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Abstract

We present a multiscale treatment of electron correlations based on hyperbolic wavelet expansions of
Jastrow-type correlation functions. Wavelets provide hierarchical basis sets that can be locally adapted
to the length- and energy-scales of physical phenomena. Combined with hyperbolic tensor products and
local adaptive refinement near the inter-electron cusp, these wavelet bases enable sparse representations
of Jastrow factors. The computational efficiency of wavelets in electronic structure calculations is
demonstrated within the coupled electron-pair approximation (local ansatz). Based on a diagrammatic
multiresolution analysis, we discuss various kinds of sparsity features for matrix elements required by
the local ansatz. Sparsity originates from the hierarchical structure and vanishing moments property
of wavelet bases. This led us to a recurrence scheme for the evaluation of matrix elements with almost
linear computational complexity with respect to the size of the underlying isotropic 3d-wavelet basis.
Numerical studies for selected diagrams are presented for a homogeneous electron gas.

1 Introduction

1.1 Wavelets in electronic structure calculations

The nonrelativistic Schrödinger equation within the Born-Oppenheimer approximation provides a firm
basis for electronic structure calculations in quantum chemistry and solid state physics. Antisymmetry
of fermionic wavefunctions introduces, via Pauli’s exclusion principle, a multiscale structure into many-
electron systems. This multiscale character expresses itself in the energy- and length-scales of electronic
properties, extending over several orders of magnitude. Synergetic effects, caused by couplings between
different scales, often prevent their separate treatment. In virtue of the multiscale character of many-
electron systems, it is tempting to study possible applications of some recent mathematical developments
in the field of multiscale analysis. Within the last two decades, tremendous progress has been made
in multiscale methods [1], which became a central topic of applied mathematics with close relations
to scientific computing. In particular wavelet based multiresolution analysis [2, 3, 4, 5] proved to be
a useful tool, both from the analytical and computational point of view [6, 7, 8]. Wavelets represent
stable multiscale basis sets that can be locally adapted according to the length- and energy-scales of
physical phenomena under consideration. Depending on the specific application, these wavelet bases
can be equiped with a variety of useful properties including compact support, (bi)orthogonality and
vanishing moments [2]. Because of their approximation properties and hierarchical structure, wavelets
provide efficient approximations for functions containing local singularities [5, 6]. Furthermore, sparse
representations for a large class of operators, differential as well as integral operators including the Coulomb
interaction, exist in wavelet bases [6, 9, 10, 11, 12, 13]. Not surprisingly, wavelets attracted considerable
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attention in electronic structure theory. Most of these applications, however, have been done so far in the
context of density functional theory (DFT) [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]. Within
the DFT approach all many-particle aspects of the system are represented by an approximate exchange-
correlation potential in the Kohn-Sham equation. Therefore, multiresolution analysis can just be applied to
multiscale aspects of single-particle systems. For such systems, the most important multiscale features are
variations of the electron density between atomic core and valence regions in molecules and solids. We have
pursued a different approach based on the multiscale treatment of electron correlations. In our previous
publications [29, 30] (hereafter called papers I and II, respectively), we have studied wavelet expansions
of correlated wavefunctions, with special emphasize on the behaviour of the wavefunction near the inter-
electron cusp. It turned out that wavelets provide sparse approximations of Jastrow-type correlation
functions. However, the computational complexity for the computation of matrix elements posed severe
limitations on the size of the systems. Within the present work we have studied the computational
complexity of a simplified version of our approach using a combination of diagrammatic techniques and
multiresolution analysis.

The paper is organized as follows: In Section 1.2 we give a brief overview of our approach to wavelet
expansions of correlated wavefunctions. Taking a simple model problem for extended systems, in Section
1.3 some arguments are given in favour of a nonlinear exponential ansatz for the wavelet expansion. This
lead us to an approximate treatment of electron correlations using the local ansatz briefly discussed in
Section 1.4. In Section 2 we present a diagrammatic technique for the evaluation of matrix elements
required by the local ansatz in a biorthogonal wavelet bases. The main part of our paper is devoted to
a thorough discussion of the computational complexity of these matrix elements. This is done in three
steps. In Section 2.1 we first estimate the cardinalities of various sets of diagrams, which appear within
the evaluation of matrix elements. The estimates are solely based on the hierarchical structure and local
character of wavelet bases. Following to these combinatorial arguments, in Section 2.2 we study the sparsity
of certain sets of diagrams due to the vanishing moment property of wavelets. Such kind of sparsity can
be extended to all sets of diagrams through a wavelet expansion of pointwise wavelet products, as it is
outlined in Section 2.3. All together, these considerations lead to a recurrence scheme for the evaluation
of matrix elements with almost linear complexity with respect to the size of the underlying 3d-wavelet
basis. We conclude our paper in Section 3 with some numerical studies for a homogeneous electron gas,
which demonstrate the feasibility of our approach in realistic applications.

1.2 Hyperbolic wavelet expansion of Jastrow factors

We are focusing on solutions of the stationary Schrödinger equation

⎡

⎣

N∑

i=1

(

−1

2
∆i + Vext(ri)

)

+
∑

i<j

1

|ri − rj |

⎤

⎦Ψ (r1, r2, . . . , rN ) = E Ψ (r1, r2, . . . , rN ) , (1)

where the Hamiltonian includes Coulomb interactions between the electrons and an external potential
due to the nuclei. Atomic units have been used throughout this paper. A natural framework for the
representation of many-electron wavefunctions Ψ is the product ansatz

Ψ (r1, r2, . . . , rN ) = F Φ (r1, r2, . . . , rN ) , (2)

where the correlation operator F acts on a mean-field solution Φ. In general, F has to be understood as a
linear operator, who’s specific properties must be derived from a many-body theory. Well known examples
are wave-operators in many-body perturbation theory or coupled-cluster operators. At the present state of
our project, we have adopted a simplified ansatz, where F (r1, r2, . . . , rN ) represents a symmetric function
of the electron coordinates, usually called Jastrow factor [31], which corrects for inadequacies of the mean-
field solution Φ. Within our approach, we perform a hyperbolic wavelet expansion of the Jastrow factor.
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This can be done using either a linear ansatz

F (r1, r2, . . . , rN ) =
∑

p

∑

J

′
∑

A

f
(p)
J,A F (p)

J,A (r1, r2, . . . , rN ) , (3)

or an exponential ansatz

F (r1, r2, . . . , rN ) = exp

[
∑

p

∑

J

′
∑

A

f
(p)
J,A F (p)

J,A (r1, r2, . . . , rN )

]

, (4)

where symmetrized wavelet tensor products (F (0) := 1)

F (1)
j,a (r1, r2, . . . , rN ) = γ

(s)
j,a(r1) + γ

(s)
j,a(r2) + · · · + γ

(s)
j,a(rN ),

F (2)
J,A (r1, r2, . . . , rN ) = γ

(s1)
j1,a1

(r1) γ
(s2)
j2,a2

(r2) + · · · + γ
(s1)
j1,a1

(rN−1) γ
(s2)
j2,a2

(rN ), (5)

...

are formed from isotropic 3d-wavelets γ
(s)
j,a(r). Concerning the construction of these wavelets from univari-

ate wavelets and scaling functions, and for further details of our notation we refer to Appendix A. In those
cases where details concerning type, level and location of wavelets are not relevant, we use single Greek
wavelet indeces (γα) to simplify our notation. Capital Latin and Greek multi-indices are used to denote
arrays of indices of the same kind like in the case of the tensor products (5). A prime on the sum with
respect to the multilevel-index J in the expansions (3) and (4) indicates that only those tensor products
are taken into account, which either satisfy the sparse grid condition for hyperbolic wavelets [32] or belong
to the diagonal refinement along the electron-electron cusp, cf. papers I, II for details. The sparse grid
condition for the multilevel-index J can be expressed as a constraint on the shifted sum of wavelet levels

|J| :=

p
∑

i=1

(ji − l0 + 1) ≤ Q̃, (6)

where p is the number of 3d-wavelets in the tensor products (5) and ji are their corresponding levels.
According to relation (6), the sparse grid threshold parameter Q̃ determines the possible combinations
of 3d-wavelet levels that are taken into account in the tensor product expansions (3) and (4), starting
at the coarsest level l0 which appears in the isotropic 3d-wavelet basis. Optionally on the coarsest level,
3d-scaling functions βl0,a can be added to the wavelet basis. These functions represent contributions from
wavelet levels j < l0. Therefore, in relation (6) we have to assign to them a formal level ji = l0 − 1. As a
consequence of the sparse grid condition, the number of tensor products in the p-electron correlation part
of the expansions (3) and (4) is of O(M log(M)p−1) with respect to the cardinality M of the underlying
3d-wavelet basis. For small p, the growth is almost linear in M , however, it still increases exponentially
with respect to p. As a consequence we can achieve only modest values of p in the expansions (3) and (4).

1.3 Size-consistency error for the linear ansatz

The linear hyperbolic wavelet expansion of the Jastrow factor (3) enables a strictly variational treatment
of Schrödinger’s equation. Applying Rayleigh-Ritz’s variational principle yields a generalized eigenvalue
problem

∑

q

∑

Λ

〈F (p)
Ω H F (q)

Λ 〉 f
(q)
Λ = E

∑

q

∑

Λ

〈F (p)
Ω F (q)

Λ 〉 f
(q)
Λ , (7)

with respect to the variational parameters f
(p)
Λ . To simplify our notation we have introduced a short-

hand notation 〈· · ·〉 := 〈ΦHF| · · · |ΦHF〉 for expectation values with respect to the Hartree-Fock (HF)
wavefunction. The linear ansatz avoids any uncontrolled approximations and is appropriate for benchmark
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calculations on small systems. For typical applications to extended systems, however, a constant relative
accuracy is required, independently of the size of the system. Within the linear ansatz, size-consistency
1 is hard to achieve and becomes a major issue for such kind of approach [33]. Not only an inflationary
number of variational parameters, but even more severe, an increasing complexity of the matrix elements
makes the linear hyperbolic wavelet expansion to a challenging problem for large systems. It has been
already demonstrated by one of us [34], that in order to keep the computational complexity under control
an additional constraint has to be imposed. Besides the sparse grid condition, we have to truncate the
first sum in the expansion (3) at p ≤ pmax ≪ N , where pmax may slightly vary with the size of the
system. This resembles to truncation schemes for the configuration interaction (CI) method in quantum
chemistry, where typically only single and double excitations (SDCI) are taken into account.

