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Abstract

We provide an explicit Dynkin diagrammatic description of the c-vectors and
the d-vectors (the denominator vectors) of any cluster algebra of finite type with
principal coefficients and any initial exchange matrix. We use the surface realization
of cluster algebras for types An and Dn, then we apply the folding method to Dn+1

and A2n−1 to obtain types Bn and Cn. Exceptional types are done by direct inspec-
tion with the help of a computer algebra software. We also propose a conjecture on
the root property of c-vectors for a general cluster algebra.

1 Introduction

1.1 Background

For a given skew-symmetrizable integer matrix B, let A•(B) be the cluster algebra with
principal coefficients whose initial exchange matrix is B [26, 28]. Note that A•(B) de-
pends on B itself (not on its mutation equivalence class) due to the presence of principal
coefficients. There are two important families of integer vectors associated with A•(B):
c-vectors and d-vectors. The former are the column vectors in the bottom half square
matrices (C-matrices) of the extended exchange matrices of A•(B). The latter are also
called the denominator vectors; they are the tuples of the exponents in the denomina-
tors of the Laurent expansions of the cluster variables of A•(B) in terms of the initial
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cluster. An alternative way to introduce them is: c-vectors are the tropicalized versions
of coefficients (y-variables) and d-vectors are the tropicalized version of cluster variables
(x-variables), respectively. See Section 2.1 for details.

Fix an indexing set I. Following [27], to each skew-symmetrizable matrixB = (bij)i,j∈I ,
we assign a symmetrizable matrix A(B) = (aij)i,j∈I called the Cartan counterpart of B,
by setting

aij =

{
2 i = j

−|bij| i 6= j.
(1.1)

The matrix A(B) is a symmetrizable (generalized) Cartan matrix in the sense of Kac [34].
It has been partially recognized and proved that, the c- and d-vectors of A•(B) are roots
of the root system of the Cartan matrix A(B). When B is skew-symmetric, thanks to
Kac’s theorem [32], it is enough to prove that the vectors (or their negatives) are identified
with the dimension vectors of some indecomposable modules of the path algebra kQ(B)
for the quiver Q(B) corresponding to B. In fact, this is a common method of proving
many known cases. We are going to discuss this subject in more detail in Section 2.

Cluster algebras of finite type, i.e., the ones with finitely many seeds, form one of the
most basic and important classes of cluster algebras [27]. They have been intensively
studied in particular in the cases when B is skew-symmetric, i.e. when A•(B) is of one
of the simply-laced types An, Dn, E6, E7, E8 according to the classification of [27]. In
these cases the cluster-tilted algebra Λ(B), introduced in [7] as a certain quotient of the
path algebra kQ(B), plays a key role in the study of A•(B) [12, 13, 4, 8, 6]. A c-vector
is said to be positive if it is a nonzero vector and its components are all nonnegative. A
d-vector is non-initial if it is the d-vector of a non-initial cluster variable. It was proved
by [13, 7] that the set of all the non-initial d-vectors of A•(B) coincides with the set of the
dimensions vectors of all the indecomposable Λ(B)-modules. Moreover, it was recently
proved by [42, 40] that the set of all the positive c-vectors of A•(B) also coincides with
the same set. See Theorems 2.5 and 2.6.

In spite of this beautiful and complete, representation-theoretic description of c- and
d-vectors for finite type, little is known about their explicit form, except for type An

[12, 44, 53]. The purpose of this paper is to fill this gap and to provide an explicit Dynkin
diagrammatic description of the c- and d-vectors of cluster algebras of any finite type with
any initial exchange matrix.

It is our hope that the lists presented here will be useful for studying cluster algebras,
as the appendix of [3] is for studying Lie algebras.

1.2 Main results

We present here the main results of the paper. Recall that, for a skew-symmetrizable
matrix B, the cluster algebra A•(B) is of finite type if and only if B is mutation equivalent
to a matrix B′ whose Cartan counterpart A(B′) is a Cartan matrix of finite type, An, Bn,
Cn, Dn, E6, E7, E8, F4, G2 [27]. We say that such a skew-symmetrizable matrix B is of
cluster finite type, and also, more specifically, of cluster type Z, according to the type Z
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of A(B′) above. For any skew-symmetrizable matrix B of cluster finite type, we present
the Cartan matrix A(B) as a Dynkin diagram X(B) in the usual way following [34]. Note
that, in general, X(B) is not a finite type Dynkin diagram.

For each finite type Z, we provide the following two lists explicitly:
• the list X (Z) of the Dynkin diagrams X(B) of all the skew-symmetrizable matrices

B of cluster type Z (for each B the vertices of X(B) are naturally identified with elements
of I),

• the list W(Z) of the “templates” of positive c-vectors and non-initial d-vectors in
the form of weighted Dynkin diagrams, namely, Dynkin diagrams with a positive integer
attached to each vertex.

For a pair X(B) ∈ X (Z) and W ∈ W(Z), an embedding of the diagram part of W
into X(B) as a full sub-diagram is denoted by W ⊂ X(B). Such an embedding is not
necessarily unique if it exists; we distinguish them up to isomorphism of W . To each
embedding W ⊂ X(B) corresponds an integer vector v = (vi)i∈I : its i-th component vi is
the weight of W at i.

For each skew-symmetrizable matrix B of cluster type Z, let us introduce the sets

V(B) :={W ⊂ X(B) | W ∈ W(Z) },

C(B) :={ all c-vectors of A•(B) },

C+(B) :={ all positive c-vectors of A•(B) },

D(B) :={ all non-initial d-vectors of A•(B) }.

(1.2)

For finite type cluster algebras, it turns out that

C(B) = C+(B) ⊔ (−C+(B)), (1.3)

therefore, we can concentrate on C+(B). Our main result is stated as follows.

Theorem 1.1. Let B be any skew-symmetrizable matrix of cluster finite type. Then, the
sets C+(B), D(B), and V(B) coincide.

Let us illustrate the content of Theorem 1.1 by mean of a baby example; the reader
can find slightly bigger examples at the end of Section 3.

Example 1.2. The matrix

B =




0 1 −1
−1 0 1
1 −1 0




is of cluster type A3 and the Dynkin diagram X(B) corresponding to it is

There are precisely three templates in W(A3):
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The first and second of them can be embedded as full sub-diagram into X(B) in three
different ways each while the third one can’t be embedded into X(B). We get therefore
6 vectors:

V(B) = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

they are both the positive c-vectors and the non-initial d-vectors of A•(B).

An immediate and important corollary of Theorem 1.1 is that, for simply laced types,
the set V(B) also coincides with the set of the dimension vectors of all the indecomposable
modules of the cluster-tilted algebra Λ(B), thereby yielding a representation-theoretic
result.

To prove Theorem 1.1 we use the surface realization of cluster algebras [23, 24, 25]
for types An and Dn. The case An is easy, but the case Dn is (much) more involved.
Then we apply the folding method [21, 17] to types Dn+1 and A2n−1 to obtain types Bn

and Cn, respectively. Exceptional types are studied by direct inspection with the help of
the software by Keller [35] and the cluster algebra package [38] of Sage [50] written by
Musiker and Stump; we rely on Corollaries 2.7 and 2.11 to simplify computations in type
E8. In classical types our derivation is purely combinatorial and does not refer to any
results from representation theory. On the one side, this may be unsatisfactory due to the
lack of a direct representation-theoretic explanation; on the other side, this is the reason
why we get the result easily. In particular, we obtain an alternative proof of the known
equality C+(B) = D(B) for types An and Dn, and also several results on non-simply laced
types, for which the representation-theoretic method is not yet fully available.

From the explicit list of positive c-vectors and non-initial d-vectors provided by Theo-
rem 1.1 we deduce the following result. The statements (1) and (3) generalize to all finite
types properties known only for simply-laced types (cf. Corollaries 2.8 and 2.11).

Theorem 1.3. Let B be any skew-symmetrizable matrix of cluster finite type.

1. All c-vectors and d-vectors of A•(B) are roots of the root system of A(B). For
simply-laced types they are Schur roots.

2. A c-vector (d-vector) of A•(B) is a real root if and only if its support in X(B) is a
tree.

3. The cardinality |C+(B)| = |D(B)| depends only on the cluster type Z of B and it is
equal to the number of positive roots in the root system of type Z. Explicitly it is
equal to nh/2, where n and h are the rank and the Coxeter number of type Z (see
Table 1.1).

4. The set C+(B) = D(B) only depends on A(B), the Cartan counterpart of B.

While proving Theorem 1.1 we also obtain the following interesting result. A skew-
symmetrizable integer matrix B is said to be bipartite if the corresponding valued quiver
has only sinks and sources; by extension a seed whose B-matrix is bipartite is also called
bipartite.
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Table 1.1: Coxeter numbers and numbers of positive roots.
Type An Bn Cn Dn E6 E7 E8 F4 G2

h n+ 1 2n 2n 2n− 2 12 18 30 12 6
nh/2 n(n+ 1)/2 n2 n2 n(n− 1) 36 63 120 24 6

Theorem 1.4. Let B be any skew-symmetrizable matrix of cluster finite type. Any c-
vector (d-vector) of A•(B) occurs in a bipartite seed.

This paper is structured as follows. In Section 2 we give more background and a short
survey of the known results on c- and d-vectors and their consequences in order to connect
our result to representation theory of quivers. In Section 3 we describe the sets X (Z) and
W(Z) for all the classical finite type Z (i.e. for An, Bn, Cn and Dn). We postpone the
exceptional types to Appendix B due to their length.

The proofs of Theorems 1.1 and 1.4 for classical types are split into several Propositions
and use different techniques. In Section 4 we use the surface realization ([23, 24, 25]) of
cluster algebras to prove the results for types An and Dn. In Section 5 we extend the
folding construction of [21] to deal with types Bn and Cn.

The paper is concluded by Section 6 where we prove Theorem 1.3. In Appendix A we
add the complete analysis needed in the proof of Propositions 4.10 and 4.11.

2 More background

Let us give more background and a short survey of the known results on c- and d-vectors
and their consequences in order to connect our result to representation theory of quivers.
We also propose a conjecture on the root property of c-vectors.

2.1 c-vectors and d-vectors

We quickly recall the definitions and the basic properties of c-vectors and d-vectors, which
are the main subject of this paper. All the formulas are taken from [28].

