
NASA/TM–2016–219173

Diagonally Implicit Runge-Kutta
Methods for Ordinary Differential
Equations. A Review

Christopher A. Kennedy

Private Professional Consultant, Palo Alto, California

Mark H. Carpenter

Langley Research Center, Hampton, Virginia

March 2016

NASA STI Program . . . in Profile

Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part
in helping NASA maintain this important
role.

The NASA STI Program operates under the
auspices of the Agency Chief Information
Officer. It collects, organizes, provides for
archiving, and disseminates NASA’s STI.
The NASA STI Program provides access to
the NASA Aeronautics and Space Database
and its public interface, the NASA Technical
Report Server, thus providing one of the
largest collection of aeronautical and space
science STI in the world. Results are
published in both non-NASA channels and
by NASA in the NASA STI Report Series,
which includes the following report types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results
of NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to
be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest, e.g.,
quick release reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive
analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia, seminars,
or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to
NASA’s mission.

Specialized services also include creating
custom thesauri, building customized
databases, and organizing and publishing
research results.

For more information about the NASA STI
Program, see the following:

• Access the NASA STI program home page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (757) 864-9658

• Phone the NASA STI Help Desk at (757)
864-9658

• Write to:
NASA STI Information Desk
Mail Stop 148
NASA Langley Research Center
Hampton, VA 23681-2199

NASA/TM–2016–219173

Diagonally Implicit Runge-Kutta
Methods for Ordinary Differential
Equations. A Review

Christopher A. Kennedy

Private Professional Consultant, Palo Alto, California

Mark H. Carpenter

Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

March 2016

Acknowledgments

Helpful suggestions from Ernst Hairer, Alan Hindmarsh, Marc Spijker, and Michel Crouzeix are
greatly appreciated. Matteo Parsani kindly and thoroughly reviewed this paper, making many
helpful recommendations.

The use of trademarks or names of manufacturers in this report is for accurate reporting and does not
constitute an offical endorsement, either expressed or implied, of such products or manufacturers by the
National Aeronautics and Space Administration.

Available from:

NASA STI Program / Mail Stop 148
NASA Langley Research Center

Hampton, VA 23681-2199
757-864-6500

Abstract

A review of diagonally implicit Runge-Kutta (DIRK) methods applied to first-order
ordinary differential equations (ODEs) is undertaken. The goal of this review is to
summarize the characteristics, assess the potential, and then design several nearly
optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRK-
type methods are reviewed. A design study is then conducted on DIRK-type meth-
ods having from two to seven implicit stages. From this, 15 schemes are selected for
general purpose application. Testing of the 15 chosen methods is done on three sin-
gular perturbation problems. Based on the review of method characteristics, these
methods focus on having a stage order of two, stiff accuracy, L-stability, high quality
embedded and dense-output methods, small magnitudes of the algebraic stability
matrix eigenvalues, small values of aii, and small or vanishing values of the internal
stability function for large eigenvalues of the Jacobian. Among the 15 new meth-
ods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving stiff
problems at moderate error tolerances.

Contents

1 Introduction 3

2 Background 6

2.1 Order Conditions . 8

2.2 Simplifying Assumptions . 10

2.3 Error . 16

2.4 Linear Stability . 17

2.5 Nonlinear Stability . 26

2.6 Internal Stability . 30

2.7 Dense Output . 32

2.8 Conservation, Symplecticity and Symmetry 32

2.9 Dissipation and Dispersion Accuracy 35

2.10 Memory Economization . 37

2.11 Regularity . 37

2.12 Boundary and Smoothness Order Reduction 39

2.13 Efficiency . 41

2.14 Solvability . 41

2.15 Implementation . 42

2.16 Step-Size Control . 46

2.17 Iteration Control . 52

2.18 Stage-Value Predictors . 55

2.19 Discontinuities . 66

2.20 Software . 69

3 Early Methods 69

1

4 Two- and Three-stage Methods (SI = 2) 71

4.1 Second-Order Methods . 71

4.1.1 ESDIRK . 71

4.1.2 SDIRK . 72

4.2 Third-Order Methods . 73

4.2.1 ESDIRK . 73

4.2.2 SDIRK . 73

4.3 Fourth-Order Methods . 74

4.3.1 ESDIRK . 74

5 Three- and Four-stage Methods (SI = 3) 74

5.1 Third-Order Methods . 74

5.1.1 ESDIRK . 74

5.1.2 QESDIRK . 76

5.1.3 SDIRK . 77

5.2 Fourth-Order Methods . 78

5.2.1 ESDIRK . 78

5.2.2 SDIRK . 78

5.3 Fifth-Order Methods . 78

5.3.1 ESDIRK . 78

6 Four- and Five-stage Methods (SI = 4) 79

6.1 Third-Order Methods . 79

6.1.1 ESDIRK . 79

6.1.2 QESDIRK . 81

6.1.3 SDIRK . 82

6.2 Fourth-Order Methods . 84

6.2.1 ESDIRK . 84

6.2.2 QESDIRK . 86

6.2.3 SDIRK . 86

6.3 Fifth-Order Methods . 87

6.3.1 ESDIRK . 87

6.4 Sixth-Order Methods . 87

6.4.1 EDIRK . 87

7 Five- and Six-stage Methods (SI = 5) 88

7.1 Fourth-Order Methods . 88

7.1.1 ESDIRK . 88

7.1.2 QESDIRK . 91

7.1.3 SDIRK . 93

7.1.4 QSDIRK . 95

7.2 Fifth-Order Methods . 95

7.2.1 ESDIRK . 95

7.2.2 SDIRK . 97

7.3 Sixth-Order Methods . 98

2

7.3.1 ESDIRK . 98

7.4 Seventh-Order Methods . 99

7.4.1 EDIRK . 99

8 Six- and Seven-stage Methods (SI = 6) 99

8.1 Fifth-Order Methods . 99

8.1.1 ESDIRK . 99

8.1.2 QESDIRK . 101

8.1.3 SDIRK . 102

8.2 Sixth-Order Methods . 102

8.2.1 ESDIRK . 102

8.2.2 DIRK . 104

9 Seven- and Eight-stage Methods (SI = 7) 104

9.1 Fifth-Order Methods . 104

9.1.1 ESDIRK . 104

10 Test Problems 106

11 Discussion 107

11.1 Convergence . 108

11.1.1 Second-Order Methods . 108

11.1.2 Third-Order Methods . 109

11.1.3 Fourth-Order Methods . 109

11.1.4 Fifth- and Sixth-Order Methods 111

11.2 Solvability . 112

11.3 Error Estimation and Step-Size Control 113

11.4 Dense Output . 115

12 Conclusions 115

A Runge-Kutta Order Conditions 151

B Dense Output Coefficients 152

C Method Properties 156

1 Introduction

The diagonally implicit Runge-Kutta (DIRK) family of methods is possibly
the most widely used implicit Runge-Kutta (IRK) method in practical applications
involving stiff, first-order, ordinary differential equations (ODEs) for initial value
problems (IVPs) due to their relative ease of implementation. In the notation in-
troduced by Butcher [59], they are characterized by a lower triangular A-matrix
with at least one nonzero diagonal entry and are sometimes referred to as semi-
implicit or semi-explicit Runge-Kutta methods. This structure permits solving for

3

each stage individually rather than all stages simultaneously. Applications for these
methods include fluid dynamics [36, 38, 39, 93, 94, 208, 222, 240, 248, 438, 440, 458],
chemical reaction kinetics and mechanisms [49, 271], medicine [421], semiconductor
design [31,425], plasticity [449], structural analysis [133,331], neutron kinetics [130],
porous media [33,137], gas transmission networks [107], transient magnetodynamics
[306], and the Korteweg-de Vries [369] and Schrödinger [135] equations. They may
also represent the implicit portion of an additive implicit-explicit (IMEX) method
[25,44,47,48,83,160,164,200,205,255,289,334,337,356,460,461,468] or be used to-
ward the solution of boundary value problems [99]. In addition to first-order ODE
applications, they are used for solving of differential algebraic equations (DAEs)
[8, 88, 89, 91, 92, 187, 202, 203, 263, 272, 273, 277, 279, 280, 305, 339, 345, 400, 450, 451],
partitioned half-explicit methods for index-2 DAEs [24, 304], differential equations
on manifolds [330], delay differential equations [9, 234, 239, 265, 419, 441], second-
order ODEs [10, 14, 111, 113, 153, 156, 168, 213, 216, 224, 231–233, 235, 335, 364–368,
381, 407, 446], Volterra integro-differential equations of the first kind [3], Volterra
functional differential equations [447], quadratic ODEs [229] and stochastic differ-
ential equations [58]. In certain contexts, DIRK methods may be useful as starting
algorithms to implicit methods having a multistep character [101]. They may also
be used in interval computations [298] and in the design functionally fitted [333] and
block methods [98].

In the context of general linear methods (GLMs), the basic DIRK structure forms
the basis of certain two-step Runge-Kutta methods [32,243], diagonally implicit mul-
tistage integration methods (DIMSIMs) [66], diagonally implicit single-eigenvalue
methods (DIMSEMs) [140], Multistep Runge-Kutta [55], Almost Runge-Kutta [74],
inherent Runge-Kutta stability methods (IRKS) [67], and second derivative IRKS
methods [73]. For the class of methods known as multiderivative Runge-Kutta
(Turán) methods, two-derivative methods using a DIRK-type structure have re-
cently been derived [430]. Parallel DIRK (PDIRK) methods [112,131,151,216,217,
226, 237] also exist but are not generally composed of lower triangular A matrices
and are, therefore, not of immediate concern here as are diagonally split Runge-
Kutta (DSRK) methods [34].

Beginning with the implicit Euler method, implicit midpoint rule, trapezoidal
rule and the Hammer-Hollingsworth “exact” trapezoidal rule, to the first effectively
multistage DIRK-type method introduced nearly 40 years ago by Butcher [60], much
has been learned about IRK methods, in general, and DIRK-type methods in partic-
ular. Applied to stiff problems, high stage-order, as opposed to classical order, stiff
accuracy and L-stability have proven particularly useful [194]. Although DIRK-type
methods may be constructed to be stiffly-accurate and L-stable, their stage-order
may not exceed two. This fundamentally limits their utility to settings requiring only
low to moderate error tolerances. As most technological applications do not require
exceedingly stringent error tolerances, this limitation may often be inconsequential.
If a stage-order of three or greater is desired, fully implicit Runge-Kutta (FIRK)
methods may be considered but are substantially more expensive to implement.
Hence, DIRK-type methods represent a line in sand that one crosses only when
high stage-order is worth the additional implementation cost or moving to FIRKs

4

or multistage methods with a multistep or multiderivative character. Surprisingly,
the majority of papers on DIRK-type methods have focused on stage-order one
methods rather than the potentially more useful stage-order two methods. Another
common problem with methods offered in the past is the focus on some particular
attribute or attributes while ignoring the many others of relevance. Many published
schemes do not include error estimators, dense output, or stage-value predictors.
Arguably, what is needed are methods that are optimimized across a broad spec-
trum of characteristics. Invariably, requiring one attribute may preclude another;
hence, priorities must be established. For example, with DIRK-type methods, one
may impart algebraic stability to the method or stage-order two, but not both.
Other properties like regularity are largely beyond the control of the scheme de-
signer; therefore, little effort might be expended trying to improve this aspect of
the method. Order reduction from stiffness, spatial boundaries of space-time partial
differential equations (PDEs), or nonsmoothness favors higher stage-order methods.
Although most applications of DIRK-type methods involve stiffness, implicitness
may be desired even in the absence of stiffness. Symplectic and symmetric methods
favor implicit schemes but constitute very specialized applications [188].

The goal of this paper is to comprehensively summarize the characteristics and
assess the potential and limitations of DIRK-type methods for first-order ODEs in
an applied fashion. This review establishes what matters, what has been done, what
is possible and at what cost; then, scheme coefficients are derived for methods with
two to seven implicit stages and orders primarily from three to five. Methods of order
greater than five seem of dubious value when applied to stiff problems if the stage
order may be no greater than two. It is hoped that these new schemes represent
nearly optimal DIRK-type methods for moderate error tolerance, general-purpose
contexts. While optimal methods are useful, the overall solution procedure will be
suboptimal without careful consideration of implementation issues. No substantial
focus is made on designing custom methods for niche applications like symplectic or
high phase-order methods. It is beyond the scope of the current work to properly
place DIRK-type methods within the broader class of IRK methods, or further,
within the still broader class of multistep, multistage, multiderivative methods.

This review is organized beginning with a brief introduction in section 1. Sec-
tion 2 reviews over 20 important aspects of DIRK-type methods relevant to proper
design and application of such methods. These include the general structure, order
conditions, simplifying assumptions, error, linear stability, nonlinear stability, inter-
nal stability, dense output, conservation, symplecticity, symmetry, dissipation and
dispersion accuracy, memory economization, regularity, boundary and smoothness
order reduction, efficiency, solvability, implementation, step-size control, iteration
control, stage-value predictors, discontinuities and existing software. It is hoped
that upon considering each of these aspects that new and existing methods may
be placed in a broad and proper perspective. Special attention is paid to the topic
of stage-value predictors because of the prospect of considerable cost savings from
the use of well designed predictors. However, a complete investigation of different
approaches to stage value predictors, including methods, is beyond the scope of this
paper. The same is true for dealing with discontinuities. In section 3, early activ-

5

ity on the topic of DIRK-type methods is summarized. Sections 4-9 focus on both
new and existing methods with two, three, four, five, six and seven implicit stages.
Due to the large numbers of possible methods, detailing all coefficients of each
scheme is not feasible; however, abscissae are often given as they are the most diffi-
cult to determine. From these methods, a small group of nearly complete methods
(minimally, those with error estimators and dense output) are offered for general-
purpose situations and compared against what is arguably the standard method of
this class: SDIRK4 [193]. Singular perturbation test problems for both new and
existing DIRK-type methods are given in section 10 along with references to other
tests of DIRK-type methods. A discussion of test results and conclusions are pre-
sented in sections 11 and 12, respectively. A comprehensive reference list and three
appendixes are included; appendix A lists the relevant order conditions, appendix
B lists dense-output coefficients and appendix C lists method properties. Citations
to literature will be made both for those works that are immediately relevant to
the topic at hand and also those needed for further reading. No distinction will be
made between the two so as to avoid unnecessary distraction. Scheme coefficients
are provided to at least 25 digits of accuracy using Mathematica [453,454].

2 Background

DIRK-type methods are used to solve ODEs of the form

dU

dt
= F (t, U(t)), U(a) = U0, t ∈ [a, b] (1)

and are applied over s-stages as

Fi = Fi(ti, Ui), Ui = U [n] + (∆t)
∑s

j=1 aijFj , ti = t[n] + ci∆t,

U [n+1] = U [n] + (∆t)
∑s

i=1 biFi, Û [n+1] = U [n] + (∆t)
∑s

i=1 b̂iFi.

 (2)

where i = 1, 2, · · · , s, Fi = F
[n]
i = F (Ui, t

[n] + ci∆t). Here, ∆t > 0 is the step-size,

U [n] ≃ U(t[n]) is the value of the U -vector at time step n, Ui = U
[n]
i ≃ U

(
t[n] + ci∆t

)

is the value of the U -vector on the ith-stage, and U [n+1] ≃ U(t[n] +∆t). Both U [n]

and U [n+1] are of order p. The U -vector associated with the embedded scheme,
Û [n+1], is of order p̂. This constitutes a (p, p̂) pair. Each of the respective Runge-
Kutta coefficients aij (stage weights), bi (scheme weights) , b̂i (embedded scheme
weights), and ci (abscissae or nodes), i, j = 1, 2, · · · , s are real and are constrained,
at a minimum, by certain order of accuracy and stability considerations.

DIRK-type methods may be divided into several classes [283]. In the ensuing
acronyms, S, E and Q denote singly, explicit first stage, and quasi, respectively.
Representative four-stage DIRK, SDIRK and QSDIRK methods appear in Butcher

6

array format as

c1 a11 0 0 0
c2 a21 a22 0 0
c3 a31 a32 a33 0
c4 a41 a42 a43 a44

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

c1 γ 0 0 0
c2 a21 γ 0 0
c3 a31 a32 γ 0
c4 a41 a42 a43 γ

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

c1 c1 0 0 0
c2 a21 γ 0 0
c3 a31 a32 γ 0
c4 a41 a42 a43 γ

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

With an explicit first stage, from left to right, EDIRK, ESDIRK and QESDIRK
methods are given by

0 0 0 0 0
c2 a21 a22 0 0
c3 a31 a32 a33 0
c4 a41 a42 a43 a44

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

0 0 0 0 0
c2 a21 γ 0 0
c3 a31 a32 γ 0
c4 a41 a42 a43 γ

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

0 0 0 0 0
c2 a21 a22 0 0
c3 a31 a32 γ 0
c4 a41 a42 a43 γ

b1 b2 b3 b4

b̂1 b̂2 b̂3 b̂4

Not all authors have followed these conventions. Obviously, SDIRK, QSDIRK,
EDIRK, ESDIRK and QESDIRKmethods are subsets of DIRKmethods. In the case
of EDIRK, ESDIRK and QESDIRK methods, some authors prefer to decompose
A = aij , b = bi and c = ci, into

c A

bT =

0 0 0T

ĉ a Â

b1 b̂T

with A =

[
0 0T

a Â

]
(3)

where 0T (composed of zeros), aT , ĉT and b̂T are vectors of length (s-1), {0, aTi } =

ai1, {0, ĉT } = cT , and {b1, b̂T } = bT and Â is a square matrix of dimension
(s − 1) × (s − 1). Hence, although A is not invertible, Â is often invertible. The
superscript ̂ will be used to denote this decomposition and should not be confused
with the circumflex ˆ used to denote the embedded method. The motivation for
having an explicit first stage is primarily to allow stage-order two methods. It also
reduces the number of implicit stages to sI = s−1. Note that there is no distinction
between (E)SDIRKs and (E)DIRKs when sI = 1. Forcing each diagonal element,
aii = γ, greatly facilitates designing A- and L-stable methods by virtue of simplifying
the stability function. It also provides for a constant iteration matrix during the
iterative solution of the stage and step equations. Various trade-offs between these
choices will be discussed throughout section 2. QESDIRKs are motivated by the fact
that sometimes with stage-order two methods, c2 can get unpleasantly large, and, for
these methods, the leading order error of the second stage is driven by the magnitude
of a22. The goal would be to reduce a22, as much as possible, below γ while applying
a truncated version of the row simplifying assumptions so as to mimic stage-order
three behavior. A QSDIRK is similar to a QESDIRK except one would try to mimic
stage-order two behavior. These methods might be implemented by using a device
by Krogh [274]. One may also investigate the merits and consequences of allowing
the aii to vary with QESDIRKs [227]. A further constraint on the coefficients to

7

these methods that is both simple and beneficial is the stiffly-accurate assumption
of Prothero and Robinson [340], asj = bj , implying cs = 1. Explicit first-stage
methods using the stiffly-accurate assumption are sometimes called first same as last
(FSAL) methods [209, 324, 396, 397]. Albrecht [4] considers these composite linear
multistep methods. If a method has at least two identical values of ci, then it is called
confluent, otherwise it is nonconfluent. Unlike reducible methods, methods that are
DJ- (Dahlquist-Jeltsch [125]) or (H)S- (Hundsdorfer-Spijker [220]) irreducible cannot
be manipulated into an equivalent method having fewer stages.

To identify certain schemes derived in this paper, a nomenclature similar to that
originally devised by Dormand and Prince is followed [132,255]. For those schemes
that are given names, they will be named DIRKp(p̂I)sS[q]X x, where p is the order
of the main method, p̂ is the order of the embedded method, I is included if internal
error-control is offered, s is the number of stages, S is some stability characterization
of the method, q is the stage-order of the method, X is used for any other important
characteristic of the method, and x distinguishes between family members of some
type of method.

2.1 Order Conditions

Order conditions for Runge-Kutta methods may be derived by using the theory of
Runge-Kutta trees. For the DIRK-type methods considered in this work, one focuses
on ODE trees [61, 64, 190, 286]. From these, one may construct the corresponding
equations of condition or, as is more commonly stated, the order conditions. Due
to the complex and tedious nature of deriving these order conditions, the task is
sometimes done computationally using symbolic manipulation software [43,90,145,
163, 406]. Expressions for the equation of condition associated with the pth-order
trees are of the form

τ
(p)
j =

1

σ
Φ
(p)
j − α

p!
=

1

σ

(
Φ
(p)
j − 1

γ

)
, Φ

(p)
j =

s∑

i=1

biΦ
(p)
i,j , ασγ = p!, (4)

where Φ
(p)
i,j and Φ

(p)
j are Runge-Kutta coefficient products and their sums, and j

represents the index of the order condition, i.e., at each order, there may have more
than one order condition. A Runge-Kutta method is said to be of order p if the
local truncation error satisfies

U [n] − U(t[n]) = O (∆t)p+1 . (5)

To achieve this, all order conditions must be satisfied up to and including order p.
The number of order conditions introduced at order p, ap, is given by [64,190]

∞∑

p=1

apx
(p−1) =

∞∏

p=1

(1− xp)−ap . (6)

For orders p = {1, 2, 3, 4, 5, 6}, j ranges from 1 to ap = {1, 1, 2, 4, 9, 20}, respectively
(see Sloane and Plouffe [401]; sequence A000081, formerly M1180 and N0454). All

8

methods constructed later in this paper use the row-sum convention, Ae = c, where
e = {1, 1, · · · , 1}T . Verner [433] distinguishes four distinct types of order conditions
for ODE contexts: quadrature, subquadrature, extended subquadrature and non-
linear conditions. Moving from order p−1 to order p, one new quadrature condition
is introduced, (p− 2) for p ≥ 3 new subquadrature conditions and (2p−2− p+1) for
p ≥ 4 new extended subquadrature conditions are added. Nonlinear order conditions
do not arise until fifth-order and number ap − (2p−2), p ≥ 5.

Quadrature conditions allow solution of vector equations of the form y′(t) = f(t)
and may be written at order k as

τ
(k)
Q =

1

(k − 1)!
bTCk−1e− 1

k!
, k = 1, 2, · · · , p, (7)

where C = diag(c) or Ce = c. Componentwise multiplication of two vectors, a
and b will be denoted as a ∗ b. Powers of the vector c should be interpreted as
componentwise multiplication. Hence c3 =c ∗ c ∗ c =C3e and c0 = e. Powers of the
A-matrix are given by A0 = I, A1 = A and A2 = AA.

Trees associated with quadrature conditions are often referred to as bushy trees.
Subquadrature conditions permit solution of linear, nonhomogeneous, vector equa-
tions, y′(t) = Ay(t) + f(t), where A is a constant. They may be written at order
k + r as

τ
(k+r)
SQ =

1

(k − 1)!
bTArCk−1e− 1

(k + r)!
, k − 1, r ≥ 0, 1 ≤ k + r ≤ p. (8)

An important subset of the subquadrature conditions are the tall trees where k = 1;

τ
(r+1)
SQtall

= bTAre − 1/(r + 1)!, associated with the equation y′(t) = Ay(t). Setting

r = 0 recaptures the quadrature order conditions in (8). Extended subquadrature
conditions extend these conditions to linear nonautonomous, nonhomogeneous vec-
tor equations, y′(t) = A(t)y(t)+ f(t). Defining K = k+

∑m
j=0 kj and κi =

∑i
j=0 kj ,

at order K they are

τ
(K)
ESQ =

1

σ
bTCk0−1ACk1−1 · · ·ACkm−1ACk−1e− α

K!
, k, ki > 0 (9)

for 1 ≤ K ≤ p with σ = (k0 − 1)!(k1 − 1)! · · · (km − 1)!(k − 1)!, γ = (K − κm)(K −
κm−1) · · · (K − κ0)K and α = K!/σγ. Setting k0 = k1 = · · · = km = 1 retrieves
the subquadrature conditions. All conditions not contained within these three cat-
egories are nonlinear order conditions. Their general form, given by Verner [433], is
quite complicated and will not be given here. Note that at lower orders, extended
subquadrature conditions collapse into subquadrature conditions (ki = 1,m = r),
and subquadrature conditions collapse into quadrature conditions (r = 0). Hence,
even though the first nonlinear condition does not appear until fifth-order, lower-
order methods retain their formal order on nonlinear problems. Appendix A lists
Runge-Kutta order conditions up to sixth-order. Rather than increasing the order
of method by considering the order conditions at the next order, Faragò et al. [146]
attempt to achieve this using Richardson extrapolation.

9

Similar conditions apply to the embedded and dense output methods where b̂
and b(θ) (See §2.7) replace b in all of the preceeding expressions. Another important
aspect of order is the stage-order of a method, discussed in the following sections. For
the stages, order conditions resemble those for the overall method (step conditions
versus stage conditions)

t
(p)
i,m =

1

σ
Υ

(p)
i,m − α

p!
cpi , Υ

(p)
i,m =

s∑

j=1

aijΦ
(p)
j,m, ασγ = p!. (10)

2.2 Simplifying Assumptions

Simplifying assumptions are often made to facilitate the solution of Runge-Kutta
order conditions and possibly to enforce higher stage-order. They were devised by
Butcher [59,60,129,190,193] based on the structure of Runge-Kutta trees and may
provide insight into particular methods. The three common ones are

B(p) :
s∑

j=1

bic
k−1
i =

1

k
, k = 1, ..., p, (11)

C(η) :
s∑

j=1

aijc
k−1
j =

cki
k
, k = 1, ..., η, (12)

D(ζ) :

s∑

i=1

bic
k−1
i aij =

bj
k
(1− ckj), k = 1, ..., ζ. (13)

A fourth simplifying assumption, E(η, ζ), is not needed for DIRK-type methods
[129]. Recently, Khashin [258, 434] has given simplifying strategies substantially
different from those given by Butcher. However, they are only likely to offer new
insight into methods having vastly different step and stage orders such as high-order
explicit Runge-Kutta methods.

The first, (11), is related to the quadrature conditions. Enforcing B(p), (7),

forces τ
(k)
Q = 0, k = 1, 2, · · · , p for all orders up to and including p. Assumptions

C(η) and D(ζ) are sometimes referred to as the row and column simplifying as-
sumptions, respectively. The stage-order of a Runge-Kutta method is the largest
value of q such that B(q) and C(q) are both satisfied. As its name implies, stage-
order is related to the order of accuracy of the intermediate stage values of the
U -vector, Ui, and equals the lowest order amongst all stages. Stage-order strongly
influences the accuracy of methods when applied to stiff problems, boundary and
smoothness order-reduction, error-estimate quality and stage-value predictor qual-
ity. While virtually all DIRK-type methods in the literature are at least stage-order
one by virtue of satisfying the row-sum condition Ae = c (Zlatev [466] does not),
fewer satisfy C(2). This requires that a11 = 0 and forces a21 = a22. Hence, only
EDIRK, ESDIRK and QESDIRK methods have the potential for a stage-order of
two. It is impossible to satisfy C(3) for DIRK-type methods because of the second

stage where q
(3)
2 = 4a322/3, which implies that a22 = 0.

10

Closely related to the assumption B(p), p(k) is defined as

p(k) = bTCk−1e− 1

k
(14)

where p(k) = τk1 [(k − 1)!]. Similarly, q(k) is closely related to row-simplifying as-
sumption C(η) given in (12),

q(k) = ACk−1e− 1

k
Cke, q(1) = Ae− c (15)

where q(1) = 0 is simply the row-sum condition. Writing C(k, i) is meant to

imply q
(k)
i = 0. With this, one may write the stage-order vector (SOV) equals

{p1, p2, · · · , ps} where pi is the largest value of k at each stage i for which q
(k)
i = 0,

k = 1, 2, · · · , pi. For explicit first-stage methods, p1 = p by convention. The stage-
order may be seen to be q = Min{p1, p2, · · · , ps}. Slightly less demanding, the dom-
inant stage-order (DSO) is the minimum value of pi such that the ith-stage satisfies
bi 6= 0 [433]. Cameron et al. [91] call this property the forward quasi-stage-order.
Related to this, they also define a reverse quasi-stage-order using q(k) = A−1q(k).

Using q(k), subquadrature (8) and extended subquadrature (9), conditions may
be recast as

τ
(k+r)
SQ =

1

(k − 1)!
bTAr−1q(k) +

1

k!
bTAr−1Cke− 1

(k + r)!
,

=
1

(k − 1)!
bTAr−1q(k) +

1

k!
bTAr−2q(k+1) + · · ·

+
1

(k + r − 2)!
bTq(k+r−1) + τ

(k+r)
Q , (16)

τ
(K)
ESQ =

1

σ
bTCk0−1ACk1−1 · · ·ACkm−1q(k)

+
1

kσ
bTCk0−1ACk1−1 · · ·ACkm−1Cke− α

K!
. (17)

One may apply q(k) recursively to τ
(K)
ESQ just as has been done with τ

(k+r)
SQ . Table 1

details the use of q(k), and consequently C(η), for order conditions up to order six.
¿From a general discussion of simplifying conditions, a detailed analysis must

be done to understand how they should be applied to DIRK-type methods. The
goal is usually to force q(k) k = 1, 2, · · · , η to vanish by imposing C(η), thereby
satisfying many order conditions that might have been otherwise difficult to solve
and, simultaneously, to increase the stage order. Focusing on fifth-order methods,

it may be seen from Table 1 that employing B(5) (τ
(1,2,3,4,5)
1 = 0) and C(2)

(q(1,2) = 0 with a1j = 0, j = 1, 2, . . . , s) reduces the unsatisfied order conditions to

τ
(4)
3 = τ

(5)
4,5,8 = 0 or bTq(3) = bTCq(3) = bTAq(3) = bTq(4) = 0. For moderate

order DIRK-type methods, only q(k), k = 1, 2, 3 will be needed. If q(3) is applied, it

is usually used with an EDIRK, ESDIRK, or QESDIRK as q
(3)
i = 0, i = 3, 4, · · · , s

but q
(3)
2 6= 0. Because q

(3)
2 6= 0, the use of assumption C(3) in the design of EDIRK,

11

Table 1. Order conditions expressed using q(k), k = 2, 3, 4, 5 up to sixth-order for

Runge-Kutta methods. Bushy tree order conditions τ
(l)
1 , l = 1, 2, · · · , 6 are not

included. Order conditions are denoted as to whether they are subquadrature (SQ),
extended subquadrature (ESQ) or nonlinear (NL).

SQ τ
(3)
2 = bTq(2) + τ

(3)
1

ESQ τ
(4)
2 = bTCq(2) + 3τ

(4)
1

SQ τ
(4)
3 = 1

2b
Tq(3) + τ

(4)
1

SQ τ
(4)
4 = bTAq(2) + τ

(4)
3

ESQ τ
(5)
2 = 1

2b
TC2q(2) + 6τ

(5)
1

NL τ
(5)
3 = 1

2b
T
(
q(2)

)2
+ 1

2b
TC2q(2) + 3τ

(5)
1

ESQ τ
(5)
4 = 1

2b
TCq(3) + 4τ

(5)
1

SQ τ
(5)
5 = 1

6b
Tq(4) + τ

(5)
1

ESQ τ
(5)
6 = bTCAq(2) + τ

(5)
4

ESQ τ
(5)
7 = bTACq(2) + 3τ

(5)
5

SQ τ
(5)
8 = 1

2b
TAq(3) + τ

(5)
5

SQ τ
(5)
9 = bTAAq(2) + τ

(5)
8

ESQ τ
(6)
2 = 1

6b
TC3q(2) + 10τ

(6)
1

NL τ
(6)
3 = 1

2b
TC

(
q(2)

)2
+ 1

2b
TC3q(2) + 15τ

(6)
1

ESQ τ
(6)
4 = 1

4b
TC2q(3) + 10τ

(6)
1

NL τ
(6)
5 = 1

2b
TQ(3)q(2) + 1

6b
TC3q(2) + τ

(6)
4

ESQ τ
(6)
6 = 1

6b
TCq(4) + 5τ

(6)
1

SQ τ
(6)
7 = 1

24b
Tq(5) + τ

(6)
1

ESQ τ
(6)
8 = 1

2b
TC2Aq(2) + τ

(6)
4

NL τ
(6)
9 = bTQ(2)Aq(2) + 1

2b
TQ(2)q(3) + 1

6b
TC3q(2) + τ

(6)
8

ESQ τ
(6)
10 = bTCACq(2) + 3τ

(6)
6

ESQ τ
(6)
11 = 1

2b
TAC2q(2) + 6τ

(6)
7

NL τ
(6)
12 = 1

2b
TA

(
q(2)

)2
+ 1

2b
TAC2q(2) + 3τ

(6)
7

ESQ τ
(6)
13 = 1

2b
TCAq(3) + τ

(6)
6

ESQ τ
(6)
14 = 1

2b
TACq(3) + 4τ

(6)
7

SQ τ
(6)
15 = 1

6b
TAq(4) + τ

(6)
7

ESQ τ
(6)
16 = bTCAAq(2) + τ

(6)
13

ESQ τ
(6)
17 = bTACAq(2) + τ

(6)
14

ESQ τ
(6)
18 = bTAACq(2) + 3τ

(6)
15

SQ τ
(6)
19 = 1

2b
TAAq(3) + τ

(6)
15

SQ τ
(6)
20 = bTAAAq(2) + τ

(6)
19

12

ESDIRK and QESDIRK methods will be referred to as truncated. To complete the

solving of the order conditions with this assumption, one need only solve b2q
(3)
2 =

b2c2q
(3)
2 =

∑s
i=1 biai2q

(3)
2 = 0 and bTq(4) = 0 or τ

(5)
5 = 0. The first three are solved

by setting b2 =
∑s

i=1 biai2 = 0. The SOV is {p, 2, 3, 3, · · · , 3} so that the stage-
order is two but the DSO is then three. For DIRK and SDIRK methods, if q(2)

is applied, it is used with a11 6= 0 as q
(2)
i = 0, i = 2, 3, · · · , s and b1 = 0 because

q
(2)
1 = a211/2 6= 0. The SOV is {1, 2, 2, · · · , 2} and the stage order is one.

Verner (§2) [433] rewrites (16) and (17) under the assumption that the order

conditions are satisfied (τ
(p)
j vanishes), as well as certain other conditions at the same

order, giving bTAr−1q(k) = 0 and bTCk0−1ACk1−1 · · ·ACkm−1q(k) = 0. Using this
abbreviated format, Verner writes the fifth- and sixth-order nonlinear conditions as
bT (q(2))2 = bTC(q(2))2 = bT (q(2)∗q(3)) = bT (q(2)∗Aq(2)) = bTA(q(2))2 = 0. The
extended form of these conditions is given in appendix A. Because row simplifying
conditions do not contain b, they affect the main, embedded and dense-output
methods identically as well as certain stage-value predictors.

Closely related to assumption D(ζ) given in (13), one may further define

r(k0) = bTCk0−1A− 1

k0
bT
(
I−Ck0

)
. (18)

Writing D(k, j) is meant to imply r
(k)
j = 0. Instead of operating on the top of

the trees with q
(k)
j = 0, one may modify the bottom of the tree by using r

(k)
j = 0.

With these assumptions, the subquadrature (8) and extended subquadrature (9)
conditions are rewritten as

τ
(k+r)
SQ =

1

(k − 1)!
r(1)Ar−1Ck−1e+

1

(k − 1)!
bTAr−1Ck−1e

− 1

(k − 1)!
bTCAr−1Ck−1e− 1

(k + r)!
, (19)

τ
(K)
ESQ =

1

σ
r(k0)Ck1−1 · · ·Ckm−1ACk−1e+

1

k0σ
bTCk1−1 · · ·Ckm−1ACk−1e

− 1

k0σ
bTCk0+k1−1 · · ·Ckm−1ACk−1e− α

K!
. (20)

As with the row simplifying assumption, r(i) may be applied recursively to τ
(k+r)
SQ

and τ
(K)
ESQ. When conditions required for D(k0) are enforced, then r(i) = 0, i =

1, 2, · · · , k0. ¿From (19) (k0 = 1) and (20), the original order condition splits into
two conditions: one of order k0 less than the original condition and the other of the
same order. More specifically, for orders up to six, order conditions are expressed in
Table 2 where r(k0) is used. Note that most of the nonlinear order condition cannot
be reduced by using the column simplifying assumption.

At orders of five and below, Table 2 suggests that only r(1) or k0 = 1 is profitable
to consider for DIRK-type-methods. Several authors [18, 116] have, however, used
D(2) and ass = 0. Obviously, one could combine the row and column simplifying as-
sumptions where appropriate. For many of the DIRK-type methods designed in this

13

Table 2. Order conditions expressed using r(k0) up to sixth-order for Runge-Kutta

methods. Bushy tree order conditions τ
(l)
1 , l = 1, 2, · · · , 6 are not included. Stiffly

accurate DIRK-type implicit methods cannot use the column simplifying assump-
tion. Order conditions are denoted as to whether they are subquadrature (SQ),
extended subquadrature (ESQ) or nonlinear (NL).

SQ τ
(3)
2 = r(1)Ce+ τ

(2)
1 − 2τ

(3)
1

ESQ τ
(4)
2 = r(2)Ce+ 1

2τ
(2)
1 − 3τ

(4)
1

SQ τ
(4)
3 = 1

2r
(1)C2e+ τ

(3)
1 − 3τ

(4)
1

SQ τ
(4)
4 = r(1)ACe+ τ

(3)
2 − τ

(4)
2

ESQ τ
(5)
2 = 1

2r
(3)Ce+ 1

6τ
(2)
1 − 4τ

(5)
1

NL τ
(5)
3 - No Simplification

ESQ τ
(5)
4 = 1

2r
(2)C2e+ 1

2τ
(3)
1 − 6τ

(5)
1

SQ τ
(5)
5 = 1

6r
(1)C3e+ τ

(4)
1 − 4τ

(5)
1

ESQ τ
(5)
6 = r(2)ACe+ 1

2τ
(3)
2 − τ

(5)
2

ESQ τ
(5)
7 = r(1)CACe+ τ

(4)
2 − 2τ

(5)
2

SQ τ
(5)
8 = 1

2r
(1)AC2e+ τ

(4)
3 − τ

(5)
4

SQ τ
(5)
9 = r(1)AACe+ τ

(4)
4 − τ

(5)
6

ESQ τ
(6)
2 = 1

6r
(4)Ce+ (1/24)τ

(2)
1 − 5τ

(6)
1

NL τ
(6)
3 - No Simplification

ESQ τ
(6)
4 = 1

4r
(3)C2e+ (1/6)τ

(3)
1 − 10τ

(6)
1

NL τ
(6)
5 - No Simplification

ESQ τ
(6)
6 = 1

6r
(2)Ce+ (1/2)τ

(4)
1 − 10τ

(6)
1

SQ τ
(6)
7 = 1

24r
(1)C4e+ τ

(5)
1 − 5τ

(6)
1

ESQ τ
(6)
8 = 1

2r
(3)ACe+ (1/6)τ

(3)
2 − τ

(6)
2

NL τ
(6)
9 - No Simplification

ESQ τ
(6)
10 = r(2)CACe+ (1/2)τ

(4)
2 − 3τ

(6)
2

ESQ τ
(6)
11 = 1

2r
(1)C2ACe+ τ

(5)
2 − 3τ

(6)
2

NL τ
(6)
12 = 1

2r
(1) (ACe)2 + τ

(5)
3 − τ

(6)
3

ESQ τ
(6)
13 = r(2)AC2e+ (1/2)τ

(4)
3 − τ

(6)
4

ESQ τ
(6)
14 = 1

2r
(1)CACe+ τ

(5)
4 − 2τ

(6)
4

SQ τ
(6)
15 = 1

6r
(1)AC3e+ τ

(5)
5 − τ

(6)
6

ESQ τ
(6)
16 = r(2)AACe+ (1/2)τ

(4)
4 − τ

(6)
8

ESQ τ
(6)
17 = r(1)CAACe+ τ

(5)
6 − 2τ

(6)
8

ESQ τ
(6)
18 = r(1)ACACe+ τ

(5)
7 − τ

(6)
10

SQ τ
(6)
19 = 1

2r
(1)AAC2e+ τ

(5)
8 − τ

(6)
13

SQ τ
(6)
20 = r(1)AAACe+ τ

(5)
9 − τ

(6)
16

14

paper, the stiffly-accurate assumption and C(2) will be used. The latter increases the
stage-order, reduces the number and nonlinearity of the order conditions and facili-
tates the design of the embedded method. The column simplifying assumption D(ζ)
will have no use with stiffly-accurate methods because, for j = s, one must enforce

r
(k0)
s = bsc

k0−1
s ass − bs

k0
(1 − ck0s) = 0. The stiffly-accurate assumption forces cs = 1

and ass = bs so that ass = bs = 0. Hence, this relation cannot be satisfied for stiffly-
accurate DIRK-type methods. If one imposes assumption D(1, j) on nonstiffly-
accurate methods, then for j = s, bsass− bs(1− cs) = 0, implying that either bs = 0
or cs = 1 − ass. If one further assumes D(2, j), then bscsass − bs

2 (1 − c2s) = 0.
Avoiding bs = 0, one may set ass = 0, implying cs = 1 [18, 116]. For functionally
fitted methods, additional order conditions are involved when Runge-Kutta coef-
ficients are allowed to vary with both time and step size. Ozawa [333] constructs
functionally fitted, three-stage, stage-order two ESDIRKs of orders three and four
having stability domains commensurate with those of explicit methods.

Lastly, simplifying assumptions B(p), C(η) and D(ζ) may be related through
p(k), q(k) and r(k0). Forming the scalar product of r(k0) and cl−1 gives

r(k0)cl−1 = bTCk−1Acl−1 − 1

k
bT cl−1 +

1

k
bT ck+l−1 (21)

where

bT ck−1 = p(k) +
1

k
, Ack−1 = q(k) +

1

k
ck. (22)

Applying (22) to (21) gives

r(k0)cl−1 = bTCk−1

(
q(l) +

1

l
cl
)
− 1

k

(
p(l) +

1

l

)
+

1

k

(
p(k+l) +

1

k + l

)

= bTCk−1q(l) +
(k + l)

kl
p(k+l) − 1

k
p(l)

= bTCk−1q(l) +
(k + l)!

kl
τ
(k+l)
1 − (l − 1)!

k
τ
(l)
1 . (23)

This result is essentially due to Butcher [60]. When both row and column simpli-
fications are being applied simultaneously, (23) shows that some redundancies may
occur. As these stage-order two methods will be of primary concern, l = 1, 2, which
implies

r(k)e = bTCk−1q(1) +
(k + 1)!

k
τ
(k+1)
1 − 1

k
τ
(1)
1 , (24)

r(k)c = bTCk−1q(2) +
(k + 2)!

2k
τ
(k+2)
1 − 1

k
τ
(2)
1 . (25)

so that, in the latter case,

r(1)c = bTq(2) + 3τ
(3)
1 − τ

(2)
1 , r(2)c = bTCq(2) + 6τ

(4)
1 − 1

2
τ
(2)
1 . (26)

With stage-order two methods, typically r(1)c = 0 and r(2)c = 0 since the RHS of
the above equations vanish. Imposing either column simplifying assumptions is now
easier as one component of r(1) and r(2) will automatically vanish when the other
components vanish.

15

2.3 Error

The error in a pth-order Runge-Kutta scheme may be quantified in a general way
by taking the L2 principal error norm,

A(p+1) = ‖τ (p+1)‖2 =

√√√√
ap+1∑

j=1

(
τ
(p+1)
j

)2
(27)

where τ
(p+1)
j are the ap+1 error coefficients, (6), associated with the classical order

of accuracy p + 1. For single-step, embedded schemes where p̂ = p − 1, additional
definitions are useful such as

τ̂
(p̂)
k =

1

σ

s∑

i=1

b̂iΦ
(p̂)
i,k − α

p̂!
, Â(p̂+1) = ‖τ̂ (p̂+1)‖2, (28)

B(p̂+2) =
Â(p̂+2)

Â(p̂+1)
, C(p̂+2) =

‖τ̂ (p̂+2) − τ (p̂+2)‖2
Â(p̂+1)

, E(p̂+2) =
A(p̂+2)

Â(p̂+1)
(29)

and D = Max{|aij |, |bi|, |b̂i|, |ci|} where the superscript circumflex denotes the values
with respect to the embedded method. No analogous measures have been proposed
for methods having p̂ = p− 2. The order of the method, p, refers to the global error
while the local error is given by p+ 1.

As very stiff ODEs bear a strong resemblance to singular perturbation problems,
it is worth noting the value of the stiffly-accurate assumption in this context [187,
281]. If p is the classical order of the DIRK-type method and q is the stage-order then
the global error for the differential and algebraic variables of the method applied
to a singular perturbation problem with stiffness parameter ε is given in Table 3
depending on whether or not the method is stiffly-accurate. Hairer and Wanner
[187,193] have assumed that A−1 exists and the linear stability function, discussed
in the next section, satisfies |R(−∞)| < 1. From the table, it may be seen that the
classical order of a given method may not be observed in practice. This is order

Table 3. Order of accuracy of implicit Runge-Kutta methods for singular perturba-
tion equations.

Assumption Differential Algebraic

asi 6= bi O ((∆t)p) +O
(
ε(∆t)q+1

)
O
(
(∆t)q+1

)

asi = bi O ((∆t)p) +O
(
ε(∆t)q+1

)
O ((∆t)p) +O (ε(∆t)q)

reduction due to stiffness and its implications for variable step-size codes, including
an SDIRK code, are investigated by Mac Donald and Enright [295]. Kvaerno [281,
282] distinguishes three stiffness regimes of typical singular perturbation problems:
one where the problem is nonstiff (∆t < ε), one where the index-2 DAE terms
dominate the solution (∆t & ε), and one where the problem behaves like an index-1
DAE (∆t ≫ ε). In a later section on boundary and smoothness order reduction, it

16

will be seen that order reduction may also occur due to spatial boundary conditions
in a discretized PDE or nonsmooth coefficients contained within the right hand side
(RHS) of the ODEs. The worst occurrences of this order reduction will result in
global convergence rates of the minimum between p and q + 1. Several detailed
convergence studies [139,320] are also available.

2.4 Linear Stability

Linear stability of DIRK-type methods applied to ODEs is studied based on the
equation U ′ = λU by using the stabilty function

R(z) =
P (z)

Q(z)
=

Det
[
I− zA+ ze⊗ bT

]

Det [I− zA]
= 1 + zbT [I− zA]−1 e, (30)

where I is the identity matrix and z = λ∆t. Similar expressions may be written
for the embedded and dense output methods by simply replacing b with b̂ and
b(θ), respectively. If t0 = 0 and U(t0) = 1, then after one step, U = exp(λ∆t) =
exp(z). Therefore, one would like R(z) to approximate exp(z). The motivation for
studying this simple equation when actually trying to solve (1) is based on a two-part
simplification [412]. One first linearizes (1) to U ′ = AU where A is the Jacobian
∂F/∂U at any point t∗ belonging to the time interval under consideration [69].
Next, one selects an eigenvalue λ, belonging to the spectrum of A, where λ may
be complex. On occasions, these simplifications may break down and render linear
stability insufficient. Both numerator and denominator of the stability function are
polynomials of degree, deg ≤ s. An explicit first stage reduces the degree of the
denominator by one. A method is called A-stable and its stability function is called
A-acceptable if |R(z)| ≤ 1 for ℜ(z) ≤ 0. If ℜ(z) ≤ 0, then the linear autonomous
problem U ′ = λU is dissipative in an inner product norm, i.e., for two different
solutions ||Ũ(t + ∆t) − U(t + ∆t)|| ≤ ||Ũ(t) − U(t)||. The inner product norm
of a vector x is defined as ||x|| = √

< x, x >. A common alternative expression
is obtained by differentiating the separation distance between the two solutions
and requiring that it never increase; that is d

dt ||Ũ(t) − U(t)||2 ≤ 0 or ||F (t, Ũ(t)) −
F (t, U(t)), Ũ(t)−U(t)|| ≤ 0. The tilde solution may be thought of as a perturbation
of the original solution due to truncation, round-off and iteration errors [415]. A-
stability then implies the unconditional (all step-sizes ∆t > 0) contractivity of the
corresponding numerical solution in an inner product norm, ||Ũ [n+1] − U [n+1]|| ≤
||Ũ [n] −U [n]|| [267]. Hence, the radius of contractivity is rL2 = ∞, where L denotes
a linear problem and the subscript 2 denotes the norm. If one attempts to extend
unconditional contractivity of Runge-Kutta methods applied to linear autonomous
problems to an arbitrary norm, which includes the max norm with rL∞= ∞, then
R(z) must be absolutely monotonic for z on the entire negative real axis, −∞ ≤
z ≤ 0, and, consequently, the order of accuracy may not exceed one [408]. If, in
addition to A-stability, R(z)z→−∞ = 0, then the method is called L-stable, and
its stability function is called L-acceptable. L-acceptable stability functions have
deg Q(z) > deg P (z). Intermediate between A- and L-stability is what Crouzeix
[120,121,123] terms strong A-stability. This requires that a method be A-stable and

17

R(z)z→−∞ < 1 which gives the method a desirable error growth function [170,171].
Less restrictive measures of linear stability may also be considered [193, 286, 457].
A(α)-stable methods provide |R(z)| ≤ 1 for all z in a sector of ±α radians above
and below the negative real axis, −∞ ≤ z ≤ 0, within the complex left half-plane
(LHP). If α = π/2, then the method is simply A-stable. If that angle includes
α = 0, the negative real axis, then the method is called A0-stable. Methods that
are both A(α)-stable and have R(z)z→−∞ = 0 are termed L(α)-stable. A simple
way to assist in achieving L-stability is to set ps = 0 in (31) by using the stiffly-
accurate assumption, asj = bj [340], which reduces the deg P (z) from s to s − 1.
The stiffly-accurate assumption forces U [n+1] to be computed implicitly, while also
increasing the convergence rate (see Table 3) on stiff and DAE problems. Lastly, a
stability function is said to be P-stable if |R(iν)| = 1 where i =

√
−1 and ν is a real

number [152,212].
Given the stability function, (30), then

Rm,n(z) =
P (z)

Q(z)
=

∑m
i=0 piz

i

∑n
j=0 qjz

j
=

∑s
i=0 piz

i

∏s
j=1 (1− ajjz)

(31)

where pi and qi are real. Nørsett and Wolfbrandt [318,452] show that the maximum
order of approximation to exp(z) using Rm,n(z) is m+1 if all poles are real. Applied
to SDIRKs and ESDIRKs, this implies p ≤ sI + 1. To better understand the max-
imum order of approximation for A-acceptable approximations to exp(z), Wanner
et al. [70, 227, 316, 317, 443, 444] introduced order stars where the order star of an
approximation to the exponential is given by R(z)/ exp(z). Shirkov [386] attempts
to design L-stable DIRK methods having p = s, s = 1, 2, 3, 4 with “second-order
damped” (SOD), i.e., deg Q(z) = deg P (z) + 2 or p = sI + 2 rather than the more
common deg Q(z) = deg P (z) + 1. ¿From Nørsett [308, 309] and Crouzeix [120],
SDIRK methods of order p = {2, 3, 4} and s = {1, 2, 3} have been derived. The two
higher-order, A-stable methods are shown to be unique but a four-stage, fifth-order
method is impossible. Nørsett and Wolfbrandt state that a DIRK with p = 5 and
s = 4 must have two distinct values of aii. Cooper and Sayfy [116] and Shintani and
Yoshida [385] derive A-stable SDIRK methods having p = 5 and s = 5. Relaxing
the requirement of identical diagonal coefficients, Cooper and Sayfy [116] derive an
A-stable DIRK with p = 6 and s = 6, but the last stage is computed explicitly as
a66 = 0. It is unlikely that an A-stable p = 6, s = 6 SDIRK exists. Methods having
p = 5 and s = 4 [18], p = 5 and s = 5 [266], p = 6 and s = 5 [18] have also been
derived, yet none are A-stable. Al-Rabeh [18] shows that the maximum order of
an s-stage, nonconfluent DIRK with nonzero weights cannot exceed s+ 1 and does
this only for 1 ≤ s ≤ 5. Bales et al. [30] prove that for Q(z) =

∏sI
i=1 (1− aiiz), if

aii ≥ 1/2, i = 1, 2, · · · , sI and R(z) is at least an order sI approximation to the
exponential, then R(z) is A0-acceptable. Associated with each stability function is
an error constant, C, defined by [262, 278, 395] exp(z) − R(z) = Czp+1 + O(zp+2),
where R(z) is a pth-order approximant to the exponential. Burrage [50] and Wan-
ner [442] note that when simplifying assumptions are applied to the method, the
error constant bears a close resemblance to the error constant of the entire Runge-
Kutta method. In low stage-order methods, this correlation is generally lost. As

18

the error is indicative of the error near z = 0, a minimum error constant may not
be minimal for |z| ≫ 0 [395]. Orel [326] proves that the minimum error constant of
any approximant to the exponential having only real poles has all poles equal. Iser-
les and Nørsett [227] suggest that it may be profitable to consider DIRK methods
rather than SDIRK methods. They ask whether more methods may be generated
that are A-stable and whether certain order barriers might be broken by allowing
the aii to vary. The work of Orel [326] and Keeling [253] suggests that there is no
benefit to permitting distinct, nonzero, diagonal entries in Q(z). Shirobokov seeks
to minimize the value of the error constant of SDIRK [387] and DIRK [388–391]
methods along a finite interval of the negative real-axis beginning at the origin. In a
later paper, Shirobokov [392–394] seeks to minimize the magnitude of |R(z)−exp(z)|
within the class of fourth-order accurate A0-stable DIRK methods. Kalitkin and
Poshivaylo [250] seek to optimize implicit Runge-Kutta methods by considering the
inverse stability function of an explicit Runge-Kutta method.

Limiting the discussion to SDIRKs and ESDIRKs, one may derive some useful
analytical results regarding R(z) for A-stable methods in cases where the order of
the method p and the number of implicit stages are related by sI ≤ p ≤ sI + 1.
For L-stable methods, this becomes sI − 1 ≤ p ≤ sI . Nørsett [309, 311] and others
[50,123,193,442] derive a compact expression for the SDIRK and ESDIRK stability
function in terms of Laguerre polynomials. Using the definitions of the Laguerre
polynomials and their mth-derivatives,

Ls(x) =

s∑

k=0

(
s

k

)
(−x)k

k!
, L(m)

s (x) =
s−m∑

k=0

(
s

k +m

)
(−1)k+mxk

k!
, (32)

where
(
s

k

)
=

s!

(s− k)!k!
, (33)

one may write

P (z) =

sI∑

j=0

pjz
j = (−1)sI

sI∑

j=0

L(sI−j)
sI

(
1

γ

)
(γz)j

=

sI∑

j=0

zj
j∑

k=0

(
sI
k

)
(−γ)k

(j − k)!
, (34)

Q(z) = (1− γz)sI =

sI∑

k=0

qkz
k =

sI∑

k=0

(
sI
k

)
(−γ)kzk (35)

with error constant

C =
γsI (−1)sI+1

(sI + 1)
L
(1)
sI+1

(
1

γ

)
=

1

sI + 1

sI∑

k=0

(
sI + 1

k + 1

)
(−γ)sI−k

k!
. (36)

These results merit a quick explanation. The expression for Q(z) follows directly
from its definition, Q(z) = Det [I− zA], and the diagonal structure of A. From

19

[227], P (z) is defined by

P (z) =
m∑

j=0

pjz
j = (1− γz)n exp(z) +O

(
zm+1

)
(37)

since R(z) is a restricted approximant to the exponential. Matching terms after
expanding (1 − γz)n exp(z) in a series provides the form of P (z). This result may
then be recast in terms of Laguerre polynomials.

Forcing the error constant to vanish gives the γ for which the stability function
is an (sI + 1)th-order approximation to exp(z) [309]. If one restricts this to cases
where deg P (z) + 1 = deg Q(z) and sI − 1 ≤ p ≤ sI , then the method will have
R(−∞) = 0. In this case, psI = 0 and

P (z) =

sI−1∑

j=0

pjz
j = (−1)sI

sI−1∑

j=0

L(sI−j)
sI

(
1

γ

)
(γz)j

=

sI−1∑

j=0

zj
j∑

k=0

(
sI
k

)
(−γ)k

(j − k)!
(38)

with psI = C = 0

C = psI = (−γ)sILsI

(
1

γ

)
=

sI∑

k=0

(
sI
k

)
(−γ)sI−k

k!
=

sI∑

k=0

(
sI
k

)
(−γ)k

(sI − k)!
. (39)

Higher-order error terms are given by Koto [262]. Butcher [67] also considers the
case p = s − 2. Concepción [110] gives the necessary and sufficient conditions for
the A-acceptability of Rk−1,k(z) approximates to the exponential having a single
real root, γ−1 (aii = γ). This is relevant to L-stable SDIRKs and ESDIRKs. Given
the form of the stability function, one may enforce A- or I-stability. A Runge-
Kutta method is imaginary axis or I-stable if |R(z)| ≤ 1 for ℜ(z) = 0. Alt [20]
determines that if R(z) has no poles in the complex LHP and the stability function
is I-acceptable (the Runge-Kutta method is I-stable) then the method is A-stable.
An analytic stability function for DIRK-type methods simply requires that aii ≥ 0.
Nørsett [310] devises the E-polynomial to test for I-stability,

E(y) = Q(+iy)Q(−iy)− P (+iy)P (−iy)

= E0 + E2 y
2 + · · ·+ E2s y

2s =

s∑

j=0

E2j y
2j (40)

where i =
√
−1. Contemporaries of Nørsett; Alt [19, 20, 22], Crouzeix [120, 121],

Kurdi [278] and Miller [299] use the identical principle in a slightly different form:
|R(iy)| ≤ 1 for all real y. In general for DIRK-type methods, Q(+iy)Q(−iy) =∏sI

j=1

[
1 + (ajjy)

2
]
; however, for SDIRKs and ESDIRKs, Q(+iy)Q(−iy) = [1 +

(γy)2]sI . I-stability requires that E(y) ≥ 0 for all values of real y, which requires
E(y) to have only imaginary roots. It is sufficient, but not necessary, to have E2j ≥

20

0, j = 1, 2, · · · , s. For order p ≥ 2j, E2j = 0. First-stage explicit methods reduce the
degree of Q(z) by one, while stiffly-accurate methods reduce the degree of P (z) by
one by forcing ps = 0. Hence, E2s = 0. Further, if L-stability is desired, then psI−1

must also vanish. Related but slightly different, Cooper and Sayfy [116] analyse
A-stability for DIRK-type methods with one or more aii = 0. This may cause one
stage value to be updated explicitly and may result in severe internal instability
on stiff problems. Al-Rabeh [17] investigates the requirements for A-stability when
p = s and all diagonal coefficients are not equal. An alternative, yet less practical,
approach to establishing I- and A-stability is given by Scherer and Wendler [182,
191, 303, 358, 359]. Defining C = A − 1

2eb
T and Q = {e,Ae, · · · ,As−1e}, then a

necessary and sufficient condition for I-stability is that there exists a symmetric
matrix R such that Re = b and QT (RC + CTR)Q are non-negative definite. If, in
addition, QTRQ is non-negative definite, then the method is also A-stable. These
conditions may be simplified a bit in cases where the stability function is minimal by
setting Q = I. Minimality is a stronger requirement on a method than irreducibility
and requires that deg P (z) and deg Q(z) are not both less than s [358]. A- and
L-stable, first-stage explicit DIRK-type methods are not minimal. Note that for
Q = I and R = B = diag(b), then (RC+CTR) equals the algebraic stability matrix
M given by (47).