In order to illustrate this problem, we have studied the size-consistency error of hyperbolic wavelet
expansions for a standard benchmark problem in quantum chemistry, namely systems of N noninteracting
helium atoms. Such kind of model recovers essential physical aspects of the problem [35]. Due to Pauli’s
principle, molecules can roughly be described by interacting electron pairs. The dominant intra-pair
interactions are taken into account by this model, whereas inter-pair correlation effects are excluded. The
latter are more subtle and not easily accessible to analysis. For the sake of computational simplicity, we
consider a standard wavelet tensor product expansion for a single helium atom

ΨHe (r1, r2) =

⎡

⎣

2∑

p=0

∑

J

∑

A

f
(p)
J,A F (p)

J,A (r1, r2)

⎤

⎦φ(r1)φ(r2), (8)

where we refer to paper I for further details. The corresponding wavefunction for a cluster of N nonin-
teracting helium atoms is given by the product

ΨHeN
(r1 . . . r2N ) =

N∏

i=1

ΨHe (r2i−1, r2i) , (9)

where we can neglect antisymmetry due to the absence of interactions between the atoms. Obviously, the
total energy scales linear with the number of helium atoms EHeN

= NEHe. After some reordering of the
product wavefunction (9), the wavelet tensor products for the cluster can be arranged like in the linear
ansatz (3)

F (p)
J,A (r1 . . . r2N ) =

N∏

i=1

F (pi)
Ji,Ai

(r2i−1, r2i) , with p =
∑

i

pi, (10)

except that permutational symmetry with respect to an interchange of variables among two different helium
atoms is not required. Applying the hyperbolic wavelet approximation to the reordered wavefunction

ΨHeN
(r1 . . . r2N ) ≈

⎡

⎣
∑

p

∑

|J|≤Q̃

∑

A

f
(p)
J,A F (p)

J,A (r1 . . . r2N )

⎤

⎦

N∏

i=1

φ(r2i−1)φ(r2i), (11)

only those tensor products F (p)
J,A are taken into account for which the sparse grid condition (6) is satisfied.

On each level of truncation Q̃, the coefficients f
(p)
J,A have to be reoptimized with respect to the energy. In

order to limit the computational effort, we have contracted the atomic wavelet coefficients on each of the
tensor product levels J. This did not introduce any noticeable error into our calculations. In Fig. 1 we
have shown the size consistency error per atom ∆E = EHeN

/N − EHe in the case of a two-scale wavelet
expansion on a single helium atom. We refer to paper I for further details concerning this wavefunction.
For both thresholds Q̃ = 4, 6, a single helium atom can afford all tensor products in the wavefunction (8),
however, for clusters of several helium atoms, restrictions with respect to the full product wavefunction (9)

1In the terminology of quantum chemistry this property is often called size-extensivity.
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Figure 1: Size consistency error per atom ∆E = EHeN
/N−EHe (mhartree) of hyperbolic wavelet and SDCI

approximations for systems of noninteracting helium atoms. The wavelet expansion for the Jastrow factor
of a single helium atom has been taken from paper I (EHe = -2.89904 hartree, two levels l0 = −2, l1 = −1).
Two different sparse grid constraints Q̃ = 4 (◦) and Q̃ = 6 (∗) have been imposed to the product
wavefunction of the helium clusters. For comparison SDCI calculations (⋄) have been performed with a
s, p VQZ basis set (EHe = -2.90015 hartree).

are imposed. The hyperbolic wavelet approximation is less stringent than SDCI, in a sense that certain
multicenter tensor products are still possible. For illustration we compare in Fig. 1 with SDCI calculations
in a s, p valence quadruple zeta (VQZ) basis set [36]. It can be seen that the size consistency error is much
smaller already for Q̃ = 4 compared to the SDCI method. Increasing the sparse grid parameter to Q̃ = 6
results in a very small size consistency error, which seems to be acceptable for systems with up to twenty
electrons. In principle it appears to be possible, to adjust the parameter Q̃ to the system size in order to
achieve a given accuracy. However in view of the difficulties concerning the evaluation of matrix elements,
this becomes impracticable beyond a certain size of the system. For the sake of computational simplicity,
we therefore have to abandon a rigorous treatment of the variational principle.

1.4 Local ansatz for electron correlations

In contrast to the linear ansatz (3), it is always possible to truncate the wavelet tensor product expansion
in the exponential ansatz (4) at any value 2 ≤ pmax ≤ N , without violating size consistency for a system
of noninteracting helium atoms. The essential drawback of the exponential ansatz (4) is, however, that
a rigorous variational treatment is almost unfeasible due to its highly nonlinear character. Instead it is
possible, to derive approximation schemes, where noninteracting electron-pairs are properly taken into
account. Most prominent examples in quantum chemistry are the coupled electron-pair approximation

(CEPA) [37] and coupled cluster (CC) theory [35]. A common feature of these methods is the decompo-
sition of a one-particle Hilbert space into a subspace spaned by the occupied orbitals of the HF reference
wavefunction and an orthogonal subspace spaned by virtual orbitals, which provide a basis for the treat-
ment of electron correlations. Such kind of decomposition is not compatible with a hierarchical wavelet
basis. A possible resolution to this problem, commonly employed in local correlation methods [38, 39, 40],
is to orthogonalize all basis functions with respect to the occupied orbitals. However such kind of pro-
cedure destroys the multiscale relations underlying the fast wavelet transform and other wavelet specific
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properties like vanishing moments.
As a consequence, we have to deviate from the standard many-particle treatment and use methods

instead, which do not rely on any orthogonalization requirement. Such kind of methods are for example
Krotscheck’s Fermi hypernetted chain (FHNC) method [41, 42] and the local ansatz of Stollhoff and Fulde
[43, 44]. The FHNC theory provides a hierarchical system of equations for an approximate treatment of
the nonlinear variational problem, which is closely related to CC theory [45]. Originally developed for
homogeneous systems in nuclear and condensed matter physics [31], the method has been generalized by
Krotscheck to inhomogeneous systems [42, 46]. Applications in electronic structure theory range from the
homogeneous electron gas [41] to metallic surfaces [46] and atoms [47, 48]. The FHNC method relies on
diagrammatic techniques, which we have adopted with slight modifications for our purposes. Instead of
classifying diagrams solely according to topological and structural criteria, we have introduced additional
elements from multiresolution analysis. Standard diagrams comprise different types of correlations where
the corresponding length- and energy-scales can vary over several orders of magnitude. Therefore it is
often difficult to judge the significance of a specific diagram for a certain type of correlation. Within
our approach, we further split these diagrams, via wavelet decompositions, into the various length- and
energy-scales involved.

Without additional symmetries, the nonlinear system of FHNC equations is still very challenging from
a computational point of view and we refrain from a numerical treatment within multiresolution analysis.
Instead, we take a simplified many-particle method, the local ansatz, which is essentially equivalent to a
specific version of the coupled electron pair approximation (CEPA0). Furthermore, the local ansatz can be
considered as a certain type of approximation within the projection method of Becker and Fulde [49, 50],
which comprises an essentially exact many-particle scheme based on operator expansions in Liouville space.
Together with the diagrammatic framework developed within the FHNC method, the local ansatz seems
to provide a natural starting point for the envisaged multiresolution diagrammatic analysis of electron
correlations in extended systems.

Within the simplest version of the local ansatz only two-particle correlation operators F (2)
Λ are taken

into account, which have to satisfy the admissibility conditions

〈F (2)
Λ 〉 = 0, 〈H1F (2)

Λ 〉 	= 0, (12)

where the residual interaction H1 := H − HSCF is defined as the difference between the exact and HF
Hamiltonian. The local ansatz corresponds to a linear system of equations [50]

〈F (2)†
Ω H1〉 +

∑

Λ

(

〈F (2)†
Ω H F (2)

Λ 〉 − 〈F (2)†
Ω F (2)

Λ 〉〈H〉
)

fΛ = 0, (13)

where the correlation energy is given by the expression

Ecorr =
∑

Λ

〈H1 F (2)
Λ 〉 fΛ. (14)

A comparison of Eq. (13) with the generalized eigenvalue equation (7), shows that the local ansatz requires
the same type of matrix elements as a variational treatment of the linear expansion (3) restricted to two-
particle terms. The essential difference between both methods, however, is that the matrix elements in
Eq. (13) appear in form of cumulants, cf. the first admissibility condition (12). This property is sufficient
to guarantee size-consistency for the local ansatz [49].

2 Diagrammatic evaluation of matrix elements

A significant advantage of the local ansatz is its great flexibility concerning the specific choice of the corre-
lation operators. Whereas the FHNC method is essentially limited to Jastrow-type correlation functions,
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no such restriction exists for the local ansatz. Various types of correlation operators have been discussed
in the literature [44, 49]. Conveniently expressed in terms of second quantization, these operators com-
prise inter-electronic spin couplings and on-site interactions similar to the Gutzwiller wavefunction. It is
tempting to integrate such kind of operators in the framework of multiresolution analysis. Therefore, we
first discuss the general case of an arbitrary two-particle correlation operator F̂ (2) in second quantization,
which is indicated by a hat on top of the operator. This requires only a slight modification of our notation

to the effect that we have to add a spin degree of freedom to the wavelets γ
(s)
j,a↑(r, σ), γ

(s)
j,a↓(r, σ) and Greek

indices now also imply the spin ↑↓ assigned to a wavelet. Defining creation and annihilation operators
γ̂†

α, γ̂µ with respect to a biorthogonal wavelet basis, we can express any two-particle correlation operator
in the form

F̂ (2) =
1

2

∑

α,β,ν,µ

〈γ̃α γ̃β|F (2)|γ̃ν γ̃µ〉 γ̂†
α γ̂†

β γ̂µ γ̂ν , (15)

where the dual basis γ̃α (〈γα|γ̃β〉 = δα,β) only enters into the operator amplitudes. For a Jastrow-type
correlation function these amplitudes are given by

〈γ̃α γ̃β|F (2)|γ̃ν γ̃µ〉 =
∑

σ1,σ2

∫

dr3
1

∫

dr3
2 γ̃α(r1, σ1) γ̃β(r2, σ2)F (2) (r1, r2) γ̃ν(r1, σ1) γ̃µ(r2, σ2) (16)

Applying Wick’s theorem, the operator (15) splits into two parts

F̂ (2) =
{

F̂ (2)
}

+
{

F̂ (2)
}

, (17)

where curly brackets indicate normal ordering with respect to the HF reference wavefunction (see Ap-
pendix B for details). The first term on the right hand side contains all possible single and double internal
contractions of the operator. Following Becker and Fulde [50], we restrict our two-particle correlation oper-
ators to the normal ordered part of Eq. (17), in order to get rid of a constant term and possibly redundant
one-particle contributions. By this construction, the first admissibility condition (12) is automatically
satisfied. According to its definition, the residual interaction

Ĥ1 := Ĥ − ĤSCF = 〈Ĥ1〉 +
1

2

∑

κ,λ,ν,µ

〈γ̃κ γ̃λ|r−1
12 |γ̃ν γ̃µ〉

{

γ̂†
κ γ̂†

λ γ̂µ γ̂ν

}

, (18)

essentially corresponds to the normal ordered product of the two-electron Coulomb interaction. Therefore,
the second constraint (12) is generically satisfied.