Let Q(x) be the rational function field of algebraically independent variables x =
{xi}i∈I over Q, and let Q+(x) be the subset of Q(x) which consists of the functions
having subtraction-free expressions. The set Q+(x) is a semifield, and it is called the
universal semifield of x. We also introduce the tropical semifield Ptrop(x) of x as the
multiplicative free abelian group generated by x with the addition ⊕ defined by

∏

i∈I

xai
i ⊕

∏

i∈I

xbi
i :=

∏

i∈I

x
min(ai,bi)
i . (2.1)

Let πtrop : Q+(x) → Ptrop(x) be the canonical homomorphism, xi 7→ xi, c 7→ 1 (c ∈ Q+).
We first describe the d-vectors. Since the presence of coefficients is irrelevant, for

simplicity, we describe them for a cluster algebra with trivial coefficients. As usual, we
start from the initial seed (B, x) with a given skew-symmetrizable integer matrix B and a
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tuple of algebraically independent variables x = {xi}i∈I called the initial cluster variables.
We obtain a new seed (B′, x′) by the mutation at k,

b′ij =

{
−bij i = k or j = k

bij + bik[bkj]+ + [−bik]+bkj i, j 6= k,
(2.2)

x′
i =




xk

−1

(
∏

j∈I

x
[bjk]+
j +

∏

j∈I

x
[−bjk]+
j

)
i = k

xi i 6= k,

(2.3)

where [a]+ = a for a > 0 and 0 otherwise. The elements obtained by sequences of
mutations from x are called cluster variables. They are in Q+(x) since the right hand side
of (2.3) is subtraction-free. For any cluster variable x′

j in some cluster x′ = {x′
i}i∈I , we

define the corresponding d-vector d′j = (d′ij)i∈I by

πtrop(x
′
j) =

∏

i∈I

x
−d′ij
i . (2.4)

The matrix D′ = (d′ij)i,j∈I is called the D-matrix of x′. This definition of the d-vector d′j
agrees with an alternative and more familiar definition as the tuple of the exponents of
the “denominator” of the Laurent polynomial expression of x′

j,

x′
j =

P (x)
∏

i∈I x
d′ij
i

, (2.5)

where P (x) is a polynomial in x = {xi}i∈I not divisible by any xi. (Note that the
celebrated Laurent phenomenon [26] does not necessarily imply that the components of
the d-vector for a non-initial cluster variable are all nonnegative.) For cluster variables
x′′
j and x′

j which are connected by a mutation (B′′, x′′) = µk(B
′, x′), we have a recursion

relation for the corresponding d-vectors, which is the tropicalization of (2.3),

d′′ij =




−d′ik +max

(
∑

ℓ∈I

d′iℓ[b
′
ℓk]+,

∑

ℓ∈I

d′iℓ[−b′ℓk]+

)
j = k

d′ij j 6= k.

(2.6)

Next we describe the c-vectors. We need another tuple of algebraically independent
variables y = (yi)i∈I called the initial coefficients. They mutate, along with the mutation
of the exchange matrix B, with the exchange relation at k given by

y′i =





y−1
i i = k

yi
(1 + yk)

[−bki]+

(1 + y−1
k )[bki]+

i 6= k.
(2.7)
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The elements of Q+(y) obtained by successive mutations are called coefficients. For any
coefficient y′j in a coefficient tuple y′ = (y′i)i∈I , we define the corresponding c-vector
c′j = (c′ij)i∈I by

πtrop(y
′
j) =

∏

i∈I

y
c′ij
i . (2.8)

The matrix C ′ = (c′ij)i,j∈I is called the C-matrix of y′.
For coefficients y′′j and y′j which are connected by a mutation (B′′, y′′) = µk(B

′, y′), we
have a recursion relation for the corresponding c-vectors, which is the tropicalization of
(2.7),

c′′ij =

{
−c′ij j = k

c′ij + c′ik[b
′
kj]+ + [−c′ik]+b

′
kj j 6= k.

(2.9)

This definition of c-vectors agrees with an alternative and more familiar definition as
column vectors of the bottom half square matrix of the extended exchange matrices of
A•(B) (cf. (2.2)).

2.2 Sign-coherence Conjecture

Fomin and Zelevinsky made the following fundamental conjecture on c- and d-vectors,
which plays an important role in the structure theory of cluster algebras (e.g., [28, 43]).

Conjecture 2.1 (Sign-coherence Conjecture). Let B be any skew-symmetrizable matrix.
(i) [28, Conjecture 5.5 & Proposition 5.6] Any c-vector of A•(B) is a nonzero vector,

and its components are either all non-negative or all non-positive.
(ii) [28, Conjectures 7.4 & 7.5] Any non-initial d-vector of A•(B) is a nonzero vector,

and its components are all nonnegative.

The first part of the conjecture is equivalent to the fact that the constant term of any
F -polynomial of A•(B) is one [28], which is proved for any skew-symmetric matrix B
[19, 39, 45], and also for a large class of skew-symmetrizable matrices [16], in particular,
for any skew-symmetrizable matrix which is mutation equivalent to an acyclic one.

The second part of the conjecture is proved, for example, for any skew-symmetric
matrix B arising from a surface [24], and more cases follow from the results in the rest of
this section.

2.3 Root Conjecture

Recall that a skew-symmetric matrix B = (bij)i,j∈I can be identified with a quiver Q(B)
without loops and 2-cycles by attaching bij arrows from vertex i to vertex j if bij > 0.
This correspondence can be extended to the one between skew-symmetrizable matrices
and valued quivers (see [20]).
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Let ∆(A) be the root system associated with a symmetrizable Cartan matrix A, and
let {αi}i∈I be its simple roots [34]. A root α =

∑
i∈I ciαi of ∆(A) is naturally identified

with, either all nonnegative or all non-positive, nonzero integer vector (ci)i∈I . It is said
to be real if there is an element w of the Weyl group of ∆(A) such that w(α) is a simple
root; otherwise it is said to be imaginary. It is known that a root α is real if and only
if (α, α)TA = tαTAα > 0, where T is any diagonal matrix with positive diagonal entries
such that TA is symmetric. See [34] for details.

In the study of cluster algebras, it becomes more and more apparent that there is some
intimate interplay among three kinds of algebras, namely, cluster algebras, path algebras,
and (quantized) Kac-Moody algebras. Naturally, root systems provide the common un-
derlying structure. The starting point of the interplay is Kac’s theorem, which generalizes
celebrated Gabriel’s theorem. Let k be an algebraically closed field below.

Theorem 2.2 (Kac’s Theorem [32, 33]). Let B be any skew-symmetric matrix. Then,
there exists an indecomposable module of the path algebra kQ(B) with dimension vector
α if and only if α is a positive root of ∆(A(B)).

In the above correspondence, if a positive root is the dimension vector of some inde-
composable kQ(B)-module M such that EndkQ(B)(M) = k, then it is called a Schur root.
We use this notion later.

In view of cluster algebras, the extension of Theorem 2.2 to the valued quivers is
desired and expected. Unfortunately, it is not fully achieved yet [31, 18]. Nevertheless,
the perspective presented above guides us to the following natural refinement of Conjecture
2.1, jointly proposed with Andrei Zelevinsky.

Conjecture 2.3 (Root Conjecture). For any skew-symmetrizable matrix B any c-vector
of A•(B) is a root of ∆(A(B)).

As for d-vectors, they also satisfy the same root property in many known cases. How-
ever Marsh and Reiten recently found, in cluster affine type A, an example of a d-vector
which is not a root of ∆(A(B)) [36]. We thank Robert Marsh and Idun Reiten for sharing
with us this counterexample.

2.4 Results for finite type

Cluster algebras of finite type were studied in detail by various authors. Here we collect
some of the known properties of their c- and d-vectors along with some consequences which
are relevant to the present paper. For simplicity, we assume that a skew-symmetrizable
matrix B is indecomposable in this section.

The connection between the d-vectors and the root systems of finite type was first
discovered by Fomin and Zelevinsky [27]. Recall that a skew-symmetrizable integer matrix
B is said to be bipartite if the corresponding valued quiver has only sinks and sources.

Theorem 2.4 ([27, Theorem 1.9]). For any skew-symmetrizable bipartite matrix B whose
Cartan counterpart A(B) is of finite type, the set D(B) coincides with the set of all the
positive roots of ∆(A(B)).
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The requirement of B being bipartite was lifted later on in [55]. In particular, in the
skew-symmetric case, combining the above result with Gabriel’s theorem, we get that the
setD(B) also coincides with the set of all the dimension vectors of the path algebra kQ(B).
This result triggered the intensive representation-theoretic study of cluster algebras in the
past decade.

For a skew-symmetric matrix B of cluster finite type, let Λ(B) be the corresponding
cluster-tilted algebra, which is the path algebra of the quiver Q(B) modulo the relations
described by [6, Theorem 4.2]. Note that any indecomposable Λ(B)-module can also
be regarded as an indecomposable kQ(B)-module. Let Dim(Λ(B)) be the set of the
dimension vectors of all the indecomposable Λ(B)-modules.

The following theorem by Caldero, Chapoton, and Schiffler [13], and by Buan, Marsh,
and Reiten [7], extended Theorem 2.4 to any skew-symmetric matrix B of cluster finite
type.

Theorem 2.5 ([13, Theorem 4.4 & Remark 4.5], [7, Theorem 2.2]). For any skew-
symmetric matrix B of cluster finite type, the sets D(B) and Dim(Λ(B)) coincide.

On the other hand, Nájera Chávez recently proved a parallel theorem for c-vectors.

Theorem 2.6 ([42, Theorem 4],[40]). For any skew-symmetric matrix B of cluster finite
type, the sets C+(B) and Dim(Λ(B)) coincide.

The inclusion C+(B) ⊂ Dim(Λ(B)) is a special case of [42, Theorem 4] (see Theorem
2.16), while the opposite inclusion is due to a yet unpublished result communicated to us
by Alfredo Nájera Chávez [40].

We have the following immediate corollary of Theorems 2.5 and 2.6.

Corollary 2.7. For any skew-symmetric matrix B of cluster finite type, the sets C+(B)
and D(B) coincide.

It is known that, for any indecomposable Λ(B)-module M , EndΛ(B)(M) = k holds
(and therefore EndkQ(B)(M) = k) [4, Section 8]. Thus, we have another corollary of
Theorems 2.5 and 2.6.

Corollary 2.8. For any skew-symmetric matrix B of cluster finite type, all positive c-
vectors and all non-initial d-vectors are Schur roots of ∆(A(B)).

For any skew-symmetric matrix B of cluster finite type, let us introduce the set

Ind(Λ(B)) = { all indecomposable Λ(B)-modules }. (2.10)

The following remarkable fact holds.

Theorem 2.9 ([7, Corollary 2.4]). For any skew-symmetric matrix B of cluster finite
type, the cardinality |Ind(Λ(B))| only depends on the cluster type Z of B; it is equal to
the number of positive roots of the root system of type Z.
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The dimension map

dim : Ind(Λ(B)) → Dim(Λ(B)) (2.11)

is surjective by definition. Actually, it is bijective by the following theorem.

Theorem 2.10. [47, Theorem 1] For any skew-symmetric matrix B of cluster finite type,
the map dim in (2.11) is injective.

We have an immediate corollary of Theorems 2.5, 2.6, 2.9, and 2.10.

Corollary 2.11. For any skew-symmetric matrix B of cluster finite type, the cardinality
|C+(B)| = |D(B)| only depends on the cluster type Z of B, and it is equal to the number
of positive roots of the root system of type Z.

2.5 More general results

For completeness, we summarize some general results on c- and d-vectors beyond finite
type and also give some examples, though we do not use them in the rest of the paper.