With the E-polynomial, one may establish a priori the bounds on γ that will
result in either A-stable or L-stable methods [50, 193, 311] provided that p ≈ s.
These bounds are given in Tables 4 and 5. Entries in the tables arise via several
different avenues. All A-stable values of γ in Table 4 entries, except γ = (3 +√
3)/6, correspond to roots of E2s or E2jmin where jmin is the minimum value that

corresponds to a nonzero value of E2j . While these two criteria are not sufficient to
ensure that E(y) ≥ 0, they correspond to the observed values of γ in Table 4. The

γ = (3 +
√
3)/6 entry results from satisfying order condition τ

(3)
2 . Ranges of γ for

A-stability are those where both E2s or E2jmin remain non-negative. For s odd, if a
root of E2jmin is in this range, then order p = s + 1 can be achieved. No A-stable
methods were found for 9 ≥ sI ≥ 20.

Finding L-stable values of γ, shown in Table 5, involves the values for the roots of
psI , E2s, E2jmin and the roots to the discriminant of E(y). Since E2s = γ2s, E2s will
remain positive for all positive values of γ. Boundaries in the range of γ correspond
to a root of either E2jmin or the discriminant of E(y). Some care should be taken at
the values of γ which separate L-stable from non-L-stable methods as some boundary
points have |R(iy)| = 1 at discrete points on the imaginary axis [170]. Aggregating
and sorting these roots according to their magnitude, if E(y) ≥ 0 between two
adjacent roots, then the method is L-stable for values of γ between these adjacent
root values. Further, if a root of psI resides within this range, then the order of the
method is p = s. An alternative procedure to determine I-stability for any DIRK-
type method is to simply compute all roots of E(y) for a given value of γ and ensure
that all roots are imaginary. No L-stable methods were found for 12 ≥ sI ≥ 20.

Rather than seek L-stable stability functions given in (31) by setting m = sI − 1
and n = sI , one may seek stability functions where m = sI − 2 and n = sI ,
zR(z)z→−∞ = 0, in hopes of having stronger damping of stiff scaled eigenvalues.

21

Table 4. Bounds on γ for A-stable SDIRKs and ESDIRKs from orders two to twelve
where p is the order of accuracy and sI is the number of implicit stages.

sI, p A-stable

2, 2 1/4 ≤ γ ≤ ∞
2, 3 γ = (3 +

√
3)/6

3, 3 1/3 ≤ γ ≤ 1.068579021301628806418834
3, 4 γ = 1.068579021301628806418834

4, 4 0.3943375672974064411272872 ≤ γ ≤ 1.2805797612753054573024841
4, 5 -

5, 5 0.2465051931428202746001423 ≤ γ ≤ 0.3618033988749894848204587
0.4207825127659933063870173 ≤ γ ≤ 0.4732683912582953244555885

5, 6 γ = 0.4732683912582953244555885

6, 6 0.2840646380117982930387010 ≤ γ ≤ 0.5409068780733081049137798
6, 7 -

7, 7 -
7, 8 -

8, 8 0.2170497430943030918315779 ≤ γ ≤ 0.2647142465800596850440755
8, 9 -

Since the maximum order is p = m+1, methods are sought with p = sI−1. Shirkov
[386] calls this second-order damped (SOD) L-stability. Lobatto IIIC methods have
this same property. Values for γ to construct such methods are derived based on
the roots of the polynomial

psI−1 =

sI−1∑

k=0

(
sI
k

)
(−γ)k

(sI − k − 1)!
= 0 (41)

and given in Table 6. No second-order damped L-stable methods with p = sI − 1
were found for 12 ≥ sI ≥ 20 however, methods do exist at sI = 12 for p = sI − 2.

An important question to ask is: which linear stability criterion is the best. As
different users will solve different problems and these problems may give rise to both
real and imaginary eigenvalues, A-stability would appear to be a minimal request.
Prothero and Robinson [340] often found this to be inadequate. They preferred
stiffly-accurate, L-stable methods. Because it is not an onerous task to incorporate
A-stability or even L-stability into the Runge-Kutta coefficients, it is difficult to
justify using less stable methods. Alexander [5, 6, 97] advocates the use of stiffly-
accurate, L-stable methods, as does Kværnø [281, 282], and finds them of generally
greater practical value than nonlinearly (algebraically) stable methods (See §2.5).
This favorable sentiment is reinforced by the contents of Table 3. Lambert [285,286]
criticizes L-stability as being too strong, particularly in cases where eigenvalues
slightly enter the complex right half-plane (RHP) and advocates instead, strictly
A-stable methods. Strictly A-stable methods, such as Gauss, Lobatto IIIA and

22

Table 5. Bounds on γ for L-stable SDIRKs and ESDIRKs from orders two to twelve
where p is the order of accuracy and sI is the number of implicit stages.

sI, p L-stable

2, 2 γ = (2±
√
2)/2

3, 2 0.1804253064293985641345831 ≤ γ ≤ 2.1856000973550400826291400
3, 3 γ = 0.43586652150845899941601945

4, 3 0.2236478009341764510696898 ≤ γ ≤ 0.5728160624821348554080014
4, 4 γ = 0.5728160624821348554080014

5, 4 0.2479946362127474551679910 ≤ γ ≤ 0.6760423932262813288723863
5, 5 γ = 0.2780538411364523249315862

6, 5 0.1839146536751751632321436 ≤ γ ≤ 0.3341423670680504359540301
6, 6 γ = 0.3341423670680504359540301

7, 6 0.2040834517158857633717906 ≤ γ ≤ 0.3788648944853283440258853
7, 7 -

8, 7 0.1566585993970439483924506 ≤ γ ≤ 0.2029348608433776737779349
0.2051941719494007117460614 ≤ γ ≤ 0.2343731596055835579475589

8, 8 γ = 0.2343731596055835579475589

9, 8 0.1708919625574635309332223 ≤ γ ≤ 0.2594205104814425547669495
9, 9 -

10, 9 -
10, 10 -

11, 10 0.1468989308591125260680428 ≤ γ ≤ 0.1657926100980560571096175
0.1937733662800920635754554 ≤ γ ≤ 0.1961524231108803003116274

11, 11 -

23

Table 6. Values for γ in second-order damped L-stable SDIRKs and ESDIRKs.

sI, p Second-order damped L-stable

3, 1 0.2113248654051871177454256 ≤ γ ≤ 0.7886751345948128822545744

3, 2 (3±
√
3)/6

4, 2 0.1432025528455778629375372 ≤ γ ≤ 0.9833960795255125501554340
4, 3 0.3025345781826507712164413

5, 3 0.1749814971185374260730290 ≤ γ ≤ 0.3888576711028921132337183
5, 4 0.3888576711028921132337183

6, 4 0.1903760890384496829539382 ≤ γ ≤ 0.4535842098396461592528162
6, 5 0.2168805435476052775934965

7, 5 0.1495110383364076987694180 ≤ γ ≤ 0.2579552415971074838409368
7, 6 0.2579552415971074838409368

8, 6 0.1635807847918329355329535 ≤ γ ≤ 0.2905565031843389842415167
8, 7 0.1690246378620602674461848

9, 7 0.1312239057862475302028635 ≤ γ ≤ 0.1929778039823110580718429
9, 8 0.1929778039823110580718429

10, 8 0.1421375515417974712667375 ≤ γ ≤ 0.2126998008205262885947000
10, 9 −
11, 9 0.1507669010690233069364339 ≤ γ ≤ 0.1541460739322757936552230
11, 10 0.1541460739322757936552230

12, 10 0.1251361537650653200858842 ≤ γ ≤ 0.1673932884265689320384167
12, 11 −

24

Lobatto IIIB methods, are those where E(y) = 0 and the stability boundary is
exactly the imaginary axis. Both symmetric and symplectic DIRK-type methods
are also strictly A-stable.

Additional motivations may also be considered in the construction of desirable
stability functions. In solving discretized PDEs using an approximately factorized
Newton iteration method, maximum step-sizes may not be governed by traditional
issues like A- or L-stability but rather by the spectral radius of the A-matrix, ρ(A).
Van der Houwen and Sommeijer [215] construct A- and L-stable SDIRK methods
of orders two and three in two, three, or four stages, which minimize ρ(A). At
second-order, optimal methods have |P (iy)| = |Q(iy)|. Minimal ρ(A) is generally
achieved for all aii = γ. Another possible motivation related to space-time PDEs is
to focus on the locations of the zeros of P (z) [424]. The goal might be to determine
the location of scaled eigenvalues zi = λi(∆t), which correspond to poorly resolved
spatial information, and to set P (zi) = 0. This approach has been done for explicit
Runge-Kutta (ERK) methods and requires s ≫ p to be able to exert any meaningful
control.

Three further stability concepts to be mentioned are S-, D- and AS-stability. S-
and strong S-stability were introduced by Prothero and Robinson [340] to extend
the concepts of A- and L-stability to the nonhomogeneous test equation y′(t) =
g′(t) + λ (y(t)− g(t)). One may also speak of S(α)-stable methods. Alexander [5]
and others [92, 209, 280] derive several strongly S-stable SDIRKs; however, Zhao et
al. [465] claim that the concept of S-stability is fundamentally flawed and that no
consistent, well-defined Runge-Kutta method is S-stable. Alexander states that
an A-stable DIRK-type method with positive aii and invertible A-matrix is S-
stable if and only if |R(−∞)| < 1. An S-stable method is strongly S-stable if
and only if it is stiffly-accurate. Decomposition- or D-stability [129] is not a tradi-
tional stability measure in that it is not concerned with the propagation of errors.
It is concerned with the boundedness of stiff, linear, nonautonomous problems.
Hairer [183] states that D-stability requires that the eigenvalues of aij lie in the
complex RHP (ℜ(λaij) > 0). If aij is singular (EDIRK, ESDIRK, or QESDIRK
methods), then only reducible or confluent methods can be D-stable. If a Runge-
Kutta method is irreducible and deg Q(z) = s, then A-stability implies D-stability.
AS-stability [57, 77, 123] is the linear analog of the more familiar nonlinear BS-
stability concept and plays an essential role in the convergence analysis of stiff semi-
linear problems with constant coefficients. A method is called AS-stable if (I− zA)
is nonsingular for all z in the complex LHP and ||zbT (I − zA)−1|| is uniformly
bounded in an inner product norm within the complex LHP. Stability analysis of
nonautonomous linear problems focuses on AN-stability using the K-function

K(Z) = 1 + bTZ(I−AZ)−1e =
det
[
I− (A− e⊗ bT)Z

]

det [I−AZ]
, (42)

where Z = diag{z1, z2, · · · , zs} and which, surprisingly, is more properly investigated
within the purview of nonlinear stability. Following Burrage and Butcher [53], the
K-function for Runge-Kutta methods is given as

K(Z) = 1 + eTBZ [I−AZ]−1 e, (43)

25

where B = diag
(
bT
)
. A Runge-Kutta is AN-stable if |K(Z)| ≤ 1, ℜ(zi) ≤ 0 for all

zi, i = 1, 2, . . . , s such that zi = zj whenever ci = cj . Defining Kint = (I−AZ)−1 e
and e = (I−AZ)Kint, then

K(Z) = 1 + eTBZKint, K̂(Z) = 1 + K̂T
intẐBTe (44)

with the superscript ̂ denoting the complex conjugate. Therefore, since (BTe)(eTB) =
BBT ,

|K(Z)| = K̂(Z)K(Z) = 1 + eTBZKint + K̂T
intẐBTe+ K̂T

intẐBBTZKint (45)

= 1 + K̂T
int

(
BZ + ẐBT

)
Kint

− K̂T
intẐ

k
(
BTA+ATB−BBT

)
ZKint, (46)

where expressions for e and its transpose were used. Defining the symmetric alge-
braic stability matrix as

M = BTA+ATB−BBT , Mij = biaij + bjaji − bibj , i, j = 1, 2, . . . , s, (47)

then

|K(Z)| − 1 = 2ℜ
(
K̂T
intBZKint

)
− K̂T

intẐMZKint

= 2

(
s∑

i=1

biℜ (zi) |K(i)
int|2

)
−

s∑

i,j=1

K̂
(i)
intẑiMijzjK

(j)
int , (48)

where K
(i)
int are the components of the vector Kint, which will be seen below to be the

nonautonomous internal stability function. If the Runge-Kutta method is AN-stable
then, |K(Z)| ≤ 1 or

|K(Z)| − 1 = 2

(
s∑

i=1

biℜ (zi) |K(i)
int|2

)
−

s∑

i,j=1

K̂
(i)
intẑiMijzjK

(j)
int ≤ 0 (49)

for all zi such that zi = zj whenever ci = cj where ℜ(zi) ≤ 0. It will be seen in the
next section that this result has much in common with algebraic stability except
when the method is confluent.

2.5 Nonlinear Stability

Maximum norm and inner product norm contractivity on nonlinear problems as
well as nonlinear stability [51–53,89,122,125,126,129,192,193,251,252,266,267,287,
300, 312, 313, 362, 456, 469] may be considered for DIRK-type methods. Stability
and contractivity are related, but contractivity is generally a stronger requirement
[125,126,268,409,412]. For ODE systems where the difference between two solutions

satisfies ||Ũ(t + ∆t) − U(t + ∆t)|| ≤ ||Ũ(t) − U(t)|| in some norm (a dissipativity
condition) for ∆t > 0, one might reasonably demand of the numerical method

that ||Ũ (n) − U (n)|| ≤ αnβ ||Ũ (0) − U (0)|| in that same norm where α and β denote
positive real constants and n ≥ 1 denotes the number of time steps [412]. In the

26

case where β = 0 and α = 1, one has contractivity. If β = 0 but α is of moderate
size, one has strong stability, but if both α and β are of moderate size then one
has only weak stability. Nonlinear stability of implicit Runge-Kutta methods is
generally characterized in terms of algebraic-, B-, BN-, or AN-stability and requires
a dissipativity condition on the underlying ODEs. Each of these measures implies
A-stability. The first three also imply unconditional contractivity (unlimited step
size) in an inner product norm, rF2 = ∞ where F denotes a nonlinear RHS, for both
confluent and nonconfluent Runge-Kutta methods [270]. For nonconfluent methods,
each of these four concepts is equivalent. For confluent methods, B- and BN-stability
are equivalent to algebraic-stability but AN-stability is not [129, 193, 300]. It is
sufficient for the present purposes to focus simply on algebraic-stability. In the inner
product norm case, one constructs the matricesM andB = diag(b) or b = Be using

the algebraic stability matrix as M = B−1/2MB−1/2 where the former expression is
used only when b > 0. An analogous construction may be made for the embedded
method by replacing b with b̂. The most general algebraic stability is (k, l)-algebraic
stability [52,251] where the more common algebraic-stability is retrieved with k = 1,
l = 0. Algebraic-stability [410] of irreducible methods requires that aii, bi > 0 and
M ≥ O. Consequently, DIRKs, SDIRKs and QSDIRKs may be algebraically stable
but EDIRKs, ESDIRKs and QESDIRKs may not. The maximum order of accuracy
for an algebraically stable DIRK-type scheme is four [181]. Burrage and Butcher [53]
and Crouzeix [122] were the first to characterize the nonlinear stability of DIRK-type
methods by showing that two methods, a two-stage, third-order (SDIRK-NCS23)
and a three-stage, fourth-order (SDIRK-NC34) SDIRK, due to Nørsett [308] and
Crouzeix [120] (and Scherer [357] on SDIRK-NCS23), were algebraically stable

γ γ 0
1− γ 1− 2γ γ

1
2

1
2

γ γ 0 0
1
2

1
2 − γ γ 0

1− γ 2γ 1− 4γ γ
1

6(1−2γ)2
2(1−6γ+6γ2)

3(2γ−1)2
1

6(1−2γ)2

(50)

where γ = 3+
√
3

6 ≈ 0.7887 and R(−∞) = 1.0 for the two-stage method, and

γ =
3+2

√
3 cos(π

18)
6 ≈ 1.069 and R(−∞) = −0.732 for the three-stage method. The

two-stage method also appears in a paper by Makinson [296], but in the context
of Rosenbrock methods. Burrage and Butcher [53] present an interesting SDIRK
method

γ γ 0 0 · · · 0
γ + b1 b1 γ 0 · · · 0

γ + b1 + b2 b1 b2 γ
. . .

...
...

...
...

. . .
. . . 0

γ +
∑s−1

i=1 bi b1 b2 · · · bs−1 γ
b1 b2 · · · bs−1 bs

(51)

where the resulting algebraic-stability matrix is diagonal with entries Mii = bi(2γ−
bi) and i = 1, 2, · · · , s. We remark that the form of this Butcher array is reminiscent
of the van der Houwen approach to memory storage reduction [256]. Burrage [51]
presents second-, third-, and fourth-order algebraically stable SDIRK methods up
to four stages. At two stages, SDIRK-NCS23 given previously (with a different γ)
is algebraically stable and second-order accurate for γ ≥ 1/4, γ 6= 1/2 and is third-

27

order accurate for γ = 3+
√
3

6 . At three and four stages, Burrage gives complete class
of nonconfluent algebraically stable SDIRKs of orders three and four are given. To
design these algebraically stable methods, Burrage defines a symmetric matrix R =
VTMV by using the algebraic-stability matrix and the van der Monde matrix, Vij =

cj−1
i , i, j = 1, 2, · · · , s. It may be shown that all elements of Rij vanish for i+j ≤ p,
where p is the classical order of the method. Assuming a nonconfluent method, the
irreducible DIRK-type method is algebraically stable if R ≥ O and b > 0. Nørsett
and Thomsen [312] derive an algebraically stable, three-stage SDIRK, with an A-
stable embedded method of order two. Cameron [89] derives two algebraically and
L-stable, four-stage, third-order DIRKs along with an algebraically stable, three-
stage SDIRK method.

Cooper [115] offers a less restrictive form of nonlinear stability called weak B-
stability. It requires the existence of a symmetric matrix D such that b ≥ 0 and
DA + ATD − bTb ≥ O, with De = b and dij ≤ 0 for i 6= j. He shows that the
two-stage, second-order SDIRK method is both B-stable and weakly B-stable for
γ ≥ 1/4 but is weakly B-stable for 0 ≤ b2 ≤ 1/2 and B-stable for only b2 = 1/2.
Weak stability is closely related to what Spijker [411] calls weak contractivity. He
simultaneously generalizes algebraic-stability and weak B-stability by considering
a modified dissipativity condition to study contractivity and weak contractivity.
Rather than weakening algebraic-stability, passive and lossless Runge-Kutta meth-
ods require more than algebraic-stability [158, 159, 319]. Passive methods require
that all elements of b be identical along with algebraic-stability. Lossless methods
require the method to be both passive and symplectic.

An important question is whether algebraic-stability matters in a practical sense.
Hairer [184] constructs a one-parameter family of A-stable, three-stage, fourth-
order, fully implicit Runge-Kutta methods by using assumptions C(1), D(1), ci =
{0, 1/2, 1} and bi = {1/6, 4/6, 1/6}. For a specific value of the parameter, the
method becomes algebraically stable. The method was tested on Kreiss’s prob-
lem [129] which, in the limit of infinite stiffness, transforms from an ODE to an
index-2 DAE. Behavior of the methods was best for choices of the parameter that
nearly, but not exactly, corresponded to algebraic-stability. Scheme efficiency was
relatively insensitive to the parameter at coarse tolerances but became strongly
dependent on it at strict tolerances. Contractivity was a strong function of the
parameter at all tolerances. For all values of the adjustable parameter, all internal
stages were completely damped for z → −∞. It was not clear how changing the
value of the adjustable parameter affected the satisfaction of index-2 DAE order
conditions for the method. In another effort to assess the practical value of alge-
braically stable methods, Verwer [436] considers whether the stability property is
preserved during implementation with a Newton-type solver. If users are willing to
reevaluate the Jacobian at each stage, algebraic-stability is preserved; otherwise, it
is generally not preserved. Spijker [412] asks whether methods exist that possess
strong or weak stability but not contractivity (algebraic-stability) on (1), subject
to a dissipativity condition. Kraaijevanger and Spijker [270] construct the DIRK

28

method,

1/2 1/2 0
3/2 −1/2 2

−1/2 3/2

(52)

with α = 2 and β = 0 when the step-size remains constant. This implies that
algebraic-stability may be an unnecessarily strong demand. For variable step-sizes,
however, algebraic-stability is necessary in the method. Schmitt [360] and Hundsdor-
fer [218] (section 5.5.3) offer stability estimates for nonalgebraically stable methods.
Schmitt concludes that nonlinear stability is necessary for the transient regions,
but linear stability is sufficient for smoother regions of the solution. Hansen and
Ostermann [196] consider algebraically stable DIRK methods in cases where the
discretized space-time PDE solution lacks regularity and no restrictions are placed
on the initial conditions. Convergence rates for second- and third-order SDIRKs
are observed to approximately equal either the classical order of the method or the
stage order plus one, depending on the stiffness.

Associated with algebraic-stability [62, 64, 114, 129, 193] are the concepts of B-
convergence and BS-stability. The analysis of BS-stability extends that of B-stability
by allowing nonuniform perturbations between each of the stages. In regard to
DIRK-type methods, only a few remarks will be made. First, B-convergence on
dissipative problems implies algebraic-stability [193]. Scholz [362] presents an A-
stable, but not algebraically stable, third-order SDIRK, having stage-order one,
which he claims is B-convergent of order four. Burrage and Hundsdorfer [56] show
that the method SDIRK-NCS23 ((50) with a different γ) is B-convergent of order
2, or the stage-order plus one, for γ = 1/4 or γ = 1/2. For problems having a
one-sided Lipschitz constant, ν ≥ 0, BS-stability is implied by algebraic-stability if
the method is nonconfluent, hence, nonconfluent DIRK-type methods with aii > 0
may be BS-stable [219]. Calvo et al. [77] note that in constructing Runge-Kutta
methods that satisfy all of the “natural requirements” for numerically solving stiff
systems, one faces severe restrictions. This is reconciled against the fact that many
methods that do not satisfy all of these restrictive natural requirements work well in
practice. In this context, they then consider stiff semilinear problems and consider
matters such as the consequences of relaxing BS- to AS-stability.

As algebraic-stability provides an unconditional contractivity radius on nonlin-
ear problems, one may seek the less restrictive conditional contractivity [125, 126,
266, 300] where rF2 < ∞. To do this, one must relax the dissipativity condition
associated with unconditionally contractive methods and replace it with a so-called
circle condition. Denoting the minimum eigenvalue of Mil, (47), as λM

min in cases
where bi > 0, the radius of conditional contractivity, determined in an inner prod-
uct norm, of the DIRK-type method is given by rF2 = −1/λM

min. The maximum
order of a circle-contractive DIRK, where rF2 > 0, is six but it is only four for an
SDIRK [181].

The preceeding discussion focused on properties considered in the context of
inner product norms. Maximum norm contractivity applied to nonlinear problems
is the most restrictive contractivity condition and limits DIRK-type methods to

29

first-order accuracy if unconditional contractivity, rF∞= ∞, is desired [266]. As
mentioned earlier, this order barrier does not change if the nonlinear problem is
replaced with a linear one, where rL∞= ∞. Relaxing unconditional to conditional
contractivity so that the maximum-norm conditional contractivity radius, rF∞> 0
rather than rF∞= ∞, one requires that beyond aij , bi > 0, that (I − ξA) is non-
singular and R(ξ) ≥ 0, A(ξ) = A(I − ξA)−1 ≥ 0, B(ξ) = bT(I − ξA)−1 ≥ 0
and E(ξ) = (I − ξA)−1e ≥ 0, where rF∞ is the smallest value of ξ for which all
components of R(ξ), A(ξ), B(ξ) and E(ξ) are non-negative. Kraaijevanger [266]
constructs a fifth-order EDIRK that is neither algebraically stable nor A-stable yet
has nonvanishing contractivity radii of rF∞= 0.5906 and rF2 = 2.489. Ferracina
and Spijker [148, 149] give the maximally contractive SDIRK in two stages, (78),
with rF∞= 2. They also show that any method which is optimal in the sense that
rF∞ is maximized also is optimal in the sense of maximizing the step-size for a total
variation diminishing (TVD) Runge-Kutta process. In a later paper, Ferracina and
Spijker [150] establish rF∞for SDIRKs at orders one through four and stage numbers
from one to eight. Duraisamy et al. [134] also consider TVD SDIRKs. Ketcheson et
al. [257] include fully implicit Runge-Kutta methods as well as DIRK-methods to
order six while Gottlieb et al. [177, 178] also include multistep methods. Extension
of BS-stability bounds to the max norm is given by Kraaijevanger [266]. Positivity
of aij and bi in a DIRK are also useful preserving the monotonicity behavior of
linear differential equations decribing dynamical systems during numerical integra-
tion [259]. Hundsdorfer and Spijker [221] relate the results of Kraaijevanger [266]
to the topic of boundedness including the total variation bounded (TVB) property.
Step-size restrictions dictated by rF∞are found to also apply if a TVB property is
desired except for a very special class of irreducible RK-methods. This special class
has a zero row in its A-matrix and another row equal to b.

2.6 Internal Stability

Beyond traditional stepwise stability, it may be useful to control the stability as-
sociated with each stage in addition to each step. This is particularly true for
large scaled eigenvalues, z, associated with stiff problems [255,436]. IMEX additive
Runge-Kutta methods are especially sensitive to the internal stability of the implicit
method [255]. Kurdi [278] appears to have been the first to consider the internal
stability of DIRK-type methods. To determine the vector of internal stabilities of
Runge-Kutta methods, one evaluates

Rint(z) = (I− zA)−1e = {R(1)
int (z), R

(2)
int (z), · · · , R

(s)
int(z)}T

=

{
P

(1)
int (z)

Q
(1)
int(z)

,
P

(2)
int (z)

Q
(2)
int(z)

, · · · , P
(s)
int (z)

Q
(s)
int(z)

}T

. (53)

The primary concern will be the value of R
(i)
int(−∞). For DIRK-type methods,

P
(i)
int (z) is generally a polynomial of degree i− 1 in z because a stage-wise version of

the stiffly-accurate assumption holds while Q
(i)
int(z) is generally of degree i. Conse-

quently, DIRKs with aii 6= 0 and SDIRKs have R
(i)
int(−∞) = 0. EDIRKs, ESDIRKs

30

and QESDIRKs with Q
(i)
int(z) reduced to degree i− 1 because a11 = 0, then they do

not generally satisfy R
(i)
int(−∞) = 0. If EDIRK, ESDIRK and QESDIRK methods

satisfy C(1), then R
(1)
int (−∞) = 1. If the EDIRK, ESDIRK, or QESDIRK satisfies

C(2), then R
(2)
int (−∞) = −1. One may also consider the E-polynomial, (40), at

internal stages to determine stage-wise I-stability by using

E
(i)
int(y) = Q

(i)
int(iy)Q

(i)
int(−iy)− P

(i)
int (iy)P

(i)
int (−iy). (54)

To assess the internal AN-stability with regard to nonautonomous linear equations,
one may consider evaluating the Runge-Kutta K-function [266] at internal stages

Kint(Z) = (I−AZ)−1e = {K(1)
int (Z),K

(2)
int (Z), · · · ,K(s)

int (Z)}T . (55)

One could also consider a stage-wise analog to the algebraic-stability matrix. Fol-
lowing section 4.2 of Dekker and Verwer [129], one may derive the following step

||U [n+1]||2 − ||U [n]||2 = 2(∆t)
s∑

j=1

bj < Uj , Fj >

− (∆t)2
s∑

j,k=1

(bjajk + bkakj − bjbk) < Fj , Fk > (56)

and stage

||Ui||2 − ||U [n]||2 = 2(∆t)

s∑

j=1

aij < Uj , Fj >

− (∆t)2
s∑

j,k=1

(aijajk + aikakj − aijaik) < Fj , Fk > (57)

relations where

M
(i)
jk = aijajk + aikakj − aijaik (58)

is the internal algebraic-stability matrix for stage i. Hence, for internal algebraic
stability on stage i of an irreducible method, it is necessary that M(i) ≥ O and that
aij ≥ 0. This matrix has been considered by Burrage and Butcher [53] but it does
not appear to have ever been considered in this context.

Internal stability influences on methods have been studied in several different
contexts. Calvo et al. [76] consider, in part, the effect of internal stability on the
convergence of IRK methods applied to stiff, nonlinear, dissipative ODEs. González-
Pinto et al. [173–175] factor internal stability into the design of starting algorithms
for implicit Runge-Kutta methods. It is for the preservation of internal stability
that it is unwise to use aii = 0 on any stage but the first.

Several additional internal stability concepts include ASI-stability [57,77,123] for
linear problems and BSI-stability [64,129,193] for nonlinear problems. A method is

31

ASI-stable if the matrix (I − zA) is nonsingular for all z in the complex LHP and
its inverse is uniformly bounded in the complex LHP in an inner product norm. If
there exists a positive definite, diagonal matrix D, such that DA+ATD is positive
definite, then the Runge-Kutta method is BSI-stable [128]. This requirement is
only achievable for DIRK-type methods if aii > 0 [219]. Kraaijevanger [266] gives
BSI-stability bounds valid in all norms, not just an inner product norm. Internal
S-stability has been considered by Verwer [435] and internal D-stability is discussed
by Dekker and Verwer [129].

2.7 Dense Output

On occasion, it may be necessary to determine the value of the integration vector at
time locations not coincident with a time step (t[n]) or stage location (t[n] + ci∆t).
Dense output [190, 332] provides a mechanism that allows high-order interpolation
of the integration variables at any point, t[n] + θ∆t, inside the current integration
step where 0 ≤ θ ≤ 1 by using

U(t[n] + θ∆t) ∼= U [n] + (∆t)
s∑

i=1

b∗i (θ)Fi, b∗i (θ) =
p∗∑

j=1

b∗ijθ
j , b∗i (θ = 1) = bi, (59)

where p∗ is the lowest order of the interpolant on the interval 0 ≤ θ ≤ 1. By
construction, b∗i (θ = 0) = 0. Order conditions at order m and the stability function
R∗(z, θ) for the dense-output method are given by [35]

τ
∗(m)
j =

1

σ

s∑

i

b∗i (θ)Φ
(m)
i,j − αθm

m!
, R∗(z, θ) =

Det
[
I− zA+ ze⊗ b∗T (θ)

]

Det [I− zA]
. (60)

Setting m = p and θ = 1 retrieves the standard Runge-Kutta order conditions.
As with the main and embedded formulas, one may write terms like A∗(p∗+1) =
A∗(p∗+1)(θ) to access the truncation error of the dense output method. Relatively
few DIRK-type methods appearing in the literature include dense output [89, 193,
255,280,382–384,426]. As with embedded methods, dense output methods could be
enhanced by using a two-step procedure [176].

2.8 Conservation, Symplecticity and Symmetry

All consistent DIRK, SDIRK and ESDIRK methods conserve linear first integrals
[188]. To conserve quadratic and cubic first integrals, one focuses on the symmetric
matrices

Mij = biaij + bjaji − bibj (61)

Mijk = biaijajk + bjajkaki + bkakiaij

− (bibjaik + bjbkaji + bkbiakj) + bibjbk (62)

with magnitudes that may be defined as ||Mij || =
(∑s

i,j=1MijMij

)1/2
and ||Mijk|| =

(∑s
i,j,k=1MijkMijk

)1/2
. Methods having Mij = 0 conserve certain quadratic first

32

integrals, but no Runge-Kutta method can simultaneously achieve Mij = 0 and
Mijk = 0 [85,188,230]. Instead, minimizing their magnitudes seems prudent.

Symplectic DIRK methods [188, 342, 355, 420, 422, 464] satisfy Mij = O and,
consequently, must have the structure

c1 b1/2 0 0 0 · · · 0
c2 b1 b2/2 0 0 · · · 0

c3 b1 b2 b3/2 0
. . .

...
...

...
...

. . .
. . .

. . . 0
cs−1 b1 b2 b3 · · · bs−1/2 0
cs b1 b2 b3 · · · bs−1 bs/2

b1 b2 b3 · · · bs−1 bs

(63)

where bi 6= 0. This implies that EDIRKs, ESDIRKs and QESDIRKs cannot be
symplectic. Further, for SDIRKs, symplecticity requires that b1 = b2 = · · · = bs =
2γ. The stability function for symplectic, DIRK-type methods is given by [152]

R(z) =
(1 + a11z)(1 + a22z) · · · (1 + assz)

(1− a11z)(1− a22z) · · · (1− assz)
(64)

and, hence, R(z)R(−z) = 1, E(y) = 0 and the stability function is P-stable;
|R(iν)| = 1 where ν is a real number. Qin and Zhang [342, 464] give two useful
low-order symplectic (S)DIRKs of order two in one- and two-stages

1
2

1
2

1

1
4

1
4 0

3
4

1
2

1
4

1
2

1
2

1
2 + a 1

2 + a 0 0
1
2 1 + 2a −1

2 − 2a 0
1
2 − a 1 + 2a −1− 4a 1

2 + a

1 + 2a −1− 4a 1 + 2a

(65)

The first method is the one-stage, A-stable Gauss method. The second method is
A-stable also. A three-stage, fourth-order method in (65) is offered by Sanz-Serna
and Abia [354] and Sun [420], in three stages where a =

(
3
√
2 + −3

√
2− 1

)
≈ 0.1756

and a22 ≈ −0.8512. Negative entries on the diagonal make them of little use for
stiff problems because the stability function is not analytic in the complex LHP
and, therefore A-stability is impossible. The maximum order of a symplectic DIRK
is four [420]. Jiang [247] solved the constraint equations of the four-stage, fourth-
order symplectic DIRK and found nine solutions, one of which has already been
given by Qin and Zhang [342]. All solutions have at least one negative bi and,
consequently, aii. Franco et al. [154] also derive a fourth-order symplectic DIRK
where a22 = a44 < 0 but in five stages rather than three or four

b1/2 b1/2 0 0 0 0
b1 + b2/2 b1 b2/2 0 0 0

1/2 b1 b2 b3/2 0 0
1− b1 − b2/2 b1 b2 b3 b2/2 0

1− b1/2 b1 b2 b3 b2 b1/2

b1 b2 b3 b2 b1

(66)

33

with b1 = 1.452223059167653, b2 = −2.150611289942164 and b3 = 2.396776461549028.
Generally, symplecticity is lost in a variable step-size implementation without some
supplementary procedure [185,188].

Since this Butcher array is quite restrictive, one could consider a pseudo-symplectic
approach like that of Aubry and Chartier [26] or the low-drift approach of Moan
[301]. The former approach is greatly facilitated by simplifying assumption D(1).
As stiffly-accurate methods do not permit the use of D(1), constructing pseudo-
symplectic DIRK-type methods that are also stiffly-accurate will be particularly
difficult. Examples of such an approach do not appear to exist. Lossless meth-
ods [158] require methods that are not only symplectic but also algebraically stable
with elements of b being identical. As with symplectic methods, lossless methods
cannot be L-stable.

Symmetric methods are appropriate for solving reversible equations. ¿From
Stetter [416], Hairer et al. [188], Kulikov [276, 277] and Franco and Gómez [152]
symmetric five- and four-stage DIRKs are given by

c1 a11 0 0 0 0
c2 b1 a22 0 0 0
1/2 b1 b2 b3/2 0 0

1− c2 b1 b2 b3 b2 − a22 0
1− c1 b1 b2 b3 b2 b1 − a11

b1 b2 b3 b2 b1

(67)

c1 a11 0 0 0
c2 b1 a22 0 0

1− c2 b1 b2 b2 − a22 0
1− c1 b1 b2 b2 b1 − a11

b1 b2 b2 b1

(68)

¿From this structure, Kulikov [276] and Franco et al. [152] show that the stability
function is also given by (64). Orel and Nørsett [327] study this stability function.
Obtaining A-stability then only requires that all aii > 0; L-stability is not possible.
The algebraic stability matrix is given by

M = diag{(a211 − a2ss), (a
2
22 − a2s−1,s−1), · · · ,−(a222 − a2s−1,s−1),−(a211 − a2ss)}

= diag{b1(b1 − 2a11), b2(b2 − 2a22), · · · ,−b2(b2 − 2a22),−b1(b1 − 2a11)}. (69)

This is a slight variation of (51). For M ≥ O, a11 = ass, a22 = as−1,s−1, · · · , aii =
as+1−i,s+1−i, which implies bi = 2aii. By symmetry, the order of a symmetric DIRK
must be even, and if the method is both irreducible and algebraically stable, then
its order is no greater than two [276]. Franco and Gómez [152] derive four- and five-
stage symmetric DIRKs to solve mildly stiff periodic problems. All four symplectic
methods listed in (65) and (66) are also symmetric. Like pseudo-symplectic methods,
one may also attempt pseudo-symmetric methods [105].

34

2.9 Dissipation and Dispersion Accuracy

A phase-lag analysis of DIRK-type methods is based on linear ODEs with oscillatory
solutions (imaginary axis eigenvalues) and usually considers the test equation [154,
155,212,262]

dU

dt
= iωU + δeiωpt, ω 6= ωp, (70)

where the natural frequency ω, the forcing frequency ωp, and δ are real numbers. The
form of the equation containing the natural frequency is motivated by the temporal
evolution of a single wave, U = eiωt. Differentiating both sides yields U

′
= iωU .

Phase-lag error consists of a linearly increasing (in time) homogeneous phase error
associated with ω and a constant inhomogeneous phase error associated with ωp.
Hence, homogeneous phase error is the primary concern for long-term integration.
Methods are generally optimized to minimize the dispersive and dissipative errors
associated with the free oscillations rather than the forced or combined oscillations.
The linear stability function, associated with the test equation, R(z) = P (z)/Q(z),
is R(z) = 1 +

∑∞
i=1 riz

i, P (z) = 1 +
∑s

i=1 piz
i and Q(z) = 1 +

∑s
i=1 qiz

i, or,
componentwise using the multiplication and division of power series, ri = pi −∑i

k=1 qkri−k, pi =
∑i

k=1 rkqi−k, where z = iω(∆t). Note that ri = 1/i!, i =
1, 2, · · · , p where, again, p is the order of the method. Defining ν = ω(∆t), one may
write the real and imaginary portions of the stability function,

R = ℜ(R(iν)) = A(ν2) =
∑∞

j=1(−1)jr2jν
2j ,

I = ℑ(R(iν)) = iνB(ν2) = iν
∑∞

j=1(−1)jr2j+1ν
2j

}
(71)

and also write the homogeneous phase or dispersion

φ(ν) = ν − arg (R(iν)) = ν − arctan

(I
R

)
=

2j+1∑

j=0

φ2j+1ν
2j+1 = O(νpdisp+1) (72)

and homogeneous amplification or dissipation errors as [212]

α(ν) = 1− |R(iν)| = 1−
√
R2 + I2 =

2j∑

j=0

α2jν
2j = O(νpdiss+1) (73)

where pdisp and pdiss are the respective homogeneous dispersion and dissipation
orders of accuracy. Hence, R(iν) = R+ iI = (1− α(ν)) ei(ν−φ(ν)). A Runge-Kutta
method is dispersive of order pdisp, where pdisp is even, if [155,212]

r0
(j − 0)!

− r1
(j − 1)!

+
r2

(j − 2)!
− · · ·+ (−1)jrj

(j − j)!
=

j∑

i=0

(−1)iri
(j − i)!

= 0, (74)

where j = 1, 3, 5, · · · (pdisp − 1). A Runge-Kutta method is dissipative of order pdiss,
where pdiss is odd, if the E-polynomial satisfies E(ν) = O(νpdiss+1) or E2j = 0, 2j ≤

35

pdiss + 1 [155]. For SDIRKs and ESDIRKs, in cases where sI ≤ p ≤ sI + 1 and
psI 6= 0, or where sI − 1 ≤ p ≤ sI and psI = 0, then R(z), P (z) and Q(z) become

ri = pi −
i∑

k=1

(
sI
k

)
(−γ)kri−k, pi =

i∑

k=1

rk

(
sI

i− k

)
(−γ)i−k, qi =

(
sI
i

)
(−γ)i. (75)

Additionally, the E-polynomial terms are given by

E2j =

(
sI
j

)
γ2j − p2j − 2

s∑

i=1

pj−ipj+i = 0, j = 0, 1, · · · , (pdiss − 1)/2, (76)

where pk is generally nonzero for 0 ≤ k ≤ sI .
Van der Houwen and Sommeijer [212] were among the first to consider phase

lag optimized implicit Runge-Kutta methods. They construct an s-stage family of
third-order SDIRKs with enhanced dispersion orders given by

γ γ 0 0 0 · · · 0
c2 c2 − γ γ 0 0 · · · 0
c3 0 c3 − γ γ 0 · · · 0

c4 0 0 c4 − γ γ
. . .

...
...

...
...

. . .
. . .

. . . 0
cs 0 0 · · · 0 cs − γ γ

0 0 · · · 0 1− bs bs

(77)

Denoting the DIRK methods as DIRK(s, p, pdisp, pdiss), two A-stable methods with
enhanced dispersion order are derived: SDIRK(3, 3, 6, 3) and SDIRK(4, 3, 8, 3). Their
performances are then contrasted against SDIRK-NCS23 and SDIRK-NC34 given in
(50). Franco et al. [155] reconsider these two methods but also concern themselves
with dissipation order. A-stable methods, SDIRK(3, 3, 4, 5) and SDIRK(4, 3, 4, 7),
are derived following the Butcher array structure given by van der Houwen and
Sommeijer. They show that the A-stable, SDIRK(4, 3, 6, 5) method does not exist.
The methods are then compared against the SDIRK(3, 3, 6, 3) and SDIRK(4, 3, 8, 3)
of van der Houwen and Sommeijer. It is remarked that dissipation order may be
more useful than dispersion order. In another paper on phase-lag optimized meth-
ods, Franco et al. [154] contrast SDIRK(3, 3, 4, 5), DIRK(3, 4, 4,∞) (65), a newly
constructed SDIRK(5, 4, 6, 7) derived based on a modification of the values of bi in
(77), and DIRK(5, 4, 6,∞), (66). Each SDIRK method is A-stable, but the DIRK
methods are symmetric and symplectic. Results favored the SDIRKs over the sym-
metric DIRKs. Although Koto [262] does not actually derive SDIRK methods with
higher dispersion order, he does establish some of what is possible based on R(z) and
γ. Increased dissipation order is not considered. Table 7 summarizes the methods
developed to date. Franco and Gómez [152] show that the maximum dispersion or-
der for a symmetric SDIRK is two. They also derive four- and five-stage symmetric
DIRKs with increased dispersion order. Each have negative diagonal entries; hence,
the methods cannot be A-stable.

36

Table 7. Phase error optimized, A-stable, SDIRK methods.

Reference s p pdisp pdiss γ R(−∞)

[212] 2 3 4 3 0.788675134594812882254574 +1.000
[212] 3 3 6 3 0.975674588694440299995090 −0.679
[212] 4 3 8 3 1.129726566183898058039659 −0.627

[262] 2 1 6 1 - -
[262] 5 5 8 5 0.451551228989386200139028 +0.914
[262] 6 5 10 5 0.505024581119690721793836 +0.816

[155] 3 3 4 5 1.068579021301628806418834 −0.630
[155] 4 3 6 5 - -
[155] 4 3 4 7 1.280579761275305457302484 −0.596
[154] 5 4 6 7 0.473268391258295324455589 +0.837

2.10 Memory Economization

Although economization of computer memory usage is an appealing goal, it is less of
an issue with DIRK-type methods than it is with ERKmethods at the level of scheme
coefficients. This is because the majority of the memory burden associated with the
implicit integration method is caught up in the solution of coupled nonlinear stage
and step equations. Compromising the Runge-Kutta coefficients by using a van der
Houwen or Williamson low storage strategy [256] to avoid saving several function
or derivative values may strongly degrade the quality of the scheme and result in
only small net memory usage savings. For this reason, little effort is expended in
this paper to reduce memory usage via the Runge-Kutta coefficients. Efforts in this
direction, however, have been made by van der Houwen and Sommeijer [215] and
Yoh and Zhong [459, 460]. Energy might be better expended on memory reduction
of the nonlinear equation solver. Enright [141] offers an approach to reduce memory
usage for direct solvers. The common approach to reducing memory usage for the
algebraic equation solver while performing indirect solves is to use a Krylov subspace
technique [46].

2.11 Regularity

It is natural to ask that a numerical integrator preserve invariant objects of the
ODEs being integrated such as fixed points [186]. Runge-Kutta methods inherit
all fixed points of the underlying ODEs but may create additional spurious ones
[225]. From Iserles et al. [228], the regularity of integration methods for first-order
ODEs focuses on numerical solution bifurcations. The solution bifurcations may give
rise to spurious steady, or fixed point, solutions (R[1]-regularity), spurious period
doubling solutions (R[2]-regularity) and spurious invariant curves (R[H]-regularity).
The majority of regularity results consider constant and positive step-sizes. It is
possible that step-size selection may reduce or eliminate spurious fixed points [186],
an idea confirmed for ERK methods [27,197]. It is also possible that as the number

37

of equations being integrated increases, there is a reduced chance of computing a
spurious fixed point [27]. Methods that are not regular are termed irregular.

Runge-Kutta methods which are both R[1]- and R[2]-regular (R[1,2]-regular) can
be no higher than second-order [228]. Iserles [225] shows that for an irreducible
Runge-Kutta method with an order greater than or equal to two, then

∑s
i=1 aii =

1/2 is required for R[1]-regularity. From Table 4, it may be seen that this requirement
cannot be met for A-stable SDIRK and ESDIRK methods having p = sI or p = sI+1
over third-order and L-stable methods having p = sI−1 or p = sI over second-order.
The maximum order of an A-stable, R[1]-regular Runge-Kutta method is four, while
the maximum order of any R[1]-regular DIRK method having aii ≥ 0 is three [186].
Jackiewicz et al. [244] propose a more severe regularity requirement, stage-wise

(R[1]-regularity), or strong R[1]-regularity. The appeal of strong R[1]-regularity is
that there is a procedure whereby one may construct a regular method; there is
currently no such procedure for R[1]-regularity. The requirement is aik − ajk = ξbk
for all i 6= j. Summing over k and using Ae = c and be = 1, one has ci − cj = ξ;
hence, aik − ajk = (ci − cj)bk. Because (ci − cj) is antisymmetric, it has s(s+ 1)/2
unique components. Summing over k, it is seen that at least one value of k is not
independent. Further, one may take linear combinations of the previous equations
to create many of the others. Ultimately, this constitutes s(s + 1)/2 additional
conditions: j = 1, i = 2, 3, · · · , s, and k = 2, 3, · · · , i. At two stages, Jackiewicz et
al. [244] offer the following one parameter family of second-order, A-stable, strongly
regular SDIRKs

1
4

1
4 0

c2 c2 − 1
4

1
4

2(2c2−1)
4c2−1

1
4c2−1

(78)

At c2 = 3/4, A(3) =
√
5/96, the method, also given in (65), is strongly regular,

A-stable, algebraically stable, it satisfies Rint(−∞) = {0, 0}, and is symplectic and
symmetric, but it is not L-stable as R(−∞) = 1. It also forms the first two stages
of SDIRK4 [193]. It will be referred to as SDIRK2(1)2A[1]Alg. At c2 = 5/6, third-
order error is minimized. Gan [162] also considers two-stage, strongly-regular DIRK
methods.

Less severe forms of R[1]-regularity are offered by Vadillo [432]: Bifurcation (B-
regularity), Real (R-regularity) and BR-regularity. B-regularity allows a construc-
tive approach using the matrix B(λ) and the parameter λ; i.e.,

B(λ) =
[
(I− λA) e

bT 0

]
. (79)

It requires that Det[B(λ)] 6= 0 for all λ 6= 0. BR-regularity relaxes this requirement
slightly by restricting λ to be real. Vadillo derives the following two-parameter
family of third-order, B-regular, SDIRKs

1
6

1
6 0 0

c2
6c2−1

6
1
6 0

c3
(6c3−1)(3−24c2+24c22+2c3)

6(4c2−3)(6c2−1)
(6c3−1)(c2−c3)
3(4c2−3)(6c2−1)

1
6

6(2−3c2−3c3+6c2c3)
(6c2−1)(6c3−1)

3−4c3
2(6c2−1)(c2−c3)

4c2−3
2(c2−c3)(6c3−1)

(80)

38

for which Det[B(λ)] = −1. There are no values of c2 and c3 that yield an A-stable
method. Weaker still, Xiao et al. [455] defines weak R[1]-regularity that is achieved
by all consistent Runge-Kutta methods.

Xiao et al. [455] also define a weak R[2]-regularity. Runge-Kutta methods that
have M > O and b ≥ 0 are weakly R[2]-regular for positive step-sizes. In terms of
Hopf bifurcations, Iserles et al. [228] state that symplectic Runge-Kutta methods
with positive weights, bi ≥ 0, are R[H]− regular. Further, a consistent Runge-Kutta
method is R[H] − regular if and only if R(z) is symmetric [R(z)R(−z) = 1 or (64)],
and the method is A-stable. Methods that are R[1,2,H]-regular are termed strictly
regular.

2.12 Boundary and Smoothness Order Reduction

A common application of DIRK-type methods is to semidiscretized PDEs. The
resulting initial boundary value problem (IBVP) solution may fail to exhibit the
classical global convergence rate that one might expect. Crouzeix [120,123] appears
to have been the first to point this out. The phenomenon is attributable to the
spatial boundaries (space-time problems) due to the interaction of the boundary
conditions with the low stage-order information. It may also occur due to a lack of
spatial smoothness of the RHS for the same reason. The degree of order reduction
depends on the type of problem being integrated, the type of boundary condition
being applied and the spatial smoothness of the solution. A cursory summary of
boundary and smoothness order reduction results relevant to DIRK-type methods
is provided, focusing primarily on its severity under different circumstances. Global
convergence rates generally appear as the minimum of the classical order p and the
stage-order q, plus some constant, i.e., a best- and worst-case scenario.

Boundary order reduction of implicit Runge-Kutta methods in the context of
linear equations, u′(t) = A(t)u(t) + f(t) (nonautonomous) and u′(t) = Au(t) + f(t)
(autonomous), is the best understood. One of the earliest efforts on this mat-
ter was by Verwer [437]. He considers the implicit Euler, the one-stage, second-
order Gauss method, SDIRK-NCS23 and SDIRK-NC34 methods on the nonhomo-
geneous problem using either homogeneous or inhomogeneous Dirichlet boundary
conditions. Empirically derived global convergence rates were Min(p, q + 2 + 1/3)
and Min(p, q + 1 + 1/4) in these two cases, respectively. If the value of A was
nonsmooth, this is further reduced to Min(p, q + 1). Ostermann and Roche [328]
performed an analytical study of the autonomous nonhomogeneous problem, requir-
ing A(α)-stable methods and, under certain restrictions, derived global convergence
rates. For step-sizes h0 ≤ h ≤ H, homogeneous boundary conditions gave rise
to global convergence rates of Min(p, q + 2 + ν), while nonhomogeneous conditions
yielded Min(p, q + 1 + ν). The reader is referred to Ostermann and Roche [328]
for the definition of nu. Smaller step-sizes h ≤ h0 return the classical convergence
rate p. Refining this, Lubich and Ostermann [290] solved the one-dimensional in-
homogeneous heat equation and determined global order to be Min(p, q + 1 + β).
Dirichlet conditions produced β = 5/4 and β = 1/4 in the homogeneous and inho-
mogeneous cases, respectively. Corresponding results for Neumann conditions were

39

found to be β = 7/4 and β = 3/4. Increasing the dimensionality and considering
the nonautonomous problem, Lubich and Ostermann [292] find that the convergence
rate is unaffected by periodic boundary conditions; however, Neumann conditions
have lower convergence rates, Min(p, q+ 1+ β), in two and three dimensions where
β = 1/4, than in one dimension where β = 5/4. Lubich and Ostermann [293]
then showed that the boundary order reduction was confined to the boundary, and
that the interior manifested superconvergence to the classical order of the method.
Nonsmooth data also exhibited localized order reduction. Results from each of
these papers assumed an invertible A-matrix and strongly A(α)-stable methods.
Zouraris [467] derives a global convergence rate of Min(p, q + 1 + 1/2) for SDIRK-
NC34 solving the nonautonomous problem with Neumann conditions. In the case
of variable step-sizes applied to the nonautonomous problem, González and Oster-
mann [169] show that results are similar to the fixed step-size case. Using a different
analysis tool than Ostermann and Roche [328], Alonso-Mallo and Palencia [15] con-
sider A(α)-stable methods but only require that the lower left (s−1)× (s−1) block
of the A-matrix be invertible (thus allowing EDIRKs, ESDIRKs and QESDIRKs).
On nonhomogeneous hyperbolic and parabolic problems, the global convergence rate
was determined to be Min(p, q + 1 + ν) for |R(−∞)| < 1 and Min(p, q + ν + ν/m)
for |R(−∞)| = 0 where m is the multiplicity of the root at z = −∞ for the func-
tion R(z) − 1 = 0. Test problems using SDIRK-NC34 and homogeneous Dirichlet
conditions on the autonomous parabolic equations showed 0 ≤ ν ≤ 5/4. Inhomoge-
neous boundary conditions lowered this to 0 ≤ ν ≤ 1/4. Solving an inhomogeneous
hyperbolic equation with inhomogeneous Dirichlet conditions showed 0 ≤ ν ≤ 1/2.
Trompert and Verwer [429] consider order reduction on linear PDEs in the presence
of local spatial grid refinement while using a stage-order two ESDIRK.

To address the boundary order reduction associated with linear problems, cor-
rective action may take place with the Runge-Kutta coefficients of the scheme or by
correcting each of the stage and step values. To date, we are not aware of any efforts
to remedy boundary order reduction by using Butcher coefficients for DIRK-type
methods. Koto [264] does this with explicit Runge-Kutta methods but the resulting
methods are relatively inefficient. Lubich and Ostermann [291] provide additional
order conditions to deal with boundary order reduction for methods closely re-
lated to DIRK-type methods, Rosenbrock methods. Recently, Alonso-Mallo [11,12],
Alonso-Mallo and Cano [13], and Calvo and Palencia [86] devise alternative cor-
rective procedures applied to algebraically stable SDIRKs to retrieve full temporal
convergence rates.

Fewer results exist on semilinear, quasilinear and nonlinear problems. Verwer
[437] solves Burgers’ equation numerically by using SDIRK-NCS23 and SDIRK-
NC34 and he empirically observes global convergence rates of Min(p, q + 2 + 2/3)
and Min(p, q+1+1/4) with homogeneous and inhomogeneous Dirichlet conditions,
respectively. For a nonlinear problem with nonsmooth coefficients, this convergence
rate was reduced to Min(p, q + 1). Lubich and Ostermann [292] conclude that,
with the possible exception of 3-D problems using Neumann boundary conditions,
results for quasilinear problems u′(t) = A(u(t))u(t) + f(t) were the same as those
for linear nonautonomous problems. For semilinear problems u′(t) = A(t)u(t) +

40

g(t, u(t)), Lubich and Ostermann [290] find that homogeneous Dirichlet conditions
yields Min(p, q + 1 + 3/4) on the semilinear problem but Min(p, q + 1 + 5/4) on
the linear problem. Nonlinear equations exhibit boundary order reduction most
severely. Ostermann and Thalhammer [329] study strongly A(α)-stable methods
applied to parabolic nonlinear equations and obtain convergence rates of Min(p, q+1)
independent of whether the step-size was fixed or not. Calvo et al. [81] provide
a method for avoiding order reduction on nonlinear problems when using IMEX
additive Runge-Kutta methods. The implicit portion of these third- and fourth-
order IMEX methods are SDIRKs padded with a column of zeros (ai1 = 0, i =
1, 2, . . . , s).

2.13 Efficiency

Quantifying the efficiency of DIRK-type methods for purposes of comparing meth-
ods is far more difficult than it is for explicit Runge-Kutta methods [256]. Because
the methods are ideally never stability bound, one may focus on accuracy efficiency
alone, i.e., the work required per unit of physical time at fixed integration error. To
do this, however, one must quantify both accuracy and work. If there is no order
reduction, accuracy of methods may be compared by using the leading order trunca-
tion error, A(p+1). In the presence of order reduction, the proper analogue of A(p+1)

is not clear. Matters are made even more difficult on stiff problems because one is
confronted with different accuracies for the differential variables and the emerging
algebraic variables. Measuring work of a method may be affected by many things
that are intrinsic to the overall method, including the magnitude of γ, the spacing of
the abscissae, the quality of the stage-value prediction, the stage-order and the many
stability characteristics of the method. It is also affected by issues not intrinsic to
the method, including iteration control and the implementation strategy. In certain
cases, confluent methods may reduce work because the iteration on the second stage,
having the repeated abscissae, begins with a high-quality starting guess. Succeeding
at measuring work would also benefit a variable-order implementation. Capitulating
on a quantitative measure of relative efficiency, several qualitative guidelines seem
reasonable. Small values of γ, high stage-order, L-stability, internal stability coupled
with high-quality stage-value predictors and iteration control are likely to enhance
efficiency. Some work savings are also possible when using stiffly-accurate EDIRK,
ESDIRK and QESDIRK methods by stage-derivative reuse [324].