Concerning the computational complexity of matrix elements, we focus on cumulants of the residual
interaction (18). The cumulants

〈F̂ (2)†
Ω Ĥ1 F̂ (2)

Λ 〉 − 〈F̂ (2)†
Ω F̂ (2)

Λ 〉〈Ĥ1〉 = (19)

1

2

∑

α,β,ζ,η

〈γ̃α γ̃β|F (2)
Ω |γ̃ζ γ̃η〉∗

1

2

∑

κ,λ,ν,µ

〈γ̃κ γ̃λ|r−1
12 |γ̃ν γ̃µ〉

1

2

∑

ξ,ρ,σ,τ

〈γ̃ξ γ̃ρ|F (2)
Λ |γ̃σ γ̃τ 〉

×
〈{

γ̂†
ζ γ̂†

η γ̂β γ̂α

}{

γ̂†
κ γ̂†

λ γ̂µ γ̂ν

}{

γ̂†
ξ γ̂†

ρ γ̂τ γ̂σ

}〉

can be evaluated using Wick’s theorem and the contraction rules derived in Appendix B. Using the
diagrammatic techniques discussed in Refs. [49, 51, 52], these matrix elements are represented by the
Goldstone diagrams shown in Fig. 2, where we have used the diagrammatic elements depicted in Fig. 3.
These elements encompass two types of contractions (D1, D2) as well as Coulomb interactions (D3) and
operator amplitudes (D4). For each Goldstone diagram in Fig. 2, a prefactor has been given consisting of
a phase and symmetry factor according to the standard rules for Goldstone diagrams [52].

So far, we did not impose any restrictions on the specific form of the two-electron correlation operators
(15). In the following, we restrict ourselves to Jastrow factors which are symmetric functions of the spatial
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Figure 2: Goldstone diagrams for the cumulants of the two-body Coulomb interaction. The sum of
diagrams G-1 to G-12 correspond to the cumulants of the residual interaction (19), whereas the remaining
diagrams G-13 to G-16 emerge from the exchange part of HSCF.
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κ

µ
λ h��� ���jr

��
�� j��� ���i

D�
Ω

ν
κ

µ
λ h��� ���jF

���
� j��� ���i

Figure 3: Diagrammatic elements for Goldstone diagrams in a biorthogonal wavelet basis.

electron coordinates. Since all ingredients of the local ansatz can be expressed as simple functions of the
electron coordinates, we can use the resolution of the identity I =

∑

α |γ̃α〉〈γα|, in order to express our
diagrammatic elements in terms of simple functions only. According to the modified setting, diagrams are
expressed in position space using the diagrammatic elements E1 to E4, which are shown in Fig. 4. By a
slight abuse of our notation (5), we have introduced the pair-correlation functions (E4)

F (2)
αβ (r1, r2) = γα(r1) γβ(r2) + γα(r2) γβ(r1) (20)

into our scheme. Spinless HF density matrices

ρ(r1, r2) =
∑

i

ni φi(r1)φi(r2)
∗, (21)

are represented in terms of spatial orbitals, where ni is the occupation number of the i’th orbital. Each
vertex in the diagrams corresponds to an integral

∫
d3r. Due to the remaining spin degree of freedom, we

have to assign an additional weight factor of 2L, where L corresponds to the number of closed loops in a
diagram. For our numerical analysis of the diagrams it is convenient to further evaluate all the lines with
a double arrow. The resulting diagrams are closely related to Krotscheck’s FHNC diagrams. Furthermore,
we introduce symbols for single wavelets (E5) and pointwise wavelet products (E6) into our diagrammatic
scheme.
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Figure 4: Diagrammatic elements for FHNC-like diagrams in position space.

2.1 Recurrence scheme for the evaluation of diagrams

It is common practice in solid state physics [53] and quantum chemistry [39, 40] to discuss the computa-
tional complexity of a method versus the size of the system. For this a constant relative accuracy of the
method, with respect to the size of the system, has been assumed. Contrary to these considerations, we
want to discuss computational complexity versus numerical accuracy for a fixed system size. Neglecting
systematic errors inherent to almost all many-particle methods, we want to study interrelations between
discretization errors and computational complexity for a given method. Furthermore, we focus exclusively
on electron correlations and do not impose any localization requirements on the one-particle density ma-
trix. This includes the case of very accurate calculations for small systems, as well as systems where the
one-particle density matrix is only slowly decaying like in metals. For our present purpose it is therefore
convenient to use the orbital representation of the one-particle density matrix (21). Provided that the
density matrix of a system decays exponentially [53], it is possible to exploit this property within our
method in a straightforward manner.

The hierarchical structure and vanishing moments property of wavelet bases offer the possibility of
sparse multiscale representations for Jastrow factors and the Coulomb interaction. Within this section, we
want to discuss how to take advantage of multiscale representations with respect to the evaluation of matrix
elements shown in Fig. 2 in terms of Goldstone diagrams. According to our discussion in papers I and II, we
approximate the Jastrow factor by a linear combination of symmetrized tensor products in a hierarchical

wavelet basis. Within the local ansatz, we restrict ourselves to two-electron correlation functions F (2)
αβ ,

which correspond to symmetrized tensor products of isotropic 3d-wavelets. For our subsequent analysis
of the diagrams it is convenient to further decompose the tensor products (20) into monomials

F ′
αβ (r1, r2) = γα(r1) γβ(r2). (22)

Concerning the physical interpretation and adaptivity of wavelet expansions, the tensor products (20)
seem to be an appropriate choice. It has been argued in papers I and II that adaptive wavelet expansions
exhibit a pronounced transition between long- and short-range correlations. The first type of correlations
is well described by hyperbolic 3d-wavelet tensor products, whereas for the second type of correlations,
tensor products concentrate almost exclusively along the diagonal. However, there exists an interesting
alternative approach based on fully anisotropic hyperbolic wavelets (see Appendix A for details). Despite
some conceptual difficulties for adaptive wavelet expansions, fully anisotropic hyperbolic wavelets possibly
allow for a considerably smaller number of basis functions, at least for the description of long-range
correlations. For the sake of simplicity, we restrict our formal analysis of the computational complexity
to isotropic 3d-wavelet tensor products (20). Nevertheless, we have also studied fully anisotropic wavelets
in our numerical experiments.

As a starting point for our analysis, we take a cube which either contains the system as a whole
like in the case of a molecule or corresponds to a supercell, with periodic boundary conditions imposed,
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Table 1: Cardinalities of certain sets of pointwise and tensor products for isotropic 3d-wavelets.

Wavelet (tensor) product Diagrammatic element Cardinality

γα(r) ♦ M

γα(r) γβ(r) ♦♦ O(M log(M))

F ′
αβ (r1, r2) O(M log(M))

γα(r1)F ′
νµ (r1, r2) ♦ O(M2)

F ′
αβ (r1, r2) F ′

νµ (r2, r3) ∨ O(M2 log(M))

F ′
αβ (r1, r2) F ′

νµ (r1, r2) O(M2)

for a solid. Within this cube we choose an isotropic 3d-wavelet basis {γα}. Starting at a coarsest level
l0, the cardinality of the wavelet basis M = card{γα} grows exponentially M = O(23l) with the finest
level l in the basis. To simplify our arguments, we do not consider any kind of adaptivity for this
wavelet basis. In our recurrence scheme various types of wavelet products can occur. It is essential
for our discussion of the computational complexity to study the cardinality of the corresponding sets
of wavelet products. In the following, we just state the results and refer to Appendix C for further
details. The set of pointwise wavelet products with overlapping supports has card{γα(r1) γβ(r2)} =
O(M log(M)). Following our line of arguments, we can approximate the two-particle Jastrow factor
using hyperbolic 3d-wavelet tensor products with card{F ′

αβ (r1, r2)} = O(M log(M)). At intermediate
steps of the recurrence scheme, we have to consider the set of products between wavelets and hyperbolic
tensor products, which has card{γα(r1)F ′

νµ (r1, r2)} = O(M2). The final diagrams contain products be-
tween hyperbolic tensor products, where we have to distinguish between one- and two-sided overlaps.
In the first case we have card{F ′

αβ (r1, r2) F ′
νµ (r2, r3)} = O(M2 log(M)), which is slightly reduced to

card{F ′
αβ (r1, r2) F ′

νµ (r1, r2)} = O(M2) in the second case. For later reference, we have summarized
these cardinalities in Table 1. It has been already mentioned that on fine levels, hyperbolic wavelet tensor
products become less important and diagonal tensor products are getting dominant. Concerning the com-
putational complexity, diagonal tensor products on fine levels require only minor additional computational
effort. Further simplifications can be achieved through contraction schemes, which have been discussed in
paper I and II. Therefore, we neglect the effect of diagonal refinement in our discussion of the recurrence
scheme.