A skew-symmetrizable matrix B is acyclic if the corresponding valued quiver Q(B)
is acyclic, i.e., without oriented cycles. Let us first discuss the case of an acyclic skew-
symmetric matrix B. Under this hypothesis, the cluster tilted algebra Λ(B) is the path
algebra kQ(B) itself because there is no relation to be imposed. A kQ(B)-module M is
said to be rigid if Ext1kQ(B)(M,M) = 0.

The following two theorems completely describe the c- and d-vectors in this case:

Theorem 2.12 ([14, Theorem 4], [10, Theorem 2.3]). For any acyclic skew-symmetric
matrix B, the set D(B) coincides with the set of the dimension vectors of all the rigid
indecomposable kQ(B)-modules.

Theorem 2.13 ([42, Theorem 1]). For any acyclic skew-symmetric matrix B, the set
C+(B) coincides with the set of the dimension vectors of all the rigid indecomposable
kQ(B)-modules.

Recall that, when Q(B) is acyclic, the following formula holds [1]:

1

2
(dimM, dimM)A(B) = dimEndkQ(B)(M)− dimExt1kQ(B)(M,M). (2.12)

It follows that α is the dimension vector of a rigid indecomposable kQ(B)-module if and
only if it is a real Schur root. Therefore, we have an alternative form of Theorems 2.12
and 2.13.

Corollary 2.14 ([42, Theorem 1]). For any acyclic skew-symmetric matrix B, both the
sets D(B) and C+(B) coincide with the set of all the real Schur roots of ∆(A(B)).

Both Theorem 2.13 and Corollary 2.14 are partially extended to the acyclic skew-
symmetrizable matrices. (The sign-coherence of c-vectors is covered by [16].)
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Theorem 2.15 ([46, Theorem 1.1], [49, Theorem 1]). For any acyclic skew-symmetrizable
matrix B, any positive c-vector is a real positive root of ∆(A(B)); moreover, it is the
dimension vector of a rigid indecomposable representation of the valued quiver Q(B).

Finally, beyond finite type and the acyclic case, the following result is so far the most
general result on c-vectors; in particular, it ensures and strengthens Conjecture 2.3 for
any skew-symmetric matrix B.

Theorem 2.16 ([42, Theorem 4]). For any skew-symmetric matrix B, any positive c-
vector of A•(B) is the dimension vector of some rigid indecomposable module M of the
Jacobian algebra J(Q(B),W ) of the quiver Q(B) with generic potential W such that
EndJ(Q(B),W )(M) = k. In particular, any positive c-vector of A•(B) is a Schur root of
∆(A(B)).

On the other hand the behavior of the d-vectors is rather complicated as studied in
[9, 5, 36]. What was observed therein is a deficiency phenomenon: in some situations
the d-vector of a cluster variable x′

i is smaller than the dimension vector of the rigid
indecomposable Λ(B)-module associated with x′

i.
We conclude this short survey by presenting two illuminating examples beyond finite

type and the acyclic case.

Example 2.17. Type A
(1)
2 . Consider the skew-symmetric matrix B corresponding the

following non-acyclic quiver:

��	�
��

��	�
��

��	�
��1 3

2

��


XX1111
////

It is mutation equivalent to the following acyclic quiver whose Cartan counterpart is the
Cartan matrix of affine type A

(1)
2 .

��	�
��

��	�
��

��	�
��1 3

2
FF ��1

11
1

//

This cluster algebra A•(B) is studied in detail by [15]. In particular, the non-initial
d-vectors of A•(B) are given by [15, Lemma 3.3]:

(0, 1, 0), (1, 1, 1), (a, 0, a+ 1), (a+ 1, 0, a), (a, 1, a+ 1), (a+ 1, 1, a), a > 0. (2.13)

Moreover, it is not difficult to show that the positive c-vectors of A•(B) are also given
by the same list. Therefore, in this case C+(B) = D(B) holds, even though B is not
acyclic. Thus, any non-initial d-vector is a Schur root of ∆(A(B)) by Theorem 2.16. Note
that the d-vector (1, 1, 1) in (2.13) is the simplest example which shows the deficiency
phenomenon [9, Example 7.2], where the dimension vector of the corresponding represen-
tation is (1, 2, 1). Nevertheless, the d-vector (1, 1, 1) is still a Schur root. We also note
that among the vectors in (2.13), the last two are imaginary roots for a > 1.
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Example 2.18. Markov quiver. We consider the skew-symmetric matrix B such that the
corresponding quiver is the following non-acyclic one.

��	�
��

��	�
��

��	�
��1 3

2
FF

FF ��1
11

1

��1
11

1

oooo

This is known as the Markov quiver, and the positive c-vectors of A•(B) are given by the
permutations of the following vectors [41, Theorem 3.1.2]:

(1, 2, 2), (a+ 1, b+ 1, a+ b+ 1), (a− 1, b− 1, a+ b− 1), (2.14)

where 1 6 a 6 b, and a and b are coprime. The cluster algebra A•(B) has a surface
realization by a once-punctured torus. Using the same technique as in Section 4, it can
be shown that the non-initial d-vectors are given by the permutations of the vectors in
(2.14) of the form

(a− 1, b− 1, a+ b− 1). (2.15)

So this gives the first example in which the sets D(B) and C+(B) do not coincide. Nev-
ertheless, D(B) ⊂ C+(B) so any non-initial d-vector is still a Schur root of ∆(A(B)) by
Theorem 2.16.

The above examples may suggest that the property D(B) ⊂ C+(B) holds in general
but this is not true due to the counterexample of [36].

3 The sets X (Z) and W(Z) for classical types

Let Z be any type in one of the four infinite families (i.e. Z is one of An, Bn, Cn, or Dn

for some positive integer n). In this section we provide a description of all the diagrams
in X (Z) and define the list W(Z) of allowed weighted diagram for each type required
by Theorem 1.1. The analogous sets for the remaining finite types will be presented in
Appendix B.

3.1 Type An

The following is a direct consequence of Proposition 2.4 in [11].

Proposition 3.1. A diagram X is in X (An) if and only if the following conditions are
satisfied:

• X has n vertices, is simply laced and connected;

• every cycle in X is a triangle;

• each vertex in X has at most four neighbours;
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• if a vertex has three neighbours then exactly two of them are adjacent;

• if a vertex has four neighbours then they can be partitioned into two disjoint sets,
containing two elements each, and such that the two neighbouring vertices i and j
are adjacent if and only if {i, j} is one of those sets.

An example of Dynkin diagram in X (An) is presented in Figure 3.1 to illustrate its
“quasi-tree” nature.

Figure 3.1: A typical element X in X (A22). The highlighted part is an element of W(A22)
embedded in X.

The set W(An) consists of type A Dynkin diagrams (strings) with at most n vertices.
All the multiplicities are 1. Elements of W(An) are pictorially presented as follows.

An example of an embedding of such a string in a diagram of X (An) is highlighted in
Figure 3.1. Note that, as explained in the introduction, an embedding of an element of
W(An) in a diagram X is given by a full sub-diagram; therefore at most two vertices of
each triangle of X can belong to it. It follows that an embedding of a string is uniquely
determined by the positions of its endpoints [44]. Note that the equality D(B) = V(B) is
known in this case by [12, 44, 53].

The building block of Dynkin diagrams for classical types is given by diagrams of
type An. While stating the analogous results for other types we will use the convention
X (A0) = ∅.

3.2 Type Bn

As usual for Dynkin diagrams we put aijaji edges between i and j and the inequality sign
on the edges refers to the relation among the lengths of the corresponding simple roots.
This convention agrees with [34] and it is the opposite to the convention used in [3]. To
make it more explicit the Cartan matrix

(
2 −1
−2 2

)

corresponds in this paper to the following Dynkin diagram (labels correspond to the rows
of B).
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1 2

Proposition 3.2. A diagram with n vertices (n > 2) is in X (Bn) if and only if it is one
of the two in Figure 3.2 where X(i) is any diagram in X (Am) for a suitable m > 0.

We postpone the proof to Section 5.2.
The weighted diagrams in W(Bn) are those in Figure 3.3. As we will see they are

obtained from (some of) those in W(Dn+1) by folding.

X
′

X
′′

X
′

Figure 3.2: Elements of X (Bn) for n > 2; X(i) is any diagram in X (Am) for a suitable
m > 0. The nodes marked as red squares are the images of those permuted by σ in
Proposition 5.4.

I

IV
2 2

III
2

II

V
2 2

VI
2

Figure 3.3: The set W(Bn). Dotted lines are strings of any length; multiplicity of all the
nodes of each such string are the same as their ending points. Solid lines can’t be omitted.
We will use the above drawing conventions thorough the rest of the paper.

3.3 Type Cn

Proposition 3.3. A diagram with n vertices (n > 2) is in X (Cn) if and only if it is one
of the two in Figure 3.4 where X(i) is any diagram in X (Am) for a suitable m > 0.

We postpone the proof to Section 5.2.

Remark 3.4. The results of Propositions 3.2 and 3.3 were claimed in [38] and encoded in
the cluster algebra package of Sage. The details will appear in [51]. The same result also
appeared in [30].

The weighted diagrams in W(Cn) are those in Figure 3.5; as we will see they are all
the weighted diagrams that can be obtained by folding a string embedded on a diagram
in X (A2n−1).
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X
′

X
′′

X
′

Figure 3.4: Elements of X (Cn) for n > 2; X(i) is any diagram in X (Am) for a suitable
m > 0. The nodes marked as red squares are the images of the fixed point under the
action of σ in Proposition 5.4.

V
2 2

VI

IV
2 2

III
2

II

I

Figure 3.5: The set W(Cn). We use the same drawing conventions of Figure 3.3.

3.4 Type Dn

From Theorem 3.1 in [54] together with Proposition 3.1 we get the following description of
X (Dn). Note that the same result can also be obtained easily from the surface realization
we use in Section 4.

Proposition 3.5. A diagram with n vertices (n > 4) is in X (Dn) if and only if it is one
of the four in Figure 3.6 where X(i) is any diagram in X (Am) for a suitable m > 0.

(b) X
′

X
′′

(c) X
′

X
′′

(a) X
′

(d)

X
′′

X
′

Figure 3.6: Elements of X (Dn) for n > 4; X(i) is any diagram in X (Am) for a suitable
m > 0. The nodes marked as red squares are the one permuted by σ in Remark 5.4. Case
(d) consists of a central cycle with, possibly, type-A components attached to its sides.

The set W(Dn) consists of all the weighted diagrams in Figure 3.7.
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VIII

I V

VII
2 2

VIII
2 2

IV
2 2

III
2 2

Figure 3.7: The set W(Dn). We use the same drawing conventions of Figure 3.3.

3.5 Examples

To illustrate how to read the data presented in this section let us consider two examples.

Example 3.6. Let B be the matrix




0 1 0 0 0
−1 0 1 −1 0
0 −1 0 1 −1
0 1 −1 0 1
0 0 1 −1 0




of cluster type D5. The diagram X(B) and the set of positive c-vectors (and non-initial
d-vectors) of A•(B) are shown in Figures 3.8 and 3.9 respectively. Note that any skew-
symmetric matrix of cluster type D5 whose entries are the same as the entries of B in
absolute value produces the same X(B) and V(B).