2.14 Solvability

Before proceeding to solve for the stage- and step-values, U [i] and U [n+1], it would be
prudent to understand under what conditions the coupled nonlinear stage and step
equations possess a unique solution [76, 77, 80, 129, 193, 269, 470]. If the equations
do possess a unique solution, the method is termed feasible [410]. For inner prod-
uct norms and differential equations having a one-sided Lipschitz constant ν, the
nonlinear stage equations of DIRK or SDIRK method, having positive aii, possess a
unique solution for step-sizes given by [193, 302] ν∆t < Min

(
a−1
ii

)
, i = 1, 2, · · · , s.

For EDIRKs, ESDIRKs and QESDIRKs, where a11 = 0 and aij is not invertible,

41

the previous result is likely to still apply, but with i = 2, 3, · · · , s [193]. To make this
relation practical, one must estimate the value of ν for their problem. We are not
aware of any code that explicitly uses this criterion as part of a step-size algorithm.
Calvo et al. [80] consider this same topic by using the maximum norm but offer no
comparable result for DIRK-type methods. Kraaijevanger [266] also considers the
maximum norm and discusses solvability for both unconditionally and conditionally
contractive methods.

2.15 Implementation

Depending on the size of the equation system, one solves the implicit algebraic
equations in different ways. For small systems of equations, one generally uses
direct solvers. In this case, using the definition Fj = F

(
Uj , t

[n] + cj∆t
)
, one must

solve

Ui = U [n] +Xi + (∆t)aiiFi, Xi = (∆t)
i−1∑

j=1

aijFj , 1 ≤ i ≤ s (81)

where Xi is explicitly computed from existing data. Combining (81) with an appro-
priate starting guess, a modified Newton iteration [180, 210, 371, 372, 378] provides
Ui and Fi. This is accomplished by solving

(I − (∆t)aiiJ) (Ui,k+1 − Ui,k) = −
(
Ui,k − U [n]

)
+ Xi + (∆t)aiiFi (82)

where the subscript k denotes the value on the kth iteration, (∂F/∂U) = J is the
Jacobian, I is the identity matrix, (I− (∆t)aiiJ) = N is the (Newton) iteration
matrix, and (Ui,k+1 − Ui,k) = di,k is the displacement. The RHS of (82) is called
the residual, ri,k where

Ndi,k = ri,k. (83)

Solving for the displacement vector is generally done using Gaussian elimination
where the iteration matrix is factorized into a permutation matrix P, for pivoting
and a lower, L, and upper, U, triangular matrix. Shampine remarks that although
the iteration matrix for stiff problems is often ill-conditioned, the linear systems
associated with it are not [377]. On the kth-iteration, one has

PLUdi,k = ri,k, Ui,k+1 = Ui,k + U−1L−1P−1ri,k. (84)

Jacobians are generally not reevaluated at each stage but rather after many steps
unless the problem is extremely stiff. The iteration is terminated when either the
normalized di,k = di,k/ (|Ui,k|+ η/ǫ) (displacement test) or the normalized ri,k =
ri,k/ (|Ui,k|+ η/ǫ) (residual test) are sufficiently small [210,324,413,414],

τresid = cǫǫ ≤ ||ri,k||, or, τdispl = cǫǫ ≤ ||di,k||, cǫ ≈ 0.005− 0.1, (85)

where ǫ is the user-specified integration relative error tolerance, η is the user-specified
integration absolute error tolerance, cǫ is the tolerance ratio, and η is an absolute

42

error tolerance that need not be equal for each equation [45, 206, 343, 378]. Nørsett
and Thomsen [313] investigate the proper choice for the tolerance ratio for SDIRKs.
If the selected ratio is too small, then unnecessary iterations are performed; if it is too
large, then local and global error will suffer. They select cǫ = 2||(b − b̂)TA−1||−1

where they consider embedded methods having order p + 1. Displacements (and
residuals) may be evaluated in either an L∞ or an L2 norm,

||di,k||∞ = max
i

|di,k| , ||di,k||2 =

√√√√ 1

N

N∑

i=1

(di,k)
2. (86)

Hindmarsh [206, 377] chooses the displacement test for LSODE [343] because the
residual magnifies the error in the stiff ODE case. Two slightly different convergence
rates may be defined as

ρm = (||di,m||/||di,1||)1/m , αk = ||di,k||/||di,k−1||, α = max
k

αk (87)

In PVODE [206], the convergence test is R||di,k||2 < 0.1ǫ where R is a constant given
in the reference [206]. DASSL [45] requires that ρm

1−ρm
||di,m||2 < ǫ/3. Hairer and

Wanner [193] use αk

1−αk
||di,k||2 ≤ cǫǫ. Houbak et al. [210,313] suggest a combination

of displacement and residual tests. Shampine [372] insists that accepting an iteration
based on a displacement test must be accompanied by a convergence rate α of
less than unity. Hence, at least two iterations must be computed. Shampine [372]
advocates α as the most accurate indicator of convergence rate. Divergence is defined
as a convergence rate of αk > 2 by Hindmarsh [206], αk > 1 by Shampine [372], and
ρm > 0.9 by Brenan et al. [45]. For stiffly-accurate, first-stage explicit DIRK-type
methods, Olsson and Söderlind [324] recommend stage derivative reuse; the values
of Fs = F [n+1] at the end of one step are used immediately as F1 in the following
step.

In mildly stiff cases where either the time step or aii are changing rapidly but
the Jacobian is still sufficiently accurate, computational savings are possible. The
scaled iteration matrix is defined

Ns =
−1

aii(∆t)
N =

[
J− 1

aii(∆t)
I

]
(88)

for the purposes of changing either aii or (∆t) cheaply. Equation (82) is modified
accordingly. Following Enright [141], decomposing Ns into a lower triangular ma-
trix, its inverse and an upper Hessenberg matrix, Ns = LHL−1, one may update
Ns with updated (aii)2 or (∆t)2 via

J− 1

(aii)2(∆t)2
I = L

[
H+

(aii)2(∆t)2 − (aii)1(∆t)1
(aii)1(aii)2(∆t)1(∆t)2

I

]
L−1. (89)

An alternative procedure has been given by Krogh [206,275,462]. Instead of solving
for the displacement as suggested above, a constant c is computed and a modified
procedure is solved:

d
(i)
k = cU−1L−1P−1r

(i)
k , c =

2(aii)1(∆t)1
(aii)1(∆t)1 + (aii)2(∆t)2

. (90)

43

Either of these procedures may be useful in the implementation of DIRK, EDIRK,
or QESDIRK methods where nonzero diagonal elements may have different values.
Al-Rabeh [16] constructs p(p+1) pairs with aii = γ left as a free parameter. As the
step size is changed, γ is changed, within reason, such that the product contained
within the iteration matrix γ(∆t) remains fixed.

In the event that the system of ODEs becomes nonstiff intermittently during the
computation, one may wish to perform stiffness switching [65,314,338]. The idea is
to switch between a Newton-type iteration and a fixed-point, or Picard iteration, or
even an explicit Runge-Kutta method. To do this, one first estimates the value of the
Lipschitz constant for the problem at hand as ||J||2 or, less precisely but more easily,
as ||J||∞. By selecting (∆t) to satisfy some error tolerance, stiffness is then defined as
(∆t)||J||2 ≫ 1 [129,286,373,376,414]. Given that fixed-point iteration converges for
(∆t)aii||J||2 < 1, for values larger than unity, a Newton iteration is used; for values
less than unity, a fixed point iteration is used. Van der Houwen and Sommeijer [214]
propose an intermediate solution, called approximate factorization iteration, for
cases where (∆t)||J||∞ is small. They switch between iteration procedures based
on the value of aii(∆t)||J||∞. Fixed-point iteration is used for aii(∆t)||J||∞ < a,
approximate factorization is used for a ≤ aii(∆t)||J||∞ < b and Newton iteration
is used for b ≤ aii(∆t)||J||∞, with a = 1/2 and b = 3. A complicating factor in
this approach is that the estimation of the stiffness may be inaccurate. Higham and
Trefethen [198] contend that the true characterization of stiffness comes not from
the spectra of the Jacobian but its pseudospectra and the two may be different.

One further issue relevant to implementation using direct methods is the com-
putation of the Jacobian. One may use a numerically generated Jacobian by using
finite-difference techniques or use an analytically derived one [378]. It is a commonly
held belief that an analytical Jacobian should be used whenever possible. Petzold
comments that the numerical Jacobian is the weakest part of the DASSL code [45].
For certain problems, a numerical Jacobian can never be expected to work. A rela-
tively recent development towards analytical Jacobians is automatic differentiation
tools applied directly to the source code. These tools are available for FORTRAN
77 [40], FORTRAN 90 [341], and C [41]. When an analytical Jacobian is not feasible
and a numerical one must be considered, one must compute

∂Fi

∂Uj
≈ F (Ui +∆jej)− F (Ui)

∆j
, (91)

where ej = {0, 0, · · · , 1, · · · , 0, 0}T is composed of only zeros except a single 1 in the
jth-position. Its is apparent from the context in which it is used. The difficulties
involved are choosing an appropriate ∆j and computing the Jacobian expeditiously.
Most codes choose ∆j based on some variation of ∆j =

√
u Max (|Uj |, η), where u

is related to machine precision. It is the smallest number such that 1+u > 1 on the
computer of interest. To avoid division by zero, η is some absolute error tolerance.
LSODE [343] and DASSL [45] offer slight variations on this idea.

Salane [349] offers a more sophisticated approach to compute a good ∆j . First, he
defines U(ref) as a U-vector constructed using representative values of the elements.

44

Then the initial choice for ∆j is given by

∆j = φj

∣∣∣U (ref)
j

∣∣∣ , φj = u1/2. (92)

He then defines terms related to the scale Σj , σj and the difference δj ; Σj =
max(i) (|F (Ui)| , |F (Ui +∆jej)|), σj = min(i) (|F (Ui)| , |F (Ui +∆jej)|) and δj =
max(i) | |F (Ui +∆jej)| −|F (Ui)| |. The goal is to adjust values of the φj at every
Jacobian evaluation while not letting any value of φj be greater than a maximum,
φmax ≈ u1/10, or less than a minimum, φmin ≈ u3/4. Further, the jth-column of the
Jacobian is jj . Three FORTRAN subroutines are offered to compute the Jacobian.
Any of these subroutines would be called repeatedly within the course of a typical
integration. In the pseudocode contained in figure 1, it is assumed that the value
of F (Ui) has already been computed. Salane [348–350] and Ypma [463] discuss
approaches to reduce the cost of computing numerical Jacobians.

Do j=1,N
Compute F (Ui +∆jej) and jj based on previous value of φj

Compute Σj , σj , and δj
if (σj = 0) then go to 100
if (δj > u1/4Σj) then φj = max(φmin, φju

1/8)
if (u7/8Σj ≤ δj ≤ u3/4Σj) then φj = min(φmax, φju

−1/8)
if (u7/8Σj > δj) then

Compute ∆∗
j = φ∗

j

∣∣∣U (ref)
j

∣∣∣, φ∗
j = min(φmax,

√
φj)

Compute F (Ui +∆∗
jej), j

∗
j , Σ

∗
j and δ∗j

if (σ∗ = 0) then go to 100
if |φ∗

j j
∗
j | ≤ jj then

∆j = ∆∗
j , jj = j∗j

if (δ∗j > u1/4Σ∗
j) then φj = max(φmin, φ

∗
ju

1/8)

if (u7/8Σ∗
j ≤ δ∗j ≤ u3/4Σ∗

j) then φj = min(φmax, φ
∗
ju

−1/8)
endif

endif

100 Continue
Enddo

Figure 1. Pseudocode to establish optimal numerical perturbation ∆j for numerical
Jacobians based on Salane [349].

For large systems of equations, a direct solve using the iteration matrix is not
feasible. This is a common situation in the solution of stiff, spatially discretized
PDEs. Chan and Jackson [104] and Jackson [245] review this issue, discussing
sparse linear equation solvers and preconditioned Krylov subspace methods. The
latter are used in the KRYSI (Krylov semi-implicit) code [207] and Bjurstrøm’s ver-
sion of the GODESS (generic ODE solving system) code [42, 428]. We remark that
the resulting algebraic system of equations resulting from backward differentiation

45

formulae (BDF) methods is essentially identical to those resulting from DIRK-type
methods. Rather than the modified Newton method that is used for small sys-
tems of equations, one usually considers inexact Newton methods for larger systems
of coupled equations [207, 254, 344]. The implementation of this inexact Newton
method in PVODEs is described by Hindmarsh [206]. Jothiprasad et al. [248] com-
pare nonlinear multigrid with two variants of an inexact Newton scheme while using
an ESDIRK method to solve the compressible Navier-Stokes equations. Isono and
Zingg [240] contrast an approximate factorization algorithm with a Newton-Krylov
algorithm in the study of unsteady, compressible flows using the same ESDIRK.
In a further study with the ESDIRK from ARK4(3)6L[2]SA [255], Bijl and Car-
penter [37, 95] combine a multigrid solution strategy followed by a Newton-Krylov
method to achieve a 30 percent speed-up.

Variable-order implicit Runge-Kutta implementations are possible but are far
less common than similar multistep implementations. Cash and Liem [102] and
Cameron [92] do this with SDIRKs, Burrage et al. [54] use SIRKs, Butcher et al. [71]
consider DESI methods, and Hairer and Wanner [194] use the Radau IIA family of
methods. Hairer and Wanner state that the objective of such implementations is to
minimize the local error per unit step. The required step-size is estimated for each
candidate method and then the cost of this step-size is estimated. One then selects
the method with the lowest cost to step-size ratio. As the optimal γ changes for
SDIRKs and ESDIRKs as order and the number of stages changes, an embedded
approach like the ones Cash and Liem and Burrage et al. use seems less than
ideal. With increased efficiency as the goal, a variable-order strategy would best
be incorporated into the iteration control strategy. Possibly the reason why so few
variable-order implicit Runge-Kutta codes exist is the difficulty in executing this
well. Butcher [63] describes an order selection strategy for variable-order methods.

In certain contexts, implicit methods may be implemented to mimic IMEX meth-
ods. Brown and Hindmarsh [46] effectively consider solving (82) by treating the RHS
as if all terms were to be integrated implicitly but constructing the Jacobian by using
only the stiff part of the RHS.

2.16 Step-Size Control

Local integration error for Runge-Kutta methods is usually controlled by first cre-
ating a local error estimate via an embedded method. This error estimate is then
fed to an error controller, that adjusts the time step in order to maintain some user-
specified relative error tolerance ǫ. Ideally, this step-size estimate is used as part
of an iteration control strategy. Although this review focuses on largely cost-free
embedded methods where p = p̂+1, some papers use p = p̂− 1 [7,16,17,209]. Oth-
ers [17, 382] include the possibility of using extra function evaluations to increase
the order of their embedded method. The reliability of this error estimate may be
facilitated by using L-stable main and embedded methods [179] as well as higher
stage-order methods. Given noisy data, Krogh [274] describes a step-size selection
strategy that uses a least-squares fit of past data. Ilie et al. [223] approach opti-
mal time step locations during the integration of both initial and boundary value

46

problems by considering a grid deformation map, t = Θ(τ). In this formulation,
each time step location in the deformed space is equispaced relative to adjacent step
locations but variable in the undeformed space. The goal is to determine an optimal
grid deformation map, through a variational approach, which either 1) minimizes
the work required to maintain a specified local error tolerance or 2) minimizes the
local error given a fixed amount of work (steps).

Following Söderlind [402–405], we consider several error-control strategies of the
form

(∆t)[n+1] = κ(∆t)[n]
{

ǫ

||δ[n+1]||

}α
{
||δ[n]||

ǫ

}β {
ǫ

||δ[n−1]||

}γ

×

×
{

(∆t)[n]

(∆t)[n−1]

}a{
(∆t)[n−1]

(∆t)[n−2]

}b

(93)

for p(p̂)-pairs (p̂ = p− 1). In (93), κ ≈ 0.95 is the safety factor, (∆t)[n−i] = t[n−i] −
t[n−i−1] is the step size, and δ[n+1] is the vector of most recent local error estimates
of the integration from t[n−1] to t[n] associated with the computation of U [n+1]. To
analyse this controller, Söderlind defines two polynomials P (q) = αq2 − βq + γ and
Q(q) = q2 − aq − b where it is required that deg P (q) ≤ deg Q(q). If common
factors are contained in both P (q) and Q(q) then they are removed. ¿From this,
the characteristic polynomial or characteristic equation of the controller, having no
common factors between P (q) and Q(q), is

Φ(q) = (q − 1)Q(q) + p̂P (q) = q3 + (p̂α− a− 1) q2

+ (−p̂β + a− b) q + (p̂γ + b) . (94)

For stability, all roots of Φ must have a magnitude of less than or equal to one.
Controllers based on this structure possess three distinct orders: the order of the
dynamics, pD; the order of adaptivity, pA; and the order of the step-size filter, pF .
Söderlind names particular controllers as HpDpApF . The degree of the polynomial
Φ is the order of the dynamics, while the order of adaptivity determines the rate
at which the local error is adapted to the error tolerance. The filter order is re-
lated to averaging of the potentially noisy data and, when greater than zero, the
controller acts as a low-pass step-size filter by removing high frequency data. As
small roots to the characteristic equation are sometimes desirable, one may enforce
(p̂α− a− 1) = 0, (−p̂β + a− b) = 0 and (p̂γ + b) = 0 to obtain Φ = (q − 0)3. This
implies α = (a + 1)/p̂, β = (a − b)/p̂ and γ = −b/p̂ and that all roots vanish.
Controllers satisfying these equations are denoted H0pDpApF . Methods posessing
third-order dynamics are of particular interest. Within this class, one may design
H312 [β = −2α, γ = α], H321 [b = (1− a), γ = −(α+ β)] and H330 [a = 2, b = −1]
controllers, but HpDpApF controllers having pD < pA + pF do not appear to exist.
Table 8 lists coefficients for various controllers. A more exhaustive list is given by
Söderlind [404] as well as further design details. As the characteristic polynomial
root positions play an important role in controller behavior, we note the pD-roots
of several controllers: H211 {1/2 ± I/2}, PPID {0.4838 ± 0.3275I, 0.7325}, H321

47

Table 8. Error controller coefficients and the order of the dynamics, adaptivity, and
filtering.

Controller α β γ a b pD pA pF
I = H0110

1
p̂+1 0 0 0 0 1 1 0

H211 1
4p̂

−1
4p̂ 0 −1

4 0 2 1 1

H0211
1
2p̂

−1
2p̂ 0 −1

2 0 2 1 1

PC = H0220
2
p̂

1
p̂ 0 1 0 2 2 0

PID 1
18p̂

−1
9p̂

1
18p̂ 0 0 3 1 2

H312 1
8p̂

−1
4p̂

1
8p̂

−3
8

−1
8 3 1 2

H0312
1
4p̂

−1
2p̂

1
4p̂

−3
4

−1
4 3 1 2

H312general
α∗
p̂

−2α∗
p̂

α∗
p̂ a b 3 1 2

PPID 6
20p̂

−1
20p̂

−5
20p̂ 1 0 3 2 1

H321 1
3p̂

−1
18p̂

−5
18p̂

5
6

1
6 3 2 1

H0321
5
4p̂

−1
2p̂

−3
4p̂

1
4

3
4 3 2 1

H321general
α∗
p̂

β∗

p̂
−(α∗+β∗)

p̂ a (1− a) 3 2 1

H0330
3
p̂

3
p̂

1
p̂ 2 −1 3 3 0

H330general
α∗
p̂

β∗

p̂
γ∗

p̂ 2 −1 3 3 0

{1/3, 1/2, 2/3}, PID {−0.1784, 1/2, 0.6228} and H312 {0, 0, 1/2}. Alternatively, one
may write an H321general controller having characteristic equation roots given by q1,
q2 and q3, where all roots have magnitudes preferably less than unity. Either three
roots are real or one is real and the others form a complex conjugate pair

α = (5− 3q1 − 3q2 − 3q3 + q1q2 + q1q3 + q2q3 + q1q2q3) /(4p̂)
β = 2(−1 + q1)(−1 + q2)(−1 + q3)/(4p̂)
γ = −(α+ β)
a = (1 + q1)(1 + q2)(1 + q3)/4
b = 1− a.

(95)

The step-size transfer map, Hϕ̂[321](q), and the error transfer map, Rϕ̂[321](q), are
given by [404]

−p̂Hϕ̂[321](q) =
p̂P (q)

(q − 1)Q(q) + p̂P (q)

=
(1 + q)(−3 + q2 + q3 + q2q3 + q1(1 + q2 + q3 − 3q2q3))

4(q − q1)(q − q2)(q − q3)
(96)

+
(1 + q)q(5 + q2(−3 + q3)− 3q3 + q1(−3 + q2 + q3 + q2q3))

4(q − q1)(q − q2)(q − q3)

Rϕ̂[321](q) =
(q − 1)Q(q)

(q − 1)Q(q) + p̂P (q)
(97)

=
(q − 1)2(3 + 4q − q1 − q2 − q3 − q1q2 − q1q3 − q2q3 − q1q2q3)

4(q − q1)(q − q2)(q − q3)
.

48

One may also consider the control map of the controller [404]

C(q) =
P (q)

(q − 1)Q(q)
. (98)

As with the H321general controller, one may also write an H312general as

α = −(q1 − 1)(q2 − 1)(q3 − 1)/(4p̂)
β = −2α
γ = α
a = (3(−1 + q3) + q2(3 + q3) + q1(3 + q2 + q3 − q2q3)) /4
b = (−1 + q2 + q3 − q2q3 − q1(−1 + q2 + q3 + 3q2q3)) /4

(99)

and

−p̂Hϕ̂[312](q) =
−(1 + q)2(q1 − 1)(q2 − 1)(q3 − 1)

4(q − q1)(q − q2)(q − q3),
(100)

Rϕ̂[312](q) =
(q − 1)(4q + (−1 + q2)(−1 + q3) + q1(−1 + q2 + q3 + 3q2q3)

4(q − q1)(q − q2)(q − q3)

+
q(q − 1)(3 + q1(−3 + q2(−1 + q3)− q3)− 3q3 − q2(3 + q3))

4(q − q1)(q − q2)(q − q3)
.

(101)

In the event that one needs higher-order adaptivity or filtering, one may consider a
more general controller than (93) by multiplying the RHS by

{
||δ(n−2)||

ǫ

}δ {
ǫ

||δ(n−3)||

}ε
{
(∆t)(n−2)

(∆t)(n−3)

}c{
(∆t)(n−3)

(∆t)(n−4)

}d

. (102)

If this is done, one might best include the step-size ratio dependence of α, β, γ, δ and
ε that occurs with controllers using γ, δ, ε, · · · otherwise the delivered controller
behavior in cases where the step-size ratio deviates significantly from unity may
be different from the design intent. In the event of order reduction, p̂ no longer
reflects the actual order of the embedded method. Controller coefficients might best
be considered so that the controller functions well when given either the formal or
actual value of p̂. Order conditions for the adaptivity and filter are

pA = 2 a = 1− b− c− d

pA = 3 b = −1− 2c− 3d,
pA = 4 c = 1− 3d
pA = 5 d = −1

pF = 1 α = −β − γ − δ − ε
pF = 2 β = −2γ − 3δ − 4ε
pF = 3 γ = −3δ − 6ε
pF = 4 δ = −4ε.

(103)

49

Using these along with P (q) = αq4−βq3+γq2−γq+ε andQ(q) = q4−aq3−bq2−cq−d

(with common factors between P (q) and Q(q) removed), one may construct the
characteristic polynomial of the controller and generate a controller having desirable
roots.

In the simplest case, the local error estimate is given by δ[n+1] = U [n+1]− Û [n+1].
There are two ways in which this might be improved. Normalization of the errors
from each equation makes particular sense when elements of the integration vector
have different orders of magnitude. To avoid division by zero, one adds a small
positive absolute error tolerance, η, to the denominator [45, 206, 343, 378]. Hence,
the two equivalent expressions

δ[n+1] =
U [n+1] − Û [n+1]

|U [n+1]|+ η
ǫ

,
δ[n+1]

ǫ
=

U [n+1] − Û [n+1]

ǫ|U [n+1]|+ η
. (104)

A scalar measure of δ[n+1] is often obtained by using either an L∞ or an L2 norm,

||δ[n+1]||∞ = max
i

∣∣∣δ[n+1]
i

∣∣∣ , ||δ[n+1]||2 =

√√√√ 1

N

N∑

i=1

(
δ
[n+1]
i

)2
, (105)

where N is the number of equations being integrated. When stiff equations are being
integrated, some error estimators are prone to gross overestimation of the local error.
This overestimation is related to the stability function of the embedded method as
z → −∞. When R̂(−∞) is nonzero for stiff scaled eigenvalues, Shampine and
Baca [209, 379] recommend multiplying the traditional estimate by inverse powers
of the (Newton) iteration matrix. Defining m by

(
R(z)− R̂(z)

exp(z)−R(z)

)
= O(zm), ℜ(z) < 0, z → −∞ (106)

one computes the error estimate by

δ[n+1] = N−m

(
U [n+1] − Û [n+1]

|U [n+1]|+ η
ǫ

)
, (107)

where N−1 = U−1L−1P−1 from (84). If multiple equations are being solved, an
error controller for each equation may be required, including a tailored value of η.
The motivation for doing this is that each value of δ[n+1], δ[n] and δ[n−1] in (93)
might otherwise be a value from a different equation, resulting in an erratic error
history. Generally, one also places limits on how quickly the step-size is allowed
to vary. Increases or decreases of a factor of less than five in any given step are
prudent [378]. Increases greater than a factor of two may be at odds with robust
stage-value predictors, error control and iteration control. Hindmarsh [206] allows
LSODE to increase the step-size up to a factor of 10 000 on the first step but limits
this increase to 10 afterwards. VODE limits reductions in step-size to 1/10. In
situations where the future step-size selected by the controller is nearly equal to the

50

current step-size, some codes make no change to the step-size until some threshold
of, often, +20 percent is exceeded. Söderlind [403] strongly discourages introducing
such a dead-zone because, when the controller is eventually invoked, the strong
actions may cause error overshoots and step rejections.

Although never applied to implicit Runge-Kutta methods, the p(p− 2)-pair ap-
proach of Tsitouras and Papakostas [431] is appealing. They consider a modified
I-controller,

(∆t)
[n+1]
I = κ(∆t)[n]

{
ǫ

f2(∆t)||δ[n+1]||

} 1
p̂+1

, (108)

where f2 ≈ 10 is experimentally optimized. More sophisticated incarnations of this
strategy are certainly possible and would allow one to design main scheme methods
that were less compromised by demands of the embedded method. An alternative
approach is to use two-step embedded methods [176] to enable higher order and
better stability. Beyond control of local error, one might wish to control global
error. The literature contains limited guidance on global error estimation of implicit
Runge-Kutta methods applied to stiff problems [124,144,307,361,363,375,417].

Because machine precision is finite, the preceding approaches must be applied
respecting this limit. If |U [n+1]| becomes very small, then an absolute error tolerance
is added to the error estimate. Further, there are limits on how strict an error
tolerance [343] or how small of a step-size may be rationally set [370]. Related to
this limit is the selection of an initial step size [45, 165, 167, 193, 206, 313, 343, 445].
If the chosen step-size is too large, then the error will be excessive or the iteration
may not converge. If the chosen step-size is too small, then an inefficiency is added
or the result is swamped by rounding error. Rounding error may be minimized by
using compensated summations [69, 189,199,346].

Traditionally, the embedded method is distinct from the main method because
there are two sets of scheme weights, bi and b̂i. A disadvantage to this approach
while solving stiff ODEs is that the error estimate has the stability function of an
explicit method. One could follow the strategy of Shampine and Baca, (107), and
multiply the resulting error estimate times the appropriate inverse power of the
iteration matrix. However, to improve on this process, Al-Rabeh [17] and others
[8, 89, 281, 450, 451] consider what one may call internal error-control as opposed
to the traditional external error-control. Internal error control is often performed
within the context of DAEs and is accomplished by imposing all embedded method
constraints on one of the stages, often the penultimate stage, to avoid fixing γ and to
permit higher order methods. The resulting error estimate is likely relatively reliable
if the internal stability of the penultimate stage is controlled. When combined with
the stiffly-accurate assumption, unfortunately, the method becomes confluent. A
potential drawback of this approach is when significant order reduction occurs, each
method reduces to the same order because they share the same stage order. As
the stiffness primarily affects the order of the stiff modes [157], the two solutions
will probably not collide. It is an interesting question whether there is any benefit
to generating both an internal and an external error estimate. Several proposed

51

methods in this paper offer both in the event the construct is helpful, possibly using
the difference as a measure of stiffness or order reduction.

2.17 Iteration Control

Traditionally for DIRK-type methods, the step-size is selected by using an error
estimate in collaboration with an error controller such as a P(redictive)C(ontrol)-
controller. However, one must also consider how the step-size selection affects the
convergence rate of the iterative solver. Iteration control attempts to coordinate the
two requirements of integration accuracy and iteration efficiency to yield an opti-
mal time step choice throughout the computation. Gustafsson and Söderlind [180]
propose a comprehensive approach to iteration control when using direct solvers.
Salane [350] addresses some of these issues, but less comprehensively. Iteration con-
trol strategies used in the LSODE [343], PVODE [206], and DASSL [45] software
packages may also be consulted. Unfortunately, little guidance exists in the litera-
ture on iteration control associated with indirect solvers [206] where, arguably, most
real-world CPU-hours are consumed.

In the case of a modified Newton iteration, Gustafsson and Söderlind contrast
the value of the iteration matrix being used to that which would exist when using a
current step-size and fresh Jacobian. As the iteration matrix becomes more dated,
they decompose the expected convergence rate of the iteration into that caused
by changes in step-size from the value used to construct the iteration matrix and
that due to an increasingly inaccurate Jacobian. As one may observe the actual
convergence rate, α, and readily compute the convergence rate component due to
step-size changes, αlu

αk = ||d(i)k ||/||d(i)k−1||, α = max
k

αk, αlu =

∣∣∣∣
(∆t)− (∆t)lu

(∆t)lu

∣∣∣∣ (109)

via a linearization, then αjac = α− αlu. The subscript lu denotes the value used to
construct the most recent iteration matrix. For quantites related to the Jacobian,
the subscript jac is used. Obviously, reliable estimates for the scaled displacement
are essential to proper functioning of the iteration control. One then contrasts these
estimates to target values for these quantities, αref , αLU and αJAC. The goal now is
to keep α ≈ αref , αlu ≈ αLU and αjac ≈ αJAC. If αjac > αJAC, then the convergence
is likely to either fail or be inefficient due to an old Jacobian. Note that with this
procedure, one need not place a priori fixed age limits on the Jacobian or iteration
matrices as is commonly done. Gustafsson and Söderlind recommend starting with
the values αref = 0.2, αLU = 0.2 and αJAC = 0.2. Söderlind [403] recommends
αref ≤ 0.37 on lower precision calculations and reduced values as the precision
requirement becomes more strict. With these values, they provide pseudocode for
selecting the time step in conjunction with the error controller, criteria for updating
the Jacobian, and when to update the iteration matrix, for both converging and
diverging iterations. Several improvements to this procedure have been devised by
Olsson and Söderlind [323] and de Swart [423]. An abbreviated version of the latter
appears in figure 2. It is invoked once the step has either been successfully completed

52

if (.not. excessive iterate growth) then (∆t)
[n+1]
α = (∆t)[n]αref

max{α, αref
fmax

}
if (iteration converged) then

compute (∆t)
[n+1]
EC

if ((fresh Jacobian) .and. (α > αref)) then

(∆t)[n+1] = min{ fmax(∆t)[n], max{ fmin(∆t)[n], min{ (∆t)
[n+1]
EC ,

(∆t)
[n+1]
α }}}

else

(∆t)[n+1] = min{ fmax(∆t)[n], max{ fmin(∆t)[n], (∆t)
[n+1]
EC }}

endif

if ((.not. exact) .and. (αjac > αJAC)) then
if (fresh Jacobian) then

(∆t)[n+1] = (∆t)[n]

frigid
else

update Jacobian
endif

endif

elseif (excessive iterate growth) then

(∆t)[n] = (∆t)[n]

frigid

elseif (iteration diverged) then

(∆t)[n] = min{ fmax(∆t)[n], max{ fmin(∆t)[n], (∆t)
[n+1]
α }}

if (.not. fresh Jacobian) then
update Jacobian

endif

elseif (slow convergence) then
if (fresh Jacobian) then

if (α > ξαref) then

(∆t)[n] = min{ fmax(∆t)[n], max{ fmin(∆t)[n], (∆t)
[n+1]
α }}

else

(∆t)[n] = (∆t)[n]

frigid
endif

else

update Jacobian matrix
(∆t)[n] = (∆t)[n]

endif

endif

if ((updated Jacobian) .or. (αlu > αLU)) then
update iteration matrix
if (redostep) (∆t)lu = (∆t)[n]

if (.not. redostep) (∆t)lu = (∆t)[n+1]

endif

Figure 2. Pseudocode for iteration control based on the work of de Swart et al. [423].

53

or has failed and must be recomputed beginning at t[n]. The terms (∆t)
[n+1]
α and

(∆t)
[n+1]
EC are, respectively, the time steps predicted to return the convergence rate

to its optimal value, αref , and the error-control time step required to bring the
integration error, δ[n+1], to the relative error tolerance, ǫ. Several comments are in
order. First, de Swart recommends the values αref = 0.15, αLU = 0.2, αJAC = 0.1,
fmin = 0.2, fmax = 2.0, frigid = 2.0 and ξ = 1.2. These seven numbers serve
to bound changes. Next, one must supplement this pseudocode with criteria by
which convergence, divergence, slow convergence, or excessive iterate growth may
be determined. The last three situations require the step to be recomputed. De
Swart provides such criteria, and the first two have already been discussed here.
Slow convergence describes a situation in which the convergence rate is too slow to
satisfy the iteration tolerance within the remaining iterations or that the maximum
number of iterations has been attained. This former criterion is given by de Swart
and Hairer and Wanner [193] based on the displacement

αkmax−k
k

1− αk
||d(i)k || > cǫǫ, (110)

where kmax is the maximum allowed iterations and values for cǫ are given in (85).
Excessive iterate growth occurs when the iterate has reached some large multiple of
its original absolute value during iteration. Two obvious generalizations may be of
value. The first is that in cases of aii varying, one might redefine αlu with

αlu =

∣∣∣∣
aii(∆t)− (aii)lu(∆t)lu

(aii)lu(∆t)lu

∣∣∣∣ . (111)

This condition may occur when using a DIRK, QSDIRK, EDIRK, QESDIRK or
during a variable-order implementation. Secondly, if the procedure given by Krogh
[206,275,462] in (90) is used, then αLU might be raised substantially (but this would
make it difficult to assess αjac). A variable-order implementation would require that
this strategy be expanded.

Limited experience with this procedure on Navier-Stokes calculations involving
extremely stiff chemical mechanisms illuminated three potential shortcomings. An
IMEX additive Runge-Kutta [255] has been used with a PID-controller on each
equation of each spatial grid point, and the iteration control was performed essen-
tially at each grid point. Step-sizes are chosen as the minimum ∆t called out by
any grid point by the error controller. Any point could fail to converge and force
all points to redo the failed step. The first problem is that passing the displacement
test seemed to be an insufficiently robust measure of whether the integration is pro-
ceeding well and needed to be supplemented with increased values of the minimum
iteration number. A second is that αjac is not aggressive enough in updating the
Jacobian. As a consequence, Jacobian updates needed to be hardwired to occur
sufficiently often − a distinctly undesirable situation. Lastly, values of αk near but
less than unity, which corresponded to values of the displacement much less than
the iteration tolerance, might best be filtered out of the computation of α.

Volcker et al. [439] apply similar iteration control strategies to integrations per-
formed using ESDIRK methods towards reservoir simulations.

54

2.18 Stage-Value Predictors

Solution of the stage and step equations, (82), is invariably done using an iterative
procedure. Because of this, the efficiency of this iterative procedure depends strongly

on the quality of the starting guess. A good starting guess, U
[n+1]
i,0 , for stage i toward

the computation of the U -vector at step n+1 minimizes both the chances of a failed
iteration and the effort required for convergence. A variety [78,79,84,86,87,89,173–
175,188,193,201,202,205,255,284,313,323,347,351,352,399] of possible stage-value,
or starting, predictors may be used with DIRK-type methods ranging from simple
approaches to rather sophisticated ones. Strategies often depend on whether the
A-matrix is invertible. For EDIRK, ESDIRK, and QESDIRK methods, Olsson and
Söderlind [201, 205, 323] advise against stage-value predictors that use information
from the first stage.

Implicit in each of these strategies is that the underlying method is not modified
in any way to facilitate stage-value prediction. However, abscissae position may also
be manipulated to facilitate convergence. For example, if the method was multiply
confluent, iteration would be rapid on the second repeated abscissa. As this may
compromise the quality of the method, one may prefer to optimize the method and
accompany it with a good stage-value predictor.

Stage-value predictors are considered for the stages U
[n]
i that give rise to the

computation of U [n+1]. To do this, past information will be used that possibly

includes U [n−3], U
[n−3]
i , U [n−2], U

[n−2]
i , U [n−1], U

[n−1]
i , and U [n]. Variable step-sizes

are given by t[n] − t[n−1] = ∆t and

r1 =
t[n+1] − t[n]

t[n] − t[n−1]
(112)

for single-step predictors, t[n−1] − t[n−2] = ∆t and

r1 =
t[n] − t[n−1]

t[n−1] − t[n−2]
, r2 =

t[n+1] − t[n]

t[n−1] − t[n−2]
(113)

for two-step predictors and t[n−2] − t[n−3] = ∆t and

r1 =
t[n−1] − t[n−2]

t[n−2] − t[n−3]
, r2 =

t[n] − t[n−1]

t[n−2] − t[n−3]
, r3 =

t[n+1] − t[n]

t[n−2] − t[n−3]
(114)

for three-step predictors. The simplest stage predictors are given by [188]

U
[n]
i,0 = U [n], U

[n]
i,0 = U [n] + (∆t)ciF

[n]. (115)

The first of these is referred to as the trivial guess or the trivial predictor. One

could modify it to U
[n]
i,0 = U

[n]
i−1. Less primative than the two proceeding methods,

dense output may be used to extrapolate function values from the previous step to
generate starting guesses for the stage values [193,255,313,351]

U(t[n] + θ∆t) = U [n] + (∆t)
s∑

i=1

b∗i (θ)F
[n−1]
i , (116)

55

where θ is selected to be one of the scheme abscissae, ci. Both stability and accuracy
degrade quickly as θ is increased; consequently, a limit of θ ≤ 3 is often imposed
[173,175,352]. This step change restriction is not inconsistent with prudent error and
iteration control strategies [423]. These methods, like those that follow, cannot be
used on the first step where the trivial guess must be used. Some authors advocate
hermite interpolation for stage-value predictors [7, 281].

More sophisticated approaches to stage-value prediction are now considered.
Laburta [284] considers stage-value predictors that require as many as two effective
additional function evaluations and are of the form

U
[n]
i,0 = U [n−1] + (∆t)

s∑

j=1

βijF
[n−1]
j

+ (∆t)
(
βi,0F

[n−1] + βi,s+1F
[n] + βi,s+2F

[n−1]
s+2

)
(117)

U
[n−1]
s+2 = U [n−1] + (∆t)

s∑

j=1

µjF
[n−1]
j

+ (∆t)
(
µ0F

[n−1] + µs+1F
[n]
)
, (118)

where extra function evaluations (F [n−1], F [n] and F
[n−1]
s+2) may be used to increase

the order of the predictor. Hairer et al. [188] generalize this procedure to appear as

U
[n]
i,0 = U [n−1] + (∆t)

s∑

j=1

βijF
[n−1]
j + (∆t)

m∑

j=1

νijF
[n−1]
s+j (119)

U
[n−1]
s+j = U [n−1] + (∆t)

s∑

k=1

µA
jkF

[n−1]
k + (∆t)

j−1∑

k=1

µB
jkF

[n−1]
k , (120)

where µij = (µA
ij , µ

B
ij) and ςi =

∑s
j=1 µ

A
ij+
∑i−1

j=1 µ
B
ij . It is useful to define c = (e+rc)

and B = e ⊗ bT . Matrices βij and µA
ij are of dimension s × s, νij is of dimension

s ×m and µB
ij is of dimension s × (m − 1). It may be seen that Laburta’s method

includes up to three additional function evaluations (m ≤ 3). Effectively, however,
it has two additional function evaluations as F [n] from the previous step may be

used for F [n−1] in the current step. Order conditions for these methods, t
(p)
j , up to

order p = 4, may be constructed with six of the eight order conditions already given

by Hairer et al. [188] for step-size ratios of unity. For bushy trees, t
(κ)
1 , κ = 1, 2, 3, 4,

s∑

j=1

βijc
κ−1
j +

m∑

j=1

νijς
κ−1
j =

s∑

j=1

Bijc
κ−1
j + r

s∑

j=1

aijc
κ−1
j (121)

56

For trees, t
(3)
2 and t

(4)
3 (κ = 2, 3)

s∑

j,k=1

βijajkc
κ−1
k +

m∑

j=1

s∑

k=1

νijµ
A
jkc

κ−1
k +

m∑

j=1

m−1∑

k=1

νijµ
B
jkς

κ−1
k =

s∑

j,k=1

Bijajkc
κ−1
k + r

s∑

j,k=1

aij
(
Bjkc

κ−1
k + rajkc

κ−1
k

)
(122)

for t
(4)
2 ,

s∑

j,k=1

βijcjajkck +
m∑

j=1

s∑

k=1

νijςjµ
A
jkck +

m∑

j=1

m−1∑

k=1

νijςjµ
B
jkςk =

s∑

j,k=1

Bijcjajkck + r

s∑

j,k=1

aijcj (Bjkck + rajkck) (123)

and for t
(4)
4 ,

s∑

j,k,l=1

βijajkaklck +

m∑

j=1

s∑

k,l=1

νijµ
A
jkaklcl +

m∑

j=1

m−1∑

k=1

s∑

l=1

νijµ
B
jkµ

A
klcl +

m∑

j=1

m−1∑

k,l=1

νijµ
B
jkµ

B
klςl = r

s∑

j,k,l=1

aij (Bjkaklcl + rajk (Bklcl + raklcl))

+

s∑

j,k,l=1

Bijajkaklcl. (124)

These conditions can be simplified by using row simplifying assumptions, C(η). No
assessment of predictor stability is presented.

As these stage-value predictors require extra function evaluations, one might seek
different strategies that require no extra function evaluations. Many efforts towards
effective and cost-free stage-value predictors are based on considering a multistep,
extended Runge-Kutta coefficient array. One- [201], two- [78,79,174], and three-step
stage-value predictors may be considered in the form

U
[n]
i,0 = ηiU

[n−1] +
s∑

j=1

BijU
[n]
j (125)

U
[n]
i,0 = ηiU

[n−2] +
s∑

j=1

BijU
[n]
j +

s∑

j=1

CijU
[n−1]
j (126)

U
[n]
i,0 = ηiU

[n−3] +
s∑

j=1

BijU
[n]
j +

s∑

j=1

CijU
[n−1]
j +

s∑

j=1

DijU
[n−2]
j , (127)

where matrices Bij , Cij and Dij are of dimension s×s and ηi is a vector of length s.
As written, this formulation requires the invertibility of the A-matrix but is easily

57

generalized to a k-step predictor. Calvo designs constant [82] and variable [87] step-
size k-step predictors, requiring the invertibility of A, based on previous values of
only one particular stage.

Single-step predictors like (125) appear first to have been considered by Sand
[352] and later by many others [173,175,201,205,323,347]. Sand [352] derives order
and inverse-order conditions for a class of predictors and distinguishes between cases
where the step-size ratio, r = (∆t)[n+1]/(∆t)[n], is either r < 0.1, 0.1 ≤ r ≤ 2.0, or
2.0 ≤ r. As r increases, order is reduced and inverse order is increased. González-
Pinto et al. [174,175] conclude that at stringent tolerances, predictor order matters
but at more lax tolerances, stability properties matter more. Both González-Pinto
et al. [174] and Calvo and Portillo [87] find that higher order starters do not always
outperform lower order ones.

General one-, two- and three-step predictors are represented by using extended
Butcher arrays characterized by Ã, b̃ and c̃ as

c A O
c B r1A

bT r1b
T

c A O O
c B r1A O
c B r1B r2A

bT r1b
T r2b

T

c A O O O
c B r1A O O
c B r1B r2A O
c B r1B r2B r3A

bT r1b
T r2b

T r3b
T

(128)

associated with (125), (126) and (127), where B = e ⊗ bT , ẽT = {e, e, · · · , e},
Ãẽ = c̃, O is a square matrix of zeros, and Be = e for methods that are at least
first-order accurate. Note that the components of c̃ are given by c, c = e + r1c,
c = e(1 + r1) + r2c and c = e(1 + r1 + r2) + r3c

c̃ = {c, c}T , c̃ = {c, c, c}T , c̃ = {c, c, c, c}T . (129)

Directly related to these, diag(c) = C, diag(c) = C and diag(c) = C. We also define
β̃, the last row of Ã, for one-, two- and three-step predictors as

β̃ = {B, r1A}T , β̃ = {B, r1B, r2A}T , β̃ = {B, r1B, r2B, r3A}T . (130)

The order of accuracy of the stage-value predictor is given by

||U [n]
i − U

[n]
i,0 || = O

(
(∆t)p̃

)
, (131)

where p̃ is the largest integer for which the relation holds across all i. One may now
write the j-order conditions for the predictors at order p ≤ 4, following the notation

in (4), Φ̃
(p)
j , as

Φ̃
(1)
1 = β̃T ẽ (132)

Φ̃
(2)
1 = 2β̃T c̃ (133)

Φ̃
(3)
1 = 3β̃T c̃2, Φ̃

(3)
2 = 6β̃T Ãc̃ (134)

Φ̃
(4)
1 = 4β̃T c̃3, Φ̃

(4)
2 = 8β̃T C̃Ãc̃, (135)

Φ̃
(4)
3 = 12β̃T Ãc̃2, Φ̃

(4)
4 = 24β̃T ÃÃc̃. (136)

58

Note that Φ̃
(p)
1 = pβ̃T c̃p−1 and that the predictor order conditions are defined slightly

different than those for the main method, e.g., (4).

These order conditions may be recast by using generalized simplifying assump-
tions,

B̃(p) : β̃T c̃k−1 − 1/k, k = 1, 2, · · · , p, (137)

C̃(η) : Ãc̃k−1 − c̃k/k, k = 1, 2, · · · , η, (138)

where C(η) + B(p) implies B̃(η) + C̃(η) for p ≥ η ≥ 1. Related to C(η) is q̃(k) =
Ãc̃k−1− c̃k/k, which allows the non-bushy-tree order conditions to be written

Φ̃
(3)
2 = 6β̃T q̃(2) + Φ̃(3,1) (139)

Φ̃
(4)
2 = 8β̃T C̃q̃(2) + Φ̃(4,1) (140)

Φ̃
(4)
3 = 12β̃T Ãq̃(3) + Φ̃(4,1) (141)

Φ̃
(4)
4 = 24β̃T Ãq̃(2) + 12β̃T q̃(3) + Φ̃(4,1) . (142)

Alternatively, if simplifying assumptions B(p) and C(q) are invoked with p ≥ q ≥ 1,

then one may write Φ̃
(q)
1 = qc̃q and

Φ̃
(q+1)
1 = (q + 1)β̃T c̃q (143)

Φ̃
(q+2)
1 = (q + 2)β̃T c̃q+1 (144)

Φ̃
(q+2)
2 = (q + 1)(q + 2)β̃T Ãc̃q (145)

Φ̃
(q+3)
1 = (q + 3)β̃T c̃q+2 (146)

Φ̃
(q+3)
2 = (q + 1)(q + 3)β̃T C̃Ãc̃q+1 (147)

Φ̃
(q+3)
3 = (q + 2)(q + 3)β̃T Ãc̃q+1 (148)

Φ̃
(q+3)
4 = (q + 1)(q + 2)(q + 3)β̃T ÃÃc̃q. (149)

To be more specific, the bushy tree order conditions Φ̃
(p)
1 = pβ̃c̃p−1, where c̃0 = ẽ

for the basic method, and the one-, two- and three-step predictors are

Φ
(p)
1 = p(Acp−1) (150)

Φ̄
(p)
1 = p(Bcp−1 + r1Acp−1) (151)

¯̄Φ
(p)
1 = p(Bcp−1 + r1Bc

p−1 + r2Ac
p−1) (152)

¯̄̄
Φ
(p)
1 = p(Bcp−1 + r1Bc

p−1 + r2Bc
p−1 + r3Acp−1). (153)

Predictor order conditions based on the term Φ̃ = (l + 1)(k + l + 2)β̃T C̃kÃc̃l are

59

given by

Φ = (l + 1)(k + l + 2)ACkAcl (154)

Φ̄ = (l + 1)(k + l + 2)[BCkAcl + r1ACk(Bcl + r1Acl)] (155)
¯̄Φ = (l + 1)(k + l + 2)[BCkAcl + r1BC

k(Bcl + r1Acl)

+ r2AC
k(Bcl + r1Bc

l + r2Ac
l)] (156)

¯̄̄
Φ = (l + 1)(k + l + 2)[BCkAcl + r1BC

k(Bcl + r1Acl)

+ r2BC
k(Bcl + r1Bc

l + r2Ac
l)

+ r3ACk(Bcl + r1Bc
l + r2Bc

l + r3Acl)]. (157)

These equations provide expressions for Φ̃
(3)
2 , Φ̃

(4)
2 and Φ̃

(4)
3 , or, alternatively, Φ̃

(q+2)
2 ,

Φ̃
(q+3)
2 and Φ̃

(q+3)
3 . If row simplifying assumptions are invoked, C(l + 1), these

expressions are simplified to

(l + 1)(k + l + 2)β̃T C̃kÃc̃l = (l + 1)(k + l + 2)β̃T C̃kq̃(l+1) + Φ̃
(k+l+2)
1 .(158)

One can also write the expressions for Φ̃ = (l + 1)(l + 2)(k + l + 3)β̃T C̃kÃÃc̃l as

Φ = (l + 1)(l + 2)(k + l + 3)ACkAAcl (159)

Φ̄ = (l + 1)(l + 2)(k + l + 3){BCk[AAcl]

+ r1ACk[(BA+ r1AB)cl + r21AAcl]} (160)
¯̄Φ = (l + 1)(l + 2)(k + l + 3){BCk[AAcl]

+ r1BC
k[(BA+ r1AB)cl + r21AAcl]

+ r2AC
k[(BA+ r1BB+ r2AB)cl + (r21BA+ r1r2AB)cl + r22AAc

l]} (161)
¯̄̄
Φ = (l + 1)(l + 2)(k + l + 3){BCk[AAcl]

+ r1BC
k[(BA+ r1AB)cl + r21AAcl]

+ r2BC
k[(BA+ r1BB+ r2AB)cl + (r21BA+ r1r2AB)cl + r22AAc

l]

+ r3ACk[(BA+ (r1 + r2)BB+ r3AB)cl + (r21BA+ r1r2BB+ r1r3AB)cl]

+ r3ACk[(r22BA+ r2r3AB)cl + r23AAcl]}. (162)

This provides an expression for Φ̃
(4)
4 when k = 0, l = 1, or Φ̃

(q+3)
4 when k = 0, l = q.

If row simplifying assumptions are invoked, one has

(l + 1)(l + 2)(k + l + 3)β̃T C̃kÃÃc̃l = (l + 1)(l + 2)(k + l + 3)β̃T C̃kÃq̃(l+1)

+ (l + 2)(k + l + 3)β̃T C̃kq̃(l+2)

+ Φ̃
(k+l+3)
1 . (163)

Lastly, it is useful to write β̃T Ã =
[
BA+ r1AB, r21AA

]T
for single step predictors

and

β̃T Ã =

BA+ r1BB+ r2AB
r21BA+ r1r2AB
r22AA

 , β̃T Ã =

BA+ (r1 + r2)BB+ r3AB
r21BA+ r1r2BB+ r1r3AB
r22BA+ r2r3AB
r23AA

 (164)

60

for the two- and three-step predictors. The present expressions for Φ may be related
with the expressions for Φ given by Calvo et al. [78] as, Φ = γAΦ, Φ̄ = γ(B, r1A)Φ̄
and ¯̄Φ = γ(B, r1B, r2A)Φ̃, where γ is the tree density. González-Pinto et al. [174]
offer a variable-order strategy for two-step predictors, whereby a family of highly
stable predictors are used in increasing orders so that the accuracy of the preceeding
method may be checked.

To find the predictor matrices, one solves

Be = e− η, BΦ
(p)
j = Φ̄

(p)
j (165)

Be+ Ce = e− η, CΦ
(p)
j +BΦ̄

(p)
j = ¯̄Φ

(p)
j (166)

Be+ Ce+De = e− η, DΦ
(p)
j + CΦ̄

(p)
j +B ¯̄Φ

(p)
j =

¯̄̄
Φ
(p)
j , (167)

for one-, two- and three-step predictors. Following Higueras and Roldán [201], one
may consider predictors for five-stage SDIRK4 and define the square matrices

V = {e,Φ(1)
1 ,Φ

(2)
1 ,Φ

(3)
1 ,Φ

(3)
2 } (168)

V = {e, Φ̄(1)
1 , Φ̄

(2)
1 , Φ̄

(3)
1 , Φ̄

(3)
2 }, V∗ = {(e− η), Φ̄

(1)
1 , Φ̄

(2)
1 , Φ̄

(3)
1 , Φ̄

(3)
2 } (169)

V = {e, ¯̄Φ(1)
1 , ¯̄Φ

(2)
1 , ¯̄Φ

(3)
1 , ¯̄Φ

(3)
2 }, V

∗ = {(e− η), ¯̄Φ
(1)
1 , ¯̄Φ

(2)
1 , ¯̄Φ

(3)
1 , ¯̄Φ

(3)
2 } (170)

V = {e, ¯̄̄Φ(1)
1 ,

¯̄̄
Φ
(2)
1 ,

¯̄̄
Φ
(3)
1 ,

¯̄̄
Φ
(3)
2 }, V∗ = {(e− η),

¯̄̄
Φ
(1)
1 ,

¯̄̄
Φ
(2)
1 ,

¯̄̄
Φ
(3)
1 ,

¯̄̄
Φ
(3)
2 } (171)

where the dimension of the matrices is related to the number of nonconfluent stages.
Now, one solves

BV = V∗, CV +BV = V
∗, DV + CV +BV = V∗. (172)

For cases where V is invertible (this requires that A−1 exists), one has

B = V∗V−1, C = −BVV−1 +V
∗V−1, D = −CVV−1 −BVV−1 + V∗V−1. (173)

Limiting discussion to only single-step predictors with invertibleAmatrices (SDIRKs
and DIRKs with aii 6= 0), Higueras and Roldán [201] construct predictors where
η = 0 is used [323]. Using this same single-step predictor structure, one may gen-

erate an interpolating polynomial by using U [n−1] and U
[n]
i , i = 1, 2, · · · , s to de-

termine U
[n+1]
i , i = 1, 2, · · · , s, which enables one to compute η and B without

solving the preceding order conditions. The predictor is then used in extrapolation
like in the dense-output stage-value predictors. In this case, the predictors are given
by [347]

ηi =
s∏

k=1

(
1 + cir − ck

−ck

)
, Bij =

1 + cir

cj

s∏

k=1,k 6=j

(
1 + cir − ck

cj − ck

)
(174)

where caution should be exercised on vanishing denominators. González-Pinto et
al. [175] present a variation on these single-stage predictors for high stage-order
methods. They consider two different stage-value predictions of the same stage by

61

using (174) and the analogous formula where ηi = 0. The stage-value prediction
is then equal to the latter prediction, plus the product of the inverse iteration
matrix times the difference between the two predicted values in order to introduce
a stabilizing contribution.

The predictor stability functions at stage i, R
(i)
pred(z), for (125), (126) and (127)

are then given by [173–175]

R
(i)
pred(z) = ηi +

s∑

j=1

BijR
(j)
int(z) (175)

R
(i)
pred(z) = ηi +

s∑

j=1

BijR
(j)
int(r1z)

R(z) +

s∑

j=1

CijR
(j)
int(z) (176)

R
(i)
pred(z) = ηi +

s∑

j=1

BijR
(j)
int(r2z)

R(r1z)R(z) +

s∑

j=1

CijR
(j)
int(r1z)

R(z)

+
s∑

j=1

DijR
(j)
int(z), (177)

where R
(j)
int(z) is the internal stability function, (53), at stage j. Applied to stiff

problems, R
(j)
int(−∞) = 0 implies that the starting algorithm cushions the very stiff

components [174]. Three simple things may be done to enhance predictor stability:
set ηi = 0, choose an L-stable underlying method, R(−∞) = 0, and design a method

so that R
(j)
int(−∞) = 0.