After these preparatory remarks, we start with developing a recurrence scheme, which finally leads
to the matrix elements (19). Except the Coulomb interaction, all ingredients to build up diagrams are
already represented by tensor product expansions. The Goldstone diagrams decompose into one- and
two-electron integrals

∫

d3r φi(r)

[
1

γα(r)

] [
1

γβ(r)

]

φj(r), (23)
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∫

d3r1

∫

d3r2 φi(r1)φj(r1)

⎡

⎣

1
γα(r1)

γα(r1) γβ(r1)

⎤

⎦
1

| r1 − r2 |

⎡

⎣

1
γµ(r2)

γµ(r2) γν(r2)

⎤

⎦ φk(r2)φl(r2), (24)

where square brackets indicate various possible combinations of wavelets in the integrals. According to
our previous discussion, only certain combinations of the wavelets within square brackets have to be taken
into account. Further simplifications due to contractions of orbital indices appear. We start with eight
basic sets of diagrams involving the Coulomb interaction, which are shown in Fig. 5. In these diagrams,
wavelet indices and orbital indices assigned to external lines have been suppressed. The sets of diagrams
1 to 4 have four external lines with at most two wavelets on the vertices. Their overall cardinalities are
O(N4), O(N4M), O(N4M2) and O(N4M log(M)), respectively. Diagrams of type 5 and 6 have only two
external lines and three wavelets on the vertices, where two of them belong to a common hyperbolic tensor
product F ′

αβ. Therefore, we obtain an overall O(N2M2) cardinality for these sets. The remaining sets
of diagrams 7 and 8 have no external lines and two wavelets on each of the vertices, originating from a
pair of hyperbolic tensor products F ′

αβ F ′
νµ. According to Table 1, these sets have O(M2) cardinality.

Concerning the sets of type 3,5,6,7, and 8 diagrams with wavelets or wavelet products on both vertices,
we can distinguish two cases. In the first case, the supports of the wavelets or wavelet products on the two
vertices overlap. The corresponding subsets have O(N4M log(M)), O(N2M log(M)2) and O(M log(M)3)
cardinalities, respectively. Further separation of the Coulomb interaction is not possible in this case.
However in the second case, where the supports do not overlap, there is some chance for a further reduction
of the computational complexity. In Section 2.2, we discuss some additional sparsity of the set of type 3
diagrams, that result from the vanishing moment property of wavelets (see Appendix A for an elementary
discussion of this property). To a smaller extent such kind of sparsity can be also observed for the sets
of type 5 and 6 diagrams. For the sets of type 7 and 8 diagrams with wavelet products on both vertices,
the vanishing moment property does not work at all. Nevertheless it is possible to benefit in these cases
from the vanishing moment property by performing a wavelet expansion of the wavelet products on the
vertices. This topic is further discussed in Section 2.3, where we outline the necessary modifications of
the recurrence scheme.

Summing up, we may say that the computational complexity of the basic diagrams involving Coulomb
interactions increases at most quadratically with the number of wavelets. This assertion is based on
combinatorial arguments taking into account a hyperbolic structure of the tensor products and the hierar-
chical character of wavelet bases. Beyond that our analysis shows that those diagrams where the Coulomb
interaction cannot be further separated have almost linear complexity. Therefore it seems to be promising
to further exploit the vanishing moments property in order to reduce the almost quadratic complexity for
the treatment of electron correlations to linear complexity up to logarithmic factors.

In order to obtain the entire set of diagrams from the basic Coulomb diagrams, we first have to
construct a recurrence scheme for some basic chain diagrams. These diagrams consist of chains of density
matrices with wavelets or wavelet products on their vertices, that do not join the Coulomb interaction.
The scheme outlined in Fig. 6 involves concatenations of chain diagrams with two external lines, which
requires an O(N) computational effort for each individual diagram. The cardinalities of sets of chain

5

1

6

2

7

3

8

4

Figure 5: Basic sets of diagrams involving the Coulomb interaction.
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L−2−2−1L−1−2−1

L−1 L−2

L−1−1 L−1−2 L−1−3 L−2−2L−2−1 L−2−3

L−1−2−2 L−2−2−2

Figure 6: Basic sets of chain diagrams involving chains of density matrices with wavelets or wavelet
products on the vertices.

diagrams ranges from O(N2M) to O(N2M2 log(M)2), as can be seen from Fig. 6. In order to simplify
bookkeeping, our labeling of diagrams incorporates the tree-like structure of the recurrence scheme. Due
to the smoothness of the density matrix, the vanishing moment property provides additional sparsity
except for the sets of diagrams L-2, L-2-1 and L-2-3, where only wavelet products appear on the vertices.
The first two sets of diagrams already have almost linear cardinalities with respect to the wavelet basis.
For the set of diagrams L-2-3, however, it becomes necessary to perform a wavelet expansion of the wavelet
products in order to benefit from the vanishing moment property. The product expansion can be also
applied to the set of diagrams L-2-2-1 and L-2-2-2 with one wavelet product on the vertices.

Starting from the basic Coulomb diagrams, the entire recurrence scheme can be set up by successive
concatenations with chain diagrams. To illustrate this scheme, Figs. 7 a, 8 show the descendants of the
sets of basic type 1 to 6 diagrams. The final sets of diagrams (shown in Fig. 7 b) emerging from the set
of type 1-1 diagrams represent contributions from the exchange part of HSCF. A complete exposition of
the remaining parts of the recurrence scheme is given in Appendix D. For sets of intermediate diagrams
with two external lines, the cardinalities are at most O(N2M2 log(M)). At each individual step, where
a set of open chain diagrams is concatenated with a set of diagrams involving four external lines, at
most O(N4M2 log(M)) operations have to be performed. For a set of diagrams with two external lines
this reduces to at most O(N2M2 log(M)2) operations. According to our previous discussion, all sets of
diagrams for which the cardinality increases quadratically with the size of the wavelet basis, can benefit
from further sparsity effects due to the vanishing moment property.

2.2 Sparse wavelet representation for certain classes of diagrams

The purpose of this section is to study the effect of vanishing moments (cf. Appendix A) on the sets of
basic type 3, 5, and 6 diagrams and their descendants. So far we have tried to avoid in our presentation any
reference to specific applications. Just a few general properties inherent to hierarchical wavelet bases have
been employed. This was possible due to some universal features of Jastrow factors, which enable a sparse
approximation in terms of hyperbolic wavelet tensor products with local refinement in the region of the
inter-electron cusp. Expressed in the more general framework of multiresolution analysis [9, 10, 11, 12], we
have used the asymptotic smoothness property of Jastrow factors, which means that an arbitrary function
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1−6

a)

1

1−1

1−71−3

1−2

1−5

1−4

1−1−1−2 1−1−2−11−1−1−1

1−1−1

1−1

b)

1−1−2−2

1−1−31−1−2 1−1−5 1−1−61−1−4

Figure 7: First step of the recurrence scheme for diagrams emerging from the set of basic type 1 diagrams
(a) and all steps following the intermediate set of type 1-1 diagrams (b).

A(r1, r2) has a sparse wavelet representation if its partial derivatives satisfy the inequalities

|∂α
r1

∂β
r2

A(r1, r2)| ≤ Cα,β|r1 − r2|−(n+|α|+|β|), for r1 	= r2, (25)

where the indices α, β correspond to any mixed partial derivatives of order |α| and |β|, respectively. Within
the context of more complex diagrams, however, application of the vanishing moment property requires
further considerations concerning the behaviour of the density matrix. Obviously, nuclear cusps or a highly
oscillating behaviour of the density matrix within the support of a wavelet spoils this useful property. If
such kind of behaviour is restricted to atomic core regions, which correspond to a comparatively small
portion of the total volume, it can be handled by adaptive local refinements of the 3d-wavelet basis.
Therefore, we neglect such kind of complications and essentially consider only valence electron systems,
where core electrons have been replaced by pseudopotentials. A classical model for these systems is the
homogeneous electron gas, where oscillations are bounded by the Fermi momentum kF . This led us to a
simplified model for basic type 3 diagrams

I
(s,t)
j,l (a,κ,κ′) =

∫

d3r1

∫

d3r2 e−iκr1 γ
(s)
j,a(r1)

1

| r1 − r2 | eiκ′r2 γ
(t)
l,0(r2), (26)

where only wavelets and the Coulomb interaction are left. All effects of the remainder of a diagram on
the vertices are represented by plane waves, through which we can modulate the oscillations by varying
the parameters κ,κ′. The presence of plane waves in the integrand has important consequences for
the wavelet representation. Whereas the bare Coulomb interaction satisfies the asymptotic smoothness
condition (25), this does not hold for its product with plane waves that appears in the integrals (26).
The situation resembles to the kernel function of the Helmholtz equation, which is a well known problem
in numerical analysis. In the following, we want to analyze the interplay of vanishing moments and
oscillations for the integrals (26), which provide a fairly realistic model not only for basic type 3 diagrams

but also for the basic type 5 and 6 diagrams. For the latter, we have to consider the mixed case of I
(s,0)
j,l

integrals, where a scaling function appears on one of the vertices.
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Figure 8: First step of the recurrence scheme for diagrams emerging from the sets of basic type 2 to 6
diagrams.

Calculation of the integrals (26) requires only minor modifications of the Gaussian transform method
outlined in paper I. The integrals (26) can be expressed via the Gaussian transform method

I
(s,t)
j,l (a,κ,κ′) =

2√
π

∫ ∞

0
dt

3∏

i=1

G
(si,ti)
j,l (κi, κ

′
i, ai, t), (27)

in terms of the Fourier transform of the mother wavelet (scaling function) ψ̂(s)(ω) :=
∫

dx e−iωxψ(s)(x)

G
(si,ti)
j,l (κi, κ

′
i, ai, t) =

∫

dx1dx2 e−iκix1 ψ
(si)
j,ai

(x1) e−(x1−x2)2t2 eiκ′
ix2 ψ

(ti)
l,0 (x2) (28)

=
2(j−l)/2

2
√

πt
e−i2−jκia

∫

dω eiωai ψ̂(si)(ω − 2−jκi)
∗ e−22jω2/(4t2) ψ̂(ti)(2(j−l)ω − 2−lκ′

i),

where the functions (28) have been calculated following the procedure described in paper I. Results for
various values of κ are shown in Fig. 9 (a). In agreement with our previous arguments, the vanishing
moment property is destroyed by highly oscillating plane waves. Damping the oscillatory behaviour, we
observe a faster decay of the integrals with respect to the distance between the wavelets. Vice versa, we
obtain the same type of behaviour if we fix the value of κ and increase the levels of the wavelets instead.