3

1 2

4

5

Figure 3.8: X(B) for Example 3.6. Labels refer to the rows of B.
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2

Figure 3.9: V(B) for Example 3.6.

Example 3.7. Let B be the matrix



2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −2 −1
0 0 −1 2 −1
0 0 −1 −2 2




of cluster type C5. The diagram X(B) and the set of positive c-vectors (and non-initial
d-vectors) of A•(B) are shown in Figures 3.10 and 3.11 respectively.

1 2 3

5

4

Figure 3.10: X(B) for Example 3.7. Labels refer to the rows of B.

4 Types An and Dn: the surface method

In this section we prove Theorem 1.1 for types An and Dn.

4.1 The surface method for types An and Dn.

To describe c-vectors and d-vectors in types An and Dn we do not need to use the con-
struction of [24] in its full generality so we can slightly simplify the definitions; the reader
interested in the general theory can find a comprehensive review in [37].
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22 22222

22

Figure 3.11: V(B) for Example 3.7.

Unless otherwise specified, by surface S we mean one of the following:

• (type An) a disk with n+ 3 marked points on its boundary (n > 1);

• (type Dn) a disk with n marked points on the boundary (n > 4) and one, the
puncture, in its interior.

We denote the set of marked points by M .

Definition 4.1. A (tagged) arc is an homotopy class of curves γ in the interior of S \M
having no self intersections, connecting two distinct points of M , and not cutting out
(together with a boundary component of S) an unpunctured bigon. Due to the limitations
imposed on the kinds of surfaces we consider there are only two possible types of arcs:
chords, connecting two marked point on the boundary of S, and radii, connecting a point
on the boundary with the puncture. Radii comes in two flavours: plain and notched ; to
distinguish them in figures we will put a cross on notched arcs.

Remark 4.2. Note that this is not the usual definition of tagged arcs, in particular for
general surfaces there is a tagging attached to each endpoint of any γ. Another difference
from the general case is that we are not allowing loops (arcs with coinciding endpoints).

We need not consider ideal arcs as defined by [24] so we can drop the adjective “tagged”
without generating confusion. To any pair of arcs γ and δ we can associate an integer as
follows.

Definition 4.3 ([24, Definition 8.4]). The intersection pairing of γ and δ is the integer
(γ|δ) defined according to these rules:

1. if γ and δ coincide then (γ|δ) = −1;
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2. if γ and δ are homotopic radii with different tagging then (γ|δ) = 0;

3. if γ and δ are non-homotopic radii then (γ|δ) = 0 if they are tagged in the same
way and (γ|δ) = 1 if their tagging is different;

4. in any other case, set (γ|δ) to be the minimal number of intersections between γ
and δ.

Two arcs γ and δ are said to be compatible if their intersection pairing is non-positive.
A triangulation Γ of S is a maximal (by inclusion) set of pairwise compatible arcs.

Remark 4.4. Definition 4.3 is symmetric; this is not the case for a general surface where
loops are allowed (see [24, Example 8.5]).

In view of [24, Theorem 7.9] each triangulation of S has n arcs in it and given a
triangulation Γ and one of its arcs γ, there is a unique other arc γ′ such that

Γ′ = (Γ \ {γ}) ∪ {γ′}

is again a triangulation of S. The operation of replacing γ with γ′ is called a flip.
To any triangulation Γ associate a skew-symmetric matrix B(Γ) = (bΓγδ)γ,δ∈Γ setting

bΓγδ :=





1 if γ rotates counterclockwise to δ
−1 if γ rotates clockwise to δ
0 if both or none of the previous conditions hold

(4.1)

where γ is said to rotate counterclockwise (resp. clockwise) to δ if they are not homo-
topic, they share an endpoint and, in a neighbourhood of this point, γ can be deformed
counterclockwise (resp. clockwise), without crossing any other arc of Γ, to coincide with
δ.

γ1

γ2 γ3

γ4

Figure 4.1: In this triangulation b21 = b31 = b14 = b42 = b43 = 1 while b23 = 0.

By [24, Theorem 7.11] the above assignment produces a bijection between triangula-
tions of a type An (resp. Dn) surface and unlabeled seeds of the coefficient-free cluster
algebra of the same type. In particular cluster variables are in bijection with arcs and if
two seeds are obtained from one another exchanging the cluster variables xγ and xγ′ then
the corresponding triangulations are related by the flip of γ into γ′.

To keep track of principal coefficients we use laminations as explained in [25]. For
each marked point p on the boundary of S fix a neighbouring point p′ obtained sliding p
clockwise on the boundary.
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Definition 4.5. (see Figure 4.2) The elementary lamination λγ corresponding to an arc
γ is the homotopy class of curves, contained in a neighbourhood of γ, defined as follows:

• if γ is a chord connecting p and q then λγ connects p′ and q′;

• if γ is a radius tagged plain (resp. notched) starting from p then λγ starts from
p′ and winds counterclockwise (resp. clockwise) infinitely many times around the
puncture.

p
p′

q′

q

Figure 4.2: Examples of elementary laminations.

The shear coordinates of an elementary lamination λ with respect to a triangulation
Γ are the integers in the n-tuple (bΓλ,γ)γ∈Γ defined in terms of intersections between λ and
the unique quadrilateral in Γ of which γ is the diagonal.

More precisely assume, at first, that Γ contains at most one notched radius; each
segment of λ cutting through the quadrilateral enclosing γ as in Figure 4.3 contributes
either +1 or −1 to bΓλ,γ. All other crossings do not contribute. Note in particular that,
if γ is a radius of a digon then, to have have nonzero shear coordinate, a lamination as
to ”go around the puncture”. When the digon has two non homotopic radii this means
that the lamination has to intersect both of them; in the other case the lamination has
to cross the dotted line joining the puncture to the boundary. We will continue to draw
this dotted line whenever we have a digon with homotopic radii. Note also that flipping
γ interchanges positive and negative crossings.

To extend the definition to all possible triangulations it suffices to impose that, if Γ∨

is obtained from Γ by changing all the tags at the puncture and λ∨ is obtained from λ
inverting its winding direction (if any), then for any γ ∈ Γ

bΓ
∨

λ∨,γ∨ = bΓλ,γ. (4.2)

Given a triangulation Γ let Λ(Γ) = {λγ}γ∈Γ be the multilamination associated to it,
i.e. the collection of the elementary laminations corresponding to the arcs of Γ. Let
B̃Γ(Γ

′) be the extended B-matrix having top part B(Γ′) defined by (4.1) and bottom part
given by the shear coordinates of Λ(Γ) with respect to Γ′.
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−1 γ

+1

−1

γ

+1

−1

γ

+1 +1

−1

γ

+1

−1 −1

Figure 4.3: Intersections giving non-zero shear coordinates. The highlighted edges are
those crossed by laminations λ giving positive coordinates bΓλ,γ .

Proposition 4.6 ([25, Proposition 16.3]). In the principal-coefficients cluster algebra
A• (B(Γ)) the extended exchange matrix corresponding to the triangulation Γ′ is given by

the above B̃Γ(Γ
′).

We can now describe the sets C(B) and D(B). For the rest of this section fix a skew-
symmetric integer matrix B of type An or Dn. Let Λ0 = {λi}i∈I be the multilamination
corresponding to a triangulation Γ0 = {γi}i∈I of S realizing B. In view of the last
Proposition the set of c-vectors of the principal-coefficients cluster algebra A•(B) is

C(B) =
{
cγ,Γ :=

(
bΓλi,γ

)
i∈I

}

as Γ runs over all possible triangulations of S and γ is an arc in Γ. The parametrization
of C(B) by pairs of arcs and triangulations is not one to one; indeed for any given c-vector
there are in general many pairs γ, Γ realizing it. We will see that Γ can always be chosen
to be bipartite (see Proposition 4.11).

As we already noted, in a cluster algebra coming from a surface, cluster variables are
in bijection with tagged arcs. Their denominator vectors can be read directly from the
surface: they are given in terms of their intersection pairing with the arcs of the initial
triangulation.

Theorem 4.7 ([24, Theorem 8.6],[29, Theorem 3.4]). Let A•(B) be any cluster algebra
of type An or Dn and let Γ0 = {γi}i∈I be a triangulation corresponding to B.

If xγ is the cluster variable corresponding to the tagged arc γ then its d-vector is

dγ = ((γi|γ))i∈I .
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The set of non-initial d-vectors of A•(B) is therefore

D(B) =
{
dγ = ((γi|γ))i∈I

}

as γ runs over all arcs of S not in Γ0.

4.2 Proof of Theorem 1.1

We begin by providing an alternative and immediate proof of (1.3) for types An and Dn.

Lemma 4.8. All the vectors in C(B) are sign-coherent.

Proof. By contradiction let cγ,Γ be a c-vector that is not sign-coherent i.e. there are two
elementary laminations in Λ0, say λi and λj such that bΓλi,γ

> 0 and bΓλj ,γ
< 0.

Assume at first that Γ contains at most one notched arc. From Figure 4.3 it is clear
that λi and λj intersect and if they both spiral to the puncture then they do not come
from homotopic radii. This is in contradiction with the hypothesis that Λ0 came from
a triangulation of S: the intersection pairing of the arcs corresponding to λi and λj is
positive.

The results extends immediately to all the possible triangulation if we observe that
changing the windings of all the laminations spiraling to the puncture does not affect the
intersection relations among elements of Λ0.

Note that, if cγ,Γ is a c-vector and Γ′ is the triangulation obtained from Γ by flipping
γ into γ′, then

cγ,Γ = −cγ′,Γ′ .

From now on we concentrate on the set C+(B) of positive c-vectors of A•(B).

Lemma 4.9. The weighted diagram of any positive c-vector in A•(B) is connected.

Proof. By contradiction assume that the weighted diagram of cγ,Γ has two disjoint com-
ponents. Let i be a node in one of them and j a node in the other such that they are at
minimal distance in X(B). By hypothesis i and j are not adjacent. Let λi and λj be the
corresponding elementary laminations in Λ0.

Three cases are possible (in type An only the last one occurs).

1. If λi and λj have two endpoints in common then they spiral to the puncture in
opposite directions. In this case, since both bΓλi,γ

6= 0 and bΓλj ,γ
6= 0, the arc γ

cannot be incident to the puncture. The multilamination Λ0 contains then a bigon
enclosing λi and λj; at least one side of this bigon (say λk) crosses positively the
quadrilateral enclosing γ.

2. If λi and λj share exactly one endpoint, since i and j are not adjacent, there are
two possible configurations. If there is no other lamination sharing that endpoint
then they both spiral to the puncture and they are enclosed in a bigon; at least
one side of this bigon (again say λk) intersects positively the quadrilateral enclosing
γ. Otherwise at least one lamination λk among those sharing the same endpoint is
such that bΓλk,γ

> 0.
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3. Finally if λi and λj do not share any endpoint then there is at least one lamination
λk starting from one of those four points, lying in between λi and λj and crossing
positively the quadrilateral that encloses γ (otherwise such an elementary lamination
could be added to Λ0 in contradiction to the assumption that the multilamination
corresponds to a triangulation).

