follows from (2,1) and from the fact that there exists
a matrix A in H, with all elements different from zero. The second part is an immediate
consequence of 4°. .

5° — 6° Let A € H, and denote V = H(4 . B). We have to show that for any non-
void subset S, = N = {1, ..., n} the inequality det ¥(S,) = 0 is satisfied.

Letfirst S; ¢ S,ieS;, i ¢S, so that b;; = 0.
Then, any term of det V(S,) is of the form

(’1)6 'aik,l |ak1kzl Iak,ii lbik,i

bk(kzl !bk“—‘ H' Iars H/ brS]
(r,s) (r,s)

where T1" contains the remaining products. By 5°, det V(S,) = 0.

On the other hand, B(S) e W, according to 4° of Theorem (4,1). It follows easily
from 10° in Theorem (4,1) that if S, = S and A e H, then det ¥(S,;) = 0. This
proves 6°.

6° — 7°. Observe first that 6° implies that whenever A(S) € H, then A(S) - B(S) € H,.
Since b, + 0 for i e S, it follows from 10° of Theorem (4,1) that B(S) € W,. Since
there exists a matrix 4 € H, whose all elements are different from zero, the second
part in 7° follows immediately from (2,1).

To prove the implication 7° — 1°, let us distinguish two cases. If in 1° at least one
of the indices ki, ..., k, does not belong t6 S, both sides in the inequality in 1° are
equal to zero. If all indices k, ..., k; in 1° belong to S, the inequality in 1° follows
from 1° in Theorem (4,1) since B(S) e W,.

The proof is complete.

(4,4) Definition. We shall denote by W, the class of all square matrices which
satisfy one (and hence all) of the conditions of Theorem (4,3). All matrices con-
sisting of a single element belong also to W,,.

(4,5) If A is positive semidefinite, then A € W,,.

Proof. Analogous to the proof of (3,4).
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Let us conclude with some remarks.

Since evidently H =« W < W, 5° of Theorem (4.1) generalizes a theorem of M. S.,
Lynn [4] which stated that 4 e H, Be H, implies 4.BeH. In the same paper,
Lynn has proved that then, in our notation,

det H(A 5 B) = max {Ulb,»,.] det H(A). H]a“t det H(B)} .

KOTELIANSKY [3] has proved that if C e H then |det C| 2 det H(C). This, together
with 4° of Theorem (3, 1), weakens the assumptions in one part of Lynn’s inequality:
If Ae H, Be W, then

|det (4o B)| = T|b,| det H(4).

The proof of lemma (2,1) is analogous to the proof of a related result of A.
Ostrowski [5], Satz 9.

Further, the classes W, W, and W, satisfy several inclusions which are easy to
prove such as

HcWaW, oW, HcW,, W.W, =W, W.W=W

and sinmlar obvious properties.
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