In order to get a better understanding of the asymptotic behaviour of the integrals (26), we have
performed a multipole expansion of the Coulomb interaction [54]

1

|r1 − r2 + b| =
∑

l

4π

|b|l+1

l∑

l′=0

(−1)l
′

[
4π

(2l + 1)(2l′ + 1)(2l − 2l′ + 1)

]1/2 ∑

m,m′

′ Yl,m(φb, θb)
∗ (29)

×
[(

l + m
l − l′ + m − m′

)(
l − m

l − l′ − m + m′

)]1/2

Yl′,m′(r1) Yl−l′,m−m′(r2),

where the prime on the third sum indicates the constraint |m − m′| ≤ l − l′. The functions Yl,m, Yl,m

correspond to spherical harmonics and harmonic polynomials, respectively. In the case of disjoint supports
of the wavelets in the integrals (26), we can perform the multipole expansion (29) with respect to the
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center of the wavelet γ
(p)
j,a located at b = 2−ja. From this expansion we obtain integrals of the form

∫

d3r γ
(s)
j,0(r) e−iκr Yl,m(r), (30)

where the Yl,m(r) are homogeneous polynomials of degree l in Cartesian coordinates. Therefore, these
integrals factorize into one dimensional integrals

∫

dx e−iκix ψ
(si)
j,0 (x)xm = im 2−j/2 dmψ̂(si)(2−jκi)

dκm
i

, 0 ≤ m ≤ l, (31)

which can be expressed in terms of derivatives of the Fourier transform of the mother wavelet or scaling
function. The derivatives can be directly evaluated through successive derivation of the recurrence formulas

ψ̂(κ) =

(
∑

m

gme−imκ/2

)

ϕ̂(κ/2), ϕ̂(κ) =

(
∑

m

hme−imκ/2

)

ϕ̂(κ/2), (32)

where gm, hm are the filter coefficients of the wavelet and scaling function, respectively. For a wavelet
with n vanishing moments, the (n − 1)’st derivatives vanish at the origin. Therefore, in the limit j → ∞,
a certain number of the coefficients (30) vanish, depending on the specific type of isotropic 3d-wavelet.
Obviously, the magnitudes of |κ|, |κ′| are crucial for the actual convergence to the limit. Convergence
can be observed only if 2−j |κi| is smaller than a certain critical value, as can be seen from Fig. 10, where
the Fourier transform of a mother wavelet and its first and second derivatives are shown near the origin.
In the presence of oscillations, the asymptotic behaviour at large distances between the wavelets, with
levels j, l fixed, is governed by the monopole term in the expansion (29). This can be seen from Fig. 9
(b), where with decreasing magnitude of the oscillations, the asymptotic behaviour is approached at ever
larger distances between the wavelets. It is interesting to see, that the multipole expansion already works
for distances that are smaller than one could expect according to the diameters of the supports of the
wavelets. Due to the fast spatial decay of the wavelets, we observed only very small contributions from
overlapping regions beyond a certain distance. This means that for many practical purposes, we can work
with effective diameters that are considerably smaller than the actual ones.

Summing up our previous discussion, it may be said, that the vanishing moment property provides
additional sparsity for certain sets of basic diagrams. However, the actual degree of sparsity depends on
the specific application and on the desired numerical accuracy. The former determines the magnitude of
oscillations κ and the latter specifies the levels of resolution j in the wavelet expansion of the Jastrow
factor. Only if the products 2−jκi are sufficently small, we can expect a substantial sparsity due to
vanishing moments for these sets of diagrams.

Before continuing our discussion of complex diagrams, we briefly want to consider the wavelet expansion
of the density matrix itself. This shed some light on the sparsity of chain diagrams shown in Fig. 6. In
general, we have to distinguish between metallic and nonmetallic systems. In the first case, the density
matrices have polynomial decay with long-range oscillations, whereas in the second case exponential decay
can be expected [53]. It has been observed by Goedecker and Ivanov [20] that in the second case sparse
wavelet representations exist. For metals it is illustrative to consider the density matrix of a homogeneous
electron gas

ρ(r12) =
3ρ

2

sin(kF r12) − kF r12 cos(kF r12)

(kF r12)3
, (33)

which only depends on the inter-electron coordinate r12. Due to the presence of oscillating terms, the
density matrix (33) does not satisfy the asymptotic smoothness condition (25). As a consequence, wavelet
and scaling function matrix elements have the same decay rates. However, the vanishing moment property
has a large effect on the magnitude of the matrix elements. In contrast to our model problem (26), the
density matrix (33) has no singularity along the diagonal. Therefore, absolute values of matrix elements
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Figure 9: a) Model integrals I
(s,t)
j,l (a,κ,κ′) for the basic type 3, 5, and 6 diagrams. Absolute values of

the integrals I
(1,0)
0,0 (a,κ,κ) are plotted on a logarithmic scale versus the distance |a|. The plane wave

parameters (bohr−1) were chosen to be isotropic κ1 = κ2 = κ3 with values κi = 2 (◦), κi = 1 (✸),
κi = 0.5 (△), κi = 0.25 (✷), κi = 0 (+). Isotropic 3d-wavelets and scaling functions were generated
from the univariate SDD6 wavelet basis (see Appendix A). b) Multipole approximation of the integrals

I
(1,0)
0,0 (a,κ,κ). Results for selected values of κ are shown for pure monopole l = 0 (×) and up to quadrupole

interactions l = 2 (∗).

involving wavelets are uniformly smaller than pure scaling function matrix elements, as can be seen in
Fig. 11. Concerning basic chain diagrams, this means that those diagrams are getting small, which have
single wavelets on sufficiently fine levels on their vertices.

2.3 Wavelet expansion of pointwise wavelet products

Our previous discussion of the computational complexity of the recurrence scheme, mainly focused on
the cardinalities of wavelets and their tensor products, where we have treated the number of electrons
N as a constant parameter. Certain steps in the recurrent evaluation of the diagrams shown in Fig. 2,
however, formaly scale like O(N2) or O(N4) with respect to the number of electrons. Although it is
often possible to exploit the exponential decay of the density matrix in order to reduce the computational
complexity up to linear scaling [53], there remain some important cases where this option fails. The most
prominent example are metallic systems, where density matrices decay only algebraically like in the case
of the homogeneous electron gas (33). Further examples are heavy atoms, which possess a fairly large
number of electrons even in the valence shell. For such cases, the vanishing moments property remains the
only possibility for a further reduction of the computational complexity. In order to work, the vanishing
moments property requires single wavelets on the vertices of a diagram. However for almost half of the
diagrams at least one pointwise wavelet product appears on their vertices. According to the hyperbolic
tensor product structure of the monomials (22), most of them correspond to combinations of wavelets on
distant scales. In the more favourable case, the wavelet which belongs to the coarser scale forms part of
the product, whereas the wavelet on the finer scale contributes to a vertex individually. In such a case the
vanishing moments property reduces the magnitude of the diagram. Because of the symmetric structure
of the Jastrow factor, we also have to consider the less favourable case, where the single wavelet belongs
to the coarser scale. Due to an increasing effect of orbital oscillations on the vanishing moments property
of this wavelet, the corresponding diagram has typically a considerably larger magnitude.

A partial resolution to this problem can be provided through a wavelet expansion of pointwise wavelet
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Figure 10: Real (upper figure) and imaginary (lower figure) parts of the Fourier transform ψ̂(ω) of the
univariate SDD6 mother wavelet (solid lines) and their first (dashed lines) and second (dotted lines)
derivatives near the origin.

products

γ
(s)
j,a(r) γ

(t)
l,b(r) =

∑

u

∑

m

∑

c

(
j l m
a b c

)

γ
(u)
m,c(r). (34)

The properties of wavelet coupling coefficients

(
j l m
a b c

)

:=

∫

d3r γ
(s)
j,a(r) γ

(t)
l,b(r) γ̃

(u)
m,c(r) (35)

have been extensively studied in paper I. In contrast to plane waves and Gaussian-type orbitals (GTO),
which are the most popular types of basis functions in electronic structure calculations, wavelets are not
closed under multiplication. Instead, the sum (34) contains an infinite number of terms. It has been shown
in paper I, that the decay property of wavelet coupling coefficients is related to the Sobolev regularity t
of the underlying univariate wavelet basis t := sup{s : ψj,a ∈ Hs}, where Hs denotes Sobolev spaces with
real coefficient s. The wavelet coupling coefficients decay exponentially

∣
∣
∣
∣

(
j l m
a b c

)∣
∣
∣
∣
≤ C(j, l) 2−t(m−max{j,l}) for m ≥ j, l (36)

with respect to the wavelet level m. Their fast decay offers the possibility to apply the expansion (34)
to pointwise wavelet products on vertices of diagrams. At first, we have to increase the finest level of
the 3d-wavelet basis from lmax to lmax + p. Depending on the specific regularity of the wavelet basis,
the number of additional levels p has to be chosen in such a way that the magnitudes of the coupling
coefficients (35), which are not taken into account, are beyond a certain threshold. For the applications in
mind, p =2 or 3 should be sufficient. It has to be mentioned that wavelet coefficients are directly related
to the approximation error in L2 and H1 norms, which means that we have a rigorous control on the
accuracy of the product expansion (34) in the corresponding function spaces.