In all of the cases there is a vertex k in between i and j such that the k-th component of
cγ,Γ is non-zero in contradiction with the assumption of minimal distance between i and
j.

Proposition 4.10. In types An and Dn we have

C+(B) ⊂ V(B).

Proof. We deal first with type An. It is clear that, having no puncture, any lamination
λ ∈ Λ0 can intersect any given arc γ at most once so bΓλ,γ ∈ {0, 1}. In view of Proposition
3.1 it suffices to show that no c-vector can have a triangle in its weighted diagram. But
this follows directly from the fact that, since S has no puncture, at least one of the sides
of each triangle in Λ0 does not intersect any given arc γ.

γ

λ3

λ2

λ1

Figure 4.4: Any triangle in a lamination of a surface of type An intersects at most twice
any arc γ.

For type Dn the proof proceeds by case analysis. We need first some considerations.
In view of condition (4.2) we can assume that the quadrilateral enclosing γ is one of those
in Figure 4.3.

Note that, given a multilamination Λ0 coming from a triangulation, a once punctured
disk can be decomposed into pieces: it will contain exactly one piece in which all the
elementary laminations spiral to the puncture (one of the five in Figure 4.5); all the other
pieces, if any, will contain only elementary laminations corresponding to chords. Any such
piece can only be glued to the one containing the puncture as shown in Figure 4.6.

Any elementary lamination of Λ0 not corresponding to a glued edge will be contained,
up to a small neighbourhood of one endpoint, in exactly one piece in this decomposition.
This implies that any given piece must contain at least a section of γ and of two opposite
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Plain n-gon (n ≥ 3) Notched n-gon (n ≥ 3)

Plain digon Notched digon Folded digon

Figure 4.5: Multilaminations with all elementary laminations spiralling to the puncture.

Figure 4.6: Example of a decomposition of a surface of type Dn according to a multilam-
ination.

the electronic journal of combinatorics 21(1) (2014), #P1.3 24



sides of the quadrilateral enclosing γ in order for any of the laminations it contains to give
rise to a positive coordinate. In particular a quadrilateral of a triangulation can intersect
non trivially at most three pieces in this decomposition.

We need therefore to consider all the possible ways a quadrilateral from Figure 4.3 can
be fitted into a surface with at most three pieces. This is a straightforward but tedious
check; a complete analysis of the various cases (87 nontrivial cases in total) is contained
in Appendix A.

To connect C+(B) with D(B) let us improve on the parametrization of c-vectors of
A•(B). A triangulation Γ of S is said to be bipartite if every node of the corresponding
quiver is either a sink or a source. Note that, since in finite type any chordless cycle must
be oriented ([2] Theorem 1.2), bipartite triangulations correspond to bipartite orientations
of the Dynkin diagram of the given type.

Not every quadrilateral can appear in a bipartite triangulation; indeed it is clear from
the assignment (4.1) that the only allowed one are those in Figure 4.7. Moreover, given
any such quadrilateral, there exists a unique bipartite triangulation in which it appears.

γ

γ

γ

γ

Figure 4.7: The only quadrilaterals that can appear in a bipartite triangulation of a
surface S. The edges on the boundary of S are highlighted. When the quadrilateral is a
digon any of the radii can be the diagonal γ.

Let Cb
+(B) be the subset of C+(B) consisting of c-vectors cγ,Γ such that Γ is bipartite.

Proposition 4.11. In types An and Dn

Cb
+(B) = C+(B).
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Proof. Let cγ,Γ be any element of C+(B); we need to show that there exists a bipartite
triangulation Γ′ and an arc γ′ ∈ Γ′ such that cγ,Γ = cγ′,Γ′ .

Let Λ0 be the multilamination associated to B. In view of the observation we just
made we only need to construct a quadrilateral like those in Figure 4.7 having the same
intersections with Λ0 that Γ does: this will automatically determine the bipartite trian-
gulation we are after.

We concentrate first on type An. The idea is simple: pick a leaf in the support of
cγ,Γ and let λ be the corresponding elementary lamination in Λ0. Since λ is the “last”
lamination intersecting the quadrilateral enclosing γ positively it must belong to a triangle
in Λ0 such that the other two lamination composing it do not give rise to positive shear
coordinates. Let p′ be the only vertex of the triangle that is not incident to λ. We can
replace the original quadrilateral with one having the two marked points closest to p′ as
vertices: all the shear coordinates will be unchanged. We can than conclude by applying
the same procedure to the other leaf (cf. Figure 4.8).

p
′

q
′

p
′

q
′

Figure 4.8: The reduction of a quadrilateral to a bipartite quadrilateral in type An.
The quadrilateral on the right give raise to the same shear coordinates produced by the
quadrilateral on the left and determines uniquely a bipartite triangulation.

This is sufficient in type An but not in general in type Dn: we need to deal with folded
quadrilaterals as well. The replacement to be performed depends both on Λ0 and γ but it
is straightforward from the pictures. The general procedure is shown in Figure 4.9. The
reduction is in two steps: first we apply the same strategy of type An to have the correct
amount of edges of the quadrilateral on the boundary of the surface. Then, if needed, we
replace the quadrilateral we obtain with one from Figure 4.7. The precise case analysis
is again in Appendix A; there we provide, for each possible quadrilateral and for each
multilamination an explicit replacement.

In analogy with the definition above let Db(B) be the subset of all the non-initial
d-vectors corresponding to cluster variables appearing in bipartite seeds of A•(B). Since
any arc on S appears in a bipartite triangulation, in types An and Dn we have

Db(B) = D(B). (4.3)

Remark 4.12. The above equality, together with Proposition 4.11, prove Theorem 1.4 for
cluster algebras of types An and Dn.
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p
′

p
′

p
′

Figure 4.9: An example of the reduction of a quadrilateral to a bipartite quadrilateral in
type Dn.

Proposition 4.13. In types An and Dn

C+(B) = D(B).

Proof. In view of the above reductions it suffices to show that

Cb
+(B) = Db(B).

As before let Γ0 = {γi}i∈I be the triangulation corresponding to B and Λ0 = {λi}i∈I the
associated multilamination. In view of Theorem 4.7 and Definition 4.3 all the vectors in
Db(B) have non-negative components.

Let γ be any arc not in Γ0 and consider the d-vector dγ; we need to distinguish three
cases (cf. Figure 4.10) depending on the endpoints of γ (call them p and q).

• If both p and q are on the boundary of S and they are not adjacent then there are
two other marked points r and s such that p′ is contained on the boundary segment
pr and q′ is contained in the boundary segment qs. Let γ′ be the diagonal rs of
the quadrilateral prqs and complete the quadrilateral to a bipartite triangulation
Γ′. We have dγ = cγ′,Γ′ . Note that if S is of type An this is the only possible case.

• It both p and q are on the boundary of S and they are adjacent then we can assume
(up to relabeling) that q′ lies on the boundary segment qp. Let r be such that p′ lies
on the boundary segment pr. Let γ′ be the diagonal pr of the folded quadrilateral
having vertices q, p, r, and the puncture and having two homotopic radii starting
at p; Let Γ′ be the bipartite triangulation containing this quadrilateral. We have
again dγ = cγ′,Γ′ .

• If one of the endpoints of γ (say q to fix ideas) is the puncture then let r be the
marked point such that p′ lies between p and r. Let Γ′ be the bipartite triangulation
containing the digon with vertices p and r, enclosing the puncture, and such that
its radii both start from r. If γ′ is the radius with tagging opposite to the tagging
of γ then dγ = cγ′,Γ′ .
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Figure 4.10: The three possible cases of Proposition 4.13.

Conversely let cγ′,Γ′ in Cb
+(B). The quadrilateral of Γ′ enclosing γ′ will be exactly one

of those constructed above (they are all bipartite). Choosing γ to be the corresponding
arc we get dγ = cγ′,Γ′ .

We thank Andrei Zelevinsky for providing the idea of using the “bipartite belt” in the
above proof.

The following Proposition concludes the proof of Theorem 1.1 for types An and Dn.

Proposition 4.14. In types An and Dn we have

V(B) ⊂ D(B).

Proof. Let Γ0 = {γi}i∈I be a triangulation realizing B and let v = (vi)i∈I be any element
in V(B).

In type An it is clear how to construct an arc γ crossing exactly one time all the arcs
γj such that vj 6= 0: suppose i is a leaf in the weighted diagram; the arc γi corresponding
to it belongs to two triangles. One of them is such that the nodes corresponding to the
other two arcs forming it do not belong to the support of the weighted diagram. The arc
γ we are looking for starts from the vertex of this triangle opposed to γi. It crosses then
in sequence all the arcs γj such that vj 6= 0 and terminates in the vertex opposite to the
arc corresponding to the other leaf.

In type Dn the procedure is slightly more involved and depends on the initial trian-
gulation Γ0 but follows the same basic idea. Suppose at first that Γ0 does not contain a
digon with two homotopic radii. The same procedure described for type An works verba-
tim for diagrams I, IV, and VIII in Figure 3.7: the only thing to note is that instead of
a leaf we might have to take one of the nodes in the left triangle (for IV we cannot use
the two rightmost leaves). For diagrams II and VI we need a small fix: γ starts from the
vertex opposite to the arc corresponding to the leftmost leaf and ends at the puncture;
its tagging is the opposite of the tagging of the radii in Γ0. For diagrams III and VII we
repeat the same argument using the leftmost leaf and the leftmost node with multiplicity
2. Diagrams like V cannot be embedded in a X(B) if Γ0 does not have a digon with two
homotopic radii in it.
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If Γ0 contains a digon with two homotopic radii then the only diagrams that can arise
are I, II, III, IV, and V. For V the procedure is the same as the one for type An, we
just need to cross both the radii of the digon. For diagrams III and IV the procedure is
identical to the above. For diagrams like II γ starts from the vertex opposite to the arc
corresponding to the leftmost leaf and ends in the vertex of the digon not adjacent to the
radii. For diagrams like I we need to distinguish two cases: if one of the leaves corresponds
to a radius then the corresponding endpoint of γ is the puncture and its tagging is the
opposite of the one of that radius. Otherwise we proceed as in type An.

5 Types Bn and Cn: the folding method

Building on the results of last section we will now prove Theorem 1.1 for types Bn and
Cn. In order to do so we will realize any principal coefficients cluster algebra of type
Bn (respectively Cn) as a subquotient of an appropriate cluster algebra of type Dn+1

(respectively A2n−1) with principal coefficients.

5.1 Folding of cluster algebras with trivial coefficients

The construction, for the coefficient-free case, was explained in [21]. Since we need to
generalize it to work with principal coefficients later on let us begin by recalling in some
details its main features.

Let B = (bij)i,j∈I be a skew-symmetrizable integer matrix and σ a permutation of I.