When the A-matrix is singular because the first stage is explicit, as it is with
EDIRKs, ESDIRKs and QESDIRKs, this single-step structure must be modified
[202,204]. Modified stage-value predictors may now be considered in the form

U
[n]
i+1,0 = η̂iU

[n−1] +
s−1∑

j=1

B̂ijU
[n]
j+1 (178)

U
[n]
i+1,0 = η̂iU

[n−2] +

s−1∑

j=1

B̂ijU
[n]
j+1 +

s−1∑

j=1

ĈijU
[n−1]
j+1 (179)

U
[n]
i+1,0 = η̂iU

[n−3] +

s−1∑

j=1

B̂ijU
[n]
j+1 +

s−1∑

j=1

ĈijU
[n−1]
j+1 +

s−1∑

j=1

D̂ijU
[n−2]
j+1 , (180)

where i = 1, 2, · · · , (s − 1), the matrices B̂ij , Ĉij , and D̂ij are of dimension (s −
1) × (s − 1), and η̂ is a vector of length (s − 1). The conventional Butcher array
is then decomposed according to (3). Also, b̂, ĉ and ê (composed of ones) are
vectors of length (s − 1), and B̂ = ê ⊗ b̂. The components of ̂̃c are ĉ, ĉ = ê + r1ĉ,
ĉ = ê(1+ r1)+ r2ĉ and ĉ = ê(1+ r1+ r2)+ r3ĉ. Order conditions for these methods

62

are solved by using

B̂ê = ê− η̂, B̂Φ̂
(p)
j = ̂̄Φ

(p)

j (181)

B̂ê+ Ĉê = ê− η̂, ĈΦ̂
(p)
j + B̂ ̂̄Φ

(p)

j =
̂̄̄
Φ
(p)

j (182)

B̂ê+ Ĉê+ D̂ê = ê− η̂, D̂Φ̂
(p)
j + Ĉ ̂̄Φ

(p)

j + B̂
̂̄̄
Φ
(p)

j =
̂̄̄̄
Φ
(p)

j . (183)

Higueras and Roldán [202,204] use these relations in the context of single-step predic-
tors for ODEs and index-2 DAEs. Order conditions for first-stage explicit methods
are slight modifications of those with invertible A-matrices. The difference terms
d = (1 + r1) and d = (1 + r1 + r2) will be useful. Bushy tree order conditions for
the basic method and for one-, two- and three-step predictors are

Φ̂
(p)
1 = p(Âĉp−1) (184)

̂̄Φ
(p)

1 = p(B̂ĉp−1 + r1(Âĉp−1 + a)) (185)

̂̄̄
Φ
(p)

1 = p(B̂ĉp−1 + r1B̂ĉ
p−1 + r2(Âĉ

p−1 + adp−1)) (186)

̂̄̄̄
Φ
(p)

1 = p(B̂ĉp−1 + r1B̂ĉ
p−1 + r2B̂ĉ

p−1 + r3(Âĉp−1 + adp−1)). (187)

Order conditions derived from the term Φ̃ = (l + 1)(k + l + 2)β̃C̃kÃc̃l are given by

Φ̂ = (l + 1)(k + l + 2)ÂĈkÂĉl (188)

̂̄Φ = (l + 1)(k + l + 2)[B̂ĈkÂĉl + r1ÂĈk(B̂ĉl + r1Âĉl + r1a)] (189)

̂̄̄
Φ = (l + 1)(k + l + 2)[B̂ĈkÂĉl + r1B̂Ĉ

k(B̂ĉl + r1Âĉl + r1a)

+ r2ÂĈ
k(B̂ĉl + r1B̂ĉ

l + r2Âĉ
l + r2ad

l)] (190)

̂̄̄̄
Φ = (l + 1)(k + l + 2)[B̂ĈkÂĉl + r1B̂Ĉ

k(B̂ĉl + r1Âĉl + r1a)

+ r2B̂Ĉ
k(B̂ĉl + r1B̂ĉ

l + r2Âĉ
l + r2ad

l)

+ r3ÂĈk(B̂ĉl + r1B̂ĉ
l + r2B̂ĉ

l + r3Âĉl + r3ad
l)]. (191)

Expressions for ̂̃Φ
(3)

2 , ̂̃Φ
(4)

2 and ̂̃Φ
(4)

3 or, alternatively, ̂̃Φ
(q+2)

2 , ̂̃Φ
(q+3)

2 and ̂̃Φ
(q+3)

3 may
be derived by using these relations. One can also write the expressions derived from

63

Φ̃ = (l + 1)(l + 2)(k + l + 3)β̃C̃kÃÃc̃l as

Φ̂ = (l + 1)(l + 2)(k + l + 3)ÂĈkÂÂĉl (192)

̂̄Φ = (l + 1)(l + 2)(k + l + 3){B̂Ĉk[ÂÂĉl]

+ r1ÂĈk[(B̂Â+ r1ÂB̂)ĉl + r21Â(Âĉl + a)]} (193)

̂̄̄
Φ = (l + 1)(l + 2)(k + l + 3){B̂Ĉk[ÂÂĉl]

+ r1B̂Ĉ
k[(B̂Â+ r1ÂB̂)ĉl + r21Â(Âĉl + a)]

+ r2ÂĈ
k[(B̂Â+ r1B̂B̂+ r2ÂB̂)ĉl + (r21B̂Â+ r1r2ÂB̂)ĉl +

r21B̂a+ r22Â(Âĉ
l + adl)]} (194)

̂̄̄̄
Φ = (l + 1)(l + 2)(k + l + 3){B̂Ĉk[ÂÂĉl]

+ r1B̂Ĉ
k[(B̂Â+ r1ÂB̂)ĉl + r21Â(Âĉl + a)]

+ r2B̂Ĉ
k[(B̂Â+ r1B̂B̂+ r2ÂB̂)ĉl + (r21B̂Â+ r1r2ÂB̂)ĉl +

r21B̂a+ r22Â(Âĉ
l + adl)]

+ r3ÂĈk[(B̂Â+ (r1 + r2)B̂B̂+ r3ÂB̂)ĉl + (r21B̂Â+ r1r2B̂B̂+ r1r3ÂB̂)ĉl +

r21B̂a+ (r22B̂Â+ r2r3ÂB̂)̂cl + r22B̂ad
l + r23Â(Âĉl + adl)]}. (195)

These equations provide an expression for ̂̃Φ
(4,4)

when k = 0, l = 1, or ̂̃Φ
(q+3,4)

when
k = 0, l = q. To solve for the predictor matrices, one may consider a nonconfluent
five-stage, stage-order two ESDIRK and define the square matrices

V̂ = {ê, Φ̂(1)
1 , Φ̂

(2)
1 , Φ̂

(3)
1 } (196)

V̂ = {ê, ̂̄Φ
(1)

1 , ̂̄Φ
(2)

1 , ̂̄Φ
(3)

1 }, V̂∗ = {(ê− η̂), ̂̄Φ
(1)

1 , ̂̄Φ
(2)

1 , ̂̄Φ
(3)

1 } (197)

V̂ = {ê, ̂̄̄Φ
(1)

1 ,
̂̄̄
Φ
(2)

1 ,
̂̄̄
Φ
(3)

1 }, V̂∗ = {(ê− η̂),
̂̄̄
Φ
(1)

1 ,
̂̄̄
Φ
(2)

1 ,
̂̄̄
Φ
(3)

1 } (198)

V̂ = {ê, ̂̄̄̄Φ
(1)

1 ,
̂̄̄̄
Φ
(2)

1 ,
̂̄̄̄
Φ
(3)

1 }, V̂∗ = {(ê− η̂),
̂̄̄̄
Φ
(1)

1 ,
̂̄̄̄
Φ
(2)

1 ,
̂̄̄̄
Φ
(3)

1 }, (199)

where the dimension of the matrices is related to the number of nonconfluent stages.
Now, one must solve

B̂V̂ = V̂∗, ĈV̂ + B̂V̂ = V̂
∗, D̂V̂ + ĈV̂ + B̂V̂ = V̂∗. (200)

In cases where V̂ is invertible (this requires that Â−1 exists), one has B̂ = V̂∗V̂−1

and

Ĉ = −B̂V̂V̂−1 + V̂
∗V̂−1, D̂ = −ĈV̂V̂−1 − B̂V̂V̂−1 + V̂∗V̂−1. (201)

Higueras and Roldán [201] supplement their single-stage predictor, (125), with a
strategy described by Hairer and Wanner [193] and used in the SDIRK4 code: they
use early stage values to predict later stage values. Originally this strategy was based

on the Φ
[p]
j vectors, but Higueras and Roldán also extend it to include Φ̄

[p]
j vectors.

Before putting these order conditions to use, one may define Z
[n]
i = U

[n]
i − U [n]

64

associated with stage i at t[n] + ci∆t. The starting guess for stage i is then U
[n]
i,0 =

U [n]+Z
[n]
i,0 . Hairer and Wanner propose to estimate Z

[n]
i,0 by using Z

[n]
i,0 =

∑i−1
j=1 αjZ

[n]
j

where the values αj may be precomputed for each stage. Depending on how many
stages of the current step one has completed, one obtains different orders of accuracy.

Considering a five-stage SDIRK such as SDIRK4, Z
[n]
2 may be computed to first-

order accuracy by using α1 = c2/c1. If the first two (three) stages of an SDIRK

have been computed then Z
[n]
3 (Z

[n]
4) may be computed to second-order accuracy by

using
(

c1 c2
(Ac)1 (Ac)2

)(
α1

α2

)
=

(
c3

(Ac)3

)
(202)

c1 c2 c3
(Ac)1 (Ac)2 (Ac)3
ϕ
(3)
1 ϕ

(3)
2 ϕ

(3)
3

α1

α2

α3

 =

c4
(Ac)4
ϕ
(3)
4

 , (203)

where ϕ(3) is some combination of the two third-order trees, Ac2 and A2c. Note

that these terms included are simply proportional to the Φ
[p]
j given above. On the

fifth-stage, a third-order approximation may be used

c1 c2 c3 c4
(Ac)1 (Ac)2 (Ac)3 (Ac)4(
Ac2

)
1

(
Ac2

)
2

(
Ac2

)
3

(
Ac2

)
4(

A2c
)
1

(
A2c

)
2

(
A2c

)
3

(
A2c

)
4

α1

α2

α3

α4

 =

c5
(Ac)5(
Ac2

)
5(

A2c
)
5

 . (204)

Hairer and Wanner use dense output for the first stage of SDIRK4, α1 = c2/c1 for
stage two, and (202), (203), and (204) for latter stages. Higueras and Roldán [201]
found best results for this stage-order one method by using (125) and (165) to predict
the first two stages and (203) and (204) for the fourth- and fifth stages. The third
stage could be predicted with either (202) or (205) and (206). For EDIRKs, ES-
DIRKs and QESDIRKs, one must increase the subscripts by one. If row-simplifying
assumption C(η) is being used, the selection of order conditions must respect po-
tentially redundant conditions. This same strategy may also use stage information
from the latter stages of the previous step. For instance, to compute

U
[n]
3 = α1U

[n]
3 + α2U

[n]
4 + α3U

[n]
5 + α4U

[n+1]
1 + α5U

[n+1]
2 (205)

one solves

1 1 1 1 1
c3 c4 c5 c1 c2

(Ac)3 (Ac)4 (Ac)5

(
Φ̄
[2]
1

)
1

(
Φ̄
[2]
1

)
2(

Ac2
)
3

(
Ac2

)
4

(
Ac2

)
5

(
Φ̄
[3]
1

)
1

(
Φ̄
[3]
1

)
2(

A2c
)
3

(
A2c

)
4

(
A2c

)
5

(
Φ̄
[3]
2

)
1

(
Φ̄
[3]
2

)
2

α1

α2

α3

α4

α5

=

1
c3(

Φ̄
[2]
1

)
3(

Φ̄
[3]
1

)
3(

Φ̄
[3]
2

)
3

.(206)

Notice that when stages from two steps are involved, the summation is over U
[n]
i and

U
[n]
i rather than Z

[n]
i . This strategy may be extended to include additional prior

steps by using order conditions based on two- and three-step predictors.

65

2.19 Discontinuities

In the course of integrating the ODE

dU

dt
= F (U(t), t) (207)

the RHS function, F (U(t), t), or one of its elementary differentials may become dis-
continuous [81,96,138,142,166,297,325,380,427]. Examples of situations where this
may occur include the time-dependent temperature in a room when a thermostat is
employed or the time dependent velocity of an object which collides with another ob-
ject. In computer codes used to solve time-dependent partial differential equations,
temporal discontinuities may arise by changes in boundary conditions or changes
within a submodel caused by conditional statements. If Runge-Kutta methods at-
tempt to integrate over this discontinuity, both local and global errors will likely
increase unless proper care is taken by the algorithm. A function F (U(t), t) has a
discontinuity of order q − 1 if at least one of the partial derivatives with respect to
time is discontinuous of order q − 1, but all partial derivatives with respect to time
of order < q − 1 are continuous. Let FL(U(t), t) and FR(U(t), t) be the functions
to the left and right, respectively, of the discontinuity and let a discontinuity be
located at td. The size of the qth-order discontinuity is given by

d(q−1)FL

dt(q−1)

∣∣∣
t+
d

− d(q−1)FR

dt(q−1)

∣∣∣
t+
d

= Kq, (208)

where the functions are evaluated immediately to the right of the discontinuity,
t+d . Only bounded discontinuities will be considered, i.e., Kq is finite. If at some
value of t = ts, F (U(t), t) becomes infinite, then a singularity has been encountered.
Discussions of singular initial value problems may be found in the literature [127,
147,249,260,261,418].

Some discontinuities may be anticipated while others may not. Those that are
anticipated are often accompanied by switching functions, g(U(t), t). This function,
g(U(t), t) = 0, defines the discontinuity hypersurface. Shampine and Thompson
[380] consider well-posedness in this situation. If the integration is well-posed on
the interval [a, td] with U(a) = A, then a small perturbation to the initial condition;
U(a) = A + α will give rise to a small perturbation in UL(t) by the amount δUL.
This then induces a small change in the location of the discontinuity; δt. Taking the
first terms of a Taylor series expansion about U(t) and td, where g(U(td), td) = 0,

g(UL(td + δt) + δUL, td + δt) = g(UL(td), td) +
∂g

∂U

∣∣∣
td
δUL

+

(
∂g

∂t

∣∣∣
td
+

∂g

∂U

∣∣∣
td

∂U

∂t

∣∣∣
td

)
δt+ · · ·

= 0 (209)

Hence,

δt = − ∂g

∂U

∣∣∣
td

(
∂g

∂t

∣∣∣
td
+

∂g

∂U

∣∣∣
td

∂U

∂t

∣∣∣
td

)−1

δUL. (210)

66

Provided that the denominator of the above expression does not vanish, the problem
is well-posed with δUL proportional to δt. Another aspect of well-posedness is
the transversality condition. Mannshardt [297] defines a tranversality condition
associated with g(U(t), t). This condition requires that g(U(t), t) change sign across
the discontinuity, or

dg(U(t), t)

dt

∣∣∣
t−
d

≥ G ;
dg(U(t), t)

dt

∣∣∣
t+
d

≥ G (211)

for some constant G > 0. If this condition were not to hold, solutions could slide
along the switching hypersurface or along intersections of multiple switching hyper-
surfaces. Lastly, multiple simultaneous events could lead to an ill-posed problem.
Events must be sufficiently isolated so that the numerical method is able to distinuish
between adjacent events, and ensures that the events occur in the proper order. As-
sociated with questions of well-posedness are those of convergence [297,380].

Managing discontinous RHS functions is typically done using a three step pro-
cess. First, the event must be detected. This is often accomplished by observing
the output of an error estimator. If there is sufficient reason to believe that a
discontinuity has just been encountered, the second step is to locate the event.
Depending on the objective, the event location can be determined as precisely as
needed. Lastly, once the discontinuity has been located to the required precision
based on the user-specified local error tolerance, the third step is to cross the discon-
tinuity. As Runge-Kutta methods are self-starting, restarting the integration after
the discontinuity has been crossed requires no special treatment.

In cases where an event function is available, these tasks become more straight-
forward. Carver [96] differentiates the event function to write a differential equation
with its initial condition

dg

dt
= g′ ; g0 = g(U(t0), t0) (212)

which is integrated along with the original system of ODEs. Typically, an event
would be detected during an integration by looking for a sign change in the event
function. Carver defines s1 = gn∗gn+1 and s2 = g

′
n∗g

′
n+1. With these two quantities,

he is able to determine whether a discontinuity is present between t[n] and t[n+1] and
how the integration should proceed in the following three cases:

• s1 > 0 and s2 > 0: No discontinuity is present between t[n] and t[n+1].

• s1 < 0 and s2 > 0: There is at least one discontinuity in the interval. One
event location can be computed by solving g(U(t), t) = 0 for t.

• s1 > 0 and s2 < 0: There are at least two discontinuities in the interval. The
step-size should be reduced until less than two discontinuities exist on the
interval.

At this point, the event has been detected and approximately located but not
crossed.

67

Event detection, location and crossing often occur in the general situation where
no event function is available. Several general criteria have been presented in the
literature to detect the presence of a discontinuity in the course of integrating first-
order ODEs. They share the objectives of being inexpensive and relying on func-
tionality already present in the integration algorithm. Regardless of which criterion
is chosen, discontinuities having large values of q but small values of Kq may go un-
detected. Further, since local error estimates are used in event detection, lax local
error tolerances may also contribute to a discontinuity going undetected. Rather
than going undetected, caution should be made to ensure that a discontinuity is not
confused with rapidly varying RHS caused by numerical stiffness. If the integration
method lacks sufficient stability, discontinuity detection may be routinely activated
by stiffness.

Assume that the integration has successfully stepped from t[n−1] to t[n] and is

now attempting to step from t[n] to t[n+1] using an initial step-size of (∆t)
[n]
1 . Assume

that the step is rejected by the error controller. A rejected step is typically when
event detection is initiated. Gear and Østerby [166] recompute a new step-size to

be used on the failed step, (∆t)
[n]
2 . A discontinuity is suspected if either criterion is

met:

• (GØ1) 2(∆t)
[n]
2 < (∆t)

[n]
1 then a discontinuity is suspected of being in the

interval {t[n], t[n] + (∆t)
[n]
1 }.

• (GØ2) There are two successive failed steps, i.e., both (∆t)
[n]
1 and (∆t)

[n]
2 result

in failed steps. In this case, a discontinuity is suspected of being in the interval

{t[n], t[n] + (∆t)
[n]
2 }.

Enright et al. [142] suspect a discontinuity if:

• (E1) After a step from t[n] to t[n+1] has been rejected j-times, it is accepted on

the (j+1)-th attempt with the step-size (∆t)
[n]
j+1. A new step-size is estimated

from t[n+1] to t[n+2] as (∆t)
[n+1]
1 . If (∆t)

[n+1]
1 ≥ 2(∆t)

[n]
j+1, then a discontinuity

is supected of being in the interval {t[n+1], t[n+1] + (∆t)
[n]
j+1}.

Lastly, Calvo et al. [81] suspect a discontinuity if either:

• Same as GØ1

• In the last three steps, the code has at least two step rejections.

In some cases, event detection should be disabled. Two such cases are immediately
following the crossing of a discontinuity and at the beginning of the integration when
approximate (nonequilibrium) initial conditions have been applied.

Event location may be approached in several different ways [81, 142, 166]. Each
of the proposed strategies are quite involved and will not be reviewed here. These
papers discuss how the discontinuity is located to an accuracy sufficient to preserve
the local error tolerance prescribed for the integration when the event is crossed.
Once the discontinuity has been crossed and the local error has been preserved, the
integration is simply resumed with the event detection logic deactivated for the first
step after the crossing.

68

2.20 Software

Early efforts at ODE software using DIRK-type methods, apart from methods em-
bedded within an application code, include DIRK, a code by R. Alexander based on
his 1977 paper [5]. The code is based primarily on stiffly-accurate, L-stable methods.
Gaffney [161] uses DIRK to compare DIRK-type methods with SIRK, BDF, cyclic
composite multistep, and blended linear multistep methods. Nørsett and Thom-
sen [315] create the SIMPLE code along with the SPARKS subroutines [211]. SIM-
PLE uses the methods given in papers by the authors [312,313]. It is a descendent
of two previous codes, SIRSPN [308] and SIRKUSS [283, 308] by Nørsett. Later,
Hindmarsh and Nørsett [207] modified SIMPLE with a Newton-Krylov method,
naming the new code KRYSI. Similar to DIRK, Hairer and Wanner [193] created
the code SDIRK4 based on two five-stage, fourth-order, L-stable, stiffly-accurate
SDIRK methods. It is freely available from the first author’s website. Compere [109]
has repackaged SDIRK4 with a C++ interface. Lastly, Olsson [321, 322] has in-
cluded the ESDIRK methods of Kværno [281] into an object-oriented solver named
GODESS. A Newton-Krylov version of GODESS has been made by Thomsen and
Bjurstrøm [42,428] for the solution of large systems of ODEs.

3 Early Methods

Probably the earliest DIRK-type methods, apart from the first-order accurate, L-
stable implicit Euler method, are the implicit midpoint and trapezoidal (Lobatto
IIIA) rules, both of which are second-order accurate and A-stable [190]. In the same
order, their tableaus are given by

1 1

1

1
2

1
2

1

0 0 0
1 1

2
1
2

1
2

1
2

(213)

In 1955, Hammer and Hollingsworth [195] gave a two-stage, third-order accurate
E(S)DIRK scheme which they stated was “exactly” the trapezoidal rule (Radau I),
and in 1964, Butcher [60] gave the three-stage, fourth-order EDIRK (Lobatto III)

0 0 0
2
3

1
3

1
3

1
4

3
4

0 0 0 0
1
2

1
4

1
4 0

1 0 1 0
1
6

4
6

1
6

(214)

Neither scheme is A-stable, but both (the implicit-midpoint and trapezoidal rules
too) have stage-order two. Also neglecting stability properties, in 1966, Ceschino
and Kunzmann [103] designed two stiffly-accurate, third- and fourth-order EDIRKs

69

by using the C(2) assumption

0 0 0 0
1
2

1
4

1
4 0

1 1
6

4
6

1
6

1
6

4
6

1
6

0 0 0 0 0
1
3

1
6

1
6 0 0

2
3

1
12

1
2

1
12 0

1 1
8

3
8

3
8

1
8

1
8

3
8

3
8

1
8

(215)

where E(y) = −(1/72)y4 and E(y) = −(7/13824)y6, respectively (40). In a more
incidental way, Ehle [136] (1969) and Chipman [106] (1971) mention several DIRK-
type methods in their respective theses. In his 1971 thesis, Alt [19, 21, 22] derives
third- and fourth-order, stage-order two, stiffly-accurate EDIRKs in three and four
stages

0 0 0 0
3
2

3
4

3
4 0

1 7
18

−4
18

15
18

7
18

−4
18

15
18

0 0 0 0 0
3
2

3
4

3
4 0 0

7
5

447
675

−357
675

855
675 0

1 13
42

84
42

−125
42

70
42

13
42

84
42

−125
42

70
42

(216)

The third-order method is characterized by A(4) = 0.1550, E(y) = (13/72)y4,
Rint(−∞) = {1,−1,−11/15}, and hence is A-stable. For the fourth-order method,
A(5) = 0.3934, E(y) = (181259/129600)y6 andRint(−∞) = {1,−1,−268/285,−379/750}
so that it is also A-stable. In unpublished lecture notes of 1973, Miller [299] con-
structs two stiffly-accurate, L-stable, DIRK methods

1
3

1
3 0

1 3
4

1
4

3
4

1
4

1 1 0 0
1
3

−1
12

5
12 0

1 0 3
4

1
4

0 3
4

1
4

(217)

More recently, the two-stage method was given again by Baker [28, 29]. Their
leading-order errors are, respectively, A(3) = 0.1550 and A(4) = 0.04944. Nørsett
[308] chose to focus on SDIRK methods in his 1974 thesis. Unlike his contempo-
raries, he was also concerned with error estimation through an embedded method
requiring an additional stage. Two of the three basic SDIRKs that he presented
were discussed previously in (50). The third method is the general solution to the
four-stage, fourth-order SDIRK configurable as either an A- or L-stable method
depending on the choice of γ.

Kurdi [278] investigated stage-order two, EDIRKs in his 1974 thesis. Both he and
Crouzeix [121] constructed the three-stage, third-order, A-stable, stiffly-accurate ES-
DIRK. In addition, he designed two fourth-order, five-stage, stiffly-accurate meth-

70

ods:

0 0 0 0 0 0
2 1 1 0 0 0
1 5

12
−1
12

2
3 0 0

1
2

5
24 0 −1

24
1
3 0

1 1
6 0 −5

12
2
3

7
12

1
6 0 −5

12
2
3

7
12

0 0 0 0 0 0
4
3

2
3

2
3 0 0 0

1 3
8

−3
8 1 0 0

1
2

35
160

−3
160 0 48

160 0
1 1

6 0 −26
54

2
3

35
54

1
6 0 −26

54
2
3

35
54

(218)

They have, from left to right, A(5) = 0.07498 and A(5) = 0.06615 while their internal
stability is characterized by Rint(−∞) = {1,−1,−3/4,−23/32, 0} and Rint(−∞) =
{1,−1,−3/4, −19/24, 0}. Crouzeix [120, 121, 123] has derived many DIRK-type
methods. His 1975 thesis offers two SDIRK methods, (50), that also appear in-
dependently in Nørsett’s 1974 thesis. These methods are third- and fourth-order
accurate. In 1977, Alexander [5] provides a review of many early efforts, as well
as additional methods which will be discussed later. In 1979, Cash [97] extends
Alexander’s paper to include embedded methods.

4 Two- and Three-stage Methods (SI = 2)

4.1 Second-Order Methods

4.1.1 ESDIRK

Three-stage, stiffly-accurate, stage-order two ESDIRKs with external error-control
take the form

0 0 0 0
2γ γ γ 0
1 (1− b2 − γ) b2 γ

bi (1− b2 − γ) b2 γ

b̂i (1− b̂2 − b̂3) b̂2 b̂3

(219)

Internal error-control for a 2(1) pair is impossible because the stage order is two.
Four degrees of freedom (DOF) are available in the main method before C(2, 2)

(a21 = γ) and τ
(1)
1 (b1 = 1 − b2 − γ) are imposed and three in the embedded

method before τ̂
(1)
1 (b̂1 = 1 − b̂2 − b̂3) is applied. A second-order, L-stable method

is constructed by solving the four equations: τ
(1,2)
1 = p2 = q

(2)
2 = 0, to find that

b2 = (1 − 2γ)/(4γ), A(3) = (1 − 6γ + 6γ2)/
√
18 and E4 = (2γ − 1)2(4γ − 1)/4.

A third-order L-stable method is impossible. For L-stability, p2 = 0 and, hence, γ
must be a root of the polynomial 2γ2−4γ+1 = 0 or γ = (2±

√
2)/2. Each value also

ensures I-stability because E4 remains non-negative as long as γ ≥ 1/4. To attain
higher order dissipation errors, one may obtain E4 = 0 at γ = 1/4, 1/2. Because it is
desirable to have a value of γ as small as possible and abscissae within the integration
interval, one selects γ = (2 −

√
2)/2 ≈ 0.2929, resulting in A(3) = 0.05719. That,

with the embedded method listed below, constitutes ESDIRK2(1)3L[2]SA. Bank et

71

al. [31], and more recently Hosea and Shampine [209] and Butcher and Chen [72],

give this method. Internal stability values for the three stages are R
(i)
int(−∞) =

{1,−1, 0}. Contractivity radii may be calculated to be rF2 = 2.780 and rF∞= 2.414.

First-order, external error-control is accomplished by solving τ̂
(1)
1 = 0, p̂3 = 0 and

R̂(−∞) = p̂2/γ
2 = R̂(−∞). Selecting R̂(−∞) = γ, which prevents the main and

embedded methods from colliding and keeps R̂(−∞) reasonably small, gives

b̂2 =
γ(−2 + 7γ − 5γ2 + 4γ3)

2(2γ − 1)
, b̂3 =

−2γ2(1− γ + γ2)

(2γ − 1)
(220)

with Ê4 = −γ4(γ − 1)(γ + 1) > 0, Ê2 = −1 + 4γ − 2γ2 + 2γ3 > 0 and B(3) = 3.105,
C(3) = 0.8284 and E(3) = 2.276 when γ = (2 −

√
2)/2. The embedded method is

then A-stable with rF2 = 1.563 and rF∞= 0.7071. Hosea and Shampine [209] also
offer a method with γ = 1/4, which is not L-stable but is stiffly-accurate. In both
of their methods, which they call TR-BDF2 and TRX2, a third-order embedded
method with less desirable stability characteristics is appended to the main method
rather than a second-order one. Based on knowing only the article title and abstract,
Wen et al. [448] also study ESDIRK methods having two implicit stages.

4.1.2 SDIRK

Two-stage, stiffly-accurate, L-stable SDIRK methods allow one DOF

γ γ 0
1 (1− γ) γ

bi (1− γ) γ

b̂i (1− b̂2) b̂2

(221)

after τ
(1)
1 is enforced (b1 = 1 − γ). Solving the two order conditions necessary to

achieve second order, τ
(1,2)
1 , yields two solutions: γ = (2±

√
2)/2. Both are L-stable.

The γ = (2 −
√
2)/2 solution is the far better choice because γ is less than unity.

Moreover, the γ = (2 −
√
2)/2 solution is much more accurate: A(3) = 0.04168

versus A(3) = 1.41605. For γ = (2 −
√
2)/2, one finds D = 1.000, rF2 = 8.243

and rF∞= 2.414. This method has been given by Alexander [5], Crouzeix and
Raviart [123], and Crouzeix [121] with γ-bounds given in relation to A-stability
measures. Luo [294] uses this method for unconstrained optimization. Though
not stiffly-accurate, Fränken and Ochs [158] derive passive, L-stable, SDIRKs with
p = s = 2.

72

4.2 Third-Order Methods

4.2.1 ESDIRK

Dispensing with L-stability via the the stiffly-accurate assumption, stage-order two
ESDIRK methods are written as

0 0 0 0
2γ γ γ 0
c3 (c3 − a32 − γ) a32 γ

bi (1− b2 − b3) b2 b3

(222)

instead of (219), which permits (s2 + s+ 2)/2 = 7 degrees of freedom (DOF). The
general solution is a one-parameter family of methods, first given by Kurdi [278] and
Crouzeix [121] for c3 = 1 and later by Cooper and Sayfy [116], Crouzeix and Raviart
[123], and Shintani [384]. For A-stability, γ must be a root of p3 = 6γ2− 6γ+1 = 0
and one must ensure that the method is also I-stable. These conditions are only
possible for γ = (3+

√
3)/6 ≈ 0.7887, which implies that c2 ≈ 1.577. In terms of c3,

the rest of the solution is a32 = c3(c3 − 2γ)/4γ, b2 = (−2 + 3c3)/(12(c3 − 2γ)γ) and
b3 = (1−3γ)/(3c3(c3−2γ)). The error is given by A(4) =

√
µ0 + µ1c3 + µ2c23/(36

√
3)

where µ0 = 79+38
√
3, µ1 = −10(15+7

√
3) and µ2 = 60(2+

√
3). Internal stability is

given by R
(3)
int (−∞) = (ν0+ν1c

3+ν2c
2
3)/(2+

√
3) where ν0 = 2+

√
3, ν1 = −2(3+

√
3)

and ν2 = 3. If one wishes R
(3)
int (−∞) = 0 then c3 = (3 +

√
3)/3 −

√
(2 +

√
3)/3 ≈

0.4620 with A(4) = 0.1316. Minimum error occurs at c3 = (15 + 7
√
3)/(12(2 +

√
3))

where A(4) = 0.1270, R(−∞) = −0.7321 and R
(3)
int (−∞) = −0.2410. If c3 = 1,

the A-stable method becomes stiffly-accurate with A(4) = 0.1584 and R
(3)
int (−∞) =

R(−∞) = −0.7321. It is impossible to append a second-order, A-stable embedded
method onto this scheme. Allowing different diagonal elements, Cameron [88, 89]
offers a third-order, stiffly-accurate EDIRK. This provides little gain over the stiffly-
accurate ESDIRK. Abdalkhani [3] also offers a third-order, stiffly-accurate EDIRK.

4.2.2 SDIRK

Third-order SDIRKs using two stages are not stiffly-accurate and take the form

γ γ 0
c2 (c2 − γ) γ

bi (1− b2) b2

(223)

There are only two solutions to the order conditions of this method: γ = (3 ±√
3)/6. The larger of the two provides I-stability and was first given by Nørsett [308],

Crouzeix [120] and Scherer [357]. The Butcher array has been written in (50).
Leading-order error is A(4) = 0.1270. Androulakis et al. [23] call these coefficients
optimal. Fortunately, it is both A-stable and algebraically stable with R(−∞) =
−0.7321. It is also a passive Runge-Kutta method [158]. A second-order embedded
method is impossible with this method. Slightly related, Calahan [75] derives a
second-order method in 1968 with this form and b2 = 1/4, but in the context of
Rosenbrock methods.

73

4.3 Fourth-Order Methods

4.3.1 ESDIRK

Pursuing the maximum order possible while retaining a stage-order of two produces
two methods of fourth-order where |R(z)| → ∞ as z → −∞ because deg P (z) =
deg Q(z) + 1. Hence, despite their high-order, these methods are not useful for stiff
equations. The methods are determined by using C(2) and D(1). The first method
has γ = 1/2, c2 = 1, c3 = 1/2, a32 = −1/8, b2 = 1/6, b3 = 2/3 and A(5) = 0.01740
while the second has γ = 1/6, c2 = 1/3, c3 = 5/6, a32 = 5/8, b2 = 1/2, b3 = 2/5 and
A(5) = 0.001933. These methods have been given by Ozawa [333] in the context of
functionally fitted methods. Reconsidering these as EDIRKs to free up one DOF
for enforcing p3 = 0 causes the Butcher coefficients to become imaginary.

5 Three- and Four-stage Methods (SI = 3)

5.1 Third-Order Methods

5.1.1 ESDIRK

Stiffly accurate ESDIRK methods in four stages have (s2 − s + 2)/2 = 7 available
DOF. Stage-order two methods appear in Butcher array form as

0 0 0 0 0
2γ γ γ 0 0
c3 (c3 − a32 − γ) a32 γ 0
1 (1− b2 − b3 − γ) b2 b3 γ

bi (1− b2 − b3 − γ) b2 b3 γ

b̂i (1− b̂2 − b̂3 − b̂4) b̂2 b̂3 b̂4

(224)

To enforce third-order overall accuracy for ODEs, a stage-order of two, and L-

stability, one must satisfy the following six equations: τ
(1,2,3)
1 = p3 = q

(2)
2,3 = 0,

leaving a one-parameter family of methods in c3. The general solution is

a32 =
c3(c3 − 2γ)

4γ
, b2 =

−2 + 3c3 + 6γ(1− c3)

12γ(c3 − 2γ)
, b3 =

1− 6γ + 6γ2

3c3(c3 − 2γ)
, (225)

where c3 − 2γ 6= 0 and c3 6= 0, E4 = (1 − 12γ + 36γ2 − 24γ3)/12 and E6 =
(3γ − 1)(6γ − 1)(−1 + 9γ − 18γ2 + 12γ3)/36. Solutions do not exist for the special
cases of c3 − 2γ = 0 and c3 = 0. The general solution results in an internal stability
function and leading-order error given by

R
(3)
int (−∞) =

c23 − 4c3γ + 2γ2

2γ2
, A(4) =

√
µ0 − 20c3µ1 + 40c23µ2

1296
, (226)

where µ0 = 27 − 408γ + 2332γ2 − 6504γ3 + 9864γ4 − 7776γ5 + 2592γ6, µ1 = (1 −
6γ + 6γ2)2 and µ2 = 3 − 38γ + 162γ2 − 264γ3 + 144γ4. L-stability requires that γ
is a root of the polynomial p3 = 6γ3 − 18γ2 + 9γ − 1 = 0. One may also show that

E
(2)
int (y) = 0, E

(3)
int (y) =

c3(4γ − c3)(c3 − 2γ)2y4

4
(227)

74

so that internal I-stability is achieved on stage 3 for c3 ≥ 0 and 4γ ≥ c3. Demanding
I-stability of the step requires that E4, E6 > 0 and precludes two of the roots, leaving
γ = 0.43586652150845899941601945. This implies that for γ ≈ 0.4358 and 0 ≤ c3 ≤
1.743, the third stage is I-stable. This basic scheme has been considered by many
researchers [7, 8, 88, 89, 281, 396, 398, 426, 450, 451], though probably first by Cooper
and Sayfy [116] and later by Alexander and Coyle [8] in the context of DAEs with γ ≈
0.4039. One may optimize methods by using c3. Minimum A(4) = 0.03662 occurs at
∂A(4)

∂c3
= 0 where c3 = (3− 20γ + 24γ2)/(4− 24γ + 24γ2) and R

(3)
int (−∞) = −0.8183.

In constructing an IMEX method, Kennedy and Carpenter [255] select the nearby

point c3 = 3/5, where A(4) = 0.03663 and R
(3)
int (−∞) = −0.8057. Maintaining stiff

accuracy, Skvortsov [398] accepts L(α)-stability (α = 75.6) degrees with the goal to
reduce A(4) with his method ES33b.

One may also elect to increase an element of the stage-order vector, taking it from
{3,2,2,3} to {3,2,3,3} by selecting c3 = (3±

√
3)γ. To keep c3 less than unity, one se-

lects c3 = (3−
√
3)γ to find A(4) = 0.03693 and R

(3)
int (−∞) = −0.7321. Internal error-

control via an A- or L-stable, internal, three-stage, second-order method requires
that c3 = 1 and Ê4 = (2γ− 1)2(4γ− 1)/4 ≥ 0. Hence, γ ≥ 1/4 for A-stability of the
internally embedded method and, from before, γ = (2±

√
2)/2 for L-stability. The

embedded method is therefore A-stable but not L-stable. This scheme has been given
by Kværno [281, 282] and will be called ESDIRK3(2I)4L[2]SA. Error and stability

are given by A(4) = 0.04907, R̂(−∞) = R
(3)
int (−∞) = (2γ2 − 4γ+1)/2γ2 ≈ −0.9567,

Â(3) = 0.1120, B(4) = 1.476, C(4) = 1.912 and E(4) = 0.4380. Optimal inter-

nal stability is achieved when R
(3)
int (−∞) = 0 by setting c3 = γ(2 ±

√
2). Keep-

ing the abscissa within the current step, the c3 = γ(2 −
√
2) solution is selected

for A(4) = 0.04705. An alternative approach to internal error-control is given by
Williams et al. [450, 451] and uses the trapezoidal rule, (213), for the first two
stages; that is, γ = 1/2. The 3(2) method is A-stable and has A(4) = 0.1058

and R
(3)
int (−∞) = −0.5. Cameron [89] designs two A-stable 3(2) pairs by using the

third- and fourth-stages for his two solutions. Thomsen [426] elects to forfeit L-
stability by setting γ = 5/12 ≈ 0.4167, but achieves a 3(2) pair with Rint(−∞) =
{1,−1,−31/49, 17/125} and A(4) = 0.03291. Cameron [88] proposes a method with
internal error-control and γ = 17/50 = 0.34. Skvortsov’s [396] stiffly-accurate 3(2)
pair has γ ≈ 0.1590. Reduced storage via a van der Houwen strategy [256] requires
that a31 = b1, giving the unacceptably large value of c3 ≈ 1.825. Corresponding

error and internal stability values are A(4) = 0.1080 and R
(3)
int (−∞) = 1.394. Condi-

tional contractivity requires that all bi > 0, a criterion that cannot be met by this
single-parameter family of methods. Second-order, external error-control is accom-

plished by solving τ̂
(1,2)
1 = p̂4 = 0, R̂(−∞) = −p̂3/γ

3 = γ/2. For a A-stability, one
has

75

b̂2 =
c3(−1 + 6γ − 24γ3 + 12γ4 − 6γ5))

4γ(2γ − c3)(1− 6γ + 6γ2)

+
(3− 27γ + 68γ2 − 55γ3 + 21γ4 − 6γ5)

2(2γ − c3)(1− 6γ + 6γ2)

b̂3 =
−γ(−2 + 21γ − 68γ2 + 79γ3 − 33γ4 + 12γ5)

c3(c3 − 2γ)(1− 6γ + 6γ2)

b̂4 =
−3γ2(−1 + 4γ − 2γ2 + γ3)

(1− 6γ + 6γ2)

with Ê4 = (−1 + 12γ − 48γ2 + 72γ3 − 28γ4 + 12γ5)/4 > 0 and Ê6 = −γ6(γ −
2)(γ + 2)/4 > 0. Selecting this embedded method, L-stability and c3 = 3/5, one
may derive ESDIRK3(2)4L[2]SA where stage 3 is strongly A-stable [255]. The em-
bedded method is characterized by Â(3) = 0.02552, B(4) = 2.907, C(4) = 1.641 and
E(4) = 1.435. If c3 = 1, one may compare the nonstiffly-accurate, stage-order one
external value, Û (n+1), with the stiffly-accurate, stage-order two internal value of
Û (n+1). This comparison may provide some measure of the stiffness. In this case,
ESDIRK3(2I)4L[2]SA, one has B(4) = 3.831, C(4) = 1.912 and E(4) = 1.923 for the
externally embedded method. Alexander [7] compares a 3(2) with a 3(4) method
and finds that, due to the conservative nature of the error estimate of the 3(2) pair,
the 3(4) pair is more efficient in practice.

5.1.2 QESDIRK

One can use a stiffly-accurate QESDIRK, rather than an ESDIRK, by solving vir-
tually the identical order conditions as the increased SOV method but try to mimic

stage-order three behavior at relatively lax tolerances by reducing the error in q
(3)
2

with SOV = {3, 2, 3, 3}. As the previous ESDIRK has the unpleasantly large value
of c2 ≈ 0.8717, this QESDIRK method provides an opportunity to investigate the
utility of differing nonzero diagonal elements [227]. The Butcher array for such a
method is

0 0 0 0 0
c2 c2/2 c2/2 0 0
c3 (c3 − a32 − γ) a32 γ 0
1 (1− b2 − b3 − γ) b2 b3 γ

bi (1− b2 − b3 − γ) b2 b3 γ

b̂i (1− b̂2 − b̂3 − b̂4) b̂2 b̂3 b̂4

(228)

If c2 = 2γ, then the ESDIRK is retrieved. Table 9 lists three possible L-stable QES-
DIRKs for the smaller of the two roots giving c3. Only the case where c2 = γ seems
worthy of any further consideration; hence, we give the two nontrivial abscissae:
c2 = 4266051685502/7784516477473 and c3 = 3420827508294/7669858543565.

76

Table 9. Properties of various stiffly-accurate, L-stable, four-stage, third-order QES-
DIRKs.

γ c2 c3 A(4) R
(3)
int (−∞) q

(3)
2 D λM

min

0.43586652150845899941601945 2γ 0.5527 0.03692 −0.7321 0.1104 1.000 −0.8591
0.54801755482786778827013568 γ 0.4460 0.06742 −0.7792 0.02743 4.140 −26.67
0.61099606113865971779911435 2γ/3 0.3579 0.1029 −0.8284 0.01126 13.14 −302.3
0.69150898244044165522135159 γ/3 0.2170 0.1723 −0.9015 0.002041 102.0 −21850

5.1.3 SDIRK

Three-stage, stiffly-accurate, SDIRK methods allow (s2 − s + 2)/2 = 4 DOF and
take the form

γ γ 0 0
c2 (c2 − γ) γ 0
1 (1− b2 − γ) b2 γ

bi (1− b2 − γ) b2 γ

b̂i (1− b̂2 − b̂3) b̂2 b̂3

(229)

Solving the four order conditions necessary to achieve third-order accuracy yields a
three-method family of schemes given by

b1 =
−1 + 4γ

4β
, b2 =

−3α2

4β
, c2 =

2− 9γ + 6γ2

3α
, (230)

where α = (1 − 4γ + 2γ2) and β = (−1 + 6γ − 9γ2 + 3γ3). ¿From the three
values of γ, γ = 0.43586652150845899941601945, only one provides L-stability, with
A(4) = 0.02970, D = 1.209, bMin

i = −0.6444 and λM
Min = −1.353. This method

is given by Alexander [5] and Crouzeix and Raviart [123]. Androulakis et al. [23]
point out that minimal A(4) corresponds to a different value of γ, but the resulting
scheme is not A-stable. This same scheme is also given by Butcher [69]. Nørsett
and Thomsen [312] use the three-stage SDIRK structure without the stiffly-accurate
assumption and create a 2(3) pair, NT I with γ = 5/6, that has an algebraically
stable third-order method and an A-stable second-order method. Method NT I
has A(3) = 0.02795, Â(4) = 0.1244, R(−∞) = −17/25, and R̂(−∞) = −91/125.
Coroian [117, 118] offers several second- and third-order methods having a three-
stage SDIRK structure. Ababneh and Ahmad [2] construct a three-stage, third-
order SDIRK with γ = 5/4. Similar to his ES33b method, Skvortsov [398] accepts
L(α)-stability with the goal to reduce A(4) with his method S33b where α = 75.6
degrees.

77

5.2 Fourth-Order Methods

5.2.1 ESDIRK

Stage-order two, fourth-order ESDIRK methods in four stages

0 0 0 0 0
2γ γ γ 0 0
c3 (c3 − a32 − γ) a32 γ 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ

bi (1− b2 − b3 − γ) b2 b3 b4

(231)

that are at least A-stable constitute a two-parameter family of non-stiffly-accurate

methods in, e.g., c3 and c4 where one must solve τ
(1,2,3,4)
1 = p4 = q

(2)
2,3,4 = τ

(4)
3 =

0. Solving p4 = (1 − 12γ + 36γ2 − 24γ3) = 0 and requiring I-stability gives
γ =

(
3 + 2

√
3 cos

(
π
18

))
/6 ≈ 1.069. Taking the derivatives of A(5) with respect

to c3 and c4, the minimum error occurs in the immediate vicinity of c3 = 5/7
and c4 = 4/7, but the error is still a rather unimpressive A(5) = 0.2328. At this
same point, Rint(−∞) = {1,−1,−0.1135,−0.3543}, R(−∞) = −0.6304, b > 0 and
the four eigenvalues of M are {1.353,−0.06234, 0.02493,−0.003735}. Cooper and
Sayfy [116], Crouzeix and Raviart [123] and Shintani [384] also derive methods of
this class.

5.2.2 SDIRK

The three-stage, fourth-order, SDIRK family of methods

γ γ 0 0
c2 (c2 − γ) γ 0
c3 (c3 − a32 − a32) a32 γ

bi (1− b2 − b3) b2 b3

(232)

has three members, only one of which is A-stable; γ =
(
3 + 2

√
3 cos

(
π
18

))
/6 ≈ 1.069.

Both Nørsett [308] and Crouzeix [120] discovered this method, (50), where A(5) =
0.2570, R(−∞) = −0.6304, and the eigenvalues of M are {1.553, 0, 0}. It may be

obtained by solving B(4) for b and c2, τ
(4)
2 = τ

(3)
2 = 0 for a32 and c3 and, lastly,

τ
(4)
4 = 0 for γ. Alternatively, one could use D(1). As stated earlier, the method is
algebraically stable and therefore A-stable as well. Fränken and Ochs [158] construct
a passive DIRK analog of this class of methods along with an L-stable version that
is third-order.

5.3 Fifth-Order Methods

5.3.1 ESDIRK

Al-Rabeh [18] has designed fifth-order ESDIRK methods in four-stages by using
assumptions C(2), D(1) and the structure given in (231). Unfortunately, deg P (z)
= 1 + deg Q(z), making the methods highly inappropriate for stiff problems. Three

78

methods exist within this class corresponding to the roots of −1+15γ−60γ2+60γ3 =
0: γ = 0.659027622374092215178380771, γ = 0.231933368553030572496784561 and
γ = 0.109039009072877212324834668 where c2 = 2γ, c3 = (3− 25γ+40γ2)/(5(2γ−
1)(6γ − 1)) and c4 = 1 − γ. To complete the solution, one enforces B(4) and
solves for b, solves C(2, i), i = 3, 4 for a32 and a42 and then solves D(1, 1) for a43.
The intermediate root posseses internal stability in the far LHP and has A(6) =
0.001048. Principal errors for the larger and smaller roots are A(6) = 0.02121 and
A(6) = 0.0002032, respectively. Allowing each aii to vary (EDIRK) offers no benefit
in terms of A-stability because forcing p4 = 0 generates imaginary Runge-Kutta
coefficients. Butcher [68] derives a simple fifth-order EDIRK with A(6) = 0.0005275
where Rint(−∞) = {1,−1, 19/5,−∞} and R(−∞) = ∞ because the degree of the
numerator of R(z) minus the degree of the denominator is two.

6 Four- and Five-stage Methods (SI = 4)

6.1 Third-Order Methods

6.1.1 ESDIRK

Stiffly accurate, stage-order two ESDIRK methods in five stages

0 0 0 0 0 0
2γ γ γ 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0
1 (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

bi (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5) b̂2 b̂3 b̂4 b̂5

(233)

allow 11 DOF, or 9 after C(2, 2) and τ
(1)
1 have been applied. Although it is pos-

sible to achieve fourth-order accuracy in a stage-order two, stiffly-accurate, L-
stable ESDIRK, the resulting γ and, consequently, c2, are rather large. This
may adversely affect the convergence of the iterative method used to solve for
the stage values. It also forces c2 = 2γ out of the integration interval. To de-

sign a third-order method from this class of methods, seven conditions, τ
(1,2,3)
1 =

p4 = q
(2)
2,3,4 = 0, must be satisfied. This leaves four DOF for purposes other than

fourth-order accuracy, e.g., γ, c3, c4 and a43. From the general solution, one
finds E8 = γ8, E6 = (1 − 12γ + 36γ2 − 12γ3)(−1 + 12γ − 36γ2 + 36γ3)/36 and
E4 = (1−16γ+72γ2−96γ3+24γ4)/12. We do not consider the many special cases
to this solution. Third-order, L-stable methods may be found for specific values
of γ determined from the polynomials E2

6 − 4E8E4 = 0 and E4 = 0. The small-
est of the four real roots of the first polynomial constitutes the minimum value of
γ for an L-stable, stiffly-accurate method. The largest value that γ may take for
an L-stable, stiffly-accurate method is the largest value of γ that keeps E4 non-
negative. To 25 digits one may determine, as given by Hairer and Wanner, [193]

79

0.2236478009341764510696898 ≤ γ ≤ 0.5728160624821348554080014. Internal sta-
bility of the third- and fourth-stages are given by

R
(3)
int (−∞) =

c23 − 4c3γ + 2γ2

2γ2
(234)

R
(4)
int (−∞) =

γ(c24 − 4c4γ + 2γ2)− (a43c3(c3 − 2γ))

2γ3
(235)

The first vanishes when c3 = γ(2 ±
√
2), and the second vanishes when a43 =

γ(c24−4c3γ+2γ2)
c3(c3−2γ) . Several different approaches can lead to useful methods. With exter-

nal error-control, one could take advantage of the low truncation error of the second
stage relative to the second stage of the 3(2) from the previous section. Enforcing

q
(3)
3,4 = 0 and R

(4)
int (−∞) = 0, while minimizing γ with γ = 9/40 = 0.225, leads to

three methods with a SOV of {3, 2, 3, 3, 3}, c3 = (3−
√
3)γ and R

(3)
int (−∞) = −0.7321

and three with c3 = (3 +
√
3)γ and R

(3)
int (−∞) = 2.7321. Amongst the solu-

tions using c3 = (3 −
√
3)γ, the two better solutions have c4 = 4115315926441

7972126390072 and

A(4) = 0.01283 and c4 = 1108844905777
11853057145576 and A(4) = 0.002399. Order conditions for

the externally embedded scheme are τ̂
(1,2)
1 = p̂5 = p̂4 = 0 and τ̂

(3)
1 = 1/600. In-

stead of maximizing the elements of the stage-order vector, one could choose to

simply have R
(3)
int (−∞) = R

(4)
int (−∞) = 0 and find the solution having the min-

imum A(4). This occurs for γ = 9/40 = 0.225 at c3 = 9(2 +
√
2)/40 and ap-

proximately c3 = 3/5 where A(4) = 0.0007769; using the embedded method just
described, Â(3) = 0.002357, B(4) = 1.966, C(4) = 1.095 and E(4) = 2.134. The
actual mimima of the system is A(4) = 0.0007666 at γ = 9/40 where the method
is I-stable on all internal stages and, hence, A-stable on stage 2 and L-stable on
stages 3,4 and 5. This scheme, ESDIRK3(2)5L[2]SA, appears in Table 10. Note
that ai1 = ai2, i = 1, 2, . . . , s. Another option is to use L-stable internal error-

control by setting c4 = 1 and R̂(−∞) = R
(4)
int (−∞) = 0. The resulting four-stage,

second-order internally embedded method is I-stable only if both Ê6 = γ6 and
Ê4 = (−1 + 12γ − 48γ2 + 72γ3 − 24γ4)/4 are non-negative. The former simply re-
quires γ ≥ 0, while the latter additionally requires 0.1804253064293985641345831 ≤
γ ≤ 2.1856000973550400826291400. Hence, the acceptable values of γ for the main
method are a subset of those that are acceptable for an L-stable, internally embedded
method. By selecting γ = 9/40 = 0.225, both main and internal embedded methods

are L-stable. For the final degree of freedom, c3, enforcing R
(3)
int (−∞) = 0 gives

c3 = 9(2±
√
2)/40 from which one selects c3 = 9(2−

√
2)/40 to find A(4) = 0.06446.

Relaxing the stability constraint on stage three, one sets c3 = 4/5, which gives a

better method with A(4) = 0.01149 and R
(3)
int (−∞) = 17/81. As stages 2,3 and 4

are I-stable, stage 2 is strictly A-stable, stage 3 is strongly A-stable and stage 4 is
L-stable. Order conditions for the external controller are the same as those given

previously, except the last equation that is changed to τ̂
(3)
1 = 1/180. For the in-

ternally embedded method, B(5) = 1.388, C(5) = 1.613 and E(5) = 0.2678. The
externally embedded method has B(5) = 1.216 and E(5) = 0.4877. The scheme,
ESDIRK3(2I)5L[2]SA, is presented in Table 11. If one insists on keeping γ = 9/40,

80

Table 10. ESDIRK3(2)5L[2]SA.

0 0 0 0 0 0

9
20

9
40

9
40

0 0 0

9(2+
√
2)

40
9(1+

√
2)

80
9(1+

√
2)

80
9
40

0 0

3
5

22+15
√

2

80(1+
√
2)

22+15
√
2

80(1+
√
2)

−7

40(1+
√
2)

9
40

0

1 2398+1205
√
2

2835(4+3
√
2)

2398+1205
√

2

2835(4+3
√

2)

−2374(1+2
√
2)

2835(5+3
√
2)

5827
7560

9
40

bi
2398+1205

√
2

2835(4+3
√
2)

2398+1205
√

2

2835(4+3
√

2)

−2374(1+2
√
2)

2835(5+3
√
2)

5827
7560

9
40

b̂i
4555948517383
24713416420891

4555948517383
24713416420891

−7107561914881
25547637784726

30698249
44052120

49563
233080

b4 < 0 and the conditional contractivity radius is zero. Reduced storage methods

may be obtained by setting b1 = a41, along with R
(3)
int (−∞) = 0, R

(4)
int (−∞) = 0.

The resulting method has c4 =
3381838234979
7256459392385 and A(4) = 0.01226. Embedded method

order conditions are the same as those for the increased SOV scheme described pre-
viously.

6.1.2 QESDIRK

Stiffly accurate, stage-order two QESDIRK methods in five stages are given by

0 0 0 0 0 0
c2 c2/2 c2/2 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0
1 (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

bi (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5) b̂2 b̂3 b̂4 b̂5

(236)

The first matter is to establish bounds on γ for L-stability by computing E4 and
E2

6 − 4E4E6. The bounds are given in Table 12. One now enforces the follow-

ing conditions: τ
(1,2,3)
1 = p4 = q

(2)
2,3,4 = q

(3)
3,4 = 0 to arrive at a general solution

with both γ and c4 unspecified and an SOV = {3, 2, 3, 3, 3}. As the goal is to

reduce q
(3)
2 as much as possible, γ is chosen as its minimal value, and c4 is se-

lected to enforce R
(4)
int (−∞) = 0. The results are shown in Table 13, where it

appears that only the ESDIRK is useful since any decrease in c2 results in large
increases in the leading-order error and a measure of nonlinear instability. By
changing the value of γ to a value listed in Table 14, one could also pursue second-
order damping in a QESDIRK method. As QESDIRKs do not appear promising,

81

Table 11. ESDIRK3(2I)5L[2]SA.

0 0 0 0 0 0

9
20

9
40

9
40

0 0 0

4
5

19
72

14
45

9
40

0 0

1 3337
11520

233
720

207
1280

9
40

0

1 7415
34776

9920
30429

4845
9016

−5827
19320

9
40

bi
7415
34776

9920
30429

4845
9016

−5827
19320

9
40

b̂i
23705
104328

29720
91287

4225
9016

−69304987
337732920

42843
233080

Table 12. Bounds on γ for L-stability of five-stage, third-order QESDIRKs.

γ c2
0.223647800934176451069690 ≤ γ ≤ 0.5728160624821348554080013850 2γ
0.263088566496196092682671 ≤ γ ≤ 0.6961176073476085778150612858 γ
0.282563032306194734249668 ≤ γ ≤ 0.7786990388865226546221014144 2γ/3
0.305947487558948408902962 ≤ γ ≤ 0.9000310467964832748931464045 γ/3

one may create second-order damped, stiffly-accurate, ESDIRK with q
(3)
3,4 = 0 and

R
(4)
int = 0. The resulting method, ESDIRK3(2)5L[2]SA SOD has c3 = (3 −

√
3)γ,

c4 = 1538744296651/12233015540721, A(4) = 0.01806, D = 2.268 and a minimum
value for an eigenvalue of the algebraic stability matrix of −9.358.

6.1.3 SDIRK

Four-stage, stiffly-accurate, L-stable SDIRK methods contain (s2 − s + 2)/2 = 7
DOF

γ γ 0 0 0
c2 (c2 − γ) γ 0 0
c3 (c3 − a32 − γ) a32 γ 0
1 (1− b2 − b3 − γ) b2 b3 γ

bi (1− b2 − b3 − γ) b2 b3 γ

b̂i (1− b̂2 − b̂3 − b̂4) b̂2 b̂3 b̂4

(237)

and are L-stable for 0.2236478009341764510696898 ≤ γ ≤ 0.5728160624821348554080014.
Solving the four order conditions necessary to achieve third order yields a three-

82

Table 13. Properties of various stiffly-accurate, L-stable, five-stage, third-order
QESDIRKs.