Applying the product expansion (34) to the diagrams of the recurrence scheme means, that those sets of
diagrams with one or two wavelet products on their vertices can be represented in terms of wavelet coupling
coefficients (35) and extended sets of diagrams with single wavelets located on the corresponding vertices.
Typical examples are the sets of basic type 5 and 6 diagrams, which can be obtained from extended sets of
type 3-2 and 3-1 diagrams, respectively. A major advantage of this decomposition consists in additional
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Figure 11: Wavelet representation of the density matrix ρ(r12) of a homogeneous electron gas with Fermi

momentum kF = 1 bohr−1. Matrix elements for three different combinations of wavelets γ
(p)
0,a and scaling

functions β0,a have been selected: (◦) 〈β0,a|ρ(r12)|β0,b〉, (⋆) 〈β0,a|ρ(r12)|γ(1)
0,b〉, (✸) 〈γ(7)

0,a|ρ(r12)|γ(7)
0,b〉. Ab-

solute values of these matrix elements at distance |a−b| are plotted on a logarithmic scale. The isotropic
3d-wavelets were generated from the univariate SDD6 wavelet basis (see Appendix A).

sparsity because of the vanishing moment property, which acts on a larger number of vertices. This is of
special importance for the intermediate steps of the recurrence scheme, where external lines give rise to
O(N2) or O(N4) prefactors for the total computational complexity. The final reconstruction, using wavelet
coupling coefficients, has to be carried out only for sets of closed diagrams. It remains to determine the
cardinalities of the extended sets of diagrams. At first, intermediate sets of diagrams with only a wavelet
product on their vertices are replaced by the corresponding sets of diagrams with individual wavelets on
these vertices as it is shown schematically in Fig. 12, where the levels k, l of a wavelet product are indicated.
The cardinality of the extended 3d-wavelet bases, represented by filled symbols in the diagrams, is O(M),
which has to be compared with an O(M log(M)) cardinality for pointwise wavelet products. In practical
calculations, however, the formal improvement is compensated by a larger constant for the extended
wavelet basis. At next, we have to consider sets of intermediate diagrams with a single wavelet connected
to a wavelet product. The cardinalities for these sets of diagrams and the corresponding extended sets
with two single wavelets on the vertices are both O(M2), however, with the essential difference that the
vanishing moment property becomes much more efficient in the latter case. Concerning the final sets of
diagrams, we first have to consider the case of two single wavelets and one wavelet product on the vertices.
Because of the sparse grids constraint for the wavelet tensor products, there is a correlation between the
wavelet levels on the vertices. Let Q = Q̃− 2(l0 − 1) be a modified threshold parameter (6). For the level
combinations depicted in Fig. 12, we obtain the constraints k ≤ Q − j and l ≤ Q − o for the levels of
the pointwise wavelet product. Consequently, the product expansion (34) can be restricted to the levels
m ≤ Q − min{j, o} + p. The cardinality of extended sets therefore remains O(M2 log(M)), as for the
original sets of diagrams. Again, we have achieved an improved sparsity because of the vanishing moment
property. Analogous arguments applied to sets of diagrams with two wavelet products on their vertices
yields cardinalities of O(M2) for the extended sets of diagrams like for the original ones.

3 Numerical studies for FHNC Jastrow factors

In the previous section, we have studied the sparsity of sets of diagrams based on the vanishing moment
property of the wavelet basis that has been used for the expansion of the Jastrow factor. The sparsity
patterns reflect local properties within the multiresolution analysis of diagrams. In order to study global
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Figure 12: Wavelet expansion of pointwise wavelet products. Schematic representation of diagrams with a
wavelet product on a vertex and a differing number of single wavelets on other vertices. The corresponding
wavelet levels are shown on the vertices. Filled symbols represent extended 3d-wavelet basis, where the
finest level of the product expansion has been indicated.

features of wavelet expansions, we have to consider the contracted pair-correlation function

F (2)(r1, r2) =
∑

Λ

fΛ FΛ(r1, r2) (37)

of a Jastrow factor, cf. Eq. (4). The corresponding global diagrams for contracted pair-correlation
functions can be obtained as bilinear forms

Dn[F (2),F (2)] =
∑

Λ,Ω

Dn[F (2)
Λ ,F (2)

Ω ] fΛ fΩ, (38)

where the coefficients Dn[FΛ,FΩ] denote individual elements from the set of type n diagrams. Within the
local ansatz, there is no necessity to calculate these global diagrams because of Eq. (14) for the correlation
energy. Nevertheless, global diagrams are useful tools to study the convergence behaviour of wavelet
expansions with respect to the energy if one is not willing to solve the full many-body problem. Before
the development of self-consistent optimization schemes, like the FHNC method, it was common practice
in nuclear physics to study cluster expansions of the energy [31] for a given Jastrow factor. Such kind of
cluster expansions provide useful insight into the significance of various types of diagrams with respect
to the energy [51, 55]. For our present purposes it is sufficient to take a wavelet expansion of a Jastrow
factor that has been optimized by some other method. More important than the details of the Jastrow
factor is an appropriate choice of the model system.

According to our previous discussion it is obvious that the sparsity of certain sets of diagrams depend
to a large extend on the oscillatory behaviour of the density matrix. Therefore, we have taken the
homogeneous electron gas as a reference system, where the strength of oscillations is determined by a
single parameter, namely the Fermi momentum kF . We have used the standard supercell approach with
periodic boundary conditions [56]. The Coulomb potential has been replaced by an Ewald potential in
order to take properly into account electron-electron interactions between the central supercell and its
periodic images. Although, the homogeneous electron gas is a convenient model from the computational
point of view, we have to mention that due to the presence of long-range correlations, the local ansatz
is not really appropriate. Long-range correlations cause certain types of diagrams, like the ring diagram
1-3-1-2, to diverge in the thermodynamic limit. Subtle Fermi cancellation phenomena [31] with respect to
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higher order diagrams are required to get rid of these divergences. The local ansatz does not incorporate
contributions beyond second order, which leads to a wrong long-range behaviour of the Jastrow factor. It
requires a nonlinear approach like the FHNC method to get a proper description of long-range correlations.
We have therefore neglected the long-range contributions to the Jastrow factor and concentrate on the
short and intermediate regime.

In our numerical studies, we consider only diagrams emerging from basic type 1 or 4 diagrams, where
wavelets are located on at most one vertex of the Coulomb interaction. The Fourier representation of the
Ewald potential

UEwald(ri, rj) =
4π

VSZ

∑

k �=0

e−ik(ri−rj)

|k|2 (39)

is appropriate for such kind of diagrams, because the Fourier series terminates after a finite number of
terms. For our calculations, we have chosen an electron density of rs = 2.07 (kF = 0.927 bohr−1). This
corresponds to the average valence electron density in aluminium. The cubic supercell with edge length 12
bohr contains 54 electrons. An almost optimal Jastrow factor with correct long-range behaviour has been
obtained from a FHNC//0 calculation [46]. Within the supercell approach, such kind of Jastrow factor
requires an Ewald summation for the long-range part [56]. In order to avoid this additional complication,
and in view of the inappropriate treatment of long-range correlations within the local ansatz discussed
above, we have introduced an appropriate cutoff procedure. The FHNC pair-correlation function can be
efficiently approximated by a linear combination of Gaussian-type geminals [57]

F (2)
FHNC (r1, r2) =

∑

i

ci e−αi(r1−r2)2 , (40)

where the parameters ci, αi have been optimized within the distance range |r1 − r2| ≤ rmax. In our
present application we have chosen rmax = 16 bohr. Up to this distance, the expansion (40) provides an
accurate approximation of the FHNC//0 Jastrow factor, except at very small distances |r1 − r2| ≤ rmin
close to the inter-electron cusp. We have included sufficiently large exponents αi in order to make sure
that rmin ≪ 2−jmax , where jmax is the finest level that has been taken into account for the wavelet
expansion of the Jastrow factor. Therefore this discrepancy does not affect our results since it appears
on a length scale that cannot be resolved by wavelets on levels j ≤ jmax anyhow. At large distances
|r1 − r2| > rmax, the expansion (40) provides a smooth exponential cutoff, that allows for a direct
summation of the images of the central supercell. A further advantage of the approximation (40) is that
we can calculate analytically the “exact” values of the diagrams under consideration, which are required
for a discussion of the approximation error of the wavelet expansion.

Before entering into a quantitative discussion of convergence properties for wavelet expansions, we
want to illustrate the sparsity features for diagrams with L-1 type vertices. In Fig. 13 a), we have
shown the absolute magnitude of elements in the set of type 1-7 diagrams. The maximum value, with
respect to the set of orbital indices for the two external lines, has been taken for each diagram. For
coarse wavelet levels, a typical sparsity pattern can be observed, where the dominant contributions are
concentrated near the origin and along the axes. Such kind of sparsity pattern indicates that hyperbolic
tensor products dominate the set of type 1-7 diagrams. Contributions from finer wavelet levels are almost
negligible in agreement with our previous discussion of the density matrix for a homogeneous electron
gas. It is interesting to compare the sparsity pattern of the diagrams 1-7 with the sparsity pattern of the
Jastrow factor, which is shown in Fig. 13 b). Due to asymptotic smoothness of the Jastrow factor, the
sparsity pattern is more pronounced and shows a similar concentration at the origin and along the axes.
Furthermore, the inter-electron cusp gives rise to a distinct diagonal dominance at the finer wavelet levels.