Definition 5.1. A permutation σ is an automorphism of B if, for any i and j in I,

bσ(i)σ(j) = bij . (5.1)

An automorphism of B is said to be admissible if, for any i1 and i2 in the same σ-orbit ı
and for any j in I,

bi1,jbi2j > 0 (5.2)

bi1,i2 = 0. (5.3)

An easy computation shows that, if σ is an admissible automorphism of B and k1 and
k2 are two points in the same σ-orbit k, the mutations µk1 and µk2 commute; that is

µk1 ◦ µk2(B) = µk2 ◦ µk1(B).

Indeed µk2 (µk1(bij)) is either −bij , if at least one among i and j is in {k1, k2}, or

bij + bik1 [bk1j]+ + [−bik1 ]+bk1j + bik2 [bk2j]+ + [−bik2 ]+bk2j

otherwise. Those expressions are clearly independent on the order in which µk1 and µk2

are applied. It makes therefore sense to define orbit-mutations as the compositions

µσ
k
:=
∏

t∈k

µt.
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Repeating the same reasoning we get

µσ
k
(bij) =

{
−bij if i or j ∈ k
bij +

∑
t∈k (bit[btj]+ + [−bit]+btj) otherwise.

(5.4)

Note that, given a σ-orbit k, the permutation σ is always an automorphism of µσ
k
(B)

but it need not be admissible; in particular condition (5.2) may be violated.

Definition 5.2. An admissible automorphism σ of B is said to be stable if, for any finite
sequence of σ-orbits k1, . . . kℓ, it is an admissible automorphism of

µσ
kℓ
◦ · · · ◦ µσ

k1
(B).

Proposition 5.3 ([21, Proposition 2.22]). If the Cartan counterpart of B is a simply-laced
finite type then any admissible automorphism of B is stable.

Remark 5.4. We will need the following incarnations of Proposition 5.3:

1. B has Cartan counterpart of type A2n−1 and, using the standard labeling of the
nodes of the associated Dynkin diagram,

σ :=
n∏

i=1

(i, 2n− i)

is an admissible automorphism of B.

2. B has Cartan counterpart of type Dn+1 and, again in the standard labeling,

σ = (n, n+ 1)

is an admissible automorphism of B.

Given a skew-symmetrizable integer matrix B and a (stable) admissible automorphism
σ we can define a folded matrix π(B) := B = (bı), as ı and  vary over all the σ-orbits,
by setting

bı :=
∑

s∈ı

bsj. (5.5)

In view of condition (5.1) the value of bı does not depend on the choice of a representative
of . The folded matrix π(B) is itself skew-symmetrizable (see [21, Lemma 2.5]).

The key point here is this: if σ is a stable admissible automorphism of B then for any
σ-orbit k

π
(
µσ
k
(B)
)
= µk (π(B))

thanks to condition (5.2) (see [21, Theorem 2.24]).
We will use the following obvious converse stating the existence of “unfolding” for the

matrices we are interested into.
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Proposition 5.5. Let B
′
be any matrix in the same mutation class of a matrix B obtained

by folding from a skew-symmetrizable matrix B with a stable admissible automorphism σ.
There exist a matrix B′ and a sequence of σ-orbits k1, . . . , kℓ such that

1. µσ
kℓ
◦ · · · ◦ µσ

k1
(B) = B′

2. B
′
= B′.

The folding map can be extended to a morphism of algebras as follows. Fix an initial
B-matrix B and a stable admissible automorphism σ. Let

(
B, {xi}i∈I

)

be the initial cluster of the coefficient-free cluster algebra A0(B). Write Aσ
0 (B) for the

subalgebra of A0(B) generated by all the clusters reachable from the initial one by a
sequence of orbit mutations.

Let A0(B) be the coefficient-free cluster algebra with initial B-matrix π(B) = B and
initial cluster variables {xı}ı∈I/σ. The assignment

π(xi) := xı

extends to a surjective map
π : Aσ

0 (B) −→ A0(B).

The algebra A0(B) is the quotient of Aσ
0 (B) by the ideal generated by the relations

xi = xσ(i).

Moreover, and this is the key point in the construction, the map π preserves the cluster
structure: seeds of Aσ

0 (B) are mapped to seeds of A0(B).
Combining the above observation with Remark 5.4 we get the following statement.

Proposition 5.6. Any matrix of cluster type Bn (respectively Cn) is the image π(B) of
a matrix B of cluster type Dn+1 (respectively A2n−1) with automorphism σ from Remark
5.4. The coefficient-free cluster algebra A0(B) is the quotient of a subalgebra of A0(B) by
an ideal preserving the cluster structure. In particular any exchange matrix of A0(B) is
the folding of some exchange matrix of A0(B).

5.2 Proof of Propositions 3.2 and 3.3.

The results just summarized are enough to describe the sets X (Bn) and X (Cn).

Proof of Proposition 3.2. In view of Proposition 5.6 any element of X (Bn) can be obtained
by folding an element of X (Dn+1). On the other hand not every diagram from Figure
3.6 can be folded: we know that any chordless cycle in such a diagram corresponds to a
cyclically oriented chordless cycle in the quiver Q(B) associated to it (see [27, 2]). By
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definition of admissible automorphism all the vertices in the only non-trivial orbit of σ
must be not adjacent and must be connected to all the other adjacent vertices in the same
way. This forces us to conclude that diagrams (c) and (d) cannot be folded.

The diagrams of Figure 3.2 are thus the folding of diagrams (a) and (b) from Figure
3.6.

Proof of Proposition 3.3. In view of Proposition 5.6 diagrams in X (Cn) are obtained by
folding elements of X (A2n−1). The only requirement a diagram must satisfy to be folded
is to be symmetric with respect to the only fixed point of σ from Remark 5.4.

5.3 Folding of c-vectors

In order to consider c-vectors we need to extend the above construction to cluster algebras
with principal coefficients. We take inspiration from the following example.

Example 5.7. Let A•(B) be the cluster algebra of type D4 with principal coefficients at
the initial cluster given by

B =




0 −1 0 0
1 0 −1 −1
0 1 0 0
0 1 0 0


 .

B is invariant under permutation σ = (34) and has b34 = 0. Moreover the mutations in
directions 3 and 4 commute; that is

µ3 ◦ µ4(B) = µ4 ◦ µ3(B).

Let Aσ
• (B) be the subalgebra of all the clusters reachable from the initial one by any

sequence of the mutations µ1, µ2, and µ3 ◦ µ4. All the B-matrices in it have b34 = 0.
The permutation σ acts on the set of clusters of A•(B) by relabeling:

σ(xi) := xσ(i) and σ(yi) := yσ(i)

Let I be the ring ideal of Aσ
• (B) generated by the relations

x3 = x4 and y3 = y4

The quotient Aσ
• (B)/I is a cluster algebra of type B3 with principal coefficients at the

initial cluster given by π(B). Under the projection map clusters of Aσ
• (B) are mapped

to clusters of Aσ
• (B)/I. Moreover exchange relations in the quotient come from exchange

relations of A•(B).

For any skew-symmetrizable integer matrix B endowed with a stable admissible au-
tomorphism σ let A•(B) and A•(B) be the cluster algebras with principal coefficients
respectively at B and B = π(B). Let Aσ

• (B) be the subalgebra of A•(B) generated by all
clusters reachable from the initial one using orbit-mutations.
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In view of the above example it is natural to define folding for a c-vector c = (ci)i∈I
of Aσ

• (B) componentwise as follows:

cı :=
∑

s∈ı

cs. (5.6)

However the correctness of this definition is not so obvious because the tropicalization
map (2.8) and folding are not compatible in general. Let us clarify the condition required
to guarantee that (5.6) is well-posed.

Note that if C and C ′ are two coefficient matrices of Aσ
• (B) connected by a single

orbit-mutation µk then it follows directly from having assumed σ to be a stable admissible
automorphism of B that:

c′ij =

{
−cij if j ∈ k
cij +

∑
t∈k (cit[btj]+ + [−cit]+btj) otherwise.

(5.7)

From (5.7) we get an important observation: all the C-matrices in Aσ
• (B) are such

that
cσ(i)σ(j) = cij . (5.8)

Indeed the property holds for the initial C-matrix and we can use the admissibility of σ
to propagate it.

We introduce the folded C-matrix C for a C-matrix C = (cij)ij∈I of Aσ
• (B) as

cı :=
∑

s∈ı

csj. (5.9)

Note that (5.9) is independent of the choice of a representative of  due to the symmetry
(5.8).

Proposition 5.8. Let B be any skew-symmetrizable integer matrix and let σ be a stable
admissible automorphism of B. The matrix C satisfies the recursion relation

c′ı =

{
−cı if  = k
cı + cık[bk]+ + [−cık]+bk otherwise

(5.10)

if and only if the following condition holds: for any i and j the sign of csj is independent
of the choice of representative s ∈ ı.

Proof. It suffices to establish the proposition for a single mutation; if  = k our claim is
trivial so we can assume j 6∈ k. On the one hand we can rewrite (5.10) as

c′ı = cı + cık[bk]+ + [−cık]+bk =
∑

s∈ı

csj +
∑

s∈ı

csk



∑

t∈k

btj




+

+

[
−
∑

s∈ı

csk

]

+

∑

t∈k

btj.
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On the other hand

c′ı =
∑

s∈ı

c′sj =
∑

s∈ı


csj +

∑

t∈k

(cst[btj]+ + [−cst]+btj)


 .

Therefore the recursion 5.10 is satisfied if and only if

∑

s∈ı

csk



∑

t∈k

btj




+

=
∑

s∈ı

∑

t∈k

cst[btj]+

and [
−
∑

s∈ı

csk

]

+

∑

t∈k

btj =
∑

s∈ı

∑

t∈k

[−cst]+btj.

The first condition is guaranteed by the admissibility of σ; indeed we get
∑

s∈ı

∑

t∈k

csk [btj]+ =
∑

s∈ı

∑

t∈k

cst[btj]+

which is true by a simple change of summation index using (5.8).
Similarly the second condition is equivalent to

∑

s∈ı

∑

t∈k

[−csk]+ btj =
∑

s∈ı

∑

t∈k

[−cst]+btj.

if and only if the sign of csk is independent on the choice of representative s ∈ ı.

In our situation the condition of Proposition 5.8 is satisfied by the sign-coherence
property of c-vectors established in Lemma 4.8 or, more generally for skew-symmetric
B-matrices, explained in Section 2. Thus definition (5.6) is well-posed in our case.

It is worth noticing at this point that the folding map (5.6) sends the identity matrix
to the identity matrix: as one might expect the image of the initial cluster of A•(B) is
the initial cluster of A•

(
B
)
.

Corollary 5.9. Let B be any skew-symmetrizable matrix of cluster type Bn (respectively
Cn). There exists a matrix B of cluster type Dn+1 (respectively A2n−1) such that the
cluster algebra with principal coefficients A•

(
B
)
is a subquotient of the cluster algebra

with principal coefficients A•(B). In particular any c-vector of A•

(
B
)
is the folding of

some c-vector of A•(B).

5.4 Folding of d-vectors

Our next goal is to produce a folding rule for d-vectors. From the above example it is
natural to fold the vector d = (di)i∈I componentwise in this way:

dı :=
∑

s∈ı

ds. (5.11)
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Once again the correctness of the above definition is not obvious because, in general,
folding is not compatible with the tropicalization map (2.4).