γ c2 c3 c4 A(4) R
(3)
int (−∞) q

(3)
2 D λM

min

0.2250 2γ 0.2853 0.09355 0.002399 −0.7321 0.01519 1.997 −11.71
0.2250 2γ 0.2853 0.5162 0.01283 −0.7321 0.01519 1.000 −1.056
0.2250 2γ 0.2853 1.415 0.04927 −0.7321 0.01519 4.039 −7.474

0.2650 γ 0.2157 0.08115 0.01247 −0.7792 0.003102 7.056 −95.15
0.2650 γ 0.2157 0.4836 0.03059 −0.7792 0.003102 7.697 −105.9
0.2650 γ 0.2157 1.423 0.05463 −0.7792 0.003102 24.00 −243.6

0.2850 2γ/3 0.1669 0.06796 0.01945 −0.8284 0.001143 21.16 −760.0
0.2850 2γ/3 0.1669 0.4665 0.04279 −0.8284 0.001143 28.96 −1541.
0.2850 2γ/3 0.1669 1.461 0.06576 −0.8284 0.001143 79.79 −2447.

0.3100 γ/3 0.09730 0.04363 0.03054 −0.9015 0.0001839 165.3 −47810.
0.3100 γ/3 0.09730 0.4483 0.06207 −0.9015 0.0001839 259.1 −127900.
0.3100 γ/3 0.09730 1.523 0.08661 −0.9015 0.0001839 659.8 −146900.

Table 14. Values for γ second-order damped, five-stage, third-order, L-stable QES-
DIRKs.

γ c2
0.30253457818265077121644 2γ
0.35362860281293140867039 γ
0.37763483398366128533677 2γ/3
0.40527435197627562691063 γ/3

parameter family of methods

b2 =
−(−2 + 3c3 + 9γ − 12c3γ − 6γ2 + 6c3γ

2)

(6(c2 − c3)(c2 − γ))
(238)

b3 =
(−2 + 3c2 + 9γ − 12c2γ − 6γ2 + 6c2γ

2)

(6(c2 − c3)(c3 − γ))
(239)

a32 =
−(c2 − c3)(c3 − γ)(−1 + 9γ − 18γ2 + 6γ3)

(c2 − γ)(−2 + 3c2 + 9γ − 12c2γ − 6γ2 + 6c2γ2)
. (240)

Keeping γ as small as possible, γ = 9/40 is chosen. These methods are a two-

parameter family given in terms of c2 and c3. Setting ∂A(4)

∂c2
= ∂A(4)

∂c3
= 0, one finds

a nearby solution, SDIRK3M, having c2 = 7/13, c3 = 11/15 and A(4) = 0.003328,
where the absolute minimum error of the system is A(4) = 0.003321. The other
coefficients are a21 = 163/520, a31 = −6481433/8838675, a32 = 87795409/70709400,
b1 = 4032/9943, b2 = 6929/15485, b3 = −723/9272 and λM

min = −0.1128. An

83

embedded method should satisfy τ̂
(1,2)
1 = p̂4 = 0 and τ̂

(3)
1,2 6= 0. A coarse grid

numerical search was unable to find any algebraically stable four-stage, third-order,
stiffly-accurate, L-stable SDIRK methods. However, a conditionally contractive
method having rF2 = 2.279 and A(4) = 0.01167 is found at c2 = 3/4, c3 = 2/5,
a21 = 21/40, a31 = 49637/167100, a32 = −40789/334200, b1 = 118/441, b2 =
149/4410 and b3 = 557/1176. Kværnø [280] derives a 3(2) pair designed for index-
1 DAEs including a dense-output method. She sets γ = 1/4. Ten years later,
Cameron et al. [91] derive the identical method, but with a different embedded
scheme. Nørsett and Thomsen [312] generate a 3(4) pair, NT II, by using a four-
stage, nonstiffly-accurate SDIRK with γ = 5/6 and an A-stable main method. It
has A(4) = 0.1212, Â(5) = 0.5121, R(−∞) = −91/125, R̂(−∞) = −341/625 and
the main method is nearly algebraically stable, but both are A-stable. Al-Rabeh
[17] also constructs a 3(4) pair (his expressions i) and iii) with typos on b1) with
γ = 0.43586652150845899941601945, A(4) = 0.03244, Â(5) = 0.01479, R(−∞) = 0
(L-stable) and R̂(−∞) = 0.7175 (A-stable). Cameron [89] derives two 2(3) pairs
where the embedded methods are stiffly-accurate, and both methods are L-stable,
one with γ = 11/40 and the other with γ = 0.35322850954885. Coroian [119] derives
several A- and L-stable third-order SDIRKs in four-stages.

6.2 Fourth-Order Methods

6.2.1 ESDIRK

Constraining the stiffly-accurate method to have a stage-order of two, an overall

order of four and to be L-stable, one enforces nine conditions: τ
(1,2,3,4)
1 = p4 =

q
(2)
2,3,4 = τ

(4)
3 = 0, leaving a two-parameter family of methods in, e.g., c3 and c4

following the structure of (233). The general solution is given by

b2 =
3− 12γ + 4c4(−1 + 3γ)− 2c3(2− 6γ + c4(−3 + 6γ))

24γ(2γ − c3)(2γ − c4)
(241)

b3 =
φ2 − 4c4φ1

12c3(c3 − c4)(c3 − 2γ)
(242)

b4 =
φ2 − 4c3φ1

12c4(c4 − c3)(c4 − 2γ)
(243)

a32 =
c3(c3 − 2γ)

4γ
(244)

a42 =
(c4(c4 − 2γ)(−4c23φ1 − 2γφ2 + c3φ3 + 2c4φ4)

(4γ(2γ − c3)(4c3φ1 − φ2))
(245)

a43 =
(c4 − c3)c4(c4 − 2γ)φ4

c3(c3 − 2γ)(4c3φ1 − φ2)
(246)

with φ1 = (1− 6γ+6γ2), φ2 = (3− 20γ+24γ2), φ3 = (5− 36γ+48γ2), φ4 = (−1+

12γ−36γ2+24γ3), c3 6= 2γ, c4 6= 2γ, c3 6= c4, 4c3φ1 6= φ2, c3 6= 0, c4 6= −3+20γ−24γ2

4(1−6γ+6γ2)
,

c4 6= 0, E8 = (4γ − 1)(1 − 12γ + 24γ2)(1 − 16γ + 72γ2 − 96γ3 + 48γ4)/576, E6 =

(1−24γ+204γ2−768γ3+1224γ4−576γ5)/72 andR
(3)
int (−∞) = (c23−4c3γ+2γ2)/(2γ2).

84

No attempt is made to consider all special cases of this general solution because
special cases rarely prove to be the most useful methods. Solving p4 = 0 con-
strains γ to be a root of the polynomial 1 − 16γ + 72γ2 − 96γ3 + 24γ4, but I-
stability requires that both E6 and E8 be non-negative. Of the four roots to
p4 = 0, only γ ≈ 0.5728160624821348554080014 satifies all three criteria. Min-
imum A(5) for this two free-parameter family of methods may be determined by

taking ∂A(5)

∂c3
= ∂A(5)

∂c4
= 0 where c3 ≈ 1308256777188

2690004194437 , c4 ≈ 2026389075477
2726940318254 , R

(3)
int (−∞) =

−0.3376, R
(4)
int (−∞) = 0.1327, and A(5) = 0.03855. Nearby, at c3 = 1/2 and

c4 = 3/4, ESDIRK4(3)5L[2]SA has R
(3)
int (−∞) = −0.3648, R

(4)
int (−∞) = 0.03237,

A(5) = 0.03857. This method has been previously given by Kennedy and Carpen-
ter as part of ARK4(2)5L[2]SA [255]. Both methods are I-stable on stages 2, 3
and 4 and, hence, these stages are strongly A-stable. Internal error-control may
use either a second- or third-order method. Embedding an A-stable, four-stage,
third-order method within the five-stage, fourth-order method requires that both
Ê6 = (1 − 12γ + 36γ2 − 24γ3) and Ê8 = (1 − 3γ)(1 − 6γ)(−1 + 9γ − 18γ2 + 12γ3)
be non-negative. This occurs for 1/3 ≤ γ ≤ 1.068579021301628806418834, and,
hence, one is assured an A-stable, internally embedded method. From the previ-
ous section, L-stability requires that γ ≈ 0.43586652150845899941601945. Mini-
mally, two additional conditions must be enforced with the two remaining DOF:

c4 = 1 and τ̂
(3)
1 = 0 (C(3, 4)). The method, first given by Kværnø [281], has

c3 = 2γ(2−9γ+12γ2)
1−6γ+12γ2 , R

(3)
int (−∞) = −0.5415, R

(4)
int (−∞) = −0.5525, A(5) = 0.04506,

B(5) = 2.588, C(5) = 3.059 and E(5) = 0.5157. It will be referred to as ES-
DIRK4(3I)5L[2]SA. It is also strongly A-stable on stages 2, 3 and 4. Another option
for an internally embedded method is to relax the order requirement to second-order
and use the extra DOF to enforce L-stability of the embedded method, as shown in

the previous section. Choosing c4 = 1 and c3 =
(3γ−1)(1−14γ+50γ2−56γ3+16γ4)

−1+18γ−100γ2+224γ3−192γ4+48γ5 gives

R
(3)
int (−∞) = −0.3080, R

(4)
int (−∞) = 0, and A(5) = 0.04423. Increasing the SOV from

{4,2,2,2,4} to {4,2,3,3,4} is accomplished by enforcing C(3, 3) and C(3, 4). Doing
this gives c3 = (3 ±

√
3)γ; however, if consideration is limited to c3 = (3 −

√
3)γ,

then c4 = 3(3+
√
3−4(5+

√
3)γ+24γ2)

4(3+
√
3−3(6+

√
3)γ+18γ2)

, R
(3)
int (−∞) = −0.7321, R

(4)
int (−∞) = 0.7189, and

A(5) = 0.04201. Cameron [89] derives a similar general solution without using c3 as
a parameter. Storage reduction [256] may be accomplished by setting c4 = 5/6 and

a41 = b1 via c3 = 11287892608407
18061209278123 where R

(3)
int (−∞) = −0.5869, R

(4)
int (−∞) = −0.5017

and A(5) = 0.04043. Lastly, one might wish to maximize the contractivity radius. A
computer search shows that it is likely impossible to simultaneously have all positive
values of bi therefore, the radius of conditional contractivity is likely zero.

Third-order, external error-control is accomplished by solving τ̂
(1,2,3)
1 = p̂5 = 0,

and R̂(−∞) = p̂4/γ
4 = −γ/3, yielding

b̂5 =
4γ2(−1 + 9γ − 18γ2 + 6γ3 − 2γ4)

(−1 + 12γ − 36γ2 + 24γ3)
(247)

b̂4 =
−γφ1(−3 + 4c3 + 20γ − 24c3γ − 24γ2 + 24c3γ

2)

3c4(c4 − c3)(c4 − 2γ)(−1 + 12γ − 36γ2 + 24γ3)2
(248)

85

b̂3 =
1− 3b̂5 − 3b̂4c

2
4 − 3γ + 6b̂5γ + 6b̂4c4γ

3c3(c3 − 2γ)
(249)

b̂2 =
2− 6b̂5 − 3c3 + 6b̂5c3 + 6b̂4c3c4 − 6b̂4c

2
4

12γ(2γ − c3)
, (250)

with φ1 = (2−43γ+336γ2−1194γ3+1966γ4−1336γ5+168γ6+96γ7) and yielding
Ê10 = 0, Ê8 = −γ8(γ − 3)(3 + γ)/9 > 0, Ê6 = (−1 + 24γ − 216γ2 + 912γ3 −
1872γ4 + 1716γ5 − 336γ6 − 144γ7)/36 > 0 and Ê4 = (1 − 16γ + 72γ2 − 96γ3 +
24γ4+8γ5)/12 > 0. Therefore, the exterior embedded method is I-stable and hence
A-stable but not L-stable. ESDIRK4(3)5L[2]SA, with c3 = 1/2 and c4 = 3/4, has
B(5) = 1.767, C(5) = 2.744 and E(5) = 1.324. For the externally embedded method
of ESDIRK4(3I)5L[2]SA, one has Â(4) = 0.03019, B(5) = 1.766, C(5) = 3.059 and
E(5) = 1.492. Skvortsov [396,398] also constructs a stiffly-accurate, stage-order two
ESDIRK but chooses γ ≈ 0.2204 so that the method is only L(α)-stable.

6.2.2 QESDIRK

The primary shortcoming of the five-stage, fourth-order ESDIRK is the large value
of γ and consequently c2. By allowing a22 6= a33 = a44 = a55 with a QESDIRK and
retaining the same order conditions as the SOV = {4, 2, 3, 3, 4} ESDIRK method

described previously, one may also reduce the value of q
(3)
2 to mimic stage-order

three behavior at relatively lax tolerances. The Butcher array is that found in
(236), and solutions use the smaller of the values for c3 derived from a quadratic
solve. If c2 = 2γ, then the ESDIRK is retrieved. Table 15 lists three possible
QESDIRKs. Note that the values of γ come from the upper limits listed in Table
12. As with the four-stage QESDIRK, only the case where c2 = γ seems worthy
of any further consideration; hence, we give the three nontrivial abscissae: c2 =
10393270312171/14930336774230, c3 = 12329209447232/21762223217049, and c4 =
2190473621641/2291448330983.

Table 15. Properties of various stiffly-accurate, L-stable, five-stage, fourth-order
QESDIRKs.

γ c2 c3 c4 A(5) R
(3)
int (−∞) R

(4)
int (−∞) q

(3)
2 D λM

min

0.5728 2γ 0.7263 0.7979 0.04201 −0.7321 −0.7189 0.2506 3.490 −22.78
0.6961 γ 0.5665 0.9559 0.05226 −0.7792 −0.6417 0.05662 2.721 −2.824
0.7787 2γ/3 0.4562 1.023 0.08263 −0.8284 −0.6618 0.02332 11.00 −8.330
0.9000 γ/3 0.2825 1.080 0.1677 −0.9015 −0.9685 0.004500 103.6 −75.50

6.2.3 SDIRK

Attempting a fourth-order, four-stage, stiffly-accurate, L-stable SDIRK, the exact

solution for the third-order method is used. Upon solving τ
(4)
1,2 = 0, one may express

both τ
(4)
3 and τ

(4)
4 as polynomial functions of γ alone. The first has five real roots

86

while the second has four. There are no common roots; hence, there are no fourth-
order solutions to this scheme, as proven by Alexander [5].

Relenting on the desire for stiffly-accurate methods, one may derive a two-
parameter family (c3 and c4) of L-stable, fourth-order methods with c2 = (3γ(−1+
2γ)2)/(1 − 6γ + 12γ2) and a non-stiffly-accurate analog of (237), implying that
γ = 0.5728160624821348554080014 and c2 ≈ 0.02429. This method is derived by

solving τ
(1,2,3,4)
1 for b and τ

(3)
2 = τ

(4)
2,3,4 = 0 for a32, a42, a43 and c2. The minimal

error solution has A(5) = 0.03202 and D = 3.469, but also has a very large negative
eigenvalue of the algebraic stability matrix: −101.3. This situation occurs in the
immediate vicinity of c3 = 11/20 and c4 = 7/9. A more useful solution might be
at c3 = 5/7 and c4 = 1/4 with A(5) = 0.05008 and D = 0.7143. Nørsett [308] has
investigated this family of methods. In two papers, Jawais et al. [241, 242] study
four-stage SDIRKs applied to linear ODEs. These methods are fourth-order on lin-
ear ODEs but only third-order on nonlinear ODEs. Coroian [119] derives an A- and
an L-stable fourth-order SDIRK in four-stages.

6.3 Fifth-Order Methods

6.3.1 ESDIRK

Before attempting to construct a fifth-order ESDIRK in five-stages, one may look
at Table 4 to see that not even A-stable methods are possible. A-stability requires
that p5 = (1− 20γ+120γ2− 240γ3+120γ4)/120 = 0. Solving p5 = 0 produces four
roots: γ = 0.09129173346525076086032944, γ = 0.1744841756515234920453601,
γ = 0.3888576711028921132337183, and γ = 1.345366419780333633860592; how-
ever, none of these values give rise to a positive semidefinite E-polynomial. Hence,
none of the methods can be recommended for general stiff equations. However, if
one were to be tested, the γ ≈ 0.3889 root might work best where R(−∞) = 1.038.
The form of the method is (233) without the stiffly-accurate assumption. One may

construct this family of methods by solving τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5 = τ

(4)
3 = τ

(5)
4,5,8 = 0.

At γ ≈ 0.3889, c4 = 17/27 and c5 = 13/16, A(6) = 0.002758 and the largest internal
stability value in the far LHP is−1.755 on stage four. Minimum A(6) for each of these
roots, in ascending magnitude of γ, is A(6) = 0.0004670, 0.0008287, 0.002758, 0.9835.
As is commonly observed, smaller values of γ generally correspond to smaller values
of the leading order error. Kraaijevanger [266] constructs a fifth-order EDIRK with
a55 = 0 and A(6) = 0.0002604, in the interest of studying nonlinear contractivity,
but the method has Rint(−∞) = {1,−1, 9,−8,∞}.

6.4 Sixth-Order Methods

6.4.1 EDIRK

Al-Rabeh [18] has computed a sixth-order EDIRK in five-stages, four of which are
implicit. It is impossible to make this family of methods A-stable since |R(z)| → ∞
as z → −∞ because deg Q(z) = deg P (z) + 1. Al-Rabeh uses assumptions C(2)
and D(2) to derive a method with a33 < 0; however, the method can also be

87

derived by using only C(2) and D(1) and solving τ
(1,2,3,4,5,6)
1 = q

(2)
2,3,4,5 = r

(1)
1,2,5 =

τ
(5)
4 = τ

(6)
4,6 = 0. From this two-parameter family of methods, one may set a22 =

a33 = a44 = γ, where γ > 0 is one of the roots of −1 + 18γ − 90γ2 + 120γ3 = 0;
γ = 0.09484726491451296849036080, γ = 0.1881284503958047052442961 and γ =
0.4670242846896823262653431

0 0 0 0 0 0
2γ γ γ 0 0 0
1/2 (1/2− a32 − γ) a32 γ 0 0
1− 2γ (1− a42 − a43 − 3γ) a42 a43 γ 0
1 (1− a52 − a53 − a54 − γ) a52 a53 a54 0

bi b1 b2 b3 b2 b1

(251)

Note the symmetry of b and c (See §(2.8)). Other coefficients are given by b1 =

(1 − 20γ + 40γ2)/(120γ(−1 + 2γ)) b2 = −1
(
120γ(−1 + 2γ)(−1 + 4γ)2

)−1
, b3 =(

8(1− 10γ + 20γ)2
)
/
(
15(−1 + 4γ)2

)
, a32 = (1−4γ)/(16γ), a42 = −((−1+2γ)(−1+

4γ) (3−40γ+80γ2))/(4γ), a43 = 4(−1+2γ)(−1+4γ) (1−10γ+20γ2), a52 = (1−10γ+
20γ2) (−3+40γ−128γ2+128γ3)/

(
4γ(−1 + 4γ)2(1− 20γ + 40γ2)

)
, a53 = (−4(−1+

2γ) (1 − 12γ + 16γ2) (1 − 10γ + 20γ2))/
(
(−1 + 4γ)2(1− 20γ + 40γ2)

)
and a54 =

γ
(
(−1 + 4γ)2(1− 20γ + 40γ2)

)−1
. For γ ≈ 0.47, A(7) = 0.003793 and internal

stability for far LHP eigenvalues is Rint(−∞) = {1,−1,−0.5681, 0.5587,−∞}, for
γ ≈ 0.19; A(7) = 0.0002288 and Rint(−∞) = {1,−1,−0.7837, 0.3629,−∞}; and for
γ ≈ 0.095, A(7) = 0.00004368 and Rint(−∞) = {1,−1, 4.352, −21.92, −∞}.

7 Five- and Six-stage Methods (SI = 5)

7.1 Fourth-Order Methods

7.1.1 ESDIRK

Six-stage, stage-order two, stiffly-accurate ESDIRK methods

0 0 0 0 0 0 0
2γ γ γ 0 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0 0
c5 (c5 − a52 − a53 − a54 − γ) a52 a53 a54 γ 0
1 (1− b2 − b3 − b4 − b5 − γ) b2 b3 b4 b5 γ

bi (1− b2 − b3 − b4 − b5 − γ) b2 b3 b4 b5 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5 − b̂6) b̂2 b̂3 b̂4 b̂5 b̂6

(252)

provide 16 DOF. Two of these are quickly dispensed with via C(2, 2) and τ
(1)
1 . L-

stable methods may be found for a range γ values determined from the zeros of the
polynomials E2

8 − 4E10E6 = 0, and E6 = 0 where E10 = γ10, E8 = (−1 + 40γ−
640γ2+ 5280γ3− 24240γ4+ 62400γ5− 86400γ6+ 57600γ7− 11520γ8

)
/576, E6 =

88

(1− 30γ+ 330γ2− 1680γ3+ 3960γ4− 3600γ5+ 720γ6
)
/72. The first polyno-

mial has 12 complex roots and four real roots. The smallest of the real roots
constitutes the minimum value of γ for a six-stage, fourth-order, L-stable, stiffly-
accurate method. The largest value that γ may take for these methods is the
largest value of γ that keeps E6 non-negative. It has two complex roots and four
real roots. To 25 digits, one may determine, as have Hairer and Wanner [193],
0.2479946362127474551679910 ≤ γ ≤ 0.6760423932262813288723863. As smaller
values of γ are generally more desirable, one can use the value γ = 1/4 for simplic-
ity. Methods may be designed by using either C(2) or a truncated version of C(3).

Using C(2), one solves at least τ
(1,2,3,4)
1 = p5 = q

(2)
2,3,4,5 = τ

(4)
3 = 0, which leaves six

DOF to optimize the method based on other considerations. Choosing a truncated

C(3), one enforces at least τ
(1,2,3,4)
1 = p5 = b2 = q

(2)
2,3,4,5 = q

(3)
3,4,5 = τ

(4)
3 = 0, leav-

ing three DOF for optimization. With such a large number of residual DOF, there
are many optimization strategies. Internal stability and leading-order error are the

primary concerns. Using C(2) and enforcing R
(i)
int(−∞) = 0 at stages i = 3, 4, 5,

the system may be reduced to one depending on c4, c5 and γ = 1/4. Satisfying

R
(3)
int = 0 requires c3 = γ(2 ±

√
2). Solving ∂A(5)/∂c4 = 0 and ∂A(5)/∂c5 = 0 for

each case, one finds c4 ≈ 212
347 , c5 ≈ 357

341 and A(5) = 0.001778 for c3 = γ(2 −
√
2),

and c4 ≈ 71
686 , c5 ≈ 130

199 and A(5) = 0.002331 for c3 = γ(2 +
√
2). A third-order,

L-stable, externally embedded scheme is added to each of these methods by solving

τ̂
(1,2,3)
1 = p̂6 = p̂5 = 0, and τ̂

(4)
1 = ±1/1000, where the c3 = γ(2 −

√
2) solu-

tion uses τ̂
(4)
1 = +1/1000, and the c3 = γ(2 +

√
2) solution uses τ̂

(4)
1 = −1/1000.

For c3 = γ(2 −
√
2), one sets c4 = 5/8, and c5 = 26/25 to get A(5) = 0.001830,

D = 1.585, B(5) = 1.297, C(5) = 1.151, E(5) = 0.5744, Eig(M) = {0.1978, −0.1971,
0.06250, −0.02687, −0.006706, 0.001393} and the smallest value of bi = −0.1083.
The method is I-stable on all internal stages and therefore A-stable on stage 2 and
L-stable on stages 3, 4, 5 and 6. This nonconfluent method, ESDIRK4(3)6L[2]SA,
is listed in Table 16.

If internal error-control in a 4(3) pair is desired, then one may set c3 = γ(2−
√
2),

c5 = 1 and solve τ̂
(3)
1 = 0 to find c4 = (8 −

√
2 +

√
186 + 64

√
2)/40 and A(5) =

0.002254. L-stability of the five-stage, third-order, internal method requires, from
before, that 0.2236478009341764510696898 ≤ γ ≤ 0.5728160624821348554080014.
Hence, the lower bound of γ is set by the fourth-order main method, not the in-

ternally embedded third-order method. As R
(5)
int (−∞) = 0, the internally embedded

method is L-stable. An externally embedded method may be added to this scheme

by solving τ̂
(1,2,3)
1 = p̂6 = p̂5 = 0, τ̂

(4)
1 = +1/1000. The actual coefficients of ES-

DIRK4(3I)6L[2]SA are given in Table 17. Other characterizations of this confluent
method include D = 1.359, B(5) = 1.161, C(5) = 1.095 and E(5) = 0.08703 for
the internal method, B(5) = 1.679, C(5) = 1.095 and E(5) = 0.6964 for the exter-
nal method, Eig(M) = {0.0625, −0.2426, −0.05379, −0.01158, 0.01475, 0.3132},
and the smallest value of bi = −0.06251. Like ESDIRK4(3)6L[2]SA, the method
is I-stable on all internal stages and, hence, A-stable on stage 2 and L-stable on
stages 3, 4, 5 and 6. Again, an interesting feature of this class of schemes is that
ai1 = ai2. Another possibility within this family of methods is a reduced storage

89

Table 16. ESDIRK4(3)6L[2]SA with ai1 = ai2.

0 0 0 0 0 0 0

1
2 a21

1
4 0 0 0 0

2−
√

2
4 a31

1−
√

2
8

1
4 0 0 0

5
8 a41

5−7
√

2
64

7(1+
√

2)
32

1
4 0 0

26
25 a51

−13796−54539
√

2
125000

506605+132109
√

2
437500

166(−97+376
√

2)
109375

1
4 0

1 b1
1181−987

√

2
13782

47(−267+1783
√

2)
273343

−16(−22922+3525
√

2)
571953

−15625(97+376
√

2)
90749876

1
4

bi b1
1181−987

√

2
13782

47(−267+1783
√

2)
273343

−16(−22922+3525
√

2)
571953

−15625(97+376
√

2)
90749876

1
4

b̂i b̂1
−480923228411
4982971448372

6709447293961
12833189095359

3513175791894
6748737351361

−498863281070
6042575550617

2077005547802
8945017530137

scheme. By setting b1 = a51 and minimizing A(5), one finds a method at c4 = 21/20,
c5 =

11475994502638
15257702071139 and A(5) = 0.01342. It should be noted that this error is over six

times larger than the methods discussed previously. While the value of A(6) may
impact the accuracy of the method, such an increase in A(5) is an indication that the
new method is not useful. Principal error decreases with increasing c4 and decreas-
ing c5. At c4 = 11/10, A(5) = 0.01255, while at c4 = 5/4, A(5) = 0.01180. Order
conditions for the externally embedded method are the same as discussed previously

with the exception of τ̂
(4)
1 = −1/300. Methods of this general class have also been

given by Butcher and Chen [72], Skvortsov [396, 397], and Kennedy and Carpen-
ter [255] as the implicit portion of ARK4(3)6L[2]SA, all with γ = 1/4 and q(2) = 0.
Butcher and Chen’s confluent method has Rint(−∞) = {1,−1,−1/2, 7/9, 5/12, 0}
and A(5) = 0.006067. Two confluent methods by Skvortsov [397] have Rint(−∞) =
{1,−1,−1/2, 1/2,−10/31, 0} and A(5) = 0.003702 (FDIRK4b) and Rint(−∞) =
{1,−1,−7/25, 0, 13/9, 0} and A(5) = 0.001197 (FDIRK4a). Method FDIRK4b [396]
includes an embedded method. In a later paper, Skvortsov [398] designs an L(α)-
stable method with α = 89.95 degrees and A(5) = 0.002297. The method is ex-
tremely internally unstable on the fourth and fifth stages. To investigate the effects
of internal instability, five new methods have been constructed that are as iden-

tical to ESDIRK4(3)6L[2]SA as possible, except for their values of
∣∣∣R(i)

int(−∞)
∣∣∣ =

n/2, i = 3, 4, 5, n = 0, 1, · · · , 5. These schemes are listed in Table 18.

Solutions to the six-stage, fourth-order ESDIRK using a truncated form of
C(3) may also be considered. Two of the three DOF of the system may be used

to enforce R
(i)
int(−∞) = 0 at stages i = 4, 5, while the third DOF is used to

90

Table 17. ESDIRK4(3I)6L[2]SA with ai1 = ai2.

0 0 0 0 0 0 0

1
2 a21

1
4 0 0 0 0

2−
√

2
4 a31

−1356991263433
26208533697614

1
4 0 0 0

2012122486997
3467029789466 a41

−1778551891173
14697912885533

7325038566068
12797657924939

1
4 0 0

1 a51
−24076725932807
39344244018142

9344023789330
6876721947151

11302510524611
18374767399840

1
4 0

1 b1
657241292721
9909463049845

1290772910128
5804808736437

1103522341516
2197678446715

−3
28

1
4

bi b1
657241292721
9909463049845

1290772910128
5804808736437

1103522341516
2197678446715

−3
28

1
4

b̂i b̂1
−71925161075
3900939759889

2973346383745
8160025745289

3972464885073
7694851252693

−263368882881
4213126269514

3295468053953
15064441987965

select γ. With γ = 1/4, the best solution occurs at c3 = (3 −
√
3)γ, c4 =

1013918320559
1767732205903 and c5 =

11108073526079
11410400585292 where A(5) = 0.002970, D = 1.192, R

(3)
int (−∞) =

−0.7321, Eig(M) = {0.2869, −0.2659, 0.06250, −0.05517, −0.02035, 0.01571} and
(bi)Min = −0.1125. All internal stages are I-stable. An externally embedded method

may be added to this method, ESDIRK4(3)6L[2]SA C(3), by solving τ̂
(1,2,3)
1 =

p̂6 = p̂5 = 0, τ̂
(4)
1 = +1/1000. Rather than choosing γ = 1/4, one may select

γ = 0.3888576711028921132337183 to provide second-order damping to the L-stable
method. With c3 = (3 −

√
3)γ, c4 = 20232276293216

41034790913227 and c5 = 8113851548099
9094731859797 , the

method, ESDIRK4(3)6L[2]SA SOD, is characterized by A(5) = 0.01670, D = 1.000,

R
(3)
int (−∞) = −0.7321 and Eig(M)Min = −0.6705. The price of second order damp-

ing is nearly a six-fold increase in leading-order error and a larger value of γ.

7.1.2 QESDIRK

If one is to pursue a fourth-order, six-stage QESDIRK, then one must first establish
bounds on γ for L-stability by computing the roots of E6 and E2

8 − 4E6E10. These

bounds are given in Table 19. One now enforces the following conditions: τ
(1,2,3,4)
1 =

p5 = b2 = q
(2)
2,3,4,5 = q

(3)
3,4,5 = 0 and R

(4,5)
int (−∞) = 0 for an SOV = {4, 2, 3, 3, 3, 4}.

Unlike previous attempts to make useful QESDIRKs, this particular class is more
promising. Each of the two methods derived here have a value of c5 slightly beyond
the integration interval. For reference, the ESDIRK with c2 = 2γ = 250/1000

has q
(3)
2 = 0.02083, A(5) = 0.002970 and R

(3)
int (−∞) = −0.7321. Choosing c2 =

γ = 295/1000, one may derive a method with q
(3)
2 = 0.004279, Eig(M) = {2.138,

91

Table 18. Scheme properties used to investigate the effects of internal stability.

Scheme R
(3)
int (−∞) R

(4)
int (−∞) R

(5)
int (−∞) A(5) B(5) D

c3 c4 c5 A(6) E(5) ||M||
ESDIRK4(3)6L[2]SA 0 0 0 0.001830 1.279 1.585

2+
√
2

4
5
8

26
25 0.003467 0.5744 0.2875

ESDIRK4(3)6L[2]SA A +0.5 −0.5 +0.5 0.001457 1.396 1.000
2+

√
3

4
71270
106263

21677
109742 0.002533 0.4602 1.292

ESDIRK4(3)6L[2]SA B +1.0 −1.0 +1.0 0.001962 1.141 1.000
1 5495

18049
22349
34618 0.003396 0.3099 0.2811

ESDIRK4(3)6L[2]SA C +1.5 −1.5 +1.5 0.003490 1.340 1.059
2+

√
5

4
32412
102835

35893
62910 0.006150 0.5485 0.1917

ESDIRK4(3)6L[2]SA D +2.0 −2.0 +2.0 0.004193 1.462 1.112
2+

√
6

4
31838
112187

38615
73931 0.007242 0.6543 0.1794

ESDIRK4(3)6L[2]SA E +2.5 −2.5 +2.5 0.004610 1.571 1.161
2+

√
7

4
34759
129476

41609
85130 0.007980 0.7139 0.1735

−2.064, 0.08703, −0.06570, −0.01498, 0.008700}, A(5) = 0.003189, D = 9.608,

c3 = (9−
√
33)γ/4, c4 =

28354460706980
52673702457973 , c5 =

14130336836023
13580691321101 and R

(3)
int (−∞) = −0.7792.

All internal stages are I-stable. To reduce q
(3)
2 further, one may choose c2 = 2γ/3 =

320/1000 and derive a method with q
(3)
2 = 0.001618, Eig(M) = {−8.115, 8.189,

0.1024, −0.06746, −0.01210, 0.005153}, A(5) = 0.004828, D = 35.10, c3 = (2−
√
2)γ,

c4 = 1298154247449
2478647287318 , c5 = 11563539331134

11078645848867 and R
(3)
int (−∞) = −0.8284. All internal stages

are also I-stable. Note that moving from c2 = 2γ to c2 = 2γ/3 reduces q
(3)
2 by

a factor of 12.87. This method, QESDIRK4(3)6L[2]SA is presented in Table 20.

The L-stable embedded method satisfies τ̂
(1,2,3)
1 = p̂6 = p̂5 = 0, τ̂

(4)
1 = +1/1000

and has B(5) = 1.701 and E(5) = 1.515. One may also consider second-order

Table 19. Bounds on γ for L-stability of six-stage, fourth-order QESDIRKs.

γ c2
0.24799463621274745516799 ≤ γ ≤ 0.67604239322628132887239 2γ
0.29098403905817045054814 ≤ γ ≤ 0.80176329817056659341130 γ
0.31645634286204433931952 ≤ γ ≤ 0.89587590082599420564813 2γ/3
0.35017411257697641284118 ≤ γ ≤ 1.04766882255681262972286 γ/3

damping in QESDIRK methods. Values of γ to achieve this are provided in Table
21. Selecting c2 = 2γ/3 = 2a22 and setting c3 = (2−

√
2)γ, c4 = 12292408695254

15635730919643 and

c5 = 852922608017
9106346267762 . The result is QESDIRK4(3)6L[2]SA SOD with q

(3)
2 = 0.005473,

R
(3)
int (−∞) = −0.8284, Eig(M)Min = −56.61, A(5) = 0.05458 and D = 16.54. The

L-stable embedded method satisfies τ̂
(4)
1 = +1/50 to give B(5) = 1.080 and E(5) =

92

Table 20. QESDIRK4(3)6L[2]SA.

0 0 0 0 0 0 0

16
75

8
75

8
75

0 0 0 0

8(2−
√

2)
25

605497861978
9136257189845

−2127848798551
10702252975294

8
25

0 0 0

1298154247449
2478647287318

−3005106686955
6150333508049

−68662668193799
11091168490809

80786898110822
11737001380747

8
25

0 0

11563539331134
11078645848867

−26162805558846
8363194173203

−291987295964487
9066074244437

384682892278670
10959450712301

13555548451102
14148104892819

8
25

0

1 540088238697
4693226184761

0 1094762490994
7880993776667

4016564763003
7185357966874

−411820258827
3096789411938

8
25

bi
540088238697
4693226184761

0 1094762490994
7880993776667

4016564763003
7185357966874

−411820258827
3096789411938

8
25

b̂i
−374484326677
8442488809460

−41125091159938
25963879779069

24025088270494
12927594097169

5193917461301
8985383982321

−1843122001830
16078617943063

2439572212972
7960792257433

0.7701.

Table 21. Values for γ second-order damped, six-stage, fourth-order, L-stable QES-
DIRKs.

γ c2
0.38885767110289211323372 2γ
0.44773852423399424486223 γ
0.48034935707874730014389 2γ/3
0.52202633733470430577704 γ/3

7.1.3 SDIRK

Five-stage, stiffly-accurate, L-stable SDIRK methods permit (s2 − s + 2)/2 = 11
DOF as seen below

γ γ 0 0 0 0
c2 (c2 − γ) γ 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0
1 (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

bi (1− b2 − b3 − b4 − γ) b2 b3 b4 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5) b̂2 b̂3 b̂4 b̂5

(253)

Solving all eight order conditions for fourth-order classical accuracy gives a three-
parameter family of methods in γ, c3 and c4 (excluding special cases). The second
abscissa, c2, is found to be

c2 =
3γ(ϕ1 + c4ϕ1)

ϕ3 + c4ϕ4
(254)

93

with ϕ1 = (−1 + 12γ − 50γ2 + 76γ3 − 40γ4), ϕ2 = (1− 10γ + 36γ2 − 48γ3 + 24γ4),
ϕ3 = (−1 + 14γ − 72γ2 + 150γ3 − 120γ4) and ϕ4 = (1− 12γ + 54γ2 − 96γ3 + 72γ4).
The remaining coefficients are found to be

b2 =
φ7 − 2c4φ1 + 2c3(−φ1 + 3c4φ2)

12(c2 − c3)(c2 − c4)(c2 − γ)
(255)

b3 =
−φ7 + 2c4φ1 − 2c2(−φ1 + 3c4φ2)

12(c2 − c3)(c3 − c4)(c3 − γ)
(256)

b4 =
−φ7 + 2c3φ1 − 2c2(−φ1 + 3c3φ2)

12(c2 − c4)(−c3 + c4)(c4 − γ)
(257)

a32 =
−(c2 − c3)(c3 − γ)(φ8 + 4c4φ3)

2(c2 − γ)(φ7 − 2c4φ1 + 2c2(−φ1 + 3c4φ2)
(258)

a42 =
−(c2 − c4)(c4 − γ)(2c4φ4 − 4c23φ3 + c3φ6 + c2(φ5 + 4c4φ3))

2(c2 − c3)(c2 − γ)(φ7 − 2c3φ1 + 2c2(−φ1 + 3c3φ2))
(259)

a43 =
(c2 − c4)(−c3 + c4)(c4 − γ)(φ4 + 2c2φ3)

(c2 − c3)(c3 − γ)(φ7 − 2c3φ1 + 2c2(−φ1 + 3c3φ2))
(260)

where φ1 = (2− 9γ +6γ2), φ2 = (1− 4γ +2γ2), φ3 = (−1+ 9γ − 18γ2 +6γ3), φ4 =
(1−10γ+24γ2−12γ3), φ5 = (3−28γ+60γ2−24γ3), φ6 = (−5+48γ−108γ2+48γ3),
φ7 = (3−16γ+12γ2), φ8 = (3−28γ+60γ2−24γ3) and with L-stability being possible
for 0.2479946362127474551679910 ≤ γ ≤ 0.6760423932262813288723863. Cash [97]
appears to be the first to derive p(p−1) methods from this class; however, he set c2 =
−0.7. ¿From this exact solution, two five-stage, stiffly-accurate SDIRK4 methods
given by Hairer and Wanner [193] have γ = 1/4, c2 =

3
4 , c3 =

11
20 , c4 =

1
2 and A(5) =

0.002504 for SDIRK4(1); and γ = 4/15, c2 = 23
30 , c3 = 17

30 , c4 = 707
1931 , and A(5) =

0.004229 for SDIRK4(2). The minimum value for the eigenvalues of the algebraic
stability matrix and (bi)Min are −112.09 and −7.083 for SDIRK4(1) and −19.14 and
−2.999 for SDIRK4(2). Both methods are provided with embedded methods that
are not A-stable. For SDIRK(1), an A-stable embedded method with R̂(−∞) =
−0.5 is b̂ = {973/960,−2203/1920, 1015/128,−85/12, 23/80}. For SDIRK(2), one
solves the four order conditions at third-order, along with b̂5 = 68097476/225705375.
The minimum A(5) for this family of methods, with γ = 1/4, occurs at approximately
c2 = 27

29 , c3 = 72
107 , c4 = 19

31 and A(5) = 0.002006. Nearby, but having simpler

coefficients, is SDIRK4M, with c2 = 9
10 , c3 = 2

3 , c4 = 3
5 and A(5) = 0.002013. The

other six undetermined coefficients are a32 = −175/5148, a42 = +201/2990, a43 =
+891/11500, b2 = −400/819, b3 = +99/35, b4 = −575/252 and λM

Min = −13.03. One

may append a third-order embedded method with R̂(−∞) = −0.5 by setting b̂ =
{41911/60060,−83975/144144, 3393/1120,−27025/11088, 103/352}. The minimum
A(5) at any γ that ensures L-stability appears to occur at the minimum value of
γ = 0.2479946362127474551679910. At γ = 248/1000, c2 = 42380101953

46647086000 , c3 = 58
85 ,

c4 = 67
109 , A

(5) = 0.001923 and λM
Min = −10.78. A search for algebraically stable,

stiffly-accurate, L-stable SDIRK methods is hampered by the ability to find values
of c3, c4 and γ, where all bi > 0. A numerical search was only able to find one
region, in the neighborhood of c3 = 0.335, c4 = 0.800, γ = 0.248, where D = 832.9
and A(5) = 0.8787. The algebraic stability matrix is not positive semidefinite at

94

this point, and rF2 = 0.002081. It is likely that there is no algebraically stable
solution to this method. Skvortsov [398] derives a confluent analog to SDIRK4(1)
and SDIRK(2) called S54b with A(5) = 0.003807 and particularly simple coefficients.

One may also solve for a stiffly-accurate, five-stage, fourth-order SDIRK using

an incomplete specification of simplifying assumption C(2), q
(2)
2,3,4 = 0, to generate

methods having an SOV = {1, 2, 2, 2, 4}. This requires solving b1 =
∑s

i=1 biai1 =

τ
(1,2,3,4)
1 = τ

(4)
3 = q

(2)
2,3,4 = 0. Two nonconfluent solutions exist to this method.

Setting γ = 1/4, the two solutions are given in Table 22. The more promising
nonconfluent solution for γ = 1/4, SDIRK4(3)5L[1]SA C(2), appears to be at c2 =
(2−

√
2)/4 where A(5) = 0.002454, λM

Min = −0.2045 and D = 1.844. This particular

method satisfies τ̂
(1,2,3)
1 = τ̂

(3)
2 = 0, R̂(−∞) = −0.5. The second solution, with

c2 = (2 +
√
2)/4 has A(5) = 0.004224, λM

Min = −0.4711 and D = 1.000.

Table 22. The two SDIRK4()5L[1]SA methods.

1
4

1
4

0 0 0 0
(2∓

√
2)

4
1∓

√
2

4
1
4

0 0 0
(13±8

√
2)

41
−1676±145

√
2

6724
3(709±389

√
2)

6724
1
4

0 0
(41±9

√
2)

49
−371435∓351111

√
2

470596
98054928±73894543

√
2

112001848
56061972±30241643

√
2

112001848
1
4

0

1 0
4(74±273

√
2)

5253
19187±5031

√
2

55284
116092∓100113

√
2

334956
1
4

bi 0
4(74±273

√
2)

5253
19187±5031

√
2

55284
116092∓100113

√
2

334956
1
4

7.1.4 QSDIRK

A QSDIRK may be derived by solving the same equations as those solved for
SDIRK4(3)5L[1]SA C(2) along with the γ given by Table 19. In analogy with QES-
DIRK4(3)6L[2]SA, one may set a11 = γ/3 and find a method, QSDIRK4(3)5L[1]SA,
with γ = 8/25, c1 = 8/75, c2 = 529165024604/ 5921916928537, c3 = 2779087652291/
5736144612085 and c4 = 9665836798102/ 8373691518525. The L-stable method has
A(5) = 0.006849, D = 19.55 and λM

Min = −3.126. Note that the second-order error
on stage one is a211/2. This means that the ratio of the second-order error on stage
one for a QSDIRK (a11 = 8/75) relative to an SDIRK (a11 = 1/4) is 1024/5625
or about 18 percent. If a11 = γ/2 is chosen then γ = 59/200, c1 = 59/400,
c2 = 2283312914982/ 20263697689405, c3 = 2335504909662/ 4419237820643 and
c4 = 9335337040354/ 8318781608643. The L-stable method has A(5) = 0.004856,
D = 7.897 and λM

Min = −1.193. Both methods use embedded methods that satisfy

τ̂
(1,2,3)
1 = τ̂

(3)
2 = 0, R̂(−∞) = −0.5, but neither is A-stable.

7.2 Fifth-Order Methods

7.2.1 ESDIRK

To derive six-stage, fifth-order, stiffly-accurate ESDIRK methods, simplifying as-

sumption C(2) is used. The resulting 14 order conditions take the form τ
(1,2,3,4,5)
1 =

95

p5 = τ
(4)
3 = τ

(5)
4,5,8 = q

(2)
2,3,4,5 = 0, leaving a two-parameter family of methods in terms

of c4 and c5 with

c3 =
4γ(−1 + 16γ − 92γ2 + 212γ3 − 180γ4 + c5ω1)

−1 + 18γ − 120γ2 + 336γ3 − 360γ4 + c5ω2

(261)

and ω1 = 1 − 14γ + 72γ2 − 150γ3 + 120γ4, ω2 = 1 − 16γ + 96γ2 − 240γ3 + 240γ4,
E10 = (1 − 10γ + 20γ2)(1 − 15γ + 30γ2)(−1 + 25γ − 200γ2 + 600γ3 − 600γ4 +
240γ5)/14400, E8 = (3−120γ+1880γ2−14880γ3+63600γ4−144960γ5+158400γ6−
57600γ7)/2880, E6 = (−1 + 30γ − 300γ2 + 1200γ3 − 1800γ4 + 720γ5)/360 and

R
(3)
int (−∞) =

(
c23 − 4c3γ + 2γ2

)
/(2γ2). Expressions for the Runge-Kutta coeffi-

cients, R
(4)
int (−∞), R

(5)
int (−∞) and A(6), are too cumbersome to include. For L-

stability of the overall scheme, γ must be a root of the polynomial 1−25γ+200γ2−
600γ3 + 600γ4 − 120γ5 = 0. Only one of the five roots that ensures R(−∞) = 0
also provides I-stability: γ ≈ 0.2780538411364523249315862. Upon inspection of

|R(3)
int (−∞)|, |R(4)

int (−∞)|, and |R(5)
int (−∞)|, it may be determined that if both c4 and

c5 remain positive, that internal stability for very stiff scaled eigenvalues is only pos-
sible for specific regions within 0 ≤ c4 ≤ 0.20782427518534172606939559 and 0 ≤
c5 ≤ 0.23111961220951036305109788. Enforcing R

(4)
int (−∞) = 0 and R

(5)
int (−∞) = 0

forces c4 = c5 = 0.07838319999965920091902891 and R
(3)
int (−∞) = 0.4876; however,

because b4 and b5 are each proportional to (c4 − c5)
−1, they become infinite. Sep-

arating the two abscissae a bit, at c4 = 1/10 and c5 = 3/50, R
(3)
int (−∞) = 0.4438,

R
(4)
int (−∞) = −0.2198, R

(5)
int (−∞) = 0.4549 and A(6) = 0.004615. Stages 2, 3 and

6 are I-stable but stages 4 and 5 are not. It appears to be impossible to make all
stages I-stable with positive abscissae. A third-order, L-stable, externally embedded

method may be done as τ̂
(1,2,3)
1 = p̂6 = p̂5 = 0, and τ̂

(4)
1 = −1/500. The result-

ing 5(3) method, ESDIRK5(3)6L[2]SA, appears in Table 23. Other schemes are
possible. One may attempt third-order internal error-control by setting c5 = 1 and
implying c3 =

4γ(−1+2γ)(−1+3γ)(−1+5γ)
−1+12γ−48γ2+60γ3 ≈ −0.3778. As this value is quite undesirable,

internal error-control for this method cannot be recommended. Next, one can min-

imize sixth-order error by solving ∂A(6)

∂c4
= ∂A(6)

∂c5
= 0 to get c4 ≈ 5935807227

8309450038 ≈ 0.7143,

c5 ≈ 18705989883
15763987604 ≈ 1.187, R

(3)
int (−∞) = −0.08432, R

(4)
int (−∞) = −2.930, R

(5)
int (−∞) =

−3.615 and A(6) = 0.002005. Again, this scheme cannot be recommended because of
internal instability. Including a fourth-order, A-stable externally embedded method
to the internally stable main method given previously is not possible without using

the main method to satisfy τ̂
(4)
3 = 0. Reduced storage and conditionally contractive

methods are not pursued because of the small ranges of c4 and c5 that give rise to
internally stable methods. Skvortsov [396, 398] construct fifth-order methods but
selects γ ≈ 0.1411. In an earlier paper, Skvortsov [396] designs a method that has
A(6) = 0.007660 and c4 = 4/3. A later paper [398] constructs an L(α)-stable method,
ES65, with α = 72.3 degrees. Shintani [384] achieves fifth-order but without using
the stiffly-accurate assumption.

For completeness, one may also derive six-stage, fifth-order, stiffly-accurate ES-

96

Table 23. ESDIRK5(3)6L[2]SA.

0 0 0 0 0 0 0

4024571134387
7237035672548

3282482714977
11805205429139

3282482714977
11805205429139

0 0 0 0

14228244952610
13832614967709

606638434273
1934588254988

2719561380667
6223645057524

3282482714977
11805205429139

0 0 0

1
10

−651839358321
6893317340882

−1510159624805
11312503783159

235043282255
4700683032009

3282482714977
11805205429139

0 0

3
50

−5266892529762
23715740857879

−1007523679375
10375683364751

521543607658
16698046240053

514935039541
7366641897523

3282482714977
11805205429139

0

1 −6225479754948
6925873918471

6894665360202
11185215031699

−2508324082331
20512393166649

−7289596211309
4653106810017

39811658682819
14781729060964

3282482714977
11805205429139

bi
−6225479754948
6925873918471

6894665360202
11185215031699

−2508324082331
20512393166649

−7289596211309
4653106810017

39811658682819
14781729060964

3282482714977
11805205429139

b̂i
−2512930284403
5616797563683

5849584892053
8244045029872

−718651703996
6000050726475

−18982822128277
13735826808854

23127941173280
11608435116569

2847520232427
11515777524847

DIRK methods by using simplifying assumption C(3) in truncated form. The re-

sulting 16 order conditions take the form τ
(1,2,3,4,5)
1 = p5 = b2 =

∑s
i=1 biai2 = τ

(5)
5 =

q
(2)
2,3,4,5 = q

(3)
3,4,5 = 0, leaving a zero-parameter family of methods with two solutions

for which

c4 =
−12 + 15c3 + 15c5 − 20c3c5 + 60γ − 60c3γ − 60c5γ + 60c3c5γ

5(−3 + 4c3 + 4c5 − 6c3c5 + 12γ − 12c3γ − 12c5γ + 12c3c5γ)
. (262)

Choosing c3 = (3±
√
3)γ, then

c5 =
(±2−

√
3∓ 32γ + 14

√
3γ ± 184γ2 − 64

√
3γ2 ∓ 424γ3 + 88

√
3γ3 ± 360γ4)

(±2−
√
3∓ 28γ + 12

√
3γ ± 144γ2 − 48

√
3γ2 ∓ 300γ3 + 60

√
3γ3 ± 240γ4)

. (263)

Using c3 = (3 −
√
3)γ, one has R

(3)
int (−∞) = −0.7321, R

(4)
int (−∞) = −0.5671,

R
(5)
int (−∞) = −10.98, D = 17.17, A(6) = 0.003317, Eig(M) = {−1.526, 0.02888,

0.09559, 0.07731, −0.06133, −0.02711}, (bi)Min = −0.5367 and (ci)Max = 1.352. If

instead, one uses c3 = (3 +
√
3)γ, then one has R

(3)
int (−∞) = 2.732, R

(4)
int (−∞) =

2.021, R
(5)
int (−∞) = −0.04623, D = 1.316, A(6) = 0.004115, Eig(M) = {−0.1167,

0.07731, 0.5699, −0.02888, −0.1894, 0.01759}, (bi)Min = −0.2736 and (ci)Max =
1.316.

7.2.2 SDIRK

Five-stage, fifth-order, stiffly-accurate, L-stable methods appear to be impossible
based on the exact solution to the same fourth-order method. To satisfy L-stability

and τ
(5)
9 = 0, one has γ ≈ 0.2781 (See Table 5). This leaves both c3 and c4 to

satisfy the other eight fifth-order conditions. As τ
(5)
6 and τ

(5)
7 are both linear in

these variables, one may solve for c3 and c4 to verify that the resulting method is
not fifth-order. In spite of this, Ababneh et al. [1] present a stiffly-accurate SDIRK
in five implicit stages which is claimed to be L-stable.

If one is willing to forsake stiff accuracy but would like to retain L-stability, a
solution can be obtained. Cooper and Sayfy [116] (γ = (6 −

√
6)/10) and Shintani

97

Table 24. SDIRK5()5L[1].

4024571134387
14474071345096

4024571134387
14474071345096 0 0 0 0

5555633399575
5431021154178

9365021263232
12572342979331

4024571134387
14474071345096 0 0 0

5255299487392
12852514622453

2144716224527
9320917548702

−397905335951
4008788611757

4024571134387
14474071345096 0 0

3
20

−291541413000
6267936762551

226761949132
4473940808273

−1282248297070
9697416712681

4024571134387
14474071345096 0

10449500210709
14474071345096

−2481679516057
4626464057815

−197112422687
6604378783090

3952887910906
9713059315593

4906835613583
8134926921134

4024571134387
14474071345096

bi
−2522702558582
12162329469185

1018267903655
12907234417901

4542392826351
13702606430957

5001116467727
12224457745473

1509636094297
3891594770934

and Yoshida [383,385] (γ = 0.33) show that five-stage, fifth-order, A-stable methods
exist. In fact, there is a pair of two-parameter solution families to the five-stage,
fifth-order SDIRK method. The remaining DOF are γ and one abscissa, e.g., c4.
The pair of families derives from the fact that one solution is quadratic in a Butcher
coefficient; hence, there are two solutions. It appears that the general solution

satisfies assumption D(1). Order conditions are then τ
(1,2,3,4,5)
1 = r

(1)
2,3,4,5 = τ

(4)
2 =

τ
(5)
2,3,4,6, and one finds c2 = (γ(−3 + 49γ − 288γ2 + 704γ3 − 720γ4 + 240γ5 + c4(3 −
40γ+192γ2−360γ3+240γ4)))/(−1+19γ−136γ2+432γ3−600γ4+240γ5+ c4(1−
16γ + 96γ2 − 240γ3 + 240γ4)) and c5 = 1 − γ. One may select γ from Table 5 to
determine the stability. For L-stability, γ = 0.2780538411364523249315862, a nearly
minimial A(6) solution is found and given in Table 24 as SDIRK5()5L[1] at c4 = 3/20
where A(6) = 0.002549, D = 1.023 and the minimum value for the eigenvalues of
the algebraic stability matrix is −0.3568.

7.3 Sixth-Order Methods

7.3.1 ESDIRK

Using simplifying assumptions C(2) and D(1) and dispensing with stiff accuracy,
one may design a two-parameter family of A-stable, sixth-order methods. These
two DOF are probably best used to rein in internal instability. The methods are

obtained by solving τ
(1,2,3,4,5,6)
1 = q

(2)
2,3,4,5,6 = r

(1)
1,2,3,6 = τ

(5)
4 = τ

(6)
4,6,13 = 0. This leaves,

for example, c4, c5, and γ; however, for A-stability, p6 must vanish. The vanishing
of p6 implies that γ must be a root of 1−30γ+300γ2−1200γ3+1800γ4−720γ5 = 0,
or from Table 4, γ = 0.4732683912582953244555885 with R(−∞) = 0.8373. The

final two DOF are used to control R
(i)
int(−∞); c4 = 2/5 and c5 = 81/100. The

resulting method has c3 = 210618880064/9718174947659, c6 = 1 − γ, Rint(−∞) =
{1,−1, 0.9095,−0.9710, 0.9873, 0.3560}, D = 22.83, A(7) = 0.004899 and Eig(M) =
{5.480, −5.056, 0.2286, −0.06744, 0.0002664, 0}.

98

7.4 Seventh-Order Methods

7.4.1 EDIRK

Al-Rabeh [18] proves that there does not exist an EDIRK method of order seven in
six-stages that is both nonconfluent and has nonzero values of bi.

8 Six- and Seven-stage Methods (SI = 6)

8.1 Fifth-Order Methods

8.1.1 ESDIRK

Seven-stage, stiffly-accurate ESDIRK methods

0 0 0 0 0 0 0 0
2γ γ γ 0 0 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0 0 0
c5 (c5 − a52 − a53 − a54 − γ) a52 a53 a54 γ 0 0
c6 (c6 − a62 − a63 − a64 − a65 − γ) a62 a63 a64 a65 γ 0
1 (1− b2 − b3 − b4 − b5 − b6 − γ) b2 b3 b4 b5 b6 γ

bi (1− b2 − b3 − b4 − b5 − b6 − γ) b2 b3 b4 b5 b6 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5 − b̂6 − b̂7) b̂2 b̂3 b̂4 b̂5 b̂6 b̂7

(264)

provide 22 DOF, twenty after C(2, 2) and τ
(1)
1 are imposed. Row simplifying assump-

tion C(2) ensures a stage-order two method. L-stable methods may be found for a
range γ values determined from the polynomials 4E3

10E6+27E2
12E

2
6−18E12E10E8E6−

E2
10E

2
8 + 4E12E

3
8 = 0 and E6 = 0 where E12 = γ12, E10 = (−1 + 60γ − 1500γ2 +

20400γ3−165600γ4+829440γ5−2563200γ6+4752000γ7−4968000γ8+2592000γ9−
432000γ10)/14400, E8 = (1−48γ+920γ2−9120γ3+50400γ4−155520γ5+250560γ6−
172800γ7+28800γ8)/960 and E6 = (−1+36γ−450γ2+2400γ3−5400γ4+4320γ5−
720γ6)/360. The first polynomial has 32 unique roots (26 complex and six real). The
minimum value of γ for a seven-stage, fifth-order, L-stable, stiffly-accurate method
is the fifth largest real root of the first polynomial. The largest value that γ may
take for these methods is the fourth largest root E6. To 25 digits, one may de-
termine, as have Hairer and Wanner [193], 0.1839146536751751632321436 ≤ γ ≤
0.3341423670680504359540301.