Among the descendents of the set of basic type 1 diagrams, we focused on the global diagrams 1-3-
1-2, 1-6-2 and 1-7-1, where the first and third diagram belongs to the class of ring and ladder diagrams,
respectively. The convergence behaviour for these diagrams with respect to hyperbolic wavelet expansions
of the Jastrow factor is shown in Fig. 14. Relative errors versus the number of hyperbolic 3d-wavelet
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Figure 13: Sparsity patterns of isotropic 3d-wavelet tensor products for a homogeneous electron gas at
rs = 2.07. a) Set of type 1-7 diagrams. b) FHNC//0 Jastrow factor. The isotropic 3d-wavelets are
numbered consecutively with increasing level. Absolute values of scaling function (SC) and wavelet tensor
product coefficients on levels j = −2 and j = −1 are represented by different gray shades. In white
regions the absolute values are below 10−4. Starting with the lightest gray tone at 10−4, the absolute
values increase by a factor of 10 with each shade. The isotropic 3d-wavelets have been obtained from
SDD6 univariate wavelets. Translational symmetry has been only taken into account with respect to the
coarsest wavelet level l0 = −2 in the tensor products.

tensor products are shown with and without diagonal refinement. At each level of refinement, we have
also indicated the sparse grids parameter Q̃. It can be seen that the overall convergence for these three
types of diagrams is rather similar. Diagonal refinement improves the results considerably in almost all
cases with low additional costs. A remarkable exception appears for Q̃ = 2, where diagonal refinement
seemingly provides almost no improvements. This is due to the fact that our selection scheme only reflects
the significance of wavelet tensor products with respect to an approximation of the Jastrow factor itself.
In the case of a diagram, where the effect of the vanishing moments on the density matrices has to be
taken into account, the situation can be more complex. A closer look at the approximation errors reveals
that diagonal refinement provides exactly the same improvement for Q̃ = 2 and Q̃ = 3, which, however, is
obscured by the logarithmic scale. On levels Q̃ = 2, 3, the dominant contribution to diagonal refinement
consists of tensor products where both wavelets are on level j = −1. Without diagonal refinement, these
tensor products appear for the first time at Q̃ = 4. The overall effect of these tensor products, however,
is rather small for these diagrams, due to their interaction with the density matrices, as can be seen
from Fig. 13 a). For comparison, we have also considered the global diagram 4-2-2, which has a wavelet
product on a vertex of the Coulomb interaction. It can be seen from Fig. 14, that the overall convergence
for this diagram is rather similar to the previous ones. Just a slight increase of the relative errors on
the various levels has been observed. This is a consequence of the reduced number of vertices, where
vanishing moments suppress contributions from wavelets on finer scales. Such kind of observations can
be extended to a large class of diagrams, which means that for these diagrams fairly high accuracies can
be achieved already on relatively coarse levels of the hyperbolic wavelet expansion. Large contributions
from fine wavelet levels can be expected for example in the case of diagrams like 1-1-6, 1-1-2-1, 1-4-1 etc.,
where pair-correlation functions run parallel to each other or to the Coulomb interaction.

Besides hyperbolic wavelet expansions for isotropic 3d-wavelets, we have also tested fully anisotropic
expansions based on anisotropic 3d-wavelets, where we refer to Appendix A for further details. An
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Figure 14: Convergence of selected diagrams for hyperbolic wavelet expansions of a FHNC//0 pair-
correlation function in the case of a homogeneous electron gas at rs = 2.07. Relative errors versus the
number of hyperbolic wavelet tensor products are shown for the diagrams a) 1-3-1-2 (ring diagram), b)
1-6-2, c) 1-7-1 b (ladder diagram), d) 4-2-2. Three different types of hyperbolic tensor products have been
employed: Isotropic (△) and anisotropic (✸) 3d-wavelets with diagonal refinement as well as without
diagonal refinement in the isotropic case (◦). Isotropic and anisotropic 3d-wavelets have been obtained
from the univariate SDD6 wavelet basis. Translational symmetry has been only taken into account with
respect to the coarsest wavelet level l0 = −2 in the expansion.
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advantage of the latter is, that the sparse grid constraint acts on all six dimensions. This reduces the
cardinality of the set of hyperbolic tensor products from O(M log(M)) to O(m log(m)5), where m is the
cardinality of the univariate wavelet basis. In view of the relation M ∼ m3 between the cardinalities of
isotropic 3d-wavelets and the underlying univariate wavelet basis, this is a considerable reduction of the
computational complexity. A drawback of this approach is that because of the highly anisotropic character
of these tensor products, the analysis of the computational complexity for diagrams is considerably more
complicated. For the same reason, there is no obvious adaptive refinement scheme at the inter-electron
cusp. We have tried a scheme, outlined in Appendix A, which is a straightforward extension of the isotropic
case. Results for the fully anisotropic expansions are shown in Fig. 14, where we observed almost the same
convergence behaviour with respect to Q̃ as for the isotropic case, however, with a considerably smaller
number of wavelet tensor products. It requires further investigations to see whether this observation can
be confirmed for diagrams with larger contributions from the inter-electron cusp.

4 Summary and conclusions

We have presented a general framework for a wavelet based multiresolution analysis of electron correlations.
It is based on a product ansatz for the wavefunction, where we take Jastrow-type correlation functions for
the description of electron correlations. Sparse wavelet expansions with almost linear complexity exist,
due to the asymptotic smoothness of Jastrow factors. Their sparsity patterns correspond to hyperbolic
tensor products with additional diagonal refinement because of the inter-electron cusp. There are good
physical reasons to extend this ansatz to more general types of correlation operators, which have already
proved useful in solid state physics [49]. In order to be of practical significance, multiresolution analysis
requires efficient and accurate many-particle methods, which are compatible with the peculiar features
of wavelet bases. A linear expansion of Jastrow factors enables a strictly variational optimization of the
wavefunction. However, in order to achieve a constant relative accuracy for extended systems, the sparse
grids parameter Q̃ has to be adapted to the the size of the system in order to satisfy the size-consistency
requirement. Such kind of truncation scheme becomes impracticable for extended systems, because of a
strong increase of computational complexity with the size of the system. To get rid of this problem, we
have taken an exponential ansatz for the Jastrow factor, where the wavelet expansion has been restricted
to pair-correlation functions. The resulting nonlinear optimization problem has been linearized by using
the local ansatz of Stollhoff and Fulde, which provides a flexible and size-consistent many-particle scheme.
Neglecting systematic errors inherent to the local ansatz, we have studied interrelations between the
level of resolution and computational complexity for electron correlations. Within the present work no
restrictions concerning the decay properties of one-particle density matrices have been imposed.

Straightforward application of diagrammatic techniques enables a formal evaluation of matrix elements
for the local ansatz. The FHNC like diagrams can be represented in terms of one-particle density matrices,
the Coulomb interaction and pair-correlation functions consisting of hyperbolic wavelet tensor products.
We have studied the computational complexity for the evaluation of these diagrams and derived a recur-
rence scheme, which is based on sets of certain types of basic Coulomb and chain diagrams. The central
topic of the present work are specific sparsity features of these diagrams, which are due to the hierarchical
character and the vanishing moment property of wavelet bases. It has been shown that the computational
complexity increases almost quadratically with respect to the size of the underlying 3d-wavelet basis.
Introducing wavelet expansions of pointwise wavelet products on the vertices of the diagrams introduces
further sparsity, which might led to almost linear complexity at least for the intermediate sets of diagrams
in the recurrence scheme. These sets are crucial from a computational point of view because their cardi-
nalities strongly depend on the number of electrons in the system. This is due to the presence of external
orbitals lines in the corresponding diagrams.

The diagrammatic multiresolution analysis introduced within the present work is still in its infancy.
We were faced with technical limitations concerning the types of diagrams that can be handled for a
homogeneous electron gas. In a subsequent publication, we want to discuss a complete integration scheme
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for the Ewald potential, which can be applied to all types of basic Coulomb diagrams. We plan in our
future work, to study in more detail the actual contributions of specific scales for certain types of diagrams
as well as the couplings between different scales. Better estimates are required in order to decide which
sets of diagrams give the dominant contributions on specific length- and energy-scales.
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Appendices

A Multiresolution analysis in higher dimensions

The purpose of this appendix is to provide some basic definitions and properties of wavelets which are
required for this paper. For a complete exposition of this subject, we refer to the excellent monographs of
Daubechies [2] and Mallat [5]. In particular we define various types of wavelet basis in higher dimensions.
From the computational point of view, tensor product constructions are the simplest and most flexible
approach. Higher dimensional wavelets are constructed successively by taking appropriate tensor products
of an univariate wavelet basis.

In one dimension, multiresolution analysis provides a partition of the Hilbert space L2(R) into an
infinite sequence of ascending subspaces · · · ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ · · ·, where the index j runs over all
integers. The union of these subspaces

⋃

j Vj is dense in L2(R). On each subspace Vj , the scaling function
ϕ(x) provides a basis

ϕj,a(x) := 2j/2ϕ(2jx − a), (41)

via the operations of dilation and translation. The dilation factor 2j scales the size of the basis functions,
which means that with increasing j, the ϕj,a provide a finer resolution in L2. An explicit embedding of
Vj into the larger space Vj+1 is given by the refinement relation

ϕ(x) = 2
∑

a

ha ϕ(2x − a), (42)

where the number of nonzero filter coefficients ha is finite for the scaling functions used in our applications.
Wavelet spaces Wj are defined as complements of Vj in Vj+1. The corresponding wavelet basis is generated
from a mother wavelet ψ(x) analogous to Eq. (41)

ψj,a(x) := 2j/2ψ(2jx − a). (43)

This construction leads to a hierarchical decomposition of L2 =
⊕

j∈Z
Wj into wavelet subspaces Wj [2]. In

a biorthogonal wavelet basis there exists a sequence of dual spaces Ṽj, W̃j, which satisfy the orthogonality
relations W̃j ⊥ Vj and Ṽj ⊥ Wj. The corresponding dual wavelets ψ̃j,a := 2j/2ψ̃(2jx − a) and scaling
functions ϕ̃j,a := 2j/2ϕ̃(2jx − a) provide a biorthogonal basis in L2

〈ϕj,a|ϕ̃j,b〉 = δa,b, 〈ψj,a|ψ̃l,b〉 = δj,l δa,b. (44)

An arbitrary function in L2(R) can be expanded in a biorthogonal wavelet basis

f(x) =
∑

a

〈ϕ̃l0,a|f〉ϕl0,a(x)

︸ ︷︷ ︸

Vl0

+
∞∑

j=l0

∑

a

〈ψ̃j,a|f〉ψj,a(x)

︸ ︷︷ ︸
L

l0≤j Wj

, (45)
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where the scaling function and wavelet coefficients are given by scalar products with respect to the dual
basis. The multiscale approximation of smooth functions reveals an important sparsity feature due to the
vanishing moments property of wavelets. Depending on the specific choice of the wavelet basis, a certain
number of moments vanish ∫

dxxk ψ̃(x) = 0, for k = 0, . . . , n − 1. (46)

This property has a significant effect on the magnitude of wavelet coefficients, as can be seen from local
Taylor series expansions

f(x) = c0 + · · · + cn−1(x − 2−ja)n−1 + Rn−1(x)(x − 2−ja)n, (47)

around the centers of wavelets ψ̃j,a(x). Inserting the Taylor series expansions (47) into the scalar products
yields the following estimate for the wavelet coefficients

|vj,a| =

∣
∣
∣
∣

∫

dx f(x) ψ̃j,a(x)

∣
∣
∣
∣
≤ supsupp{ψ̃j,a}

|Rn−1(x)| 2−j(n+1/2)

∫

dx
∣
∣
∣xnψ̃(x)

∣
∣
∣ , (48)

where the supremum of the remainder |Rn−1(x)| has to be taken with respect to the support of wavelets
ψ̃j,a(x). For functions with rapidly converging local Taylor series, the corresponding wavelet expansions
(45), therefore, converge very fast with respect to the level j. This leads to sparse wavelet representations
for these functions. Such kind of arguments can be extended to singular kernel functions [9, 10, 11, 12],
which satisfy the asymptotic smoothness condition (25). For our numerical studies, we have used the
univariate biorthogonal wavelets with six vanishing moments of Sweldens [58] and the corresponding
univariate scaling function of Deslauriers and Dubuc [59]. In the text, we refer to this basis as the SDD6
wavelet basis.