Recall the definition of D-matrix given in Section 2.1.

Lemma 5.10. If σ is a stable admissible automorphism of B then the entries in any
D-matrix of Aσ(B) satisfy

dσ(i)σ(j) = dij . (5.12)

Proof. The property holds for the D-matrix of the initial cluster. Suppose that D and D′

correspond to clusters obtained from one another by a single orbit mutation µk and that
the property holds for D. The only non trivial case we need to consider is when j is in k.
By (2.6) we have

d′ij = −dij +max

(
∑

t∈I

dit[btk]+,
∑

t∈I

dit[−btk]+

)
.

Using both induction hypotheses and the fact that σ is stable admissible we get

d′ij = −dσ(i)σ(j) +max

(
∑

t∈I

−dσ(i)σ(t)
[
bσ(t)σ(k)

]
+
,
∑

t∈I

−dσ(i)σ(t)
[
−bσ(t)σ(k)

]
+

)

and we can conclude changing the summation index.

We define the folding D of the D-matrix D = (dij)ij∈I as we did for C-matrices:

dı :=
∑

s∈ı

dsj.

Thank to the above lemma this definition is independent of the representative j.

Proposition 5.11. The matrix D satisfies the recursion

d′ı =





−dık +max



∑

ℓ∈I/σ

dıℓ[bℓk]+,
∑

ℓ∈I/σ

dıℓ[−bℓk]+,


  = k

dı  6= k.

(5.13)

if and only if for any σ-orbit ı the sign of

∑

t∈I

dstbtk

is independent of the representative s ∈ ı.
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Proof. We proceed again by induction. It suffices to show that the property holds for a
single mutation. Fix a σ-orbit ı. The only non-trivial case is when  = k. On the one
hand we have

d′ı =
∑

s∈ı

(
−dsj +max

(
∑

t∈I

dst[btk]+,
∑

t∈I

dst[−btk]+

))
.

On the other hand, for the recursion to be satisfied, we must have

d′ı = −
∑

s∈ı

dsj +max

(
∑

t∈I

∑

s∈ı

dst[btk]+,
∑

t∈I

∑

s∈ı

dst[−btk]+

)
.

We need therefore to have

∑

s∈ı

(
max

(
∑

t∈I

dst[btk]+,
∑

t∈I

dst[−btk]+

))
= (5.14)

max

(
∑

s∈ı

∑

t∈I

dst[btk]+,
∑

s∈ı

∑

t∈I

dst[−btk]+

)
(5.15)

which holds if and only if the sign of
∑

t∈I

dst[btk]+ −
∑

t∈I

dst[−btk]+ =
∑

t∈I

dstbtk

is independent of the choice of the representative s ∈ ı.

Remark 5.12. Anna Felikson and Pavel Tumarkin found a case of cluster affine type D
where the condition of previous proposition does not hold [22]; we thank them for showing
us their example.

For our purposes it is enough to show that the condition of Proposition 5.11 holds in
the cases of Remark 5.4. Using Lemma 5.10 and the fact that σ is stable admissible, it is
equivalent to ask the sign of ∑

t∈I

ditbtr

to be independent of the representative r ∈ k. We get therefore that the condition is
satisfied whenever k is fixed by σ.

We prefer to work with this third equivalent formulation: the sign of
∑

t∈I

diσm(t)btk

is independent of m ∈ Z.

Lemma 5.13. The condition of Proposition 5.11 holds for B of cluster type Dn+1 endowed
with the automorphism σ of Remark 5.4.
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Proof. There is only one non-trivial σ-orbit; in view of previous observations we can
assume it is the orbit of k. This forces t 6∈ k to be fixed by σ. Moreover, since σ is a
stable admissible automorphism btk = 0 if t ∈ k. Therefore

∑

t∈I

diσm(t)btk =
∑

t∈I\k

ditbtk

which is manifestly independent of m.

Lemma 5.14. The condition of Proposition 5.11 holds for B of cluster type A2n−1 en-
dowed with the automorphism σ of Remark 5.4.

Proof. Note at first that rows of a D-matrix associated to a B-matrix B′ in Aσ
0 (B) are

again d-vectors: they are the d-vectors of Aσ
0 (B

′) in the D-matrix associated to B. This
follows directly from the surface realization (see Theorem 4.7). In particular, in this case,
they are sign-coherent and their support is either a string (if they are positive) or a single
vertex (if they are negative).

As before we can assume that k is not fixed by σ. If the support of the row i does
not contain neighbours of both k and σ(k) then the statement is clear. We can therefore
assume that there is at least one neighbour of each of them in the support of the i-th row
of D.

Let t1 and t2 be the two neighbours of k and σ(k) respectively lying on the shortest
path from k to σ(k). By the symmetry required for folding t2 = σ(t1). Moreover if a row
of D contains at least one neighbour of both k and σ(k) then it contains both t1 and t2.
We claim that, in this situation, ∑

t∈I

diσm(t)btk

is either 0 or has the same sign of bt1k. Indeed each row of D has at most 2 neighbours of
k in its support and the entries of B are either 0 or ±1.

We can therefore conclude our proof: since σ is a stable admissible automorphism of
B we have:

bt1k = bσ(t1)σ(k).

5.5 Proof of Theorem 1.1 for types Bn and Cn

To fix the notation observe that anyB-matrix of cluster typeBn or Cn uniquely determines
a σ-invariant matrix of cluster type respectively Dn+1 or A2n−1 of which it is the folding.
We will therefore denote by B a matrix of cluster type Bn or Cn and by B its unfolding.

Let π (V(B)) be the image of the set V(B) under the folding map

π : V(B) −→ ZI

(vi)i∈I 7−→
(∑

s∈ı vs
)
ı∈I

and recall the definition of the sets W(Bn) and W(Cn) from Section 3.

the electronic journal of combinatorics 21(1) (2014), #P1.3 37



Proposition 5.15. For any matrix B of cluster type Bn or Cn we have

V(B) = π (V(B)) .

Proof. The claim is clear once we observe that the diagrams in W(Bn) and W(Cn) are
obtained precisely by folding diagrams from W(Dn+1) and W(A2n−1) embedded in X(B).

We have now the tools we need to deduce Theorem 1.1 for types Bn and Cn from the
same result for types An and Dn.

Proposition 5.16. For any matrix B of cluster type Bn or Cn we have

C+(B) ⊂ V(B)

Proof. Combining Corollary 5.9, Proposition 4.10 and Proposition 5.15 we have

C+(B) ⊂ π (C+(B)) = π (V(B)) = V(B).

Proposition 5.17. For any matrix B of cluster type Bn or Cn we have

D(B) ⊂ V(B)

Proof. Combining Lemmata 5.13 and 5.14 with Proposition 4.13, Proposition 4.10 and
Proposition 5.15 we have

D(B) ⊂ π (D(B)) = π (V(B)) = V(B).

To conclude we need one last lemma.

Lemma 5.18. For any matrix B of cluster type Bn or Cn we have

Cb
+(B) = π

(
Cb
+(B)

)

and
Db(B) = π

(
Db(B)

)
.

Proof. The claim follows directly from the following observation: a matrix B is bipartite
if and only if its unfolding B is bipartite. We get equalities (as opposed to inclusions)
because any two bipartite matrices of cluster type Dn+1 or A2n−1 are connected by orbit
mutations.

Proposition 5.19. For any matrix B of cluster type Bn or Cn we have

V(B) ⊂ C+(B)

and
V(B) ⊂ D(B).
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Proof. We show only the second condition; the first one is obtained in the same way.
Using Proposition 5.15, Proposition 4.14, equation (4.3), and Lemma 5.18 we get

V(B) = π (V(B)) ⊂ π (D(B)) = π
(
Db(B)

)
= Db(B) ⊂ D(B).

For completeness we record also the following equalities (of which Theorem 1.4 is a
direct consequence).

Corollary 5.20. For any matrix B of cluster type Bn or Cn we have

Cb
+(B) = C+(B),

Db(B) = D(B),

Cb
+(B) = Db(B).

6 Proof of Theorem 1.3

Here we derive Theorem 1.3. The claim (4) is a direct consequence of our description of
c- and d-vectors in Theorem 1.1. For simply-laced types claims (1) and (3) follow from
Corollaries 2.8 and 2.11. However, for types An and Dn, we provide a direct proof using
Theorem 1.1 without referring to the representation-theoretic results of Section 2.

As we did before we deal with types An and Dn first; we will use again a folding
argument to deduce the results for types Bn and Cn.

6.1 Types An and Dn

Let B be any skew-symmetric integer matrix of cluster type either An or Dn. Having
built an explicit list of all the positive c-vectors and non-initial d-vectors for the cluster
algebra A•(B) with principal coefficients we can give a combinatorial proof of Theorem
1.3.

Proposition 6.1. All c-vectors and d-vectors of A•(B) are roots in the root system as-
sociated to the Cartan counterpart of B. Each of them is real if and only if its support in
X(B) is a tree.

Proof. It suffices to establish the claim for positive c-vectors. We are dealing with a local
property: since the support of any c-vector c of A•(B) is a connected sub-diagram of
X(B) it suffices to show that c is a root in the root system associated to its support.

The claim is clear for type An and for cases I, II and III of type Dn: they are all roots
in the corresponding finite type root system.

Applying in sequence the simple reflections corresponding to the outermost node with
multiplicity 2 we can reduce case VII to case VI. We can then “trim the branches”
reflecting each time with respect to a leaf of the diagram. After these reductions we are

the electronic journal of combinatorics 21(1) (2014), #P1.3 39



2 2

(b)

2 2

(c)

(d)

(a)

Figure 6.1: Reduced c-vectors.

left with the four cases in Figure 6.1. They all correspond to imaginary roots. Indeed let
c be any of these reduced c-vectors and let A be the generalized Cartan matrix associated
to its support, then all the components of the vector Ac are non-positive which is exactly
the condition of [34, Lemma 5.3].

Let 〈·, ·〉 be the Euler form of the quiver Q = Q(B) associated to B; it is defined on
roots as follows:

〈
∑

i∈I

ciαi,
∑

i∈I

diαi〉 :=
∑

i∈I

cidi −
∑

bij>0

bijcjdi.

To show that elements of C+(B) = D(B) are Schur roots we will use the following
result of A. Schofield ([48, Theorem 6.2]).

Theorem 6.2. Let α be a positive root that is not a Schur root then α satisfies one of
the following conditions:

1. 〈α, α〉 = 0 and there are a positive (imaginary) root β and a positive integer k such
that α = kβ.

2. α is the sum of two positive roots, one of them (call it β) is real and satisfies

〈α, β〉 > 0 and 〈β, α〉 > 0.

Let A = A(B) be the Cartan counterpart of B. As noted in [48], if α is an imaginary
root that is not Schur, there are few possibilities for the positive real root β satisfying
(2). Namely, if w is the element of the Weyl group such that all the components of the
vector Aw(α) are non positive then w(β) has to be a negative real root.