Stiffly accurate, seven-stage, fifth-order methods may be obtained by using as-
sumptions C(2) or C(3) in truncated form. Considering the former, one must solve

the 15 equations, τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5,6 = p6 = τ

(4)
3 = τ

(5)
4,5,8 = 0, with seven remain-

ing DOF, e.g., c3, c4, c5, c6, γ, and two others. Internal stability for stages three

through six, R
(3,4,5,6)
int (−∞) = 0, may be accomplished leaving c4, c6, and γ. As

γ is probably best chosen as small as possible, γ = 0.184, and c3 = (2 ±
√
2)γ is

the result of solving a quadratic equation. Hence, there appear to be two distinct

99

Table 25. ESDIRK5(4)7L[2]SA.

0 0 0 0 0 0 0 0

46
125

a21
23
125

0 0 0 0 0

1518047795759
14084074382095

a31
−121529886477
3189120653983

23
125

0 0 0 0

13
25

a41
186345625210
8596203768457

3681435451073
12579882114497

23
125

0 0 0

5906118540659
9042400211275

a51
−9898129553915
11630542248213

19565727496993
11159348038501

2073446517052
4961027473423

23
125

0 0

26
25

a61
−39752543191591
7894275939720

52228808998390
5821762529307

2756378382725
8748785577174

17322065038796
10556643942083

23
125

0

1 b1
−1319096626979
17356965168099

4356877330928
10268933656267

922991294344
3350617878647

4729382008034
14755765856909

−308199069217
5897303561678

23
125

bi b1
−1319096626979
17356965168099

4356877330928
10268933656267

922991294344
3350617878647

4729382008034
14755765856909

−308199069217
5897303561678

23
125

b̂i b̂1
−12068858301481
111697653055985

30204157393951
62440428688139

26156819792768
110856972047457

33531609809941
89326307438822

−18686091006953
578397443530870

10582397456777
69011126173064

two-parameter families of solutions when γ = 0.184 is chosen. Stage four is inter-

nally I-stable between the two values of c4; c4 = 3γ ± γ
√

3 + 2
√
3 for γ ≥ 0 or

0.0841874 . c4 . 1.01981.

One solution to this set of equations is the basis for ESDIRK5(4)7L[2]SA where
c4 = 13/25 and c6 = 26/25, which gives A(6) = 0.001846, D = 8.971, Eig(M) =
{0.8080, −0.8001, −0.08133, 0.04008, 0.03386, −0.01772, 0.006385} and (bi)Min =
−0.07600. Stages 3, 4, 5 and 7 are L-stable, stage 2 is strictly A-stable but stage
6 is not A-stable. Fourth-order external error-control may be made nearly L-stable

by solving τ̂
(1,2,3,4)
1 = τ̂

(4)
3 = p̂7 = 0 with p̂6/γ

6 = R̂(−∞) = 7/20 where R̂(−∞)

must not be zero to keep sufficient separation between the bi and b̂i coefficients. The
scheme is given in Table 25. The embedded method hasB(6) = 0.6915, E(6) = 0.8503
and Â(5) = 0.002171. Additional methods are also possible. Setting γ = 0.184 and
c3 = (2−

√
2)γ, c4 = 848/1000 and c6 = 648/1000 results in a high quality method.

For γ = 0.184 and c3 = (2 +
√
2)γ, c4 = 13275/100000 and c6 = 889/1000 also

results in a high quality method. Using a similar approach, Skvortsov [396, 398]
generates a stiffly-accurate, L-stable 5(4) pair with γ = 1/5, A(6) = 0.003279 and
Rint(−∞) = {1, −1, −1/2, −71/14, 31919/7875, −93187/15750, 0}.

An alternative approach to designing a 5(4) ESDIRK pair in seven stages is
to use truncated assumption C(3). Methods with externally embedded schemes
only, designed by using this assumption, must satisfy the 18 equations for the main

method: τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5,6 = q

(3)
3,4,5,6 = b2 = p6 = τ

(5)
5 =

∑s
i=1 biai2 = 0. Four

DOF, e.g., c4, c5, c6, γ to enforce internal stability. One has R
(i)
int(−∞) = 0, i =

4, 5, 6 and by setting γ = 0.184, all four of the DOF are consumed. A fourth-

order, strongly A-stable embedded method may be made by solving τ̂
(1,2,3,4)
1 = b̂2 =

p̂7 = 0 with p̂6/γ
6 = R̂(−∞). One may immediately solve C(3, 3) = 0 to find

c3 = (3±
√
3)γ and solve the cubic equation R

(4)
int (−∞) = 0 for c4 to find c4 = γ[3±

3 cos(φ) +
√
3 sin(φ)], or c4 = γ[3− 2

√
3 sin(φ)], with φ = (1/3)Cot−1(

√
2). Solving

R
(5)
int (−∞) = 0 involves a quartic equation in c5; hence, 24 combinations of c3, c4 and

100

c5 satisfy C(3, 3) = R
(4)
int (−∞) = R

(5)
int (−∞) = 0. One may then adjust c6 to obtain

a desirable R
(6)
int (−∞). If one insists on R

(5)
int (−∞) = C(3, 3) = 0, this appears to

imply a confluent method having infinite D and Eig(M). One of the better schemes
from the broader class of methods is found at c3 = 2325355958545/9967121867317,
c4 = 5768599414322/13664887829871, c5 = 11/20 and c6 = 17/25 where A(6) =

0.001594, D = 4.158, R
(4)
int (−∞) = 0, R

(5)
int (−∞) = 0.007233, R

(6)
int (−∞) = −0.9875

and Eig(M)Min = −33.34. If one relaxes the internal stability requirement, more
balanced schemes may be possible, but it appears that these ESDIRK methods are
best constructed by using only C(2).

A 5(4) ESDIRK pair using L-stable, internal error-control may also be ap-
proached by using assumption C(2) or a truncated assumption C(3). To keep both
methods L-stable, γ is constrained by the seven-stage, fifth-order main method,
0.1839146536751751632321436 ≤ γ ≤ 0.3341423670680504359540301, and the six-
stage, fourth-order method, 0.2479946362127474551679910 ≤ γ ≤ 0.676042393226-
2813288723863. Therefore, to satisfy each constraint simultaneously, 0.24799463621-
27474551679910 ≤ γ ≤ 0.3341423670680504359540301. Using C(2), one must

satisfy the 20 conditions, τ
(1,2,3,4,5)
1 = τ̂

(3,4)
1 = q

(2)
2,3,4,5,6 = p6 = p̂5 = τ

(4)
3 =

τ̂
(4)
3 = τ

(5)
4,5,8 = 0, along with c6 = 1 where b̂j = a6j . If γ is preselected to some

convenient number between 1/4 and 1/3, then only one DOF remains to satisfy

R
(3,4,5)
int (−∞) = 0. One may solve 18 of the 20 conditions by excluding p6 = p̂5 = 0

and then adjusting c3, c3, c4 and γ to find a good 5(4) pair that may not be L-
stable in either of the methods. Following this procedure, no promising methods
within this class have been found. If a truncated C(3) is selected, then the follow-

ing 22 conditions must be satisfied: τ
(1,2,3,4,5)
1 = τ̂

(4)
1 = q

(2)
2,3,4,5,6 = q

(3)
3,4,5,6 = b2 =

a62 = p6 = p̂5 = τ
(5)
5 =

∑s
i=1 biai2 = 0 and c6 = 1. There are no residual DOF

to set γ or to control Rint(−∞). The requirement p̂5 = 0 may be dropped if only
A-stabilty in the embedded method is acceptable. Kværnø [281, 282] solves this
system with γ = 0.26 and p̂5 6= 0, deriving her DIRK5 having A(6) = 0.003504,

R
(3)
int (−∞) = 2.732, R

(4)
int (−∞) = 1.653 and c3 = 1.230. As no promising methods

have been found within the previous class, which has two DOF while this class has
none, this method is not pursued further. Instead, a 5(4I) pair using eight stages is
considered in the next section. Ismail et al. [236] construct a 5(4) ESDIRK pair in
six stages but it is not A-stable.

8.1.2 QESDIRK

L-stable, stiffly-accurate QESDIRKs using assumption C(3) in truncated form must

satisfy 18 equations: τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5,6 = q

(3)
3,4,5,6 = b2 = p6 = τ

(5)
5 =

∑s
i=1 biai2 =

0. Solving these and R
(4,5)
int (−∞) = 0 for c4 and c6 appears to imply c3 = c6. Table

26 lists the range of values for γ that enable L-stability. Table 19 provides the
corresponding values for the embedded method. It is possible that useful methods
exist within this class, but it does not appear likely.

101

Table 26. Bounds on γ for L-stability of seven-stage, fifth-order QESDIRKs.

γ c2
0.1839146536751751632321436 ≤ γ ≤ 0.3341423670680504359540301 2γ
0.2069817179469426533972585 ≤ γ ≤ 0.3786730355144628646617370 γ
0.2188084050720877043126620 ≤ γ ≤ 0.4043800428999094992495145 2γ/3
0.2324842720638580277018155 ≤ γ ≤ 0.4366523721415793230497305 γ/3

8.1.3 SDIRK

Six-stage, fifth-order, stiffly-accurate, L-stable methods offer 16 DOF to satisfy 17
order conditions. An alternative path to solving the unsimplified order condition is
to invoke an incomplete specification of row simplifying assumption C(2), where one

is also required to satisfy 17 order conditions: τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5 = b1 = τ

(5)
4,5,8 =

τ
(4)
3 = 0 and

∑s
i=1 biai1 =

∑s
i=1 biciai1 =

∑s
i,j=1 biaijaj1 = 0. Although there may

exist solutions to this system, no effort will be expended in trying to find them. An
alternative approach is to forsake stiff accuracy. As before, L-stable main meth-
ods require 0.1839146536751751632321436 ≤ γ ≤ 0.3341423670680504359540301.

Using C(2) and D(1), one solves τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5 = r

(1)
1,2,3,4,6 = τ

(5)
4 = b1 =∑s

i=1 biciai1 = p6 = 0 to find a pair of four-parameter family of methods in c3, c4,
c5 and γ with c2 = (2 ±

√
2)γ and c6 = 1 − γ. Setting γ = 0.184, it becomes a

pair of three parameter family of solutions. A fourth-order embedded method may

be generated by solving τ̂
(1,2,3,4)
1 = b̂1 =

∑s
i=1 b̂iai1 = τ̂

(4)
3 = 0, but one must also

ensure that it is at least A-stable and does not collide with the main method. The
latter issues may be addressed by setting p̂6 = 0 and τ̂

(5)
1 6= 0. Although there

are sufficient DOF to solve this problem, we will be content to inspect the analytic
solution of the L-stable main method. At γ = 0.184, c2 = (2 +

√
2)γ, c3 = 7/10,

c4 = 1/12 and c5 = 1/2, one may find a solution having A(6) = 0.0007703, Eig(M) =
{−0.9408, −0.2545, 0.2302, 0.1152, 0.001261, 0} and D = c6 = 0.816. Ismail and
Suleiman [238] construct three non-stiffly-accurate 5(4) pairs in six stages by using
assumptions C(2) and D(1). Each has a negative abscissa. Stability plots for RHP
eigenvalues suggest their methods are likely A-stable, but nothing is stated in regard
to the stability of the embedded method.

8.2 Sixth-Order Methods

8.2.1 ESDIRK

Sixth-order, L-stable ESDIRKs in seven stages are not stiffly-accurate. They may be
constructed by applying simplifying assumptions C(2) and D(1) or a truncated C(3)

and D(1). More specifically, for C(2) and D(1), one must solve at least τ
(1,2,3,4,5,6)
1 =

q
(2)
2,3,4,5,6,7 = r

(1)
1,2,3,4,7 = p6 = p7 = τ

(5)
4 = τ

(6)
4,6,13 = 0. One may immediately determine

c2 = 2γ and c7 = 1 − γ. This implies a general solution to the order and stability

102

Table 27. ESDIRK6(4)7A[2].

0 0 0 0 0 0 0 0

5
8

5
16

5
16

0 0 0 0 0

5(2−
√

2)
16

−6647797099592
102714892273533

−6647797099592
102714892273533

5
16

0 0 0 0

81
100

−87265218833
1399160431079

−87265218833
1399160431079

3230569391728
5191843160709

5
16

0 0 0

89
100

−3742173976023
7880396319491

−4537732256035
9784784042546

32234033847818
24636233068093

1995418204833
9606020544314

5
16

0 0

3
20

−460973220726
7579441323155

−113988582459
8174956167569

−679076942985
7531712581924

1946214040135
12392905069014

−2507263458377
16215886710685

5
16

0

11
16

2429030329867
4957732179206

−5124723475981
12913403568538

3612624980699
11761071195830

714493169479
5549220584147

−4586610949246
13858427945825

−4626134504839
7500671962341

5
16

bi
541976983222
5570117184863

424517620289
10281234581904

3004784109584
2968823999583

−1080268266981
2111416452515

3198291424887
7137915940442

−6709580973937
9894986011196

4328230890552
7324362344791

b̂i
23807813993

6613359907661
122567156372
6231407414731

5289947382915
9624205771537

−132784415823
2592433009541

2055455363695
9863229933602

−686952476184
6416474135057

2766631516579
7339217152243

.

conditions which likely consists of a six parameter family in, e.g., c3, c4, c5, c6, γ

and one aij . For a truncated C(3) and D(1), one solves minimally τ
(1,2,3,4,5,6)
1 =

q
(2)
2,3,4,5,6,7 = q

(3)
3,5,6,7 = r

(1)
1,2,3,4,7 = b2 = p6 = p7 = τ

(6)
6 =

∑s
i=1 biciai2 = 0. It may be

immediately determined that c2 = 2γ, c3 = (3±
√
3)γ and c7 = 1−γ. These results

imply a general solution that likely consists of a pair of four-parameter families in,
e.g., c4, c5, c6 and γ. For stability, one controls p6 with γ. L-stability is determined
by the roots of p6 = (−1+36γ−450γ2+2400γ3−5400γ4+4320γ5−720γ6)/360. The
only root of p6 that provides I-stabilty is γ = 0.3341423670680504359540301. Notice
that c2 = 2γ and c7 = 1−γ are nearly identical (the method is very nearly confluent)
if L-stability is chosen. This motivates the search for strongly A-stable methods and
abandoning p6 = 0. A-stability may be obtained for 0.2840646380117982930387010
≥ γ ≥ 0.5409068780733081049137798. The first number corresponds to a root of the
sextic portion of E12 = (6γ−1)(1−30γ+270γ2−780γ3+720γ4)(1−36γ+450γ2−
2400γ3+5400γ4−4320γ5+1440γ6)/518400, while the second corresponds to a root
of E6 = (−1+48γ−888γ2+8160γ3−39600γ4+97920γ5−106560γ6+34560γ7)/2880.

Using C(2) and D(1) and γ = 5/16, c3 = (2−
√
2)γ, c4 = 81/100, c5 = 89/100,

c6 = 3/20, all order conditions may be solved including p7 = R
(3,4)
int (−∞) = 0. To

add a fourth-order, L-stable, embedded method, one must also solve τ̂
(1,2,3,4)
1 =

τ̂
(4)
3 = p̂6 = p̂7 = 0. The resulting method, ESDIRK6(4)7A[2], is given in Table 27.

It is characterized by R
(i)
int(−∞) = {1,−1, 0, 0, 0.03558, 0.1676, 0.07056}, R(−∞) =

−0.3766, D = 1.308, A(7) = 0.002379, Eig(M) = {−1.885, 1.036, −0.5801, −0.3379,
0.02402, 0.0003842, 0}, and Â(5) = 0.002177. All internal stages are I-stable. If
instead, one solves a truncated C(3) and D(1) and sets γ = 29/100, c3 = (3−

√
3)γ,

c4 = 13/20, c5 = 12/25, c6 = 2/25, a method may be obtained for which R
(i)
int(−∞) =

{1,−1,−0.7321, −0.06517, −0.3498, −0.1073, −0.04261}, R(−∞) = −0.8592, D =
6.896, A(7) = 0.001982 and Eig(M) = {−111.5, 2.914, −1.165, 1.062, −0.08010,
0.01706, 0}.

103

8.2.2 DIRK

Using simplifying asumptions C(2) and D(2), Cooper and Sayfy [116] derive a sixth-
order, A-stable DIRK in six stages with a11 = a22 = a33 = a44 = a55 = γ;
however, the sixth stage is explicit (a66 = 0). Because of the assumptions used,

b1 = b2 = a66 = 0 and c6 = 1. Additionally, one enforces τ
(1,2,3,4,5,6)
1 = q

(2)
3,4,5,6 =

r
(1)
1,2,3 = r

(2)
1,2 = τ

(6)
4,8 = E6 = 0. The system of equations has two solutions,

one of which is given by Cooper and Sayfy [116]. As part of this general solu-
tion, one may derive c3 = (2 − 5c4 − 10γ + 20c4γ)/(5(1 − 4c4 − 4γ + 12c4γ)),

c4 =
(
5− 45γ + 80γ2±

√
5(2− 36γ + 225γ2 − 560γ3 + 480γ4)

)
/(5(3−24γ+40γ2)),

c5 = (1 − 2γ) and c6 = 1. A-stability is ensured by selecting the root of E6 =
(−40 + 1200γ − 12000γ2 + 48000γ3 − 72000γ4 + 28800γ5)/14400 that provides I-
stability; γ = 0.4732683912582953244555885. Cooper and Sayfy provide the minus
solution with c2 = −6547598275475/ 14857672547324, D = 1.489, A(7) = 0.01238
and Eig(M) = {0.656534, −0.282101, 0.238065, −0.0652908, 0, 0}. With posi-
tive abscissae and one-third the error, the plus solution has c2 = 3496971800427/
10494969937463, D = 17.82, A(7) = 0.004480 and Eig(M) = {3.0919, −2.89351,
0.406624, −0.0578076, 0, 0}.

9 Seven- and Eight-stage Methods (SI = 7)

9.1 Fifth-Order Methods

9.1.1 ESDIRK

Eight-stage, stiffly-accurate, stage-order two ESDIRK methods with internal error-
control

0 0 0 0 0 0 0 0 0
2γ γ γ 0 0 0 0 0 0
c3 (c3 − a32 − γ) a32 γ 0 0 0 0 0
c4 (c4 − a42 − a43 − γ) a42 a43 γ 0 0 0 0
c5 (c5 − a52 − a53 − a54 − γ) a52 a53 a54 γ 0 0 0
c6 (c6 − a62 − a63 − a64 − a65 − γ) a62 a63 a64 a65 γ 0 0
1 (1− a72 − a73 − a74 − a75 − a76 − γ) a72 a73 a74 a75 a76 γ 0
1 (1− b2 − b3 − b4 − b5 − b6 − b7 − γ) b2 b3 b4 b5 b6 b7 γ

bi (1− b2 − b3 − b4 − b5 − b6 − b7 − γ) b2 b3 b4 b5 b6 b7 γ

b̂i (1− b̂2 − b̂3 − b̂4 − b̂5 − b̂6 − b̂7 − b̂8) b̂2 b̂3 b̂4 b̂5 b̂6 b̂7 b̂8

(265)

provide 29 DOF. Three of these are quickly dispensed via C(2, 2) (a21 = γ), τ̂
(1)
1

(c7 = 1) and τ
(1)
1 (c8 = 1). Methods having both L-stable main and embedded

methods may be constructed by using C(2) or C(3) in truncated form. In the

former case, one must solve the 25 conditions τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5,6,7 = p7 = τ

(4)
3 =

τ
(5)
4,5,8 = τ̂

(1,3,4)
1 = τ̂

(4)
3 = p̂6 = R

(3,4,5,6)
int (−∞) = 0. The resulting solution leaves, for

example, c4, c5, c6 and γ, but with no guarantee of I-stability for either the main or

104

Table 28. ESDIRK5(4I)8L[2]SA.

0 0 0 0 0 0 0 0 0

1
2

1
4

1
4

0 0 0 0 0 0

2+
√

2
4

1748874742213
5795261096931

1748874742213
5795261096931

1
4

0 0 0 0 0

53
100

2426486750897
12677310711630

2426486750897
12677310711630

−783385356511
7619901499812

1
4

0 0 0 0

4
5

1616209367427
5722977998639

1616209367427
5722977998639

−211896077633
5134769641545

464248917192
17550087120101

1
4

0 0 0

17
25

1860464898611
7805430689312

1825204367749
7149715425471

−1289376786583
6598860380111

55566826943
2961051076052

1548994872005
13709222415197

1
4

0 0

1 1783640092711
14417713428467

−5781183663275
18946039887294

57847255876685
10564937217081

29339178902168
9787613280015

122011506936853
12523522131766

−60418758964762
9539790648093

1
4

0

1 3148564786223
23549948766475

−4152366519273
20368318839251

−143958253112335
33767350176582

16929685656751
6821330976083

37330861322165
4907624269821

−103974720808012
20856851060343

−93596557767
4675692258479

1
4

bi
3148564786223
23549948766475

−4152366519273
20368318839251

−143958253112335
33767350176582

16929685656751
6821330976083

37330861322165
4907624269821

−103974720808012
20856851060343

−93596557767
4675692258479

1
4

b̂i
1707112744407
11125291145125

−34114578494
9511465441463

−10730340352595
5750059075211

16308974155447
11154981868028

16015983083570
4734398780449

−16745095336747
7220642436550

−3941055932791
7113931146175

9504350599766
12768012822991

embedded methods because p < sI−1 and p̂ < sI−2. If truncated assumption C(3)

is chosen, then one must solve 27 conditions τ
(1,2,3,4,5)
1 = q

(2)
2,3,4,5,6,7 = q

(3)
3,4,5,6,7 = b2 =∑s

i=1 biai2 = a72 = p7 = τ
(5)
5 = τ̂

(1,4)
1 = p̂6 = R

(4,5,6)
int (−∞) = 0, leaving, e.g., c6

and γ. Using assumption C(2) seems like the better choice, particularly because the
E-polynomial will be a function of the residual abscissae. This analysis also suggests
that a QESDIRK, which uses this form of C(3), is not worth pursuing.

In principle, one can nearly solve the 25 conditions analytically. Five values of

bi may be used to satisfy τ
(1,2,3,4,5)
1 = 0, while q

(2)
2,3,4,5,6,7 = τ

(4)
3 = τ

(5)
4,5,8 = τ̂

(1,3,4)
1 =

τ̂
(4)
3 = R

(3,4,5)
int (−∞) = 0 may be used to solve for c2 = 2γ, c3 = (2 ±

√
2)γ, c7 = 1

along with all aij except, e.g., a76. What remains is a76 and two bi to satisfy

p7 = p̂6 = R
(6)
int (−∞) = 0. An L-stable, externally embedded method may also be

included by solving τ̂
(1,2,3,4)
1 = p̂8 = p̂7 = 0 along with τ̂

(5)
1 = 1/5000. Selecting

γ = 1/4 to keep both E6 and Ê6 positive, we have A(6) = 0.002690, D = 9.743,
Rint(−∞) = {1,−1, 0, 0, 0, 0.06771, 0, 0} and Eig(M) = {−105.0, −3.300, 1.573,
0.06294, 0.06250, −0.05885, −0.01757, −0.01039}. Each internal stage is I-stable
and, hence, stages 3, 4, 5 and 7 are L-stable while stage 6 is nearly L-stable. The
internal embedded method has Â(5) = 0.001385, B̂(6) = 3.832 and Ê(6) = 1.943,
while the externally embedded method has Â(5) = 0.002739, B̂(6) = 1.084 and
Ê(6) = 0.9824. ESDIRK5(4I)8L[2]SA is given in Table 28. Skvortsov [398] generates
a fifth-order ESDIRK which is L(α) and α = 72.3 degrees. He also derives a sixth-
order ESDIRK in eight implicit stages which is also L(α) and α = 88.7 degrees with
γ = 1/6.

105

10 Test Problems

Testing of schemes is conducted on three singular perturbation problems: Kaps’
problem, van der Pol’s equation and the Pareschi and Russo problem. The equations
exhibit increasing stiffness as ε → 0 and, in the limit of ε = 0, the systems become
differential algebraic equation systems. Outside of singular perturbation problems,
other simple test equations for stiff problems may be found in the literature [143,
193, 288, 336, 378]. Anyone testing using the DETEST problem set should consult
comments made by Shampine [374].

The first singular perturbation problem considered is Kaps’ problem [129]

ẏ1(t) = −
(
ε−1 + 2

)
y1(t) + ε−1y22(t), ẏ2(t) = y1(t)− y2(t)− y22(t), (266)

where 0 ≤ t ≤ 1 and whose exact solution is y1(t) = y22(t), y2(t) = exp(−t).
Equilibrium (unperturbed) initial conditions (ICs) are given by y1(0) = y2(0) = 1.
In the limit of ε = 0, the system becomes an index-1 differential algebraic equation
system.

Van der Pol’s (vdP) equation [190,193], the second problem, is given by,

ẏ1(t) = y2(t), ẏ2(t) = ε−1
(
(1− y1(t)

2)y2(t)− y1(t)
)
. (267)

Unperturbed ICs are given by [172, 193] y1(0) = 2, y2(0) = −2/3 + 10ε/81 −
292ε2/2187 − 1814ε3/19683 + · · · . In the limit of ε = 0, the system becomes an
index-1 differential algebraic equation system. At large ε, this series expansion
fails. However, nonequilibrium ICs will be specified for this equation by using this
expansion and large values of ε.

Pareschi and Russo [336] have constructed a simple singular perturbation equa-
tion

ẏ1(t) = −y2(t), ẏ2(t) = y1(t) + ε−1 (sin(y1(t))− y2(t)) . (268)

Equilibrium ICs are y1(0) = π/2, y2(0) = 1. Nonequilibrium, or perturbed, data
may be specified by replacing the condition on y2 with y2(0) = 1/2. Further compar-
isions between integration methods including DIRK-type schemes are available in
the literature. In comparisons with other popular schemes, Hairer and Wanner [193]
find the performance of the stage-order one SDIRK4 disappointing. This prompted
Cash [100] not even to include SDIRK methods in his stiff solver comparison. How-
ever, comparisons conducted by Gaffney [161] and Sandu et al. [353] cast SDIRK
methods in a more favorable light. With Navier-Stokes applications in mind, Bijl
et al. [38,39] show that ESDIRK schemes outperform SDIRK and BDF-methods in
simulating laminar flows over airfoils and in complex multi-disciplinary flows involv-
ing fluid-structure interactions. Jothiprasad et al. [248] conduct a similar study by
focusing particular attention on solution procedures for the coupled nonlinear stage
and step equations. Carpenter et al. [93, 94] compare ESDIRK, BDF and MEBDF
methods on flows over airfoils by using moderately stiff turbulence models. They
find that ESDIRK methods are accurate even with very large timesteps, but often
become decreasingly efficient in that limit. This inefficiency can result primarily

106

from dramatic slowdown of the algebraic equation solver. A partial remedy would
be the development of effective stage-value-predictors, so that ESDIRKs do not
spend inordinate amounts of time converging stage and step iterations. Clemens
et al. [108] compare a 3(2) SDIRK and Rosenbrock pair while solving nonlinear
equations associated with magnetic fields. Conclusions from all of these tests need
to be made while considering leading-order error of the methods, stage-order, local
integration error tolerance, equation stiffness and stage-value prediction techniques.

11 Discussion

After having thoroughly investigated matters relevant to the construction of useful
and efficient, general purpose, DIRK-type methods in §2, we now set about the task
of testing 29 methods. The goal of the testing is to establish whether methods are
appropriate for general purpose settings and are free of substantial shortcomings, as
well as to determine the value of specific method characteristics. Less focus is placed
on establishing whether one method is ”better” than another. Fifteen proposed new
and existing DIRK-type methods: ESDIRK2(1)3L[2]SA, ESDIRK3(2)4L[2]SA, ES-
DIRK3(2I)4L[2]SA, ESDIRK3(2)5L[2]SA, ESDIRK3(2I)5L[2]SA, ESDIRK4(3)5L-
[2]SA, ESDIRK4(3I)5L[2]SA, ESDIRK4(3)6L[2]SA, ESDIRK4(3)6L[2]SA C(3), ES-
DIRK4(3I)6L[2]SA, QESDIRK4(3)6L[2]SA, ESDIRK5(3)6L[2]SA, ESDIRK5(4)7L-
[2]SA, ESDIRK5(4I)8L[2]SA and ESDIRK6(4)7A[2], are considered (see appendix
C) along with 14 others: SDIRK2(1)2A[1]Alg, ESDIRK4(3)6L[2]SA A,B,C,D,E, ES-
DIRK3(2)5L[2]SA SOD, ESDIRK4(3)6L[2]SA SOD, QESDIRK4(3)6L[2]SA SOD, ES-
DIRK4(3)6L[2]SA ARK, SDIRK4(3)5L[1]SA C(2), QSDIRK4(3)5L[1]SA, SDIRK4(1)
and SDIRK4(2). Most of these 14 additional methods are constructed to help assess
certain scheme attributes rather than to generate useful methods. Ideally, testing
will serve to confirm or refute predictions on scheme behavior, illuminate method
shortcomings, and allow the investigation of subtle changes in scheme design. Meth-
ods ESDIRK3(2)5L[2]SA SOD, ESDIRK4(3)6L[2]SA SOD and QESDIRK4(3)6L-
[2]SA SOD, are included to assess the value of stiff accuracy. Second-order damped,

L-stable methods when q
(3)
3,4,··· ,(s−1) = 0 is imposed. No SOD methods are con-

structed without imposing q
(3)
3,4,··· ,(s−1) = 0. Also included is the implicit por-

tion of ARK4(3)6L[2]SA [255], named ESDIRK4(3)6L[2]SA ARK for reference pur-
poses. Consequences of nonvanishing values of the internal stability function for
large eigenvalues on intermediate stages (3,4 and 5) are investigated using the five
stiffly-accurate, L-stable, stage-order 2 methods characterized in Table 18: ES-
DIRK4(3)6L[2]SA A,B,C,D,E. To assess the potential of DIRK-type methods with
a11 6= 0, stiff accuracy, L-stability and a stage-order of one, both SDIRK meth-
ods proposed by Hairer and Wanner [193], SDIRK4(1) and SDIRK4(2), are in-

cluded along with two methods using q
(2)
2,3,4 = 0: SDIRK4(3)5L[1]SA C(2) and QS-

DIRK4(3)5L[1]SA. The last method, SDIRK2(1)2A[1]Alg, is chosen to compare an
algebraically stable, strongly regular method to the stiffly- accurate, L-stable method
ESDIRK2(1)3L[2]SA.

It should be kept in mind that one very important aspect of these methods has

107

been largely forsaken: stage-value predictors. A thorough investigation of construc-
tion choices and of testing the best approaches to stage-value predictor design is a
very large undertaking beyond the scope of this paper. We shall be content with
the analysis provided in §2.18. However, one should expect that higher stage-order,
as well as good internal stability, will facilitate quality predictors. No testing is
conducted on discontinuities. Due to the very large number of graphs that would
be required to support a thorough examination of each scheme’s behavior on all
performance attributes considered, a strictly verbal description follows.

11.1 Convergence

All convergence tests are done using the three singular perturbation test problems,
with the same ICs for each test problem, and integrating them over the same time
interval. Step-sizes are held constant. Singular perturbation problems are very use-
ful for detecting shortcomings of methods but may not be particularly illuminating
at distinguishing which well designed method is more accurate in practical set-
tings. They also fail to exercise many important implementation matters. For these
reasons, we will be content to offer qualitative assessments of scheme convergence
performance rather than quantifying performance in such simple settings.

11.1.1 Second-Order Methods

The two second-order methods tested in this paper were ESDIRK2(1)3L[2]SA and
SDIRK2(1)2A[1]Alg. In terms of leading order accuracy, SDIRK2(1)2A[1]Alg is
more accurate with A(3) = 0.02329 versus A(3) = 0.05719. Method ESDIRK2(1)3L-
[2]SA is stiffly-accurate, L-stable and has a stage-order of 2. In contrast, SDIRK-
2(1)2A[1]Alg is algebraically stable but not L-stable or stiffly-accurate, has a stage-
order of 1 and is strongly regular. Each has a similar value of γ (0.2500 versus
≈ 0.2929). Since the second stage of ESDIRK2(1)3L[2]SA is essentially a shortened
Trapezoidal rule, the stage is neutrally stable to stiff eigenvalues.

At ε = 0, the SDIRK is predictably more accurate than the ESDIRK on the vdP
equation. As stiffness increases, each method behaves differently. For the SDIRK,
the differential variable becomes more accurate while retaining second order accu-
racy. However, the algebraic variable becomes substantially less accurate, its order
reduces slightly and it has a rather erratic convergence behavior at ε = 10−3. Con-
vergence behavior of the ESDIRK is smoother, suffers from no order reduction and
does not experience as large an increase in algebraic variable error as stiffness is ap-
plied. For very large step-sizes, the convergence behavior of the ESDIRK is erratic.
On Kaps’ and the Pareschi and Russo problem, stiffness increases have less of an
influence on the methods than when solving the vdP equation. SDIRK2(1)2A[1]Alg
still has more difficulty with the algebraic variable. This is made dramatically ap-
parent using nonequilibrium ICs on the Pareschi and Russo problem. Stage-order 2
plus L-stability seems to be more useful than stage-order 1 plus algebraic stability
and strong regularity when solving stiff problems, particularly with nonequilibrium
ICs.

108

11.1.2 Third-Order Methods

Five third-order methods have been tested: ESDIRK3(2)4L[2]SA, ESDIRK3(2I)4L-
[2]SA, ESDIRK3(2)5L[2]SA, ESDIRK3(2I)5L[2]SA and ESDIRK3(2)5L[2]SA SOD.
Each method is L-stable, stiffly-accurate and has a stage order of 2. Method

ESDIRK3(2)5L[2]SA SOD is different from the others in that it invokes q
(3)
3,4 = 0

and has a second-order damped stability function. The four-stage methods are

both characterized by γ ≈ 0.4359 and have R
(3)
int = −0.8057, (−0.9567) and A(4) =

0.03663, (0.4907) for the method without (with) internal error-control. Similarly, for

the five stage methods without SOD, γ = 0.225 and have R
(3,4)
int = 0, 0, (17/81, 0)

and A(4) = 0.0007769, (0.01149) for the method without (with) internal error-

control. ESDIRK3(2)5L[2]SA SOD has γ ≈ 0.3025, R
(3,4)
int = {(1 −

√
3), 0} and

A(4) = 0.01806.

The behavior of third-order methods strongly depends on whether one is solving
the difficult vdP equation, the easier Kaps’ problem, or the even milder Pareschi
and Russo problem. In the most severe circumstances, solving the vdP equation,
ESDIRK3(2)5L[2]SA and ESDIRK3(2I)5L[2]SA are decidedly better performing
methods than the others. ESDIRK3(2)5L[2]SA SOD has severe solvability problems
that render it rather useless at stiffness levels of ε ≤ 10−3. Both ESDIRK3(2)4L-
[2]SA and ESDIRK3(2I)4L[2]SA methods suffer from solvability problems at larger
step-sizes and ε ≤ 10−3. Between ESDIRK3(2)5L[2]SA and ESDIRK3(2I)5L[2]SA,
internal error control is obtained at a substantial accuracy penalty as ESDIRK-
3(2)5L[2]SA is decidedly more accurate. Also, ESDIRK3(2)5L[2]SA appears to su-
perconverge, to order p+1, at large time steps for the differential variable. None of
the other 3(2) pairs exhibits superconvergence. Order reduction of each of the five
3(2) pairs is modest and is generally confined to the algebraic variable. On the easier
problems, order reduction was nearly nonexistent except for ESDIRK3(2I)5L[2]SA
on Kaps’s problem at ε = 10−3. All methods converge at essentially third-order,
independent of stiffness. ESDIRK3(2)5L[2]SA exhibits superconvergence on the
Pareschi and Russo problem at large step sizes. The most obvious difference be-
tween methods that do or do not have internal error-control is the performance of
the algebraic variable, but this difference is not manifested consistently. Methods
ESDIRK3(2I)5L[2]SA and ESDIRK3(2)4L[2]SA have more erratic convergence of
their algebraic variables. This may suggest that something other than the internal
error-control, and the attendant confluent abscissae, is influencing matters. Of all
five 3(2) pairs, only ESDIRK3(2)5L[2]SA SOD cannot be recommended. Redesign-

ing it without invoking q
(3)
3,4 = 0 might make for better SOD methods.

11.1.3 Fourth-Order Methods

Eighteen of the 29 methods tested in this paper are L-stable, stiffly-accurate, fourth-
order methods: ESDIRK4(3)5L[2]SA, ESDIRK4(3I)5L[2]SA, ESDIRK4(3)6L[2]SA,
ESDIRK4(3)6L[2]SA C(3), ESDIRK4(3I)6L[2]SA, QESDIRK4(3)6L[2]SA, ESDIRK-
4(3)6L[2]SA A,B,C,D,E, ESDIRK4(3)6L[2]SA SOD, QESDIRK4(3)6L[2]SA SOD, ES-
DIRK4(3)6L[2]SA ARK, SDIRK4(3)5L[1]SA C(2), QSDIRK4(3)5L[1]SA, SDIRK-

109

4(1) and SDIRK4(2). Fourteen are stage-order two (Q)ESDIRKs and four are
stage-order one (Q)SDIRKs. Twelve of the 18 methods have γ = 1/4.

To test stage-order one methods, the two SDIRK4 methods of Hairer and Wan-

ner [193] are used as well as two methods employing q
(2)
2,3,4 = 0: SDIRK4(3)5L-

[1]SA C(2) and QSDIRK4(3)5L[1]SA. These four methods have γ = 1/4, except
QSDIRK4(3)5L[1]SA where γ = 8/25. Leading order errors for the methods SDIRK-
4(1), SDIRK4(2), SDIRK4(3)5L[1]SA C(2) and QSDIRK4(3)5L[1]SA are A(5) =
0.002504, 0.004229, 0.002454, 0.006849, respectively. Amongst the 14 stage-order
two methods with a11 = 0, two are five-stage methods: ESDIRK4(3)5L[2]SA and

ESDIRK4(3I)5L[2]SA. Both have γ ≈ 0.5728 and nonzero values of R
(3,4)
int (−∞).

Leading order errors for these two methods, A(5) = 0.03857(0.04506) for the method
without (with) interior error control, with four implicit stages, are often substan-
tially higher than the remaining 12 stage-order two methods with five implicit stages.
Two of the methods are QESDIRKs with a22 = γ/3, γ = 0.3200 (QESDIRK-

4(3)6L[2]SA), and γ ≈ 0.4803 (QESDIRK4(3)6L[2]SA SOD), q
(3)
3,4,5 = 0, and each

with the relatively large values of A(5) = 0.004828 and A(5) = 0.05848, respec-
tively. Two of the methods have second order damped stability functions with
γ ≈ 0.3889 (ESDIRK4(3)6L[2]SA SOD with A(5) = 0.01670) and γ ≈ 0.4803

(QESDIRK4(3)6L[2]SA SOD), along with q
(3)
3,4,5 = 0. Five methods modeled after

ESDIRK4(3)6L[2]SA, ESDIRK4(3)6L[2]SA A,B,C,D,E, are used to test the conse-

quences of setting
∣∣∣R(3,4,5)

int (−∞)
∣∣∣ = n/2 where n = 1, 2, · · · , 5. All have similar

leading order errors (See Table 18). Two methods are constructed with both inter-
nal and external error-control, ESDIRK4(3I)5L[2]SA and ESDIRK4(3I)6L [2]SA,
and may be compared against their similar and more traditional analogs, ESDIRK-
4(3)5L[2]SA and ESDIRK4(3)6L[2]SA. Leading order error for the four methods
is A(5) = 0.04506, 0.002254, 0.03857, 0.001830, respectively. Methods ESDIRK-
4(3)6L[2]SA (A(5) = 0.001830), ESDIRK4(3)6L[2]SA ARK (A(5) = 0.003401) and
ESDIRK4(3)6L[2]SA C(3) (A(5) = 0.002970) are each straightforward methods that
could potentially be applied widely. While each is stage-order two, ESDIRK4(3)6L-

[2]SA C(3) also satisfies q
(3)
3,4,5 = 0. Both ESDIRK4(3)6L[2]SA and ESDIRK4(3)6L-

[2]SA C(3) have fully damped internal stability functions at stages where this is
possible.

Beginning with the easiest problem, no discernable order reduction is seen for
any of the stage-order two methods on the Pareschi and Russo problem with equi-
librium ICs. Order reduction in stage-order one methods was mild and occured

at very tight tolerances with ε = 10−3. Use of q
(2)
2,3,4 = 0 appeared to mildly mit-

igate order reduction on the stage-order one methods. Methods ESDIRK4(3)6L-
[2]SA A,B,C,D,E applied using nonequilibrium ICs showed worse behavior of the
algebraic variable relative to ESDIRK4(3)6L[2]SA and other stage-order two meth-
ods. Nonequilibrium ICs induce order reduction of the algebraic variable at small
step-sizes on all methods. QESDIRK4(3)6L[2]SA had the most accurate algebraic

variable at moderate to large step sizes. (Q)SDIRK methods using q
(2)
2,3,4 = 0 had

less erratic convergence behavior of the algebraic variable at ε = 10−3 and small

110

step-sizes than the other stage-order one methods. Order reduction for all meth-
ods was mild, and little difference existed between stage-order two and stage-order
one methods. All in all, the Pareschi and Russo problem is not terribly demand-
ing of the integration method. For Kaps’ problem, order reduction is more pro-
nounced at ε = 10−3 than it is on the Pareschi and Russo problem. Schemes used
to test the effects of internal instability, ESDIRK4(3)6L[2]SA A,B,C,D,E, have er-
ratic convergence rates of the algebraic variable that grow increasingly erratic at

small step-sizes and as n increases with
∣∣∣R(3,4,5)

int (−∞)
∣∣∣ = n/2, n = 1, 2, · · · , 5.

QESDIRK4(3)6L[2]SA appears to offer no advantage over ESDIRK4(3)6L[2]SA on

Kaps’ problem. Adding a truncated version of assumption C(3) in the form q
(3)
3,4,5 = 0

with ESDIRK4(3)6L[2]SA C(3) also offers no benefit. QSDIRK4(3)5L[1]SA clearly
improves algebraic variable error at large step sizes over SDIRK(1), SDIRK(2) and
SDIRK4(3)5L[1]SA C(2). Stage-order two methods have dramatically better al-
gebraic variable error at ε = 10−3 than stage-order one methods. This also ap-
plies to ε = 10−6 at small step sizes. On the most difficult problem, the vdP
equation, QESDIRK4(3)6L[2]SA has slightly better algebraic variable error than
ESDIRK4(3)6L[2]SA at lax error tolerances. Otherwise, methods ESDIRK4(3)5L-
[2]SA, ESDIRK4(3I)5L[2]SA, ESDIRK4(3)6L[2]SA, ESDIRK4(3)6L[2]SA C(3), ES-
DIRK4(3I)6L[2]SA, QESDIRK4(3)6L[2]SA and ESDIRK4(3)6L[2]SA ARK behave
similarly. Internal stability testing methods, ESDIRK4(3)6L[2]SA A,C,D,E, have
significant solvability shortcomings. As with Kaps’ problem, stage-order two meth-
ods perform much better on their algebraic variables than stage-order one methods.
Both SOD methods perform badly. Again, adding a truncated version of assumption

C(3) with ESDIRK4(3)6L[2]SA C(3) in the form q
(3)
3,4,5 = 0 also offers no discernable

benefit.

11.1.4 Fifth- and Sixth-Order Methods

Convergence rate testing of higher-order ESDIRKs involves three fifth-order meth-
ods: ESDIRK5(3)6L[2]SA, ESDIRK5(4)7L[2]SA, ESDIRK5(4I)8L[2]SA and one sixth-
order method: ESDIRK6(4)7A[2]. All methods are stage-order two, but only the
fifth-order methods are stiffly-accurate and L-stable. The sixth-order method is
strongly A-stable. Values of γ and A(6) for the fifth-order methods are γ ≈ 0.2781,
0.1840, 0.2500, and A(6) = 0.004615, 0.001846, 0.002690, respectively. For ESDIRK-
6(4)7A[2], γ = 0.3125, R(−∞) = −0.3766, and A(7) = 0.002379. For stages 3, 4, 5
and 6, only ESDIRK5(3)6L[2]SA is not fully damped in the far LHP.

As expected, the performance of each method is very good on the rather benign
Pareschi and Russo problem. Order reduction becomes noticable with Kaps’ prob-
lem and pronounced with the vdP equation. Beginning with the Pareschi and Russo
problem, order reduction with equilibrium ICs occurs principally around ε ≈ 10−3

and at moderate to small step-sizes but not large step-sizes. On error versus step-size
plots, in order of decreasing accuracy, ESDIRK6(4)7A[2] > ESDIRK5(4)7L[2]SA
> ESDIRK5(3)6L[2]SA > ESDIRK5(4I)8L[2]SA. Switching to nonequilibrium ICs
dramatically increases the algebraic variable error and order-reduction, particularly
near ε ≈ 10−3. In spite of not being stiffly-accurate or L-stable, ESDIRK6(4)7A[2]

111

is still quite accurate. Methods ESDIRK5(4)7L[2]SA and ESDIRK5(3)6L[2]SA be-
have similarly, but ESDIRK5(4I)8L[2]SA is less accurate than either. Kaps’ problem
is severe enough to cause the algebraic variable error in method ESDIRK6(4)7A[2]
to seriously degrade with increasing stiffness rather than simply near ε ≈ 10−3.
However, the differential variable is still resolved better with this method than the
other three methods. Methods ESDIRK5(4)7L[2]SA and ESDIRK5(3)6L[2]SA are
of similar accuracy, but ESDIRK5(4)7L[2]SA is more accurate for very stiff modes
while each is more accurate than ESDIRK5(4I)8L[2]SA. Solvability problems associ-
ated with ESDIRK5(3)6L[2]SA on the vdP equation at stiffnesses ε ≤ 10−3 make its
use inadvisable on such nasty problems. Both ESDIRK5(4)7L[2]SA and ESDIRK-
5(4I)8L[2]SA work relatively well, with the former being more accurate. Without
L-stability and stiff accuracy, ESDIRK6(4)7A[2] not only has a very inaccurate al-
gebraic variable for nontrivial stiffnesses, it also loses accuracy in the differential
variable at ε ≈ 10−3. It is an interesting question to ask how much the lack of
internal I-stability on stage 6 influenced the performance of ESDIRK5(4)7L[2]SA
on these tests.

11.2 Solvability

Generally, the maximum step-size possible with a DIRK-type method is given by
ν(∆t) < Min (aii)

−1. Beyond this value of (∆t), one is no longer assured a unique
solution to the coupled nonlinear stage and step equations. This relation implies
that reduced values of aii enable larger maximum step-sizes. However, testing of
the many methods shows that this maximum step-size depends on more than ν and
aii. While no attempt was made to compute ν and compare results to the expres-
sion ν(∆t) < Min (aii)

−1, one may look into whether stiffness has any affect on the
maximum step-size. This stiffness dependence only becomes clearly apparent when
methods are tested on the more severe vdP equation but not on Kaps’ problem or
Pareschi and Russo’s problem. However, no investigation is made about solvability
behavior on large systems of equations. Small anomalies occur on Kaps’ problem for
10−1 ≤ ε ≤ 100 with several methods. Switching from equilibrium to nonequilibrium
ICs on Pareschi and Russo’s problem has no noticable affect. By solving the vdP
equation, one may place the 29 methods into one of three categories: essentially unaf-
fected, moderately affected and severely affected. Thirteen of the 29 were essentially
or totally unaffected: SDIRK2(1)2A[1]Alg, ESDIRK3(2)5L[2]SA, ESDIRK3(2I)5L-
[2]SA, ESDIRK4(3I)5L[2]SA, ESDIRK4(3)6L[2]SA, ESDIRK4(3)6L[2]SA C(3), ES-
DIRK4(3I)6L[2]SA, QESDIRK4(3)6L[2]SA, ESDIRK4(3)6L[2]SA ARK,
SDIRK4(3)5L[1]SA C(2), QSDIRK4(3)5L[1]SA, ESDIRK5(4I)8L[2]SA and ESDIRK-
6(4)7A[2]. Those methods that were moderately affected are: ESDIRK2(1)3L[2]SA,
ESDIRK3(2)4L[2]SA, ESDIRK3(2I)4L[2]SA, ESDIRK4(3)5L[2]SA, ESDIRK5(4)7L-
[2]SA, ESDIRK4(3)6L[2]SA SOD and ESDIRK4(3)6L[2]SA B. Methods whose max-
imum step-size was strongly affected by stiffness are: ESDIRK4(3)6L[2]SA A,C,D,E,
ESDIRK3(2)5L[2]SA SOD, QESDIRK4(3)6L[2]SA SOD, ESDIRK5(3)6L[2]SA, S-
DIRK4(1) and SDIRK4(2). It is not obvious why certain methods behaved differ-
ently from others in this test. Of the five methods designed specifically to investigate

112

the affects of internal instability, four of them were severely affected by stiffness while
the fifth was only moderately affected. We tentatively conclude that internal stabil-
ity is an important attribute to possess for solvability. Note that each of these five

methods controls R
(i)
int(−∞), i = 3, 4, 5 but not R

(i)
int(z), i = 3, 4, 5. Methods having

second-order damped, L-stability fared poorly on this test. One may speculate that

the highly constrained second-order damped methods with q
(3)
3,4,··· ,(s−1) = 0 possessed

poor internal stability away from z = −∞. This hypothesis is not actually investi-

gated. As method ESDIRK5(3)6L[2]SA has nonzero values of R
(i)
int(−∞), i = 3, 4, 5,

it is also suspected that poor performance of the method is caused by insufficient
damping of stiff modes in the internal stages. Lastly, the behavior of the four fourth-
order (Q)SDIRK methods seemed to depend on whether they were designed using

simplifying assumption C(2) in the truncated form q
(2)
2,3,4 = 0. Methods SDIRK-

4(3)5L[1]SA C(2) and QSDIRK4(3)5L[1]SA behaved much better than SDIRK4(1)
and SDIRK4(2) on this solvability test. While internal stability is not ruled out,
it appears that an incomplete specification of assumption C(2) benefits stage-order
one methods.

11.3 Error Estimation and Step-Size Control

Step-size selection based on an error estimate from an embedded method and an
error controller, but not in conjunction with iteration control, is tested on the three
test problems with both equilibrium and nonequilibrium initial conditions. Ideally,
the error controller delivers a local error nearly equal to the error tolerance along
with a smooth step-size sequence. As there are 27 p(p − 1) pairs being tested and
numerous error-controllers available, the first test is to see how each method be-
haves with the established controllers: I, H211, PC, PID, H312, PPID, H321, H0321
and H0330. Each method with each controller is used to solve the vdP equation
on the same time interval using equilibrium ICs and ε = 10−5. Methods having
stage-order one and a11 6= 0 were all rather insensitive to the controller choice and
delivered an error slightly larger than the requested error. Among these methods,

imposing q
(2)
i = 0, i = 2, 3, 4 modestly improved the ability of the controllers to

deliver the requested error tolerance. It should be noted that the embedded meth-
ods used with SDIRK4(1) and SDIRK4(2) were the revised A-stable methods and
not the original methods. Stage-order two ESDIRKs and QESDIRKs behaved quite
differently. Their delivered local error, relative to the requested error, was strongly
dependent on the controller choice. From the published controllers, ESDIRKs and
QESDIRKs worked well with only the PPID and H321 controllers. Each is from
the class of controllers having third-order dynamics, second-order adaptivity and
first-order filtering but having different roots to the characteristic polynomial. Ex-
panding to H0pDpApF controllers having pD = pA + pF and pD = 4, 5 produced
no useful controllers for these methods on the vdP equation. It would seem that
nonzero roots to the controller are essential for good behavior in this context. This
may explain why H312, which has the roots (0, 0, 1/2), did not perform well. The
next test also uses the vdP equation with equilibrium ICs but uses only method
ESDIRK4(3)6L[2]SA. Both H321general and H312general controllers are investigated

113

to find the affect of the characteristic root placement. The behavior of the con-
trollers is strongly influenced by root placement. Several roots were found during a
coarse search, which provide a high-quality error controller for both H321general and
H312general with ESDIRK4(3)6L[2]SA: (q1, q2, q3) = (−0.5, 0.7, 0.8), (0.3, 0.3, 0.8),
(0.4, 0.5, 0.6), (0.4, 0.5, 0.7) and (0.6, 0.6, 0.6). Again, H321 and PPID have roots
given by {1/3, 1/2, 2/3} and {0.4838± 0.3275I, 0.7325}, respectively. Roots having
complex conjugate pairs were not investigated. It appears that good controllers
having only real roots have roots −0.5 ≤ qi ≤ 0.8. Further tests showed that an
H321general or H312general controller with ESDIRK4(3)6L[2]SA that worked well on
the vdP equation having equilibrium ICs also worked well on the other test prob-
lems, including those with nonequilibrium ICs. However, controllers that worked
well with one ESDIRK could behave poorly with a different ESDIRK. The ability
of any H321general or H312general controller to deliver the requested error tolerance
is often similar, given the same roots to the characteristic polynomial of the con-
trollers. For the ESDIRKs and QESDIRKs, the controllers seem to be sensitive
to the method but not the problem. This is not due to matters such as internal
stability. Embedded method construction is guided by parameters defining a good
embedded method for an ERK. It is possible that the parameters, B(p̂+2), C(p̂+2)

and E(p̂+2), (29), should be carefully chosen using different criteria or that another
parameter is needed for the design of ESDIRK and QESDIRK embedded methods.
The uniform lack of sensitivity of SDIRK and QSDIRK methods to controller choice
is puzzling in view of the consistent sensitivity of the ESDIRK and QESDIRK to
controller choice (using externally or internally embedded methods).

Another attribute of a good controller is that it minimizes the work required
to complete an integration by not prompting rejected steps. Controllers that con-
sistently delivered an error that is significantly larger than the requested error are
prone to have large numbers of rejected steps and are very inefficient at delivering
accurate solutions. All of the good controllers yield similar efficiency on the vdP
equation over the entire spectrum of target errors. A common technique in dealing
with a rejected step is to simply halve (or some other factor) the step-size and be-
gin the step again. Doing this rather than computing a new step-size that would
deliver the requested error based on the order of the method could interfere with
the operation of the error controller and might best be avoided. The delivered error
on the vdP equation at large step-sizes was very erratic for the ESDIRK schemes.
This was partially attributable to rounding error.

Tests using ESDIRK methods that possess both internally and externally em-
bedded methods, show similar results in all situations. For the methods presented
in this paper applied to stiff ODEs, it would seem unlikely that the methods having
internally embedded methods offer any tangible benefit over traditional methods.
However, no attempt was made to utilize both simultaneously for something like
stiffness estimation or order reduction detection.

It is sometimes remarked that an SDIRK has an advantage over an ESDIRK
when the ICs to the step are effectively nonequilibrium because the ESDIRK in-
corporates the function evaluation of this IC into future values of the integration
variable [246]. ESDIRK and QESDIRK methods designed in this paper did not

114

seem to have any more difficulty with nonequilibrium ICs than SDIRKs. One could
always integrate the very first step using an SDIRK if this should ever be a problem.

No attempt has been made to investigate error-control strategies for p(p − 2)
pairs.

11.4 Dense Output

The dense output for all 15 new schemes is tested using the vdP equation with
nonequilibrium ICs and and ε = 10−3. The initial condition is advanced one time
step with interpolation done at the points around tref + (∆t). The dense output is
then compared to a numerically “exact” solution obtained using (∆t)/3 and run to
the dense output time. A refinement study performed using only one time-step in
the variable ∆t determines the local order of accuracy of the dense output. Note
that the nature of the refinement study in the variable ∆t determines the local
error of the dense output and, hence, the derived order is the local order or the
global order plus one. Table 29 summarizes a study using the fourth-order formula
associated with ESDIRK4(3)6L[2]SA scheme. The interpolated values are predicted
at 2

3∆t. Design order (p∗ in appendix B) is asymptotically achieved. Similar results
showing design order dense output were obtain for all 14 other new schemes.

Table 29. Convergence rate of dense output in interpolation mode as calculated
with the ESDIRK4(3)6L[2]SA scheme.

∆t error local order

0.25056E-02 0.75866E-04 2.11640
0.14094E-02 0.16841E-04 2.79227
0.79280E-03 0.24970E-05 3.48633
0.44595E-03 0.26161E-06 4.05169
0.25085E-03 0.21345E-07 4.44270
0.14110E-03 0.14857E-08 4.68427
0.79370E-04 0.94198E-10 4.82379
0.44646E-04 0.56668E-11 4.90191
0.25113E-04 0.33113E-12 4.94449
0.14126E-04 0.18920E-13 4.98420

12 Conclusions

This paper presents a comprehensive review of DIRK-type methods applied to first-
order ODEs. The goal of this applied review is to summarize the characteristics,
assess the potential, and then design several nearly optimal, general purpose, DIRK-
type methods. Over 20 important aspects of DIRK-type methods are reviewed:
general structure, order conditions, simplifying assumptions, error, linear stabil-
ity, nonlinear stability, internal stability, dense output, conservation, symplecticity,

115

symmetry, dissipation and dispersion accuracy, memory economization, regularity,
boundary and smoothness order reduction, efficiency, solvability, implementation,
step-size control, iteration control, stage-value predictors, discontinuities and exist-
ing software. Following this, an historical look is made into the earliest examples of
DIRK-type methods. An exhaustive design study is then conducted on DIRK-type
methods having from two to seven implicit stages. Extending previous results and
deriving many new methods, one is able to clearly see what is possible with DIRK-
type methods and at what cost. From this detailed investigation of methods, 15
schemes are selected as being promising for general purpose application. Based on
the review of method characteristics, these methods focus on having a stage-order
of two, stiff accuracy, L-stability (except ESDIRK6(4)7A[2]), high quality embed-
ded and dense-output methods, small magnitudes of the algebraic stability matrix
eigenvalues, small values of aii, and small or vanishing values of the internal stability
functions for large eigenvalues. These choices are also consistent with maximizing
scheme efficiency. As stage-order governs the severity of order reduction, focusing
on stage-order two methods facilitates accuracy. Little effort is expended pursuing
algebraic stability, symplecticity, symmetry, memory economization, minimal phase
error or regularity. Due to the scope of the stage-value predictor topic, this impor-
tant subject is comprehensively reviewed, but no attempt is made to create optimal
predictors. Similarly, precise event detection for unforeseen discontinuities in not
pursued.

Testing of the 15 chosen methods is done on three singular perturbation prob-
lems to ensure that the methods behave well and have no obvious shortcomings. To
supplement the 15 methods, 14 additional methods are created or taken from the
literature, in part, to shed light on design choices. Several tentative conclusions may
be made from these tests on singular perturbation problems. Stage-order two meth-
ods are better for stiff problems than stage-order one methods in spite of not being
able to possess algebraic stability. Stiffly-accurate and L-stable methods work better
than algebraically- and A-stable methods, particularly when using nonequilibrium
ICs. Observed order reduction is very problem dependent. Methods exhibited little
order reduction on the Pareschi and Russo problem, moderate order reduction on
Kaps’ problem, and severe order reduction on the vdP problem. Therefore, the
choice of the optimal method is to some extent a function of the problem severity.
Solvability behavior of a scheme appears to be a function of not only the values
of aii and ν but also is a function of the internal stability characteristics of the
method. Incomplete application of simplifying assumption C(3) to methods do not
appear to fortify the methods and, in preliminary tests, seemed to undermine the

stage-value predictor. This may be attributable to the influence of C(3) on R
(i)
int(z).

However, incomplete application of simplifying assumption C(2) to SDIRKs and
QSDIRKs does appear to provide some fortifying effect on the methods relative to
SDIRK(1) and SDIRK(2). Attempting to achieve quasi stage-order three behavior
by satisfying all of the the design conditions for QESDIRKs results in strained meth-
ods having large Runge-Kutta coefficients, large leading-order errors as well as very
large negative eigenvalues of the algebraic stability matrix. They exhibit slightly
better accuracy for the algebraic variable at large step-sizes. The performance of

116

methods having second-order damped stability functions was disappointing but may

be partly due to the incorporation of q
(3)
3,4,··· ,(s−1) = 0. Even without this, the values

of γ are unpleasantly large.

Error controller choice for the (Q)SDIRKs tested is largely insensitive to both
the method and the problem. However, controllers are far more sensitive to which
(Q)ESDIRK is being used but they are still rather insensitive to the problem. Con-
trollers for 27 of the 29 DIRK-type methods tested are probably best chosen from the
H312general and H321general classes when solving stiff problems. For the stage-order
two (Q)ESDIRKs, the controller performance is very strongly dependent on the lo-
cation of the characteristic polynomial roots. The root placement must be tuned
for each (Q)ESDIRK, but probably not for each problem. There was no situation
encountered during testing where the use of an internally embedded method offered
any discernable benefit over an externally embedded method with the five methods
which possessed both. As the incorporation of an internally embedded method di-
minishes the main method, the embedded method, the dense output method and
the stage-value predictors by virtue of the method being confluent, it appears to be
an attribute best not included. In a DAE context, a different conclusion might be
reached. No effort has been made to further the topic of error-control strategies for
p(p− 2) pairs.

Users wishing to have a high quality, general purpose DIRK-type method might
consider trying ESDIRK4(3)6L[2]SA, Table 16, in conjunction with the H321 or
PPID error-controller, Table 8, and the dense output offered in appendix B as a
default method. Some experimentation with controller roots might prove useful.
Tentative stage-value predictors could use the dense-output method for stage two
and analogs of (202), (203) and (204) for later stages. Other ESDIRK methods
may be investigated as time and effort permits. If the problem at hand is not
particularly demanding then the higher-order methods could also be considered if
error tolerances are sufficiently demanding.

While it appears that many matters relevant to DIRK-type methods are quite
mature, several topics seem unfinshed. Two that readily come to mind are improved
stage value prediction techniques and improved iteration control for both direct
and indirect solvers. Each of these has the potential to substantially improve the
efficiency of integrators. Lastly, we pose several questions that were not satisfactorily
addressed in this paper. Under what conditions does the lack of regularity adversely
affect the performance of these methods, and do B- and BR-regular methods provide
a meaningful improvement? Can integration techniques using p(p − 2) pairs be
made as robust as those based on p(p − 1) pairs? Can order conditions be derived
for DIRK-type methods that mitigate boundary order reduction in the nonlinear
case? What stability, contractivity and monotonicity preserving characteristics or
attributes really matter on practical problems? Does the number of equations being
integrated influence the solvability behavior on stiff problems? Can schemes with
both internally and externally embedded methods offer any useful information?

117

References

1. O.Y. Ababneh and R. Ahmad, Construction of third-order diagonal implicit
Runge-Kutta methods for stiff problems, Chin. Phys. Lett., 26(8) (2009)
080503:1-3.

2. O.Y. Ababneh, R. Ahmad and E. S. Ismail, Design of new diagonally implicit
Runge-Kutta methods for stiff problems, Appl. Math. Sci., 3(45-48) (2009) 2241-
2253.

3. J. Albdalkhani, Higher order methods for solving Volterra integrodifferential
equations of the first kind, Appl. Math. and Comp., 57(1) (1993) 97-101.

4. P. Albrecht, A new theoretical approach to Runge-Kutta methods, SIAM J.
Numer. Anal., 24(2) (1987) 391-406.

5. R. Alexander, Diagonally implicit Runge-Kutta methods for stiff O.D.E.s, SIAM
J. Numer. Anal., 14(6) (1977) 1006-1021.

6. R.K. Alexander, Stability of Runge-Kutta methods for stiff ordinary differential-
equations, SIAM J. Numer. Anal., 31(4) (1994) 1147-1168.

7. R. Alexander, Design and implementation of DIRK integrators for stiff systems,
Appl. Numer. Math., 46(1) (2003) 1-17.

8. R. Alexander and J.J. Coyle, Runge-Kutta methods and differential-algebraic
systems, SIAM J. Numer. Anal., 27(3) (1990) 736-752.

9. R.A. Al-Khasawneh, F. Ismail and M. Suleiman, A new diagonally implicit
Runge-Kutta method of fourth order embedded in fifth order for solving delay
differential equations, In Proc. 2nd IMT-GT Regional Conf. on Math., Stat. and
Appl., Universiti Sains Malaysia, Penang (2006) 1-8.

10. R.A. Al-Khasawneh, F. Ismail and M. Suleiman, Embedded diagonally implicit
Runge-Kutta-Nyström 4(3) pair for solving special second-order IVPs, Appl.
Math. and Comp., 190(2) (2007) 1803-1814.

11. I. Alonso-Mallo, Rational methods with optimal order of convergence for partial
differential equations, Appl. Numer. Math., 35(4) (2000) 265-292.

12. I. Alonso-Mallo, Runge-Kutta methods without order reduction for linear initial
boundary value problems, Numer. Math., 91(4) (2002) 577-603.

13. I. Alonso-Mallo and B. Cano, Avoiding order reduction of Runge-Kutta dis-
cretizations for linear time-dependent parabolic problems, BIT 44(1) (2004)
1-20.

14. I. Alonso-Mallo, B. Cano and M.J. Moreta, Stability of Runge-Kutta-Nyström
methods, J. Comp. and Appl. Math., 189(1-2) (2006) 120-131.

118

15. I. Alonso-Mallo and C. Palencia, Optimal orders of convergence for Runge-Kutta
methods and linear, initial boundary value problems, Appl. Numer. Math. 44(1-
2) (2003) 1-19.

16. A.H. Al-Rabeh, A variable parameter embedded DIRK algorithm for the nu-
merical integration of stiff systems of ODEs, Comp. and Math. w/ Appl., 13(4)
(1987) 373-379.

17. A.H. Al-Rabeh, Embedded DIRK methods for the numerical integration of stiff
systems of ODEs, Int. J. Comp. Math., 21(1) (1987) 65-54.

18. A.H. Al-Rabeh, Optimal order diagonally implicit Runge-Kutta methods, BIT,
33(4) (1993) 620-633.

19. R. Alt, Méthodes A-stables pour l’Intégration de Systémes Différentiels mal Con-
ditionnés, Thesis (3rd cycle), Université de Paris 6 (1971). [In French]

20. R. Alt, Deux theorems sur la A-stabilite des schemes de Runge-Kutta simpli-
ment implicites, Rev. Francais d’Auto. Info. Rech. Oper. Ser. R-3, 6(3) (1972)
99-104. [ISSN 0764-583X, In French]

21. R. Alt, A-stable one-step methods with step-size control for stiff systems of
ordinary differential equations, J. Comp. and Appl. Math., 4(1) (1978) 29-35.

22. R. Alt and F. Ceschino, Mise en œuvre de schémas A-stables du type de Runge-
Kutta pour l’integration des systèms différentieles, C.R. Acad. Sci. Paris, Ser.
A, 274(10) (1972) 846-849. [In French]

23. G.S. Androulakis, T.N. Grapsa and M.N. Vrahatis, Generating optimal Runge-
Kutta methods, In: Proc. Sixth Int. Coll. on Diff. Eqns., Plovdiv, Bulgaria, D.
Bainov, Ed., VSP, The Netherlands (1996) 1-7.

24. M. Arnold and A. Murua, Non-stiff integrators for differential-algebraic systems
of index 2, Numer. Alg., 19(1-4) (1998) 25-41.

25. U.M. Ascher, S.J. Ruuth, R.J. Spiteri, Implicit-explicit Runge-Kutta methods
for time-dependent partial differential equations, Appl. Numer. Math., 25 (2-3)
(1997) 151-167.

26. A. Aubry and P. Chartier, Pseudo-symplectic Runge-Kutta methods, BIT, 38(3)
(1998) 439-461.

27. M.A. Aves, D.F. Griffiths and D.J. Higham, Does error control suppress spu-
riosity?, SIAM J. Numer. Anal., 34(2) (1997) 756-778.

28. D.L. Baker, A second-order diagonally implicit Runge-Kutta time-stepping
method, Ground Water, 31(6) (1993) 890-895.

29. D.L. Baker, Applying higher order DIRK time steps to the “Modified Picard”
method, Ground Water, 33(2) (1995) 259-263.

119

30. L.A. Bales, O.A. Karakashian and S.M. Serbin, On the A0-acceptability of ra-
tional approximations to the exponential function with only real poles, BIT,
28(1) (1988) 70-79.

31. R.E. Bank, W.M. Coughran Jr., W. Fichtner, E.H. Grosse, D.J. Rose and
R.K. Smith, Transient simulation of silicon devices and circuits, IEEE Trans.
Computer-Aided Des., 4(4) (1985) 436-451.

32. Z. Bartoszewski and Z. Jackiewicz, Construction of two-step Runge-Kutta meth-
ods of high order for ordinary differential equations, Numer. Alg., 18(1) (1998)
51-70.

33. P. Bastian and S. Lang, Couplex benchmark computations obtained with the
software toolbox UG, Comp. Geosci., 8(2) (2004) 125-147.

34. A. Bellen, Z. Jackiewicz and M. Zennaro, Contractivity of wave-form relaxation
Runge-Kutta iterations and related limit methods for dissipative systems in the
maximum norm, SIAM J. Numer. Anal., 31(2) (1994) 499-523.

35. A. Bellen and M. Zennaro, Stability properties of interpolants for Runge-Kutta
methods, SIAM J. Numer. Anal., 25(2) (1988) 411-432.

36. H. Bijl, Iterative methods for unsteady flow computations using implicit Runge-
Kutta integration schemes, AIAA Paper 2006-1278, AIAA, Aero. Sci. Meet. and
Exh., 44th, Reno, NV, Jan. 9-12, 2006.

37. H. Bijl and M.H. Carpenter, Iterative solution techniques for unsteady flow
computations using higher order time integration schemes, Int. J. Numer. Meth.
Fluids., 47(8-9) (2005) 857-862.

38. H. Bijl, M.H. Carpenter, V.N. Vatsa and C.A. Kennedy, Implicit time integra-
tion schemes for the unsteady compressible Navier-Stokes equations: Laminar
flow, J. Comp. Phys., 179(1) (2002) 313-329.

39. H. Bijl, S.J. Hulshoff and S. van Zuijlen, Accuracy and efficiency of implicit
time integration schemes for fluid-structure interaction simulations, In: Proc. of
Fifth World Congress on Comp. Mech. (WCCM V), July 7-12, 2002, Vienna,
Austria, Eds., H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner, Vienna
Univ. of Tech., Austria (2002) 11 pp. [ISBN 3-9501554-0-6, Paper-ID: 80695.]

40. C. Bischof, P. Khademi, A. Mauer and A. Carle, ADIFOR 2.0: Automatic
differentiation of Fortran 77 programs, IEEE Comp. Sci. and Eng., 3(3) (1996)
18-32.

41. C.H. Bischof, L. Roh and A.J. Maueroats, ADIC: an extensible automatic dif-
ferentiation tool for ANSI-C, Software Practice and Experience, 27(12) (1997)
1427-1456.

120

42. N.H. Bjurstrøm, Krylov underrom metoder i Godess, M. Sc. Thesis, Rpt. IMM-
EKS-1997-13, Dept. Info. and Math. Model., Techn. Univ. of Denmark, Lyngby
(1997). [In Danish]

43. F. Bornemann, Runge-Kutta methods, Trees and Maple, Selcuk J. Appl. Math.
2(1) (2001) 3-15.

44. S. Boscarino and G. Russo, On a class of uniformly accurate IMEX Runge-Kutta
schemes and applications to hyperbolic systems with relaxation, SIAM J. Sci.
Comp., 31(3) (2009) 1926-1945.

45. K.E. Brenan, S.L. Campbell and L.R. Petzold, Numerical Solution of Initial-
Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia (1996).

46. P.N. Brown and A.C. Hindmarsh, Reduced storage matrix methods in stiff ODE
systems, Appl. Math. and Comp., 31 (1989) 40-91.

47. B. Bujanda and J.C. Jorge, Additive Runge-Kutta methods for the resolution of
linear parabolic problems, J. Comp. and Appl. Math., 140(1-2) (2002) 99-117.

48. B. Bujanda and J.C. Jorge, Order conditions for linearly implicit fractional step
Runge-Kutta methods, IMA J. Numer. Anal. 27(4) (2007) 781-797.

49. S.K. Burger and W. Yanga, Automatic integration of the reaction path us-
ing diagonally implicit Runge-Kutta methods, J. Chem. Phys., 125(24) (2006)
244108:1-12

50. K. Burrage, A special family of Runge-Kutta methods for solving stiff differential
equations, BIT 18(1) (1978) 22-41.

51. K. Burrage, Efficiently implementable algebraically stable Runge-Kutta meth-
ods, SIAM J. Numer. Anal., 19(2) (1982) 245-258.

52. K. Burrage, (k,l)-algebraic stability of Runge-Kutta methods, IMA J. Numer.
Anal., 8(3) (1988) 385-400.

53. K. Burrage and J.C. Butcher, Stability-criteria for implicit Runge-Kutta meth-
ods, SIAM J. Numer. Anal., 16(1) (1979) 46-57.

54. K. Burrage, J.C. Butcher and F.H. Chipman, An implementation of singly-
implicit Runge-Kutta methods, BIT, 20(3) (1980) 326-340.

55. K. Burrage and F. Chipman, Construction of A-stable diagonally implicit mul-
tivalue methods, SIAM J. Numer. Anal., 26(2) (1989) 397-413.

56. K. Burrage and W.H. Hundsdorfer, The order of B-convergence of algebraically
stable Runge-Kutta methods, BIT, 27(1) (1987) 62-71.

57. K. Burrage, W.H. Hundsdorfer and J.G. Verwer, A study of B-convergence of
Runge-Kutta methods, Computing, 36(1-2) (1986) 17-34.

121

58. K. Burrage and T. Tian, Implicit stochastic Runge-Kutta methods for stochastic
differential equations, BIT 44(1) (2004) 21-39.

59. J.C. Butcher, Coefficients for the study of Runge-Kutta integration processes,
J. Australian Math. Soc., 3(2)(1963) 185-201.

60. J.C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18(85) (1964) 50-
64.

61. J.C. Butcher, On Runge-Kutta processes of high order, J. Australian. Math.
Soc., 4(2) (1964) 179-194.

62. J.C. Butcher, A stability property of implicit Runge-Kutta methods, BIT, 15(4)
(1975) 358-361.

63. J.C. Butcher, Optimal order and stepsize sequences, IMA J. Numer. Anal., 6(4)
(1986) 433-438.

64. J.C. Butcher, The Numerical Analysis of Ordinary Differential Equations:
Runge-Kutta and General Linear Methods, John Wiley and Sons, Chichester
(1987).

65. J.C. Butcher, Order, stepsize and stiffness switching, Computing, 44(3) (1990)
209-220.

66. J.C. Butcher, Diagonally-implicit multistage integration methods, Appl. Numer.
Math., 11(5) (1993) 347-363.

67. J.C. Butcher, General linear methods for stiff differential equations, BIT, 41(2)
(2001) 240-264.

68. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, John
Wiley and Sons, Chichester (2003).

69. J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd Ed.,
John Wiley and Sons, Chichester (2008).

70. J.C. Butcher, Order and stability of generalized Padé approximations, Appl.
Numer. Math., 59(3-4)(2009) 558-567.

71. J.C. Butcher, J.R. Cash and M.T. Diamantakis, DESI methods for stiff initial-
value problems, ACM Trans. Math. Soft., 22(4) (1996) 401-422.

72. J.C. Butcher and D.J.L. Chen, A new type of singly implicit Runge-Kutta
method, Appl. Numer. Math., 34(2-3) (2000) 179-188.

73. J.C. Butcher and G. Hojjati, Second derivative methods with RK stability,
Numer. Alg., 40(4) (2005) 415-429.

74. J.C. Butcher and N. Rattenbury, ARK methods for stiff problems, Appl. Numer.
Math., 53(2-4) (2005) 165-181.

122

75. D.A. Calahan, A stable, accurate method of numerical integration for nonlinear
systems, Proc. IEEE, 56(4) (1968) 744.

76. M. Calvo, S. González-Pinto and J.I. Montijano, On the convergence of Runge-
Kutta methods for stiff non linear differential equations, Numer. Math., 81(1)
(1998) 31-51.

77. M. Calvo, S. González-Pinto and J.I. Montijano, Runge-Kutta methods for the
numerical solution of stiff semilinear systems, BIT, 40(4) (2000) 611-639.

78. M. Calvo, M.P. Laburta and J.I. Montijano, Starting algorithms for Gauss
Runge-Kutta methods for Hamiltonian systems, Comp. and Math. w/ Appl.,
45(1-3) (2003) 401-410.

79. M. Calvo, M.P. Laburta and J.I. Montijano, Two-step high order starting values
for for implicit Runge-Kutta methods, Adv. Comp. Math., 19(4) (2003) 401-412.

80. M. Calvo, J.I. Montijano and S. González-Pinto, On the existence of solution of
stage equations in implicit Runge-Kutta methods, J. Comp. and Appl. Math.,
111(1-2) (1999) 25-36.

81. M. Calvo, J.I. Montijano and L. Rández, On the solution of discontinuous IVPs
by adaptive Runge-Kutta codes, Numer. Alg., 33(1-4) (2003) 163-182.

82. M.P. Calvo, High order starting iterates for implicit Runge-Kutta methods: an
improvement for variable-step symplectic integrators, IMA J. Numer. Anal.,
22(1) (2002) 153-166.

83. M.P. Calvo, J. de Frutos and J. Novo, Linearly implicit Runge-Kutta methods
for advection-reaction-diffusion equations, Appl. Numer. Math., 37(4) (2001)
535-549.

84. M.P. Calvo, J. de Frutos and J. Novo, An efficient way to avoid the or-
der reduction of linearly implicit Runge-Kutta methods for nonlinear IBVP’s,
In:Mathematical Modelling, Simulation and Optimization of Integrated Electri-
cal Circuits, K. Antreich, R. Bulirsch, A. Gilg and P. Rentrop, Eds., Inter. Series
of Numer. Math. Vol. 146, Birkhäuser, Basel (2003) 321-332.

85. M.P. Calvo, A. Iserles and A. Zanna, Numerical solution of isospectral flows,
Math. Comp., 66(220) (1997) 1461-1486.

86. M.P. Calvo and C. Palencia, Avoiding the order reduction of Runge-Kutta meth-
ods for linear initial boundary value problems, Math. Comp., 71(240) (2002)
1529-1543.

87. M.P. Calvo and A. Portillo, Are high order variable step equistage initializers
better than standard starting algorithms?, J. Comp. and Appl. Math., 169(2)
(2004) 333-344.

123

88. F. Cameron, A class of low order DIRK methods for a class of DAEs, Appl.
Numer. Math., 31(1) (1999) 1-16.

89. F. Cameron, Low-order Runge-Kutta Methods for Differential-Algebraic Equa-
tions, Ph.D. Thesis, Dept. of Math., Tampere Univ. of Tech., Tampere (1999).

90. F. Cameron, A Matlab package for automatically generating Runge-Kutta trees,
order conditions and truncation error coefficients, ACM Trans. Math. Soft.,
32(2) (2006) 274-298.

91. F. Cameron, M. Palmroth and R. Piché, Quasi stage order conditions for SDIRK
methods, Appl. Numer. Math., 42(1-3) (2002) 61-75.

92. I.T. Cameron, Solution of differential algebraic-systems using diagonally implicit
Runge-Kutta methods, IMA J. Numer. Anal., 3(1) (1983) 273-289.

93. M.H. Carpenter, C.A. Kennedy, H. Bijl, S.A. Viken and V.N. Vatsa, Fourth-
order ESDIRK schemes for fluid mechanics applications, J. Sci. Comp., 25(1/2)
(2006) 157-194.

94. M.H. Carpenter, S.A. Viken and E.J. Nielsen, The temporal efficiency of higher
order schemes, AIAA Paper 2003-0086, AIAA, Aerospace Sciences Meeting and
Exhibit, 41st, Reno, NV, Jan. 6-9, 2003.

95. M.H. Carpenter, C. Vuik, P. Lucas, M. van Gijzen and H. Bijl, A general al-
gorithm for reusing Krylov subspace information. I. Unsteady Navier-Stokes,
NASA/TM-2010-216190, NASA Langley Research Center (2010) 52 pp.

96. M.B. Carver, Efficient integration over discontinuities in ordinary differential
equation simulations, Math. and Comp. in Simulation, 20(3)(1978) 190-196.

97. J.R. Cash, Diagonally implicit Runge-Kutta formulas with error estimates, J.
Inst. Math. Appl., 24(3) (1979) 293-301.

98. J.R. Cash, Block Runge-Kutta methods for the numerical integration of initial-
value problems in ordinary differential-equations. 2. The stiff case, Math. Comp.,
40(161) (1983) 193-206.

99. J.R. Cash, Diagonally implicit Runge-Kutta formulas for the numerical inte-
gration of nonlinear two-point boundary-value-problems, Comp. and Math. w/
Appl., 10(2) (1984) 123-137.

100. J.R. Cash, A comparison of some codes for the stiff oscillatory problem, Comp.
and Math. w/ Appl., 36(1) (1998) 51-57.

101. J.R. Cash, Efficient time integrators in the numerical method of lines, J. Comp.
and Appl. Math., 183(2) (2005) 259-274.

102. J.R. Cash and C.B. Liem, On the design of a variable order, variable step
diagonally implicit Runge-Kutta algorithm, J. Inst. Math. Appl., 26(1) (1980)
87-91.

124

103. F. Ceschino and J. Kunzmann, Numerical Solution of Initial Value Problems,
Prentice-Hall, Englewood Cliffs (1966).

104. T.F. Chan and K.R. Jackson, The use of iterative linear-equation solvers in
codes for large systems of stiff IVPs for ODEs, SIAM J. Sci. and Stat. Comp.,
7(2) (1986) 378-417.

105. P. Chartier and E. Lapôtre, Reversible B-series, IRISA Internal Publication,
N◦ 1221, IRISA, Rennes (1998) 17 pp.

106. F.H. Chipman, Numerical Solution of Initial Value Problems using A-stable
Runge-Kutta Methods, Ph.D. Thesis, Dept. of Appl. Analysis and Comp. Sci.,
Univ. of Waterloo, Ontario (1971).

107. T.S. Chua and P.M. Dew, The design of a variable-step integrator for the
simulation of gas transmission networks, Int. J. Numer. Meth. Eng., 20(10)
(1984) 1797-1813.

108. M. Clemens, M. Wilke and T. Weiland, Linear-implicit time integration
schemes for error-controlled transient nonlinear magnetic field simulations,
IEEE Trans. on Magnetics, 39(3) (2003) 1175-1178.

109. M.D. Compere, SDIRK4: Octave function to solve stiff system of first order
ODEs, [http://econpapers.repec.org/software/codoctave/c031003.htm]

110. C.G. Concepción, On the A-acceptability of Pade-type approximants to the
exponential with a single pole, J. Comp. and Appl. Math., 19(1) (1987) 133-
140.

111. N.H. Cong A-stable diagonally implicit Runge-Kutta-Nyström methods for
parallel computers, Numer. Alg., 4(2) (1993) 263-281.

112. N.H. Cong, A parallel DIRK method for stiff initial-value problems J. Comp.
and Appl. Math., 54(1) (1994) 121-127.

113. N.H. Cong, A fast convergence parallel DIRKN method and its applications to
PDEs, Appl. Math. Lett., 8(2) (1995) 85-90.

114. G.J. Cooper, Error bounding functions for Runge-Kutta methods, Appl. Nu-
mer. Math., 5(1-2) (1989) 41-50.

115. G.J Cooper, Weak nonlinear stability of implicit Runge-Kutta methods, IMA
J. Numer. Anal., 12(1) (1992) 57-65.

116. G.J Cooper and A. Sayfy, Semi-explicit A-stable Runge-Kutta methods, Math.
Comp., 33(146) (1979) 541-556.

117. I. Coroian, Low order stable semi-explicit Runge-Kutta methods, Bul. Ştiinţ.
Univ. Baia Mare, Ser. B, 18(1) (2002) 15-22. [ISSN 1224-3221]

125

118. I. Coroian, On semi-explicit Runge-Kutta methods and their stability proper-
ties. Bul. Ştiinţ. Univ. Baia Mare, Ser. B, 18(2) (2002) 187-192. [ISSN 1224-3221]

119. I. Coroian, New stable semi-explicit Runge-Kutta methods, Carpathian J.
Math., 19(1) (2003) 23-34. [ISSN 1584-2851]

120. M. Crouzeix, Sur l’Approximation Équations Différentielles Opérationnelles
Linéaires par des Méthodes de Runge-Kutta, Thesis (3rd cycle), Université de
Paris 6 (1975). [In French]

121. M. Crouzeix, Sur les methodes de Runge-Kutta pour l’approximations des
problemes d’evolution, In: Computing Methods in Applied Sciences and Engi-
neering, Lecture Notes in Econ. and Math. Systems, 134, R. Glowinski and
J.L.Lions, Eds., Springer-Verlag, Berlin (1976) 206-223. [In French]

122. M. Crouzeix, Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math.,
32(1) (1979) 75-82. [In French]

123. M. Crouzeix and P.A. Raviart, Approximation des problem d’evolution, Un-
published Notes (1980). [In French]

124. G. Dahlquist, On the control of the global error in stiff initial value problems,
In: Numerical Analysis, Lecture Notes in Mathematics, Vol. 912, G.A. Watson
Ed., Springer-Verlag, Berlin (1982) 38-49.

125. G.G. Dahlquist and R. Jeltsch, Generalized disks of contractivity for explicit
and implicit Runge-Kutta methods, Report TRITA-NA-7906, Dept. of Numer.
Anal. and Comp. Sci., Royal Inst. Tech., Stockholm (1979). 21 pp.

126. G. Dahlquist and R. Jeltsch, Reducibility and contractivity of Runge-Kutta
methods revisited, BIT, 46(3) (2006) 567-587.

127. F. de Hoog and R. Weiss, The application of Runge-Kutta schemes to singular
initial value problems, Math. Comp., 44(169)(1985) 93-103.

128. K. Dekker and E. Hairer, A necessary condition for BSI-stability, BIT, 25(1)
(1985) 285-288.

129. K. Dekker and J.G. Verwer, Stability of Runge-Kutta Methods for Stiff Non-
linear Differential Equations, North-Holland, Amsterdam, Netherlands (1984).

130. J. Devooght and E. Mund, Numerical solution of neutron kinetics equations
using A-stable algorithms, Prog. in Nucl. Energy, 16(2) (1985) 97-126.

131. U.K.S. Din, F. Ismail, M. Suleiman, Z.A. Majid and M. Othman, The parallel
three-processor fifth-order diagonally implicit Runge-Kutta methods for solving
ordinary differential equations, In: Advances in Numerical Methods, Chapter
5, Lecture Notes in Elect. Eng., Vol. 11, N. Mastorakis and J. Sakellaris, Eds.,
Springer-Verlag, Berlin (2009) 55-66.

126

132. J.R. Dormand and P.J. Prince, A reconsideration of some embedded Runge-
Kutta formulae, J. Comp. and Appl. Math., 15(2) (1986) 203-211.

133. V.A. Dougalis and S.M. Serbin, On some unconditionally stable, higher-order
methods for the numerical-solution of the structural dynamics equations, Int.
J. Numer. Meth. Eng., 18(11) (1982) 1613-1621.

134. K. Duraisamy, J.D. Baeder and J.-G. Liu, Concepts and application of time-
limiters to high resolution schemes, J. Sci. Comp., 19(1-3) (2003) 139-162.

135. A. Durán and J.M. Sanz-Serna, The numerical integration of relative equi-
librium solutions. The nonlinear Schrodinger equation, IMA J. Numer. Anal.,
20(2) (2000) 235-261.

136. B.L. Ehle, On Padé Approximations to the Exponential Function and A-stable
Methods for the Numerical Solution of Initial Value Problems, Ph.D. Thesis,
Dept. of Appl. Anal. and Comp. Sci., Univ. of Waterloo, Ontario (1969).

137. W. Ehlers, P. Ellsipen and M. Ammann, Time- and space-adaptive methods
applied to localization phenomena in empty and saturated micropolar and stan-
dard porous media, Int. J. Numer. Meth. Eng., 52(5-6) (2001) 503-526.

138. D. Ellison, Efficient automatic integration of ordinary differential equations
with discontinuities, Math. and Comp. in Simul., 23(1)(1981) 12-20.

139. E. Emmrich and M. Thalhammer, Stiffly accurate Runge-Kutta methods for
nonlinear evolution problems governed by a monotone operator, Math. Comp.,
79(270) (2010) 785-806.

140. R.F. Enenkel and K.R. Jackson, DIMSEMs: Diagonally implicit single-
eigenvalue methods for the numerical solution of stiff ODEs on parallel com-
puters, Adv. Comp. Math., 7(1-2) (1997) 97-133.

141. W.H. Enright, Improving the efficiency of matrix operations in the numerical
solution of stiff ordinary differential equations, ACM Trans. Math. Soft., 4(2)
(1978) 127-136.

142. W.H. Enright, K. R. Jackson, S.P. Nørsett and P.G. Thomsen, Effective solu-
tion of discontinuous IVPs using a Runge-Kutta formula pair with interpolants,
Appl. Math. and Comp., 27(4) (1988) 313-335.

143. W.H. Enright and J.D. Pryce, Two FORTRAN packages for assessing initial
value methods, ACM Trans. Math. Soft., 13(1) (1987) 1-27.

144. W.H. Enright and W.L. Seward, Achieving tolerance proportionality in soft-
ware for stiff initial-value problems, Computing, 42(4) (1989) 341-352.

145. I.Th. Famelis, S.N. Papakostas and Ch. Tsitouras, Symbolic derivation of
Runge-Kutta order conditions, J. Symb. Comp. 37 (2004) 311-327.

127

146. I. Faragò, A. Havasi and Z. Zlatev, The convergence of diagonally implicit
Runge-Kutta methods combined with Richardson extrapolation, Comp. and
Math. with Appl., In Press (2013).

147. S.O. Fatunla, Numerical treatment of singular initial value problems, Comp.
and Maths. w/Appls. 12(5/6)(1986) 1109-1115.

148. L. Ferracina and M.N. Spijker, Stepsize restrictions for the total-variation-
diminishing property in general Runge-Kutta methods, SIAM Numer. Anal.,
42(3) (2004) 1073-1093.

149. L. Ferracina and M.N. Spijker, An extension and analysis of the Shu-Osher
representation of Runge-Kutta methods, Math. Comp., 74(249) (2005) 201-219.

150. L. Ferracina and M.N. Spijker, Strong stability of singly-diagonally-implicit
Runge-Kutta methods, Appl. Numer. Math., 58(11) (2008) 1675-1686.

151. J.M. Franco and I. Gómez, Two three-parallel and three-processor SDIRK
methods for stiff initial-value problems, J. Comp. and Appl. Math., 87(1) (1997)
119-134.

152. J.M. Franco and I. Gómez, Fourth-order symmetric DIRK methods for periodic
stiff problems, Numer. Alg., 32(2-4) (2003) 317-336.

153. J.M. Franco and I. Gómez, Accuracy and linear stability of RKN methods for
solving second-order stiff problems, Appl. Numer. Math., 59(5) (2009) 959-975.

154. J.M. Franco, I. Gómez and L. Rández, Canonical DIRK methods versus SDIRK
methods for nondissipative stiff problems, In:XV Congreso de Ecuaciones Difer-
enciales y Aplicaciones/ V Congreso de Matemática Aplicada, 737-742, Univer-
sidade de Vigo, Vigo (1997). [ISBN 84-8158-093-7, In Spanish]

155. J.M. Franco, I. Gómez and L. Rández, SDIRK methods for stiff ODEs with
oscillating solutions, J. Comp. and Appl. Math., 81(2) (1997) 197-209.

156. J.M. Franco, I. Gómez and L. Randez, Four-stage symplectic and P-stable
SDIRKN methods with dispersion of high order, Numer. Alg., 26(4) (2001)
347-363.

157. R. Frank, J. Schneid and C.W. Ueberhuber, B-convergence: A survey, Appl.
Numer. Math., 5(1-2) (1989) 51-61.

158. D. Fränken and K. Ochs, Passive Runge-Kutta methods - properties, paramet-
ric representation and order conditions, BIT, 43(2) (2003) 339-361.

159. D. Fränken and K. Ochs, Automatic step-size control in wave digital simulation
using passive numerical integration methods, Int. J. Electron. Comm. (AEU),
58(6) (2004) 391-401.

160. J. de Frutos, Implicit-explicit Runge-Kutta methods for financial derivatives
pricing models, Euro. J. Oper. Res., 171(3) (2006) 991-1004.

128

161. P.W. Gaffney, A performance evaluation of some FORTRAN subroutines for
the solution of stiff oscillatory ordinary differential equations, ACM Trans.
Math. Soft., 10(1) (1984) 58-72.

162. S. Gan, Strong regularity properties of Runge-Kutta methods for ordinary
differential equations, J. Changsha Railway Univ., 18(4) (2000) 80-83. [ISSN
1000-2499, In Chinese]

163. W. Gander and D. Gruntz, Derivation of numerical methods using computer
algebra, SIAM Review, 41(3) (1999) 577-593.

164. B. Garćıa-Celayeta, I. Higueras and T. Roldán, Contractivity/monotonicity
for additive Runge-Kutta methods: Inner product norms, Appl. Numer. Math.,
56(6) (2006) 862-878.

165. C.W. Gear, Method and initial stepsize selection in multistep ODE solvers,
Univ. Illinois, Urbana-Champaign, Dept. Comp. Sci. Rpt., UIUCDCS-R-80-
1006, Urbana-Champaign (1980). 38 pp.

166. C. W. Gear and O. Østerby, Solving ordinary differential equations with dis-
continuities, ACM Trans. on Math. Soft., 10(1)(1984) 23-44.

167. I. Gladwell, L.F. Shampine and R.W. Brankin, Automatic selection of the
initial step size for an ODE solver, J. Comp. and Appl. Math., 18(2) (1987)
175-192.

168. I. Gómez, I. Higueras and T. Roldán, Starting algorithms for low stage order
RKN methods, J. Comp. and Appl. Math., 140(1-2) (2002) 345-367.

169. C. González and A. Ostermann, Optimal convergence results for Runge-Kutta
discretizations of linear nonautonomous parabolic problems, BIT, 39(1) (1999)
79-95.

170. S. González-Pinto and D. Hernández-Abreu, Strong A-Acceptability for ratio-
nal functions, BIT, 43(3) (2003) 555-561.

171. S. González-Pinto and D. Hérnandez-Abreu, Stable Runge-Kutta integrations
for differential systems with semi-stable equilibria, Numer. Math., 97(3) (2004)
473-491.

172. S. González-Pinto and D. Hérnandez-Abreu, Global error estimates for a uni-
parametric family of stiffly accurate Runge-Kutta collocation methods on sin-
gularly perturbed problems, BIT, 51(1) (2011) 155-175.

173. S. González-Pinto, J.I. Montijano and S. Pérez-Rodŕıguez, On starting algo-
rithms for implicit RK methods, BIT, 40(4) (2000) 685-714.

174. S. González-Pinto, J.I. Montijano and S. Pérez-Rodŕıguez, Variable-order start-
ing algorithms for implicit RK methods on stiff problems, Appl. Numer. Math.,
44(1-2) (2003) 77-94.

129

175. S. González-Pinto, J.I. Montijano and S. Pérez-Rodŕıguez, Stabilized starting
algorithms for collocation Runge-Kutta methods, Comp. and Math. w/ Appl.,
45(1-3) (2003) 411-428.

176. S. González-Pinto, J.I. Montijano and S. Pérez-Rodŕıguez, Two-step error esti-
mators for implicit Runge-Kutta methods applied to stiff systems, ACM Trans.
Math. Soft., 30(1) (2004) 1-18.

177. S. Gottlieb, D.I. Ketcheson and C.-W. Shu, High-order strong stability pre-
serving time discretizations, J. Sci. Comp., 38(3) (2008) 251-289.

178. S. Gottlieb, D. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge-
Kutta and Multistep Time Discretizations, World Scientific Pub. Co., Singapore
(2011).

179. K. Gustafsson, Control theoretic techniques for stepsize selection in implicit
Runge-Kutta methods, ACM Trans. Math. Soft., 20(4) (1994) 496-517.

180. K. Gustafsson and G. Söderlind, Control theoretic techniques for the iterative
solution of nonlinear equation in ODE solvers, SIAM J. Sci. Comp., 18(1) (1997)
23-40.

181. E. Hairer, Highest possible order of algebraically stable diagonally implicit
Runge-Kutta methods, BIT, 20(2) (1980) 254-256.

182. E. Hairer, Constructive characterization of A-stable approximations to exp(z)
and its connection with algebraically stable Runge-Kutta methods, Numer.
Math., 39(2) (1982) 247-258.

183. E. Hairer, A note on D-stability, BIT, 24(3) (1984) 383-386.

184. E. Hairer, A-stability and B-stability for Runge-Kutta methods: characteriza-
tions and equivalence, Numer. Math., 48(4) (1986) 383-389.

185. E. Hairer, Variable time step integration with symplectic methods, Appl. Nu-
mer. Math., 25(2-3) (1997) 219-227.

186. E. Hairer, A. Iserles and J.M. Sanz-Serna, Equilibria of Runge-Kutta methods,
Numer. Math., 58(3) (1990) 243-254.

187. E. Hairer, Ch. Lubich and M. Roche, Error of Runge-Kutta methods for stiff
problems studied via differential algebraic equations, BIT, 28(3) (1988) 678-700.

188. E. Hairer, Ch. Lubich and G. Wanner, Geometric Numerical Integration,
Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd Ed.,
Springer-Verlag, Berlin (2006).

189. E. Hairer, R.I. McLachlan and A. Razakarivony, Achieving Brouwers law with
implicit Runge-Kutta methods, BIT, 48(2) (2008) 231-243.

130

190. E. Hairer, S.P. Nørsett and G. Wanner, Solving Ordinary Differential Equations
I, Nonstiff Problems, 2ed., Springer-Verlag, Berlin (1993).

191. E. Hairer and H. Türke, The equivalence of B-stability and A-stability, BIT,
24(4) (1984) 520-528.

192. E. Hairer and G. Wanner, Characterization of non-linearly stable implicit
Runge-Kutta methods, In: Numerical Integration of Differential Equations and
Large Linear Systems, Vol. 968, J. Hinze, Ed., Springer-Verlag, Berlin (1982)
207-219.

193. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff
and Differential-Algebraic Problems, 2ed., Springer-Verlag, Berlin (1996).

194. E. Hairer and G. Wanner, Stiff differential equations solved by Radau methods,
J. Comp. and Appl. Math., 111(1-2) (1999) 93-111.

195. P.C. Hammer and J.W. Hollingsworth, Trapezoidal methods of approximating
solutions of differential equations, Math. Tables and other Aides to Comp., 9(51)
(1955) 92-96.

196. E. Hansen and A. Ostermann, Unconditional convergence of DIRK schemes
applied to dissipative evolution equations, Appl. Numer. Math., 60(1-2) (2010)
55-63.

197. D.J. Higham, Regular Runge-Kutta pairs, Appl. Numer. Math., 25(2-3) (1997)
229-241.

198. D.J. Higham and L.N. Trefethen, Stiffness of ODEs, BIT, 33(2) (1993) 285-303.

199. N.J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadel-
phia, PA. (1996).

200. I. Higueras, Strong stability for additive Runge-Kutta methods, SIAM J. Nu-
mer. Anal., 44(4) (2006) 1735-1758.

201. I. Higueras and T. Roldán, Starting algorithms for some DIRK methods, Nu-
mer. Alg., 23(4) (2000) 357-369.

202. I. Higueras and T. Roldán, ESDIRK methods for index-2 DAE: Starting algo-
rithms, In:Monografias del Sem. Matem. Garćıa de Galdeano, 27, M. Madaune-
Tort, D. Trujillo, M.C. López de Silanes, M. Palacious and G. Sanz, Eds., Pren-
sus Univ. Zaragoza, Zaragoza (2003) 345-352.

203. I. Higueras and T. Roldán, Consistency of a class of RK methods for index-2
DAE, In:Monografias del Sem. Matem. Garćıa de Galdeano, 31, M.C. López de
Silanes, M. Palacious, G. Sanz, J.J. Torrens, M. Madaune-Tort and D. Trujillo,
Eds., Prensus Univ. Zaragoza, Zaragoza (2004) 179-189.

204. I. Higueras and T. Roldán, Starting algorithms for a class of RK methods for
index-2 DAE, Comp. Math. w/ Appl., 49(7-8) (2005) 1081-1099.

131

205. I. Higueras and T. Roldán, Stage value predictors for additive and partitioned
Runge-Kutta methods, Appl. Numer. Math., 56(1) (2006) 1-18.

206. A.C. Hindmarsh, The PVODE and IDA Algorithms, Lawrence Livermore Na-
tional Lab. Tech. Rep. UCRL-ID-141558, Livermore (2000). 69 pp.

207. A.C. Hindmarsh and S.P. Nørsett, KRYSI, An ODE Solver combining a semi-
implicit Runge-Kutta method with a preconditioned Krylov method, UCID-
21422, Lawrence Livermore National Laboratory, Livermore (1988). 34 pp.

208. R. Hixon and M.R. Visbal, Comparison of high-order implicit time marching
schemes for unsteady flow calculations, AIAA 2007-4324, AIAA, Comp. Fluid
Dyn. Conf., 18th, Miami, FL, Jun. 25-28, 2007.

209. M.E. Hosea and L.F. Shampine, Analysis and implementation of TR-BDF2,
Appl. Numer. Math., 20(1) (1996) 21-37.

210. N. Houbak, S.P. Nørsett and P.G. Thomsen, Displacement or residual test in
the application of implicit methods for stiff problems, IMA J. Numer. Anal.,
5(3) (1985) 297-305.

211. N. Houbak and P.G. Thomsen, SPARKS: A FORTRAN subroutine for the
solution of large systems of stiff ODE’s with sparse Jacobians, Numeriske Insti-
tute, NI-79-02, Danmarks Tekniske Højskole, Lyngby (1979). 36 pp.

212. P.J. van der Houwen and B.P. Sommeijer, Phase-lag analysis of implicit Runge-
Kutta methods, SIAM J. Numer. Anal., 26(1) (1989) 214-229.

213. P.J van der Houwen and B.P. Sommeijer, Diagonally implicit Runge-Kutta-
Nyström methods for oscillatory problems, SIAM J. Numer. Anal., 26(2) (1989)
414-429.

214. P.J. van der Houwen and B.P. Sommeijer, B.P., The use of approximate fac-
torization in stiff ODE solvers, J. Comp. and Appl. Math., 100(1) (1998) 11-21.

215. P.J. van der Houwen and B.P. Sommeijer, Diagonally implicit Runge-Kutta
methods for 3D shallow water applications, Adv. in Comput. Math., 12(2-3)
(2000) 229-250.

216. P.J van der Houwen, B.P. Sommeijer and N.H. Cong, Parallel diagonally im-
plicit Runge-Kutta Nyström methods, Appl. Numer. Math., 9(2) (1992) 111-131.

217. P.J. van der Houwen, B.P. Sommeijer and W. Couzy, Embedded diagonally
implicit Runge-Kutta algorithms on parallel computers, Math. Comp., 58(197)
(1992) 135-159.

218. W.H. Hundsdorfer, The Numerical Solution of Nonlinear Stiff Initial Value
Problems: An Analysis of One-Step Methods, CWI Tract 12. Centrum voor
Wiskunde en Informatica, Amsterdam (1985).

132

219. W.H. Hundsdorfer and J. Schneid, An algebraic characterization of B-
convergent Runge-Kutta methods, Numer. Math., 56(7) (1990) 695-705.

220. W.H. Hundsdorfer and M.N. Spijker, A note on B-stability of Runge-Kutta
methods, Numer. Math., 36(3)(1981) 319-331.

221. W.H. Hundsdorfer and M.N. Spijker, Boundedness and strong stability of
Runge-Kutta methods, Math. Comp., 80(274) (2011) 863-886.

222. W. Hundsdorfer and J. Verwer, Numerical Solution of Time-Dependent
Advection-Diffusion-Reaction Equations, Springer-Verlag, Berlin (2003).

223. S. Ilie, G. Söderlind and R.M. Corless, Adaptivity and computational com-
plexity in the numerical solution of ODEs, J. Complexity, 24(3) (2008) 341-361.

224. S.O. Imoni, F.O. Otunta and T.R. Ramamohan, Embedded implicit Runge-
Kutta Nyström method for solving second-order differential equations, Int. J.
Comp. Math., 83(11) (2006) 777-784.

225. A. Iserles, Nonlinear stability and asymptotics of O.D.E. solvers, In: Numer-
ical Mathematics, Singapore 1988, R.P Agarwal et al., Eds., Birkhäuser, Basel
(1988) 225-236.

226. A. Iserles and S.P. Nørsett, On the theory of parallel Runge-Kutta methods,
IMA J. Numer. Anal., 10(4) (1990) 463-488.

227. A. Iserles and S.P. Nørsett, Order Stars, Chapman and Hall, New York (1991).

228. A. Iserles, A.T. Peplow and A.M. Stuart, A unified approach to spurious solu-
tions introduced by time discretization. 1. Basic theory, SIAM J. Numer. Anal.,
28(6) (1991) 1723-1751.

229. A. Iserles, G. Ramaswami and M. Sofroniou, Runge-Kutta methods for
quadratic ordinary differential equations, BIT, 38(2) (1998) 315-346.

230. A. Iserles and A. Zanna, Preserving algebraic invariants with Runge-Kutta
methods, J. Comp. and Appl. Math., 125(1) (2000) 69-81.

231. F. Ismail, Embedded singly diagonally implicit Runge-Kutta-Nystrom method
order 5(4) for the integration of special second order ODEs, Int. J. Comp. and
Math. Sci., 2(2) (2008) 70-74

232. F. Ismail, Sixth order singly diagonally implicit Runge-Kutta Nyström method
with explicit first stage for solving second order ordinary differential equations,
Euro. J. Sci. Res. 26(4) (2009) 470-479.

233. F. Ismail, Diagonally implicit Runge-Kutta Nyström general method order five
for solving second order IVPs, WSEAS Trans. Math., 7(9) (2010) 550-560. [ISSN
1109-2769]

133

234. F.B. Ismail, R.A. Al-Khasawneh and M.B. Suleiman, Comparison of interpo-
lations used in solving delay differential equations by Runge-Kutta method, Int.
J. Comp. Math., 80(7) (2003) 921-930.

235. F. Ismail, R.A. Al-Khasawneh and M. Suleiman, Embedded singly diagonally
implicit Runge-Kutta-Nyström general method (3,4) in (4,5) for solving second
order IVPs, IAENG Int. J. Appl. Math., 37(2) (2007) 97-101. [ISSN 1992-9978]

236. F. Ismail, R.A. Al-Khasawneh, M. Suleiman and M. A. Hassan, Embedded
pair of diagonally implicit Runge-Kutta method for solving ordinary differential
equations, Sains Malaysiana, 39(6) (2010) 1049-1054. [ISSN 0126-6039]

237. F. Ismail, Z. Siri, M. Othman and M. Suleiman, Parallel execution of diagonally
implicit Runge-Kutta methods for solving IVPs, Euro. J. of Sci. Res., 26(4)
(2009) 480-489.

238. F.B.T. Ismail and M.B. Suleiman, Embedded singly diagonally implicit Runge-
Kutta methods (4,5) in (5,6). For the integration of stiff systems of ODEs sys-
tems of ODEs, Int. J. Comp. Math., 66(3-4) (1997) 325-341.

239. F.B. Ismail and M.B. Suleiman, The P-stability and Q-stability of singly di-
agonally implicit Runge-Kutta method for delay differential equations, Int. J.
Comp. Math., 76(2) (2000) 267-277.

240. S. Isono and D.W.. Zingg, A Runge-Kutta-Newton-Krylov algorithm for
fourth-order implicit time marching applied to unsteady flows, AIAA Paper
2004-0433, AIAA, Aerospace Sciences Meeting and Exhibit, 42nd, Reno, NV,
Jan. 5-8, 2004.

241. N.I.C. Jawias, F. Ismail, M. Suleiman and A. Jaafar, Diagonally implicit
Runge-Kutta fourth order four-stage method for linear ordinary differential
equations with minimized error norm, J. Fund. Sci. 5(1) (2009) 69-78. [ISSN
1823-626X]

242. N.I.C. Jawias, F. Ismail, M. Suleiman and A. Jaafar, Fourth-order four-stage
diagonally implicit Runge-Kutta method for linear ordinary differential equa-
tions, Malaysian J. Math. Sci. 4(1) (2010) 95-105.

243. Z. Jackiewicz and S. Tracogna, A general class of two-step Runge-Kutta meth-
ods for ordinary differential equations, SIAM J. Numer. Anal., 32(5) (1995)
1390-1427.

244. Z. Jackiewicz, R. Vermiglio, M. Zennaro, Regularity properties of Runge-Kutta
methods for ordinary differential equations, Appl. Numer. Math., 22(1-3) (1996)
251-262.

245. K.R. Jackson, The numerical solution of large systems of stiff IVPs for ODEs,
Appl. Numer. Math., 20(1-2) (1996) 5-20.

134

246. L. Jay, Convergence of a class of Runge-Kutta methods for differential-algebraic
systems of index-2, BIT, 33(1) (1993) 137-150.

247. C.J. Jiang, The coefficients of 4-stage, 4-order diagonally implicit symplectic
Runge-Kutta methods, Chin. J. Numer. Math. and Appl., 24(4) (2002) 1-6.

248. G. Jothiprasad, D.J. Mavriplis and D.A. Caughey, Higher-order time integra-
tion schemes for the unsteady Navier-Stokes equations on unstructured meshes,
J. Comp. Phys., 191(2) (2003) 542-566.

249. B. Kacewicz and P. Przybylowicz, Optimal adaptive solution of initial-value
problems with unknown singularities, J. Complexity, 24(4)(2008) 455-476.

250. N.N. Kalitkin and I.P. Poshivaylo, Inverse Ls-Stable Runge-Kutta schemes,
Dokl. Math., 85(1) (2012) 139-143.

251. B. Karasözen, Extremely stable semi-implicit Runge-Kutta methods, Dogă
Bilim Dergisi, Seri A1, 9(1) (1985) 12-18. [ISSN 1011-0941]

252. B. Karasözen, An extremely algebraically stable DIRK method for parabolic
equations, Dogă. Turkish J. Math., 10(3) (1986) 327-337. [ISSN 1010-7622]

253. S.L. Keeling, On implicit Runge-Kutta methods with a stability function hav-
ing distinct real poles, BIT, 29(1) (1989) 91-109.

254. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM,
Philadelphia, PA. (1995).

255. C.A. Kennedy and M.H. Carpenter, Additive Runge-Kutta schemes for
convection-diffusion-reaction equations, Appl. Numer. Math., 44(1-2) (2003)
139-181.

256. C.A. Kennedy, M.H. Carpenter and R.H. Lewis, Low-storage, explicit Runge-
Kutta schemes for the compressible Navier-Stokes equations, Appl. Numer.
Math., 35(3) (2000) 177-219.

257. D.I. Ketcheson, C.B. Mac Donald and S. Gottlieb, Optimal implicit strong
stability preserving Runge-Kutta methods, Appl. Numer. Math. 59(2) (2009)
373-392.

258. S. Khashin, Butcher algebras for Butcher systems, Numer. Alg., 65(3) (2014)
597-609.

259. P.E. Kloeden and J. Schropp, Runge-Kutta methods for monotone differential
and delay equations, BIT, 43(3) (2003) 571-586.

260. O. Koch, P. Kofler, E. Weinmüller, The implicit Euler method for the numerical
solution of singular initial value problems, Appl. Numer. Math. 34(2-3) (2000)
231-252.

135

261. O. Koch, E. Weinmüller, Iterated Defect Correction for the solution of singular
initial value problems, SIAM J. Numer. Anal. 38(6)(2001) 1784-1799.

262. T. Koto, Phase-lag analysis of diagonally-implicit Runge-Kutta methods, J.
Info. Process., 13(3) (1990) 361-366.

263. T. Koto, Third-order semi-implicit Runge-Kutta methods for time dependent
index-one differential-algebraic equations, J. Info. Process., 14(2) (1991) 172-
177. [ISSN 0387-6101]

264. T. Koto, Explicit Runge-Kutta schemes for evolutionary problems in partial
differential equations, Annals Numer. Math., 1 (1994) 335-346.

265. T. Koto, A criterion for P-stability properties of Runge-Kutta methods, 38(4)
(1998) 737-750.

266. J.F.B.M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT, 31(3)
(1991) 482-528.

267. J.F.B.M. Kraaijevanger, Contractivity in the maximum norm for Runge-Kutta
methods, In: Computational Ordinary Differential Equations, J.R. Cash and I.
Gladwell, Eds., Clarendon Press, New York (1992) 9-18.

268. J.F.B.M. Kraaijevanger, H.W.J. Lenferink and M.N Spijker, Stepsize restric-
tions for stability in the numerical-solution of ordinary and partial-differential
equations, J. Comp. and Appl. Math., 20(OV) (1987) 67-81.

269. J.F.B.M. Kraaijevanger and J. Schneid, On the unique solvability the Runge-
Kutta equations, Numer. Math., 59(2) (1991) 129-157.

270. J.F.B.M. Kraaijevanger and M.N Spijker, Algebraic stability and error propa-
gation in Runge-Kutta methods, Appl. Numer. Math., 5(1-2) (1989) 71-89.

271. M.R. Kristensen, M.G. Gerritsen, P.G. Thomsen, M.L. Michelsen and E.H.
Stenby, Efficient integration of stiff kinetics with phase change detection for
reactive reservoir processes, Transp. Porous Media, 69(3) (2007) 383-409.

272. M.R. Kristensen, J.B. Jørgensen, P.G. Thomsen and S.B. Jørgensen, An ES-
DIRK method with sensitivity analysis capabilities, Comp. and Chem. Eng.,
28(12) (2004) 2695-2707.

273. M.R. Kristensen, J.B. Jørgensen, P.G. Thomsen, M.L. Michelsen and S.B.
Jørgensen, Sensitivity Analysis in index-1 differential algebraic equations by
ESDIRK methods, In: Proceedings of the 16th IFAC World Congress, 2005,
Vol. 16, Pt. 1 (2005). [ISBN: 978-3-902661-75-3] 6 pp.

274. F.T. Krogh, Stepsize selection for ordinary differential equations, ACM Trans.
Math. Soft., 37(2) (2010) 15:1-11.

136

275. F.T. Krogh and K. Stewart, Asymptotic (h → ∞) absolute stability for BDFs
applied to stiff differential equations, ACM Trans. Math. Soft., 10(1) (1984)
45-57.

276. G.Yu. Kulikov, Symmetric Runge-Kutta methods and their stability, Russ. J.
Numer. Anal. Math. Modelling, 18(1) (2003) 13-41.

277. G.Yu. Kulikov, One-step methods and implicit extrapolation technique for
index-1 differential-algebraic systems, Russ. J. Numer. Anal. Math. Modelling,
19(6) (2004) 527-553.