Proposition 6.3. All the vectors in C+(B) = D(B) are Schur roots of ∆(A(B)).

Proof. We are dealing still with a local property so we can assume that the c-vector we
consider has full support.

It is well known that if X(B) is a finite type Dynkin diagram then any root is a Schur
root (every indecomposable kQ(B)-module is rigid if Q(B) is an orientation of a Dynkin
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diagram); therefore we need only to concentrate on cases IV, V, VI, VII, and VIII of type
Dn. Let c be any of these c-vectors, they are all imaginary roots. None of them is an
integer multiple of a root so case (1) of Theorem 6.2 is excluded and we need to show
only that we are not in case (2).

As noted in Proposition 6.1 the elements w of the Weyl group we need to apply to c
are those “trimming the branches”; since the roots β we are looking for change sign when
acted on by w their support must be contained in only one of those appendices; we can
therefore assume that there is only one appendix in the weighted diagram of c. Label the
nodes on such an appendix with {1 . . . , n− 1} starting from the leaf; let n be the node
the appendix is connected to and let m be the innermost node with multiplicity 1 in the
appendix. It is clear that the element w we are looking for is then sn−1 . . . s1 in cases IV,
V, VI, and VIII and sn−1 . . . s1sn . . . sm+1 in case VII. The possible roots β are then

α1 + · · ·+ αk

for k ∈ {1, . . . , n− 1} in cases IV, V, VI, and VIII and

α1 + · · ·+ αk+1 m 6 k 6 n− 1

α1 + · · ·+ αk k < m

αm+1 + · · ·+ αk m+ 1 6 k 6 n

in case VII. By direct inspection we get that in all cases, regardless of the orientations,
one of the two integers 〈c, β〉 and 〈β, c〉 is non-positive.

Proposition 6.4. The cardinality |C+(B)| = |D(B)| depends only on the cluster type of
B; it is equal to n(n+ 1)/2 if B is of cluster type An and n(n− 1) if B is of cluster type
Dn.

Proof. Fix an element X(B) of X (B). We need to count in how many different ways any
diagrams from W(B) can be embedded in X(B).

This count, for type An, was done by Parson ([44, Lemma 5.8]) by noting that any
embedding of a string is determined by the positions of its endpoints.

Let us consider type Dn; there are four cases to be considered depending on which of
the four diagrams in Figure 3.6 describes X(B). We present case (d): it involves all the
techniques and it is the most complex one. The other cases can be dealt with in a similar
fashion.

The only weighted diagrams that can be embedded in a Dynkin diagram shaped as
(d) are I, VI, VII, and VIII from Figure 3.7. An embedding of any of those is uniquely
determined by a pair of vertices in X(B); for I (with at least two nodes), and VIII they
are the two leaves; for VII they are the only leaf and the leftmost node with weight 2.
For VI and strings of length 1 the two vertices of X(B) coincide.

We are going to reverse this observation to count embeddings. Suppose that the central
cycle contains k vertices.

To each pair of vertices i and j not in the central cycle we can associate precisely
two embeddings: if they belong to different components (say X ′ and X ′′) we have two
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strings passing on either side of the central cycle. If i and j belong to the same type-Am

component (say X ′) and are distinct then we have a string connecting i to j completely
contained in X ′ and a weighted diagram of type VII or VIII depending on the relative
position of i and j. Finally if i = j then we have a single point and a weighted diagram
of type VI. They sum up to (n− k)(n− k + 1) embeddings.

If one of the two vertices, say i, is in the central cycle and j is in the component X ′

then there are two possibilities: if i is one of the two vertices adjacent to X ′ then there is
only one embedding associated to the pair i and j: the shortest string connecting them.
Otherwise there are two strings that we can embed into X(B) depending on the side of
the central cycle we cross. Therefore there are 2(k − 2)(n − k) + 2(n − k) embeddings
with one vertex in a type-Am component and a vertex in the central cycle.

Finally if both i and j are in the central cycle we need to distinguish three cases: they
can coincide (yielding embedding of single nodes), they can be adjacent (and produce
embedding of strings of length 2). Otherwise they produce precisely two embedding of
strings. In total there are k2 − k embeddings induced by pair of vertices in the central
cycle.

Summing up all the contributions we get

(n− k)(n− k + 1) + 2(k − 2)(n− k) + 2(n− k) + k2 − k = n2 − n

as desired.

6.2 Types Bn and Cn

To extend the above results to types Bn and Cn we will use the following general fact on
the folding of root systems.

Proposition 6.5. Let B be a skew-symmetrizable integer matrix together with an admis-
sible automorphism σ and denote by A = A(B) its Cartan counterpart. Let B be the
image of B under the folding map π and A = A(B) the Cartan counterpart of B. Let
{αi}i∈I be the simple roots for ∆(A) and {αı}ı∈I/σ be the simple roots for ∆(A).

Define the linear map π from the root lattice of ∆(A) to the root lattice of ∆(A) by

π(αi) := αı.

Then for any α ∈ ∆(A) we have π(α) ∈ ∆(A).

Proof. This argument is a refinement of [52, Proposition A.7]; there the result is stated
only for finite type root systems.

Observe first that the map π commutes with “orbit reflections”

sσı :=
∏

t∈ı

st

that is for any root α
sı(π(α)) = π (sσı (α)) . (6.1)
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Orbit reflections are well defined because, by admissibility of σ, we have

ai1i2 = 0

for any pair i1 6= i2 in the same σ-orbit ı. It is sufficient to verify (6.1) on simple roots;
we have

sı (π(αj)) = sı (α) = ᾱ − aı̄̄αı̄ = π

(
αj −

∑

t∈ı̄

atjαt

)
= π (sσı (αj)) .

Back to our problem, without loss of generality we can assume α to be a positive root;
we will proceed by induction on

ht(α) = ht

(
∑

i∈I

ciαi

)
:=
∑

i∈I

ci

If ht(α) = 1 then α = αi for some i ∈ I; thus π(α) = αı̄. Suppose now that ht(α) > 1. If
all the components of the vector Aπ(α) are negative then π(α) is an imaginary root (see
[34, Lemma 5.3]). Otherwise let ı be such that

(
Aπ(α)

)
ı
> 0. (6.2)

Set α′ := sσı (α). Since ı is disconnected, in view of (6.2) α′ is a positive root and

ht (α′) < ht(α).

By induction hypothesis then π (α′) is a positive root in the root system of ∆(A) therefore
so is

π(α) = sı (sı(π(α))) = sı (π (sσı (α))) = sı (π(α
′)) .

Note that the folding of roots agrees with the folding of both c− and d−vectors.

Proposition 6.6. Let B be a skew-symmetrizable integer matrix of cluster type Bn or
Cn. All the c-vectors and d-vectors of A•(B) are roots in the root system ∆(A(B)).

Proof. It is enough to consider positive c-vectors. By Corollary 5.9 any element of C+(B)
is the image of some c-vector of a cluster algebra of type Dn+1 or A2n−1. By Proposition
6.1 the latter are roots in the root system associated to the unfolding of B. Our claim
follows then directly from Proposition 6.5.

Proposition 6.7. Any c-vector (d-vector) of A•(B) of type Bn or Cn is a real root if and
only if its support is a tree.

Proof. If the support of the vector we are considering is a tree there is nothing to show.
In all other cases we can “trim the branches” and check directly as we did in Proposition
6.1.

Proposition 6.8. For any B-matrix of cluster type either Bn or Cn the cardinality of
V(B) is equal to n2.

Proof. This claim does not follow directly from folding. Nevertheless it is straightforward
to apply the same argument of Proposition 6.4 to perform the counting.
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A Type Dn analysis

We provide here the detailed case analysis required to prove both Propositions 4.11 and
4.10 in type Dn at the same time.

As explained above, any multilamination corresponding to an initial triangulation
decomposes the surface S into pieces (see Figure 4.6 for an example). Any quadrilateral
can intersect positively at most laminations contained in three different pieces. We need
therefore to consider, for any quadrilateral in Figure 4.3, all the possible ways of inscribing
it in a surface with at most three pieces. These configurations are listed in the leftmost
column of the following tables.

For each of them we distinguish five sub-cases (the other five columns) depending on
how the multilamination looks around the puncture (cf. Figure 4.5).

For any given configuration and choice of lamination around the puncture we provide
a bipartite quadrilateral giving rise to the same c-vector as the original triangulation and
we record which template c-vector from Figure 3.7 we get.
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B The sets X (Z) and W(Z) for the exceptional types.

For exceptional types we obtain a description of X (Z) by direct inspection using [35, 38].
Similarly we obtain W(Z) and check Theorems 1.1, 1.3, and 1.4.

B.1 Type G2

Figure B.1: The only diagram in X (G2).

2 3 2 3

Figure B.2: The set W(G2).

B.2 Type F4

Figure B.3: Diagrams in X (F4).
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Figure B.4: The set W(F4) consists of the above weighed diagrams together with all the
elements of W(B3) and W(C3).
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B.3 Type E6

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15

Figure B.5: Diagrams in X (E6).
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Figure B.6: The set W(E6) consists of the above weighted diagrams together with all the
elements of W(A5) and W(D5).
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B.4 Type E7

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

Figure B.7: Diagrams in X (E7).
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67 68

Figure B.8: Diagrams in X (E7) (continued).
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Figure B.9: The set W(E7) consists of the above weighted diagrams and all the elements
of W(A6), W(D6), and W(E6).
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Figure B.10: The set W(E7) (continued).
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Figure B.11: The set W(E7) (continued).
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Figure B.12: The set W(E7) (continued).
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Figure B.13: The set W(E7) (continued).
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B.5 Type E8

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

Figure B.14: Diagrams in X (E8).
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67 68 69 70 71 72

73 74 75 76 77 78

79 80 81 82 83 84

85 86 87 88 89 90

91 92 93 94 95 96

97 98 99 100 101 102

103 104 105 106 107 108

Figure B.15: Diagrams in X (E8) (continued).
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115 116 117 118 119 120

121 122 123 124 125 126

127 128 129 130 131 132

133 134 135 136 137 138

139 140 141 142 143 144

145 146 147 148 149 150

151 152 153 154 155 156

157 158 159 160 161 162

Figure B.16: Diagrams in X (E8) (continued).
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163 164 165 166 167 168

169 170 171 172 173 174

175 176 177 178 179 180

181 182 183 184 185 186

187 188 189 190 191 192

193 194 195 196 197

Figure B.17: Diagrams in X (E8) (continued).
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Figure B.18: The set W(E8) consists of the above weighted diagrams and all the elements
of W(A7), W(D7), and W(E7).
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Figure B.19: The set W(E8) (continued).
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Figure B.20: The set W(E8) (continued).
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Figure B.21: The set W(E8) (continued).
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Figure B.22: The set W(E8) (continued).
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Figure B.23: The set W(E8) (continued).
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Figure B.24: The set W(E8) (continued).
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Figure B.28: The set W(E8) (continued).
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Figure B.29: The set W(E8) (continued).
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Figure B.30: The set W(E8) (continued).
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Figure B.31: The set W(E8) (continued).
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