278. M.A. Kurdi, Stable High Order Methods for Time Discretization of Stiff Dif-
ferential Equations, Ph.D. Thesis, Applied Mathematics, Univ. of California,
Berkeley, Berkeley (1974).

279. A. Kværnø, Runge-Kutta methods applied to fully implicit differential-
algebraic equations of index-1, Math. Comp., 54(190) (1990) 583-625.

280. A. Kværnø, SDIRK-methods for differential-algebraic equations of index-1 In:
Computational Ordinary Differential Equations, J.R. Cash and I. Gladwell, Eds.,
Clarendon Press, New York (1992) 251-258.

281. A. Kværnø, More, and to be hoped for, better DIRK methods for the solution
of stiff ODEs, Tech. Rep. 2-1992, Math. Sci. Div., Norwegian Inst. of Tech.,
Trondheim (1992).

282. A. Kværnø, Singly diagonally implicit Runge-Kutta methods with an explicit
first stage, BIT, 44(3) (2004) 489-502.

283. A. Kværnø, S.P. Nørsett and B. Owren, Runge-Kutta research in Trondheim,
Appl. Numer. Math., 22(1-3) (1996) 263-277.

284. M.P. Laburta, Starting algorithms for IRK methods, J. Comp. and Appl.
Math., 83(2) (1997) 269-288.

285. J.D. Lambert, Stiffness, In: Computational Techniques for Ordinary Differ-
ential Equations, I. Gladwell and D.K. Sayers, Eds., Academic Press, London
(1980) 20-46.

286. J.D. Lambert, Numerical Methods for Ordinary Differential Systems. The Ini-
tial Value Problem, John Wiley and Sons, Chichester, 1991.

287. S.F. Li, The nonlinear stability of explicit and diagonally implicit Runge-Kutta
methods, Math. Numer. Sinica, 9(4) (1987) 419-430. [ISSN 0254-7791, In Chi-
nese]

288. W.M. Lioen, J.J.B. deSwart and W.A. van der Veen, Test set for IVP solvers,
CWI Report NM-R9615, Centrum voor Wiskunde en Informatica, Amsterdam
(1996).

137

289. H. Liu and J. Zou, Some new additive Runge-Kutta methods and their appli-
cations, J. Comp. and Appl. Math., 190(1-2) (2006) 74-98.

290. C. Lubich and A. Ostermann, Runge-Kutta methods for parabolic equations
and convolution quadrature, Math. Comp., 60(201) (1993) 105-131.

291. C. Lubich and A. Ostermann, Linearly implicit time discretization of nonlinear
parabolic equations, Univ. Innsbruck, Inst. für Math. and Geometrie, Innsbruck
(1994).

292. C. Lubich and A. Ostermann, Runge-Kutta approximation of quasi-linear
parabolic equations, Math. Comp., 64(210) (1995) 601-627.

293. C. Lubich and A. Ostermann, Interior estimates for time discretizations of
parabolic equations, Appl. Numer. Math., 18(1-3) (1995) 241-251.

294. X.-L. Luo, Singly diagonally implicit Runge-Kutta methods combining line
search techniques for unconstrained optimization, J. Comp. Math., 23(2) (2005)
153-164.

295. C. Mac Donald and W. H. Enright, Implications of order reduction for implicit
Runge-Kutta methods, Numer. Alg., 2(3-4) (1992) 351-369.

296. G.J. Makinson, Stable high order implicit methods for numerical solution of
systems of differential equations, Comp. J., 11(3) (1968) 305-310.

297. R. Mannshardt, One-step methods of any order for ordinary differential equa-
tions with discontinuous right-hand sides, 31(2)(1978) 131-152.

298. A. Marciniak, A resume on interval Runge-Kutta methods, Mathematica Ap-
plicanda, 40(1) (2012) 39-52. [ISSN 1730-2668]

299. K. Miller, Unpublished Lecture Notes, Math 228A, Chapter II. Stiff equations,
Fall 1973, Dept. of Math., U.C. Berkeley, Berkeley (1973) 1-18.

300. H. Mingyou, On the contractivity region of Runge-Kutta methods, TRITA-NA-
8106, Dept. of Numer. Anal. and Comp. Sci., The Royal Inst. Tech., Stockholm
(1981). 14 pp.

301. P.C. Moan, The Numerical Solution of Ordinary Differential Equations with
Conservation Laws, Masters Thesis, Norges Tekniske Høgskole, Trondheim
(1996).

302. J.I. Montijano, Estudio de los Metodos SIRK para Resolucion Numérica de
Ecuaciones Differenciales de Tipo Stiff, Ph.D. Thesis, Dpto. de Matemàtica
Aplicada, Universidad de Zaragoza, Zaragoza (1983). [In Spanish]

303. M. Müller, Algebraic characterization of I-stable Runge-Kutta methods, BIT,
31(2) (1991) 314-320.

138

304. A. Murua, Partitioned half-explicit Runge-Kutta methods for differential-
algebraic systems of index 2, Computing, 59(1) (1997) 43-62.

305. D. Negrut, E.J. Haug and H.C. German, An implicit Runge-Kutta method for
integration of differential algebraic equations of multibody dynamics, Multibody
System Dynamics, 9(2) (2003) 121-142.

306. A. Nicolet and F. Delincé, Implicit Runge-Kutta methods for transient mag-
netic field computation, IEEE Trans. on Magnetics, 32(3) (1996) 1405-1408.

307. K. Nipp and D. Stoffer, Invariant-manifolds and global error-estimates of
numerical-integration schemes applied to stiff systems of singular perturbation
type - Part I: RK-Methods, Numer. Math., 70(2) (1995) 245-257.

308. S.P. Nørsett, Semi explicit Runge-Kutta methods, Math. and Comp. Rpt. 6/74,
Dept. of Math., Univ. Trondheim, Trondheim (1974). [ISBN 8271510096]. 75 pp.

309. S.P. Nørsett, One-step methods of Hermite type for numerical integration of
stiff systems, BIT, 14(1) (1974) 63-77.

310. S.P. Nørsett, C-polynomials for rational approximation to exponential func-
tion, Numer. Math., 25(1) (1975) 39-56.

311. S.P. Nørsett, Restricted Padé approximations to the exponential function,
SIAM J. Numer. Anal., 15(5) (1978) 1008-1029.

312. S.P. Nørsett and P.G. Thomsen, Embedded SDIRK-methods of basic order
three, BIT, 24(4) (1984) 634-646.

313. S.P. Nørsett and P.G. Thomsen, Local error control in SDIRK-methods, BIT,
26(1) (1986) 100-113.

314. S.P. Nørsett and P.G. Thomsen, Switching between modified Newton and fix-
point iteration for implicit ODE-solvers, BIT, 26(3) (1986) 339-348.

315. S.P. Nørsett and P.G. Thomsen, SIMPLE: A stiff system solver, Tech. Rep.,
Dept. Numer. Math., Norges Tekniske Høgskole, Trondheim (1987).

316. S.P. Norsett and S.R. Trickett, Exponential fitting of restricted rational approx-
imations to the exponential function, In: Rational Approximation and Interpo-
lation, Lecture Notes in Mathematics, Vol. 1105, Eds: P. Russell Graves-Morris,
E.B. Saff and R.S. Varga, Springer-Verlag, Berlin (1984) 466-476.

317. S.P. Nørsett and G. Wanner, The real-pole sandwich for rational approxima-
tions and oscillation equations, BIT, 19(1) (1979) 79-94.

318. S.P. Nørsett and A. Wolfbrandt, Attainable order of rational approximations
to the exponential function with only real poles, BIT, 17(2) (1977) 200-208.

319. K. Ochs, Passive integration methods: Fundamental theory, Int. J. Elec. and
Comm. (AEU), 55(3) (2001) 153-163.

139

320. M. Oliver and C. Wulff, A-stable Runge-Kutta methods for semilinear evolu-
tion equations, J. Func. Anal., 263(7) (2012) 1981-2023.

321. H. Olsson, Object-oriented solvers for initial value problems, In: Modern Soft-
ware Tools for Scientific Computing, E. Arge, A.M. Bruaset and H.P. Langtan-
gen, Eds., Birkhäuser, Boston (1997) 45-62.

322. H. Olsson, Runge-Kutta Solution of Initial Value Problems. Methods, Algo-
rithms, and Implementation, Ph.D. Thesis, Dept. of Comp. Sci., Lund Univ.,
Lund (1998).

323. H. Olsson and G. Söderlind, Stage value predictors and efficient Newton it-
erations in implicit Runge-Kutta methods, SIAM J. Sci. Comp., 20(1) (1998)
185-202.

324. H. Olsson and G. Söderlind, The approximate Runge-Kutta computational
process, BIT, 40(2) (2000) 351-373.

325. P.G. O’Regan, Step size adjustment at discontinuities for fourth-order Runge-
Kutta methods, Comp. J., 13(4)(1970) 401-404.

326. B. Orel, Real pole approximations to the exponential function, BIT, 31(1)
(1991) 144-159.

327. B. Orel and S.P. Nørsett, Symmetric pz-restricted approximants to the expo-
nential function, Annals Numer. Math., 1 (1994) 183-189.

328. A. Ostermann and M. Roche, Runge-Kutta methods for partial-differential
equations and fractional orders of convergence, Math. Comp., 59(200) (1992)
403-420.

329. A. Ostermann and M. Thalhammer, Convergence of Runge-Kutta methods for
nonlinear parabolic equations, Appl. Numer. Math., 42(1-3) (2002) 367-380.

330. B. Owren and A. Marthinsen, Runge-Kutta methods adapted to manifolds and
based on rigid frames, BIT, 39(1) (1999) 116-142.

331. B. Owren and H.H. Simonsen, Alternative integration methods for problems
in structural dynamics, Comp. Meth. Appl. Mech. and Eng., 122(1-2) (1995)
1-10.

332. B. Owren and M. Zennaro, Order barriers for continuous explicit Runge-Kutta
methods, Math. Comp., 56(194) (1991) 645-661.

333. K. Ozawa, A functionally fitted three-stage explicit singly diagonally implicit
Runge-Kutta method, Japan J. Ind. Appl. Math., 22(3) (2005), 403-427.

334. C. Pantano, An additive semi-implicit Runge-Kutta family of schemes for non-
stiff systems, Appl. Numer. Math. 57(3) (2007) 297-303.

140

335. G. Papageorgiou, I.T. Famelis and C. Tsitouras, A P-stable singly diagonally
implicit Runge-Kutta-Nyström method, Numer. Alg., 17(3-4) (1998) 345-353.

336. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes for stiff sys-
tems of differential equations, In: Recent Trends in Numerical Analysis, Vol. 3,
L. Brugnano and D. Trigiante, Eds, Nova Science Pub., Huntington, NY (2000)
269-289.

337. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and appli-
cations to hyperbolic systems with relaxation, J. Sci. Comp., 25(1/2) (2005)
129-155.

338. L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems
of ordinary differential-equations, SIAM J. Sci. and Stat. Comp., 4(1) (1983)
136-148.

339. L. Petzold, Order results for implicit Runge-Kutta methods applied to
differential-algebraic systems, SIAM J. Numer. Anal., 23(4) (1986) 837-852.

340. A. Prothero and A. Robinson, Stability and accuracy of one-step methods for
solving stiff systems of ordinary differential equations, Math. Comp. 28(125)
(1974) 145-162.

341. J. D. Pryce and J. K. Reid. AD01, a FORTRAN 90 code for automatic differen-
tiation, Rpt. RAL-TR-1998-057, Rutherford Appleton Laboratory, UK (1998).
44 pp.

342. M-Z. Qin and M-Q. Zhang, Symplectic Runge-Kutta algorithms for Hamilto-
nian systems, J. Comp. Math., 10(Suppl.) (1992) 205-215.

343. K. Radakrishnan and A.C. Hindmarsh, Description of LSODE, the Livermore
solver for ordinary differential equations, NASA RP-1327, LLNL Laboratory
Report UCRL-ID-113885, NASA Lewis Research Center, Cleveland (1993). 124
pp.

344. W.C. Rheinboldt, Methods for Solving Nonlinear Equations, 2ed., SIAM,
Philadelphia (1998).

345. M. Roche, Implicit Runge-Kutta methods for differential-algebraic equations,
SIAM J. Numer. Anal., 26(4) (1989) 963-975.

346. M. Rodŕıguez, R. Barrio, Reducing rounding errors and achieving Brouwers
law with Taylor Series method, 62(8) (2012) 1014-1024.

347. T. Roldán and I. Higueras, IRK methods for DAE: starting algorithms, J.
Comp. and Appl. Math., 111(1) (1999) 77-92.

348. D.E. Salane, An economical and robust routine for computing sparse jacobians,
Sandia National Laboratories Rpt. SAND85-0977, Albuquerque (1985).

141

349. D.E. Salane, Adaptive routines for forming Jacobians numerically, Sandia Na-
tional Laboratories Rpt. SAND86-1319, Albuquerque (1986).

350. D.E. Salane, Improving the performance of a code for solving stiff systems of
ODEs, Appl. Numer. Math., 5(4) (1989) 363-373.

351. J. Sand, RK-predictors: Extrapolation methods for implicit Runge-Kutta for-
mulae, DIKU Report Nr. 88/18, Datalogisk Institut, Københavns Universitet,
Copenhagen (1988). 18 pp.

352. J. Sand, Methods for starting iteration schemes for implicit Runge-Kutta for-
mulae, In: Computational Ordinary Differential Equations, J.R. Cash and I.
Gladwell, Eds., Clarendon Press, New York (1992) 115-126.

353. A. Sandu, J.G. Verwer, M. Van Loon, G.R. Carmichael, F.A. Potra, D. Dab-
dub, and J. Seinfeld, Benchmarking stiff ODE solvers for atmospheric chemistry
problems - I. Implicit vs. explicit, Atmos. Envir., 31(19) (1997) 3151-3166.

354. J.M. Sanz-Serna and L. Abia, Order conditions for canonical Runge-Kutta
schemes, SIAM J. Numer. Anal., 28(4) (1991) 1081-1096.

355. J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman
and Hall, New York (1994).

356. A. Sayfy and M. Al-Refai, Additive Runge-Kutta methods with improved sta-
bility properties, Int. J. Diff. Eqns. and Appl., 4(4) (2002) 387-400.

357. R. Scherer, Stability of semi-explicit Runge-Kutta methods, Archiv Math.,
26(3) (1975) 267-272. [In German]

358. R. Scherer and H. Türke, Algebraic characterization of A-stable Runge-Kutta
methods, Appl. Numer. Math., 5(1-2) (1989) 133-144.

359. R. Scherer and W. Wendler, Complete algebraic characterization of A-stable
Runge-Kutta methods, SIAM J. Numer. Anal., 31(2) (1994) 540-551.

360. B.A. Schmitt, Stability of implicit Runge-Kutta methods for nonlinear stiff
differential-equations, BIT, 28(4) (1988) 884-897.

361. S. Scholz, On Stetter’s global error estimation in the smooth phase of stiff
differential-equations, Computing, 36(1-2) (1986) 43-55.

362. S. Scholz, Order barriers for SDIRK and ROW methods, In: Numerical Treat-
ment of Differential Equations, NUMDIFF-4, K. Strehmel, Ed., Teubner-Texte
Math., 104, B.G. Teubner, Leipzig (1988) 146-152.

363. S. Scholz, Implicit Runge-Kutta methods with a global error estimation for
stiff differential equations, ZAMM, 69(8) (1989) 253-257.

142

364. N. Senu, M. Suleiman, F. Ismail and N.M. Arifin, New 4(3) pairs diagonally
implicit Runge-Kutta-Nyström method for periodic IVPs, Disc. Dyn. Nat. and
Soc., Article ID 324989 (2012) 20 pp. [ISSN: 1026-0226]

365. N. Senu, M. Suleiman, F. Ismail and M. Othman, A fourth-order diagonally
implicit Runge-Kutta- Nyström method with dispersion of high order, In: Lat-
est Trends on Applied Mathematics, Simulation, Modelling, N. Mastorakis, V.
Mladenov and Z. Bojkovoc, WSEAS Press (2010) 264-269.

366. N. Senu, M. Suleiman, F. Ismail and M. Othman, A new diagonally implicit
Runge-Kutta-Nyström method for periodic IVPs, WSEAS Trans. Math., 9(9)
(2010) 679-688. [ISSN 1109-2769]

367. N. Senu, M. Suleiman, F. Ismail and M. Othman, A singly diagonally implicit
Runge-Kutta- Nyström method for solving oscillatory problems, IAENG Int. J.
Appl. Math., 41(2) (2011) 155-161. [ISSN 1992-9978]

368. N. Senu, M. Suleiman, F. Ismail and M. Othman, A singly diagonally implicit
Runge-Kutta-Nyström method with reduced phase-lag, Lecture Notes Eng. and
Comp. Sci., 2189(1) (2011) 1489-1494. [ISSN 2078-0958]

369. A.B. Shamardan, M.H. Farag and S.M. Refaat, Spatial central finite difference
with DIRK(3,3) temporal schemes for nonlinear dispersive waves, Ricerche Mat.,
47(2) (1998) 383-397.

370. L.F. Shampine, Limiting precision in differential-equation solvers. II. Sources
of trouble and starting a code, Math. Comp., 32(144) (1978) 1115-1122.

371. L.F. Shampine, Evaluation of implicit formulas for the solution of ODEs, BIT,
19(4) (1979) 495-502.

372. L.F. Shampine, Implementation of implicit formulas for the solution of ODEs,
SIAM J. Sci. Comp., 1(1) (1980) 103-118.

373. L.F. Shampine, Lipschitz constants and robust ODE codes, In: Computational
Methods in Nonlinear Mechanics, J.T. Oden, Ed., North-Holland, Amsterdam
(1980) 427-449.

374. L.F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM Trans.
Math. Soft., 7(4) (1981) 409-420.

375. L.F. Shampine, Global error estimation for stiff ODEs, In: Numerical Analysis
D.F. Griffiths, Ed., Lecture Notes Math., 1066, Springer-Verlag, Berlin (1984)
159-168.

376. L.F. Shampine, Measuring stiffness, Appl. Numer. Math., 1(2) (1985) 107-119.

377. L.F. Shampine, Ill-conditioned matrices and the integration of stiff ODEs, J.
Comp. and Appl. Math., 48(3) (1993) 279-292.

143

378. L.F. Shampine, Numerical Solution of Ordinary Differential Equations, Chap-
man and Hall, New York (1994).

379. L.F. Shampine and L.S. Baca, Error estimators for stiff differential equations,
J. Comp. and Appl. Math., 11(2) (1984) 197-207.

380. L.F. Shampine and S. Thompson, Event location for ordinary differential equa-
tions, Comp. and Math. w/Appl., 39(5-6) (2000) 43-54.

381. P.W. Sharp, J.M. Fine and K. Burrage, Two-stage and three-stage diagonally
implicit Runge-Kutta Nyström methods of orders three and four, IMA J. Numer.
Anal, 10(4) (1990) 489-504.

382. H. Shintani, Embedded singly diagonally implicit one-step methods of with
interpolants, Bull. Fac. Sch. Educ. Hiroshima Univ., Part II, 15 (1993) 51-57.
[ISSN 0387-4850]

383. H. Shintani, On singly diagonally implicit one-step methods, RIMS Kôkyûroku,
841 (1993) 98-100. [ISSN 1880-2818, In Japanese]

384. H. Shintani, Modified singly diagonally implicit one-step methods, Bull. Fac.
Sch. Educ. Hiroshima Univ., Part II, 16 (1994) 65-70. [ISSN 0387-4850]

385. H. Shintani and K. Yoshida, Existence of 5-stage singly diagonally implicit
one-step methods of order 5, Bull. Fac. Sch. Educ. Hiroshima Univ., Part II, 13
(1991) 29-34. [ISSN 0387-4850]

386. P.D. Shirkov, L-stability for diagonally-implicit Runge-Kutta schemes and
Rosenbrock’s method, Comp. Math. and Math. Phys., 32(9) (1992) 1271-1280.

387. N.V. Shirobokov, Diagonally implicit Runge-Kutta methods, Izv. Chel. Sci.
Cntr., 11(2) (2001) 3-7. [In Russian] Also, Comp. Math. and Math. Phys., 42(7)
(2002) 974-979.

388. N.V. Shirobokov, Diagonally unrepeated implicit Runge-Kutta methods, Izv.
Chel. Sci. Cntr., 13(4) (2001) 1-5. [ISSN 1727-7434, In Russian]

389. N.V. Shirobokov, Decomposition methods of evolutionary equations on the
basis of diagonally implicit methods, Izv. Chel. Sci. Cntr., 15(2) (2002) 4-9.
[ISSN 1727-7434, In Russian]

390. N.V. Shirobokov, Decomposition of evolutionary equations in three-
dimensional space on the basis of diagonally implicit methods, Izv. Chel. Sci.
Cntr., 22(1) (2004) 1-6. [ISSN 1727-7434, In Russian]

391. N.V. Shirobokov, Fourth order’s decomposition of evolutionary equations, Izv.
Chel. Sci. Cntr., 23(2) (2004) 13-18. [ISSN 1727-7434, In Russian]

392. N.V. Shirobokov, New splitting methods for two-dimensional evolution equa-
tions, Comp. Math. and Math. Phys., 47(7) (2007) 1137-1141.

144

393. N.V. Shirobokov, New fourth-order splitting methods for two-dimensional evo-
lution equations, Comp. Math. and Math. Phys., 49(4) (2009) 672-675.

394. N.V. Shirobokov, Fourth-order diagonally implicit schemes for evolution equa-
tions, Comp. Math. and Math. Phys., 49(6) (2009) 1033-1036.

395. J.L. Siemieniuch, Properties of certain rational approximations to e−z, BIT,
16(2) (1976) 172-191.

396. L.M. Skvortsov, Diagonally implicit Runge-Kutta FSAL methods for stiff and
differential algebraic systems, Matem. Model., 14(2) (2002) 3-17. [ISSN 0234-
0879, In Russian]

397. L.M. Skvortsov, Accuracy of Runge-Kutta methods applied to stiff problems,
Comp. Math. and Math. Phys., 43(9) (2003) 1320-1330.

398. L.M. Skvortsov, Diagonally implicit Runge-Kutta methods for stiff problems,
Comp. Math. and Math. Phys., 46(12) (2006) 2110-2123.

399. L.M. Skvortsov, An efficient scheme for the implementation of implicit Runge-
Kutta methods, Comp. Math. and Math. Phys., 48(11) (2008) 2007-2017.

400. L.M. Skvortsov, Diagonally implicit Runge-Kutta methods for differential al-
gebraic equations of indices two and three, Comp. Math. and Math. Phys., 50(6)
(2010) 993-1005.

401. N.J.A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, Academic
Press, San Diego (1995).

402. G. Söderlind, The automatic control of numerical integration, CWI Quarterly,
11(1) (1998) 55-74.

403. G. Söderlind, Automatic control and adaptive time-stepping, Numer. Alg.,
33(1-4) (2002) 281-310.

404. G. Söderlind, Digital filters in adaptive time-stepping, ACM Math. Soft., 29(1)
(2003) 1-26.

405. G. Söderlind, Time-step selection algorithms: Adaptivity, control, and signal
processing, Appl. Numer. Math., 56(2-3) (2006) 488-502.

406. M. Sofroniou, Symbolic derivation of Runge-Kutta methods, J. Symb. Comp.
18 (1994), 265-296.

407. B.P. Sommeijer, A note on a diagonally implicit Runge-Kutta-Nyström
method, J. Comp. and Appl. Math., 19(3) (1987) 395-399.

408. M.N. Spijker, Contractivity in the numerical-solution of initial-value problems,
Numer. Math., 42(3) (1983) 271-290.

145

409. M.N. Spijker, On the relation between stability and contractivity, BIT, 24(4)
(1984) 656-666.

410. M.N. Spijker, Feasibility and contractivity in implicit Runge-Kutta methods,
J. Comp. and Appl. Math., 12/13, (1985) 563-578.

411. M.N. Spijker, A note on contractivity in the numerical-solution of initial-value
problems, BIT, 27(3) (1987) 424-437.

412. M.N. Spijker, Stability criteria in the numerical solution of initial value prob-
lems, In: Computational Ordinary Differential Equations, J.R. Cash and I. Glad-
well, Eds., Clarendon Press, New York (1992) 19-27.

413. M.N. Spijker, On the error committed by stopping the Newton iteration in
implicit Runge-Kutta methods, Annals Numer. Math., 1 (1994) 199-212.

414. M.N. Spijker, Stiffness in numerical initial-value problems, J. Comp. and Appl.
Math., 72(2) (1996) 393-406.

415. M.N. Spijker, Error propagation in Runge-Kutta methods, Appl. Numer.
Math., 22(1-3) (1996) 309-325.

416. H.J. Stetter, Analysis of Discretization Methods for Ordinary Differential
Equations, Springer-Verlag, Berlin (1973).

417. H. J. Stetter, Global error estimation in ordinary initial value problems, In:
Numerical Integration of Differential Equations and Large Linear Systems, Lec-
ture Notes in Mathematics, Vol. 968, J. Hinze, Ed., Springer-Verlag, Berlin
(1982) 269-279.

418. H. Suhartanto and W.H. Enright, Detecting and locating a singular point in
the numerical solution of IVPs for ODEs, Computing, 48(3)(1992) 161-175.

419. M. bin Suleiman and F. Ismail, Solving delay differential equations using
componentwise partitioning by Runge-Kutta method, Appl. Math. and Comp.,
122(3) (2001) 301-323.

420. G. Sun, Construction of high-order symplectic Runge-Kutta methods, J. Comp.
Math., 11(3) (1993) 250-260.

421. J. Sundnes, G.T. Lines and A. Tveito, Efficient solution of ordinary differential
equations modeling electrical activity in cardiac cells, Math. Biosci., 172(2)
(2001) 55-72.

422. Yu.B. Suris, The canonicity of mappings generated by Runge-Kutta type meth-
ods when integrating systems ẍ = −∂U/∂x, U.S.S.R. Comp. Maths. Math.
Phys., 29(1) (1989) 138-144.

423. J.J.B. de Swart, PSIDE: Parallel Software for Implicit Differential Equa-
tions, Ph.D Thesis, Korteweg-de Vries Inst. Math., Universiteit van Amsterdam,
(1997).

146

424. C.H. Tai, Acceleration Techniques for Explicit Euler Codes, Ph.D. Thesis, Dept.
of Aerospace Eng., Univ. of Michigan, Ann Arbor (1990).

425. G.C. Tai, C.E. Korman and I.D. Mayergoyz, Simulation of the transient char-
acteristics of partially-depleted and fully-depleted SOI MOSFETs, Solid-State
Elec., 37(7) (1994) 1387-1394.

426. P.G. Thomsen, A generalized Runge-Kutta method of order three, Rpt. IMM-
REP-2002-07, Dept. Info. and Math. Model., Technical Univ. of Denmark, Lyn-
gby (2002).

427. P.G. Thomsen, Discontinuities in ODEs: Systems with Change of State, In:
Non-smooth Problems in Vehicle Systems Dynamics, Springer-Verlag, Berlin,
Eds. P.G. Thomsen and H. True, (2010). [ISBN 3642013554] 15 pp.

428. P.G. Thomsen and N.H. Bjurström, Krylov subspace methods for the solu-
tion of large systems of ODE’s, In: Large Scale Computations in Air Pollution
Modelling, Z. Zlatev et al., Eds., Kluwer, Dordrecht (1999) 325-338.

429. R.A. Trompert and J.G. Verwer, Runge-Kutta methods and local uniform grid
refinement, Math. Comp., 60(202) (1996) 591-616.

430. A.Y.J. Tsai, Two-derivative Runge-Kutta methods for differential equations,
Ph.D. Thesis, Dept. of Math., Univ. of Auckland, New Zealand (2011).

431. Ch. Tsitouras and S.N. Papokostas, Cheap error estimation for Runge-Kutta
methods, SIAM J. Sci. Comp., 20(6) (1999) 2067-2088.

432. F. Vadillo, On spurious fixed points of Runge-Kutta methods, J. Comp. Phys.,
132(1) (1997) 78-90.

433. J.H. Verner, High-order explicit Runge-Kutta pairs with low stage order, Appl.
Numer. Math., 22(1-3) (1996) 345-357.

434. J.H. Verner, Explicit RungeKutta pairs with lower stage-order, Numer. Alg.
65(3) (2014) 555-577.

435. J.G. Verwer, S-stability properties for generalized Runge-Kutta methods, Nu-
mer. Math., 27(4) (1977) 359-370.

436. J.G. Verwer, On the practical value of the notion of BN-stability, BIT, 21(3)
(1981) 355-361.

437. J.G. Verwer, Convergence and order reduction of diagonally implicit Runge-
Kutta schemes by the method of lines, In: Numerical analysis, D.F. Griffiths
and G.A. Watson, Eds., Res. Notes in Math. Ser. 140, Burnt Mill, Harlow,
Essex, England, Longman Sci. and Tech., New York (1986) 220-237.

438. J.G. Verwer, Runge-Kutta methods and viscous wave equations, Numer.
Math., 112(3) (2009) 485-507.

147

439. C. Volcker, J.B. Jørgensen, P. G. Thomsen and E. H. Stenby, Adaptive stepsize
control in implicit Runge-Kutta methods for reservoir simulation, In: Proc.
of the 9th Int. Symp. on Dyn. and Cont. of Proc. Sys. (DYCOPS 2010), M.
Kothare, M. Tade, A. Vande Wouwere and I. Smets, Eds., IFAC (2010) 509-
514.

440. L. Wang and D.J. Mavriplis, Implicit solution of the unsteady Euler equations
for high-order accurate discontinuous Galerkin discretizations, J. Comp. Phys.,
225(2) (2007) 1994-2015.

441. W. Wang, L. Wen and S.F. Li, Nonlinear stability of explicit and diagonally
implicit Runge-Kutta methods for neutral delay differential equations in Banach
space, Appl. Math. and Comp. 199 (2008) 787-803.

442. G. Wanner, On the choice of γ for singly-implicit RK or Rosenbrock methods.
BIT, 20(1) (1980) 102-106.

443. G. Wanner, E. Hairer and S. P. Nørsett, Order stars and stability theorems,
BIT, 18(4) (1978) 475-489.

444. G. Wanner, E. Hairer and S.P. Nørsett, When I-stability implies A-stability,
BIT, 8(4) (1978) 503.

445. H.A. Watts, Starting step size for an ODE solver, J. Comp. and Appl. Math.,
9(2) (1983) 177-191.

446. L.P. Wen, A class of diagonally implicit symplectic Runge-Kutta-Nyström
methods, Natur. Sci. J. Xiangtan Univ., 20(2) (1998) 1-4. [ISSN 1000-5900,
In Chinese]

447. L.P. Wen, Y. Yu, S.F Li, Stability of explicit and diagonal implicit Runge-
Kutta methods for nonlinear Volterra functional differential equations in Banach
spaces, Appl. Math. and Comp., 183(1) (2006) 68-78.

448. Z. Wen, T. Zhu and A. Xiao, Two classes of three-stage diagonally-implicit
Runge-Kutta methods with an explicit stage for stiff oscillatory problems, Math.
Applicata, 24(1) (2011) 96-103. [In Chinese ISSN: 1001-9847]

449. C. Wieners, Multigrid methods for Prandtl-Reuss plasticity, Numer. Lin. Alg.
w/ Appl., 6(6) (1999) 457-478.

450. R. Williams, K. Burrage, I. Cameron and M. Kerr, A four-stage, index-2,
diagonally implicit Runge-Kutta method, Appl. Numer. Math., 40(3) (2002)
415-432.

451. R. Williams, I. Cameron and K. Burrage, A new index-2 Runge-Kutta method
for the simulation of batch and discontinuous processes, Comp. and Chem. Eng.,
24(2-7) (2000) 625-630.

148

452. A. Wolfbrandt, A note on a recent result of rational approximations to the
exponential function, BIT, 17(3) (1977) 367-368.

453. S. Wolfram, The Mathematica Book, 4ed., Cambridge Univ. Press, Cambridge
(1999).

454. Wolfram Research, Mathematica 4.0 Standard Add-On Packages, Cambridge
Univ. Press, Cambridge (1999).

455. A.G. Xiao, H.Y. Fu, S.F. Li and G.N. Chen, Regularity properties of general
linear methods for initial value problems of ordinary differential equations, Appl.
Numer. Math., 34(4) (2000) 405-420.

456. Y. Xiao and X. Wang, On algebraical stability of a kind of semi-implicit sym-
plectic Runge-Kutta methods, J. Zhengzhou Univ. (Nat. Sci. Ed.), 31(1) (1999)
20-25. [ISSN 1671-6841, In Chinese]

457. F. Yang and X. Chen, A(α)-acceptability of rational approximations to func-
tion exp(z), Approx. Theory and Appl., 17(3) (2001) 54-59.

458. Z. Yang and D. J. Mavriplis, Higher-order time-integration schemes for aeroe-
lastic applications on unstructured meshes, AIAA J., 45(1) (2007) 138-150.

459. J.J.-I. Yoh and X. Zhong, Low-storage semi-implicit Runge-Kutta methods for
reactive flow computations, AIAA Paper 98-0130, AIAA, Aerospace Sciences
Meeting and Exhibit, 36th, Reno, NV, Jan. 12-15, 1998.

460. J.J. Yoh and X. Zhong, New hybrid Runge-Kutta methods for unsteady reac-
tive flow simulation, AIAA J., 42(8) (2004) 1593-1600.

461. J.J. Yoh and X. Zhong, New hybrid Runge-Kutta methods for unsteady reac-
tive flow simulation: Applications, AIAA J., 42(8) (2004) 1601-1611.

462. T.J. Ypma, Relaxed Newton-like methods for stiff differential systems, J. Comp
and Appl. Math., 16(1) (1986) 95-103.

463. T.J. Ypma, Efficient estimation of sparse jacobian matrices by differences J.
Comp and Appl. Math., 18(1) (1987) 17-28.

464. M-Q. Zhang, Diagonally implicit symplectic Runge-Kutta schemes for Hamil-
tonian systems, In: Proc. of Int. Conf. on Scientific Computation, Hangzhou,
China, T. Chan and Z.-C. Shi, Eds., World Scientific, Singapore (1992) 259-262.

465. S.S. Zhao, G.X. Dong and Q. Ning, On S-stability, J. Comp. Math., 7(1) (1989)
56-60.

466. Z. Zlatev, Modified diagonally implicit Runge-Kutta methods, SIAM J. Sci.
Stat. Comp., 2(3) (1981) 321-334.

149

467. G.E. Zouraris, Convergence of Runge-Kutta approximations for parabolic
problems with Neumann boundary conditions, Numer. Math., 77(1) (1997) 123-
142.

468. A. van Zuijlen and H. Bijl, Implicit and explicit higher order time integration
schemes for fluid-structure interaction computations, In: Computational Science
- ICCS 2004, Part IV, Lecture Notes in Computer Science, Vol. 3039, M. Bubak,
G.D.v. Albada, P.M.A. Sloot and J. Dongarra, Eds., Springer-Verlag, Berlin
(2004) 604-611.

469. Y. Zuo and J. Zhang, B-convergence of the two-stage diagonally implicit R-K
methods, Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 14(2) (1991) 14-22.
[ISSN 1001-8395, In Chinese]

470. Y. Zuo and J. Zhang, The existence and uniqueness of solutions for the non-
linear algebraic equations in implicit R-K methods, Int. J. Comp. Math., 55(1)
(1995) 67-77.

150

Appendix A

Runge-Kutta Order Conditions

Up to and including sixth-order, all relevant order conditions for Runge-Kutta
methods applied to ODEs are:

τ
(1)
1 =

∑s

i=1 bi − 1
1! τ

(2)
1 =

∑s

i=1 bici − 1
2!

τ
(3)
1 = 1

2

∑s

i=1 bic
2
i − 1

3! τ
(3)
2 =

∑s

i,j=1 biaijcj − 1
3!

τ
(4)
1 = 1

6

∑s

i=1 bic
3
i − 1

4! τ
(4)
2 =

∑s

i,j=1 biciaijcj − 3
4!

τ
(4)
3 = 1

2

∑s

i,j=1 biaijc
2
j − 1

4! τ
(4)
4 =

∑s

i,j,k=1 biaijajkck − 1
4!

τ
(5)
1 = 1

24

∑s

i=1 bic
4
i − 1

5! τ
(5)
2 = 1

2

∑s

i,j=1 bic
2
i aijcj − 6

5!

τ
(5)
3 = 1

2

∑s

i,j=1 biaijcjaikck − 3
5! τ

(5)
4 = 1

2

∑s

i,j=1 biciaijc
2
j − 4

5!

τ
(5)
5 = 1

6

∑s

i,j=1 biaijc
3
j − 1

5! τ
(5)
6 =

∑s

i,j,k=1 biciaijajkck − 4
5!

τ
(5)
7 =

∑s

i,j,k=1 biaijcjajkck − 3
5! τ

(5)
8 = 1

2

∑s

i,j,k=1 biaijajkc
2
k − 1

5!

τ
(5)
9 =

∑s

i,j,k,l=1 biaijajkaklcl − 1
5! τ

(6)
1 = 1

120

∑s

i=1 bic
5
i − 1

6!

τ
(6)
2 = 1

6

∑s

i,j=1 bic
3
i aijcj − 10

6! τ
(6)
3 = 1

2

∑s

i,j,k=1 biciaijcjaikck − 15
6!

τ
(6)
4 = 1

4

∑s

i,j=1 bic
2
i aijc

2
j − 10

6! τ
(6)
5 = 1

2

∑s

i,j,k=1 biaijc
2
jaikck − 10

6!

τ
(6)
6 = 1

6

∑s

i,j=1 biciaijc
3
j − 5

6! τ
(6)
7 = 1

24

∑s

i=1 biaijc
4
j − 1

6!

τ
(6)
8 = 1

2

∑s

i,j,k=1 bic
2
i aijajkck − 10

6! τ
(6)
9 =

∑s

i,j,k,l=1 biaijajkckailcl − 10
6!

τ
(6)
10 =

∑s

i,j,k=1 biciaijcjajkck − 15
6! τ

(6)
11 = 1

2

∑s

i,j,k=1 biaijc
2
jajkck − 6

6!

τ
(6)
12 = 1

2

∑s

i,j,k,l=1 biaijajkckajlcl − 3
6! τ

(6)
13 = 1

2

∑s

i=1 biciaijajkc
2
k − 5

6!

τ
(6)
14 = 1

2

∑s

i,j,k=1 biaijcjajkc
2
k − 4

6! τ
(6)
15 = 1

6

∑s

i,j,k=1 biaijajkc
3
k − 1

6!

τ
(6)
16 =

∑s

i,j,k,l=1 biciaijajkaklcl − 5
6! τ

(6)
17 =

∑s

i,j,k,l=1 biaijcjajkaklcl − 4
6!

τ
(6)
18 =

∑s

i,j,k,l=1 biaijajkckaklcl − 3
6! τ

(6)
19 = 1

2

∑s

i,j,k,l=1 biaijajkaklc
2
l − 1

6!

τ
(6)
20 =

∑s

i,j,k,l,m=1 biaijajkaklalmcm − 1
6! .

151

Appendix B

Dense Output Coefficients

ESDIRK2(1)3L[2]SA - (p∗ = 2), τ
∗(1,2)
1 = p

∗
3 = 0.

b∗ij i = 1 i = 2 i = 3

j = 1 8822750406821
12477253282759

8822750406821
12477253282759

−5168247530883
12477253282759

j = 2 −1827251437969
5168247530883

−1827251437969
5168247530883

8822750406821
12477253282759

ESDIRK3(2)4L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = p

∗
4 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4

j = 1 6071615849858
5506968783323

24823866123060
14064067831369

−4639021340861
5641321412596

−4782987747279
4575882152666

j = 2 −9135504192562
5563158936341

−184358657789355
34679930461469

36951656213070
8103384546449

22547150295437
9402010570133

j = 3 5884850621193
8091909798020

40093531604824
13565043189019

−9445293799577
3414897167914

−8621837051676
9402290144509

ESDIRK3(2I)4L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = p

∗
4 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4

j = 1 1 0 4782987747279
4575882152666

−4782987747279
4575882152666

j = 2 −3795568847021
3535464411806

48583511130963
10864686356927

−110278538676463
19025874673088

22547150295437
9402010570133

j = 3 2027836641118
5303196617709

−18802187947199
6307074255697

18199220807900
5176497900721

−8621837051676
9402290144509

ESDIRK3(2)5L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = τ

∗(4)
3 = p

∗
4,5 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 18390937872020
16547330141131

18390937872020
16547330141131

45873276387100
11281280648079

−169812
40789

−6561
5827

j = 2 −25205650154962
13994999269151

−25205650154962
13994999269151

−83784512863764
7610748870347

493900
40789

14580
5827

j = 3 4643928352124
5273763430929

4643928352124
5273763430929

87858418189205
12798018608062

−8139200
1101303

−7200
5827

152

ESDIRK3(2I)5L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = τ

∗(4)
3 = p

∗
4,5 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 545
644

720
1127

−4455
4508

1528308
938147

−6561
5827

j = 2 −12205
11592

−3040
10143

32355
9016

−4445100
938147

14580
5827

j = 3 1825
4347

−400
30429

−2325
1127

8139200
2814441

−7200
5827

ESDIRK4(3)5L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = p

∗
4,5 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 2448612054971
7422989170266

−13064527274769
7807639895795

47230902818071
9856057303060

−60230645086332
7645076548727

24545915595281
4520659176942

j = 2 −5143529307061
7773953874698

6553122583263
7765607547020

−86580884391876
25322350989535

33418521236339
4189665475741

−52206835153223
11015268282971

j = 3 3905567800954
9892491358055

1415022863286
5136633758329

428256012956
2506140349505

−6808403415194
3867318289197

5422818762715
5898621095633

ESDIRK4(3I)5L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = p

∗
4,5 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 1094126747374
6302601702029

122679098490496
19860238704061

50966986923506
11897153581109

−137558177997005
9131337973237

24545915595281
4520659176942

j = 2 −3113653767809
8367169333422

−29688901167957
4114912804820

−31614530744841
10807162464371

145594386170428
9545977979287

−52206835153223
11015268282971

j = 3 3145703962191
11339919304645

40762634153953
19417583977863

128698559169
1830973959079

−24862816003436
7385818498993

5422818762715
5898621095633

ESDIRK4(3)6L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 11963910384665
12483345430363

11963910384665
12483345430363

−28603264624
1970169629981

−3524425447183
2683177070205

−17173522440186
10195024317061

27308879169709
13030500014233

j = 2 −69996760330788
18526599551455

−69996760330788
18526599551455

102610171905103
26266659717953

74957623907620
12279805097313

113853199235633
9983266320290

−84229392543950
6077740599399

j = 3 32473635429419
7030701510665

32473635429419
7030701510665

−38866317253841
6249835826165

−26705717223886
4265677133337

−121105382143155
6658412667527

1102028547503824
51424476870755

j = 4 −14668528638623
8083464301755

−14668528638623
8083464301755

21103455885091
7774428730952

30155591475533
15293695940061

119853375102088
14336240079991

−63602213973224
6753880425717

153

ESDIRK4(3)6L[2]SA C3 - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 8509198290511
10904307521542

0 10378667322223
9736262223679

−11093140141175
7161619500328

48916509247549
8521390159484

−26765236119985
5312882387392

j = 2 −25790945991926
17530192931961

0 −16597509038990
8258545421433

90704804155764
11486863490351

−227815406381598
5898396888841

391486503370501
11444347459291

j = 3 73530234267617
61969698028838

0 29319403671692
18088801260419

−56659454957471
6239828032182

658573317360727
11054491681285

−347052999405477
6511032536018

j = 4 −2521452050421
7216797214697

0 −4093470369096
8576827264757

12693012957420
3906427265177

−226926988139439
8465891012384

204000179098901
8366749722904

QESDIRK4(3)6L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 19906359946596
30191513212679

0 1395697886185
1753633199896

−9683696697344
12100605071339

−27285384975377
15901151420181

23071723882766
11194553384711

j = 2 −10083672159273
7908958740494

0 −17073682054419
11093844969395

56949843024163
10222943013356

116391306879859
8116096111777

−111473738159645
6519848780926

j = 3 19589710183141
18977847812067

0 26601485292592
21349079040221

−1057701024761795
162602995508332

−101710459912766
4226363029241

150777387527057
5329280717699

j = 4 −1073516272895
3560223983543

0 −3804484481507
10452467279487

15807643221057
6893035449662

15546982330095
1374881226733

−36615454823035
2830586936984

ESDIRK4(3I)6L[2]SA - (p∗ = 3), τ
∗(1,2,3)
1 = τ

∗(4)
3 = p

∗
5,6 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 −15963545394223
13182549652254

−15963545394223
13182549652254

18268690568330
5080413169087

−5350364661167
8879431386469

31
7

−4
1

j = 2 88669463770139
8996652843250

88669463770139
8996652843250

−148492071366758
7963484430509

3310567024548
2197678446715

−102
7

12
1

j = 3 −127585190994857
8068130396907

−127585190994857
8068130396907

77012120432033
2811177169428

8828178732128
10988392233575

296
21

−32
3

j = 4 51446191796198
7110803704477

51446191796198
7110803704477

−104443536509082
8616105950125

−11971498710263
9933911810022

−80
21

8
3

ESDIRK5(3)6L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

j = 1 23236605260583
10847176831217

−944523991667
7488485494825

−7636056820574
33776533607155

18177212925131
7267335394110

−33541179251535
9429127123667

2283886889401
8586267461358

j = 2 −242896178555491
15315128090853

2104620876771
7532151019598

5596851049555
9051728155768

−134033298082930
10354575253929

215126192174603
7516454575141

−2092428002629
2929765717373

j = 3 249019615044541
11476753656848

24748966499486
10830160549459

−13004368314772
12414161751345

126746562621869
10458834074509

−135771011446793
3792843577415

5183705383697
6980207430738

j = 4 −341984722539471
38516533435375

−12986726098770
7127462963053

3617708449683
6787229655553

−27406122847666
8453233472125

329225356200071
24520713742706

−209098168433
12771759311522

154

ESDIRK5(4)7L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6,7 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 −3727673074877
4122648410728

−3727673074877
4122648410728

19961677013981
5869719607097

−40918797487439
9740096845762

26504122346516
6085086665369

12541039280470
9504622664201

−9545958193351
4619633819871

j = 2 56559662850736
13980752737407

56773908452255
14033711235194

−127143059370682
11130948942799

231006538182720
10141324797913

−527342999676960
22601209944757

−71768991731301
11580706401058

135915689725169
13480391059750

j = 3 −49689743619068
6643469993879

−49689743619068
6643469993879

42117311510487
2383162715824

−350466295694220
10287250950823

320218169537063
8436380361525

17218476127889
1842355428231

−77991629769931
4890188867889

j = 4 29424879410361
7055362598149

29424879410361
7055362598149

−33052211227653
3649340518016

158180632436731
10105505742248

−199141052331111
10762865660281

−41112053198951
9211072151228

68143960274185
8487316748823

ESDIRK5(4I)8L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = τ

∗(5)
9 = p

∗
7,8 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4

j = 1 11765950361881
12750220158363

1244852821439
6698022213750

−84842418110235
6991442151202

16600905514627
5907140090227

j = 2 −14547021403682
10481110087671

27759549082321
4710464430809

863787489189435
7202462713328

−186974735320152
6143494580447

j = 3 1909195633585
6612832366229

−99087567427743
6299027132851

−3155201428618292
12556431106979

660773943080042
8756731354111

j = 4 8792302790411
15599342042331

150020606962489
12481958576671

1719925390182460
10117234595427

−672113509330156
11499724928269

j = 5 −1560797851736
6156447117747

−77738240962030
30233460350287

−156199833301094
5075481817257

130739464142965
9985271178814

b∗ij i = 5 i = 6 i = 7 i = 8

j = 1 96046443019805
4896250419167

−124772504522313
11464484579969

207380765782231
10966684808778

−149910404739097
8135460221496

j = 2 −3515285775107736
17697330259573

411778041832596
3829483322153

−524722490540290
7310306947673

923911801487709
13412641464308

j = 3 3959906717999825
9359872954029

−701994658497832
2967311925595

2319147260878507
25192351727475

−736633737659291
8438953951651

j = 4 −1247648864175727
4292230117094

14360806082968644
84887468358787

−11704663801144
259975822701

452187698536216
10667950283089

j = 5 1100126255544977
20287241158118

−365403736223648
10675332129517

37235064373376
5431467589785

−61593418216691
9704018117761

ESDIRK6(4)7L[2]SA - (p∗ = 4), τ
∗(1,2,3,4)
1 = τ

∗(4)
3 = p

∗
6,7 = 0.

b∗ij i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

j = 1 −9804925719167
2945189428742

828585665461
1559389127461

−87364118069531
3589581513399

45429622269023
2564231070427

−167225710697686
18210790449689

101018041368473
3496036145909

−27734333202399
2984471429959

j = 2 8292187743924
521087535641

−9037441792943
2813192480807

222169825545213
1816592231203

−305240674582058
4216158203925

36343427757706
949177316533

−68717394069157
498805592277

103087011696595
2795863107188

j = 3 −270163777957111
11022564443076

19983580865879
4260019723436

−285096550178326
1537606454485

364556606386441
3485789400154

−417214429931427
7314473240566

436422927657449
2106667629127

−211400866710765
4273154321687

j = 4 19692313779247
1685878938422

−2994138294389
1462312069907

162715236346891
1875132986809

−132579574200411
2720636436695

102316465109821
3719937032839

−79493849537386
820500858909

60432742513603
2784632801308

155

Appendix C

Method Properties

Various method properties are presented below for the 15 methods presented in
this document as well as those for both SDIRK4 methods. Several letters are used
in the table are shorthand for explicit, E, implicit, I, revised, R, yes, Y and no, N.
Other shorthand includes S.A. for stiffly-accurate and A-St. for A-stable. Other
terms are given in the body of the document.

Scheme (s, sI) A(p+1) Â(p̂+1) B(p+1) D A-St. R(−∞) S.A. λM

(min) ||M|| aii,max

(p, p̂, q) A(p+2) Â(p̂+2) C(p+1) E(p+1) Â-St. R̂(−∞) b(min) λM

(max) ||M|| cmax

ESDIRK2(1)3L[2]SA (3, 2) 0.05719 0.02513 3.105 1 Y 0 Y −0.1272 0.1751 0.2929
(2, 1, 2) 0.07944 0.07801 0.8284 2.276 Y 0.2929 0.2929 0.8579 0.09447 1

ESDIRK3(2)4L[2]SA (4, 3) 0.03663 0.02552 2.907 1.271 Y 0 Y −1.133 1.157 0.4349
(3, 2, 2) 0.07870 0.07418 1.641 1.435 Y 0.2179 −0.5953 0.1900 1.538 1

ESDIRK3(2I)4L[2]SA (4, 3) 0.04907 0.02552−E
0.1120−I

3.831−E
1.476−I

1.813 Y 0 Y −3.727 3.738 0.4359

(3, 2, 2) 0.1223 0.09777−E
0.1654−I

1.912−E
1.912−I

1.923−E
0.4380−I

Y
Y

0.2179−E
−0.9567−I

−1.235 0.1900 7.774 1

ESDIRK3(2)5L[2]SA (5, 4) 0.0007769 0.002357 1.034 1 Y 0 Y −0.4837 0.4929 0.2250
(3, 2, 2) 0.005199 0.002437 1.208 0.3296 Y 0 −0.3469 0.05529 0.4378 1

ESDIRK3(2I)5L[2]SA (5, 4) 0.01149 0.007857−E
0.4292−I

0.8114−E
1.388−I

1 Y 0 Y −0.2859 0.2970 0.2250

(3, 2, 2) 0.01846 0.006375−E
0.05958−I

1.613−E
1.613−I

1.463−E
0.2678−I

Y
Y

0−E
0−I

−0.3016 0.05063 0.2624 1

ESDIRK4(3)5L[2]SA (5, 4) 0.03857 0.02913 1.767 1.146 Y 0 Y −0.7015 0.8424 0.5728
(4, 3, 2) 0.1214 0.05147 2.744 1.324 Y −0.1909 −0.3987 0.3281 1.209 1.146

ESDIRK4(3I)5L[2]SA (5, 4) 0.04506 0.03019−E
0.08736−I

1.766−E
2.588−I

1.146 Y 0 Y −1.590 1.700 0.5728

(4, 3, 2) 0.1603 0.05331−E
0.2261−I

3.059−E
3.059−I

1.492−E
0.5157−I

Y
Y

−0.1909−E
−0.5525−I

−0.7623 0.4935 2.646 1.146

SDIRK4(1) (5, 5) 0.002504 0.001870
0.01247

2.479−R
1.314

7.930 Y 0 Y −112.1 112.1 0.2500

(Original and Revised b̂) (4, 3, 1) 0.004511 0.004636−R
0.01638

1.426−R
1.426

1.339−R
0.2008

Y
N

−0.500−R
3.333

−7.083 0.06250 1188. 1

SDIRK4(2) (5, 5) 0.004229 0.002130−R
0.01621

2.836−R
1.459

2.999 Y 0 Y −19.14 19.15 0.2667

(Original and Revised b̂) (4, 3, 1) 0.007642 0.006042−R
0.02365

1.516−R
1.516

1.985−R
0.2609

Y
N

−0.5000−R
3.805

−2.999 0.3930 84.34 1

ESDIRK4(3)6L[2]SA (6, 5) 0.001830 0.003187 1.279 1.585 Y 0 Y −0.1971 0.2875 0.2500
(4, 3, 2) 0.003467 0.004077 1.151 0.5744 Y 0 −0.1083 0.1978 0.2847 1.040

ESDIRK4(3)6L[2]SA C(3) (6, 5) 0.002970 0.003367 1.826 1.192 Y 0 Y −0.2659 0.4008 0.2500
(4, 3, 2) 0.004582 0.006147 1.070 0.8820 Y 0 −0.1125 0.2869 0.3315 1

QESDIRK4(3)6L[2]SA (6, 5) 0.004828 0.003187 1.701 35.10 Y 0 Y −8.115 11.53 0.3200
(4, 3, 2) 0.009753 0.005420 1.098 1.515 Y 0 −0.1330 8.189 9.909 1.044

ESDIRK4(3I)6L[2]SA (6, 5) 0.002254 0.003237−E
0.02590−I

1.679−E
1.161−I

1.359 Y 0 Y −0.2426 0.4051 0.2500

(4, 3, 2) 0.003364 0.005433−E
0.03007−I

1.095−E
1.095−I

0.6964−E
0.08703−I

Y
Y

0−E
0−I

−0.1071 0.3132 0.2864 1

ESDIRK5(3)6L[2]SA (6, 5) 0.004615 0.006454 − 2.693 Y 0 Y −10.23 10.26 0.2781
(5, 3, 2) 0.008688 0.007981 − − Y 0 −1.567 0.6206 33.20 1.029

ESDIRK5(4)7L[2]SA (7, 6) 0.001846 0.002171 0.6915 8.971 Y 0 Y −0.8001 1.141 0.1840
(5, 4, 2) 0.003154 0.001501 1.307 0.8503 Y 0.3500 −0.0760 0.8080 0.7945 1.040

ESDIRK5(4I)8L[2]SA (8, 7) 0.002690 0.002739−E
0.001385−I

1.084−E
3.832−I

9.743 Y 0 Y −105.0 105.1 0.2500

(5, 4, 2) 0.006309 0.002969−E
0.005306−I

1.950−E
1.950−I

0.9824−E
1.943−I

Y
Y

0−E
0−I

−4.985 1.573 1078. 1

ESDIRK6(4)7A[2] (7, 6) 0.002379 0.002177 − 1.308 Y −0.3766 N −1.885 2.253 0.3125
(6, 4, 2) 0.003617 0.002876 − − Y 0 −0.6781 1.036 3.222 0.8900

156

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be
subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

1. REPORT DATE (DD-MM-YYYY)

01-03-2016
2. REPORT TYPE

Technical Memorandum
3. DATES COVERED (From - To)

01/2011-03/2016
4. TITLE AND SUBTITLE

Diagonally Implicit Runge-Kutta Methods for Ordinary Differential
Equations. A Review

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

794072.02.07.02.03

6. AUTHOR(S)

Kennedy, Christopher A., and Carpenter, Mark H.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, Virginia 23681-2199

8. PERFORMING ORGANIZATION

REPORT NUMBER

L–20597

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSOR/MONITOR’S ACRONYM(S)

NASA

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

NASA-TM–2016–219173

12. DISTRIBUTION/AVAILABILITY STATEMENT

Subject Category 02
Availability: NASA STI Program (757) 864-9658

13. SUPPLEMENTARY NOTES

14. ABSTRACT

A review of diagonally implicit Runge-Kutta (DIRK) methods applied to first-order ordinary differential equations (ODEs) is
undertaken. The goal of this review is to summarize the characteristics, assess the potential, and then design several nearly
optimal, general purpose, DIRK-type methods. Over 20 important aspects of DIRK-type methods are reviewed. A design
study is then conducted on DIRK-type methods having from two to seven implicit stages. From this, 15 schemes are selected
for general purpose application. Testing of the 15 chosen methods is done on three singular perturbation problems. Based on
the review of method characteristics, these methods focus on having a stage order of two, stiff accuracy, L-stability, high
quality embedded and dense-output methods, small magnitudes of the algebraic stability matrix eigenvalues, small values of
aii, and small or vanishing values of the internal stability function for large eigenvalues of the Jacobian. Among the 15 new
methods, ESDIRK4(3)6L[2]SA is recommended as a good default method for solving stiff problems at moderate error
tolerances.

15. SUBJECT TERMS

numerical methods,ordinary differential equations, Runge-Kutta,diagonally implicit,L-stability,dense output,stage-value
predictors,discontinuities

16. SECURITY CLASSIFICATION OF:

a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF

ABSTRACT

UU

18. NUMBER

OF

PAGES

162

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)

19b. TELEPHONE NUMBER (Include area code)

(757) 864-9658