Isotropic 3d-wavelets are constructed by taking mixed tensor products of wavelets ψj,a and scaling
functions ϕj,a on the same level j

βj,a(r) = ϕj,ax(x) ϕj,ay(y) ϕj,az(z), (49)

γ
(1)
j,a(r) = ψj,ax(x) ϕj,ay(y) ϕj,az(z),

...

γ
(4)
j,a(r) = ψj,ax(x) ψj,ay(y) ϕj,az(z),

...

γ
(7)
j,a(r) = ψj,ax(x) ψj,ay(y) ψj,az(z).

These multivariate wavelets belong to well defined levels j, however, there are seven different types of
them, according to the different combinations of univariate wavelets and scaling functions. Sometimes

it is convenient to use the notation γ
(0)
j,a := βj,a for the 3d-scaling functions and an analogous notation

ψ
(0)
j,a (x) := ϕj,a(x), ψ

(1)
j,a (x) := ψj,a(x) for the univariate case.

An alternative approach to multivariate wavelets are standard tensor products in the hierarchical
univariate wavelet basis

χj,a(r) = ψjx,ax(x) ϕl0,ay
(y) ϕl0,az

(z), with j := (jx, l0 − 1, l0 − 1), (50)

...

χj,a(r) = ψjx,ax(x) ψjy ,ay(y) ϕl0,az
(z), with j := (jx, jy, l0 − 1),

...

χj,a(r) = ψjx,ax(x) ψjy ,ay(y) ψjz ,az(z), with j := (jx, jy, jz),
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where different wavelet levels can appear in the various directions. Within an anisotropic 3d-wavelet basis,
only scaling functions on the coarsest level l0 show up in the tensor products. The different wavelet levels
in the tensor products are characterized by the multilevel index j, where for scaling functions the level
index is l0 − 1. We have employed isotropic and anisotropic 3d-wavelets for the expansion of the Jastrow
factor.

Isotropic and anisotropic wavelet constructions become impracticable beyond three dimensions. For the
expansion of the Jastrow factor, we, therefore, have to switch to hyperbolic wavelets [32]. The concept of
hyperbolic wavelets is based on a special kind of hierarchical ordering and truncation scheme for standard
tensor products of isotropic

γ
(s1)
j1,a1

(r1) γ
(s2)
j2,a2

(r2) . . . γ
(sp)
jp,ap

(rp), (51)

or anisotropic
χj1,a1

(r1)χj2,a2
(r2) . . . χjp,ap

(rp) (52)

3d-wavelets, respectively. Due to their anisotropic character, we cannot assign a unique level to these
tensor products. Instead, we have to take their level sums in order to get a hierarchical ordering. For
tensor products of isotropic 3d-wavelets, the level sum |J| is given in Eq. (6). Correspondingly, for tensor
products of anisotropic 3d-wavelets (52), the level sum is defined as

|J| :=

p
∑

i=1

(|j| − 3l0 + 3) , with |j| := jx + jy + jz, (53)

where p is the number of 3d-wavelets in the tensor product (52). A hierarchical ordering of the hyperbolic
wavelet expansion is now introduced via the sparse grid parameter Q̃, which imposes the constraint
|J| ≤ Q̃ on the tensor products. The cardinalities of the corresponding tensor product bases increase

with O(23Q̃Q̃p−1) and O(2Q̃Q̃3p−1) for isotropic and anisotropic 3d-wavelets, respectively. In the case of
anisotropic 3d-wavelets, there is no obvious scheme for diagonal refinement at the inter-electron cusp. We
have tried an ad hoc procedure, formally analogous to the isotropic case, where we allow for all tensor
products χj,a(r1)χj,a(r2) with |j| ≤ Q̃ irrespective of their level sum (53). Hyperbolic tensor products are
well known in finite element methods as sparse grids [60, 61, 62]. First applications of sparse grids in
electronic structure calculations by Garcke and Griebel [63] demonstrate the usefulness of this method.
Recently, the sparse grids method has been further improved by introducing the concept of dimension-
adaptive tensor products [64, 65].

B Contraction rules for biorthogonal wavelet bases

In order to apply second quantization and Wick’s theorem for operators represented in a biorthogonal
wavelet basis, a few technical points need to be clarified. The modifications required in this case are
straightforward and have been routinely applied in the literature [43]. For formal reasons, we introduce
an orthogonal one-particle basis φi, i = 1, . . . ,∞, which is supposed to be complete in L2(R3). In the
following we refer to this basis as the orbital basis. The first N basis functions correspond to occupied HF
spin-orbitals of the system under consideration. For notational convenience, in the orbital basis indices
a, b, . . . run over occupied orbitals and r, s, . . . run over virtual orbitals, whereas indices i, j, . . . run over
the whole basis. It has to be mentioned that an explicit knowledge beyond the first N basis functions is
not required in the following. In order to apply Wick’s theorem for the evaluation of matrix elements [52],
we have to determine contractions between pairs of operators. As usual normal ordering is defined with
respect to the HF reference wavefunction, which corresponds to the “vacuum” state in this formalism.
According to these definitions, contractions within the orbital basis are given by

φ̂aφ̂
†
i = φ̂†

rφ̂i = φ̂†
i φ̂

†
j = φ̂iφ̂j = 0, φ̂†

aφ̂b = δa,b, φ̂rφ̂
†
s = δr,s. (54)
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The wavelet basis γα can be represented in the orbital basis

γα(r, σ) =
∑

i

cα,i φi(r, σ), with cα,i = 〈φi|γα〉, (55)

which yields the following representation for creation and annihilation operators in the wavelet basis

γ̂†
α =

∑

i

cα,i φ̂†
i γ̂α =

∑

i

c∗α,i φ̂i. (56)

The corresponding anticommutation relations are given by

[

γ̂†
α, γ̂β

]

= 〈γα|γβ〉, [γ̂α, γ̂β ] = 0,
[

γ̂†
α, γ̂†

β

]

= 0. (57)

Straightforward application of Eqs. (54) and (55), together with the resolution of the identity I =
∑

i |φi〉〈φi| yields the corresponding contractions for the wavelet creation and annihilation operators

γ̂†
αγ̂†

β = γ̂αγ̂β = 0, γ̂β γ̂†
α = 〈γβ|γα〉 − 〈γβ|ρ̂|γα〉, γ̂†

αγ̂β = 〈γβ |ρ̂|γα〉. (58)

The contractions are expressed through wavelet matrix elements of the HF density matrix operator ρ̂ =
∑

b |φb〉〈φb|.

C Cardinalities of certain types of products for isotropic 3d-wavelets

The purpose of this appendix is to provide some supplementary material which has been omitted in Section
2.1 in favour of a concise presentation. In order to estimate cardinalities for the sets of wavelet products
listed in Table 1, we first consider a simplified problem and afterwards discuss the necessary modifications
for a wavelet basis. Within this simplified setting, we subdivide the unit cube into a hierarchical sequence
of subcubes. On the first level the unit cube is subdivided into eight subcubes with volume 2−3 and on
the second level each of them is again subdivided into eight subcubes with volume 2−6. This process
continues until the l’th level has been reached. Subcubes which belong to the same level do not overlap.
To each subcube, we assign a characteristic function ξj,a(r), where the indices j,a specify its level and
location, respectively. According to our definitions, the set of characteristic functions has cardinality

L := card {ξm,a(r)} =
1

7

(

8 · 23l − 1
)

. (59)

The cardinality of the set of nonvanishing products between characteristic functions is given by

card {ξm,a(r) ξn,b(r)} =

l∑

m=0

23m
l∑

n=m

23(n−m)

=
1

72

[

(56 l + 48) 23l + 1
]

(60)

∼ O (L log(L)) ,

where the factor 23j corresponds to the number of subcubes on level j. This has to be multiplied by the
number of subcubes on levels j ≤ m ≤ l, which overlap with an individual subcube on level j. Next, we
introduce a “hyperbolic” tensor product for characteristic functions

Ξma,nb (r1, r2) := ξm,a(r1) ξn,b(r2) with m + n ≤ l. (61)
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The set of “hyperbolic” tensor products has cardinality

card {Ξma,nb (r1, r2)} =
l∑

j=0

(j + 1) 23j

=
1

72

[

(56 l + 48) 23l + 1
]

(62)

∼ O (L log(L)) ,

where the index j runs over all accessible sums of levels m + n. For each j there are j + 1 pairs m,n
satisfying j = m + n and for every pair there are 23j tensor products. It can be seen that for our model,
the cardinalities of the sets of pointwise products with nonvanishing overlap and of the “hyperbolic”
tensor products are equal. Continuing along this line, we consider the pointwise products of characteristic
functions with “hyperbolic” tensor products, where the cardinality of the corresponding set is given by

card {ξp,a(r1) Ξmb,nc (r1, r2)} =
l∑

j=0

23j
j

∑

m=0

[
1

7

(

23(l−m+1) − 1
)

+ m

]

=
1

73

[

512 · 26l +
(
196 l2 + 28 l − 160

)
23l − 9

]

(63)

∼ O
(
L2

)
.

Like in the previous case, index j runs over the sums of levels m + n. On a particular level m, the
term in square brackets corresponds to the number of subcubes, which overlap with a subcube on level
m including the coarser levels. It is interesting to compare with the cardinality of the set of threefold
products of characteristic functions

card {ξm,a(r1) ξn,b(r1) ξp,c(r2)|r1=r2
} =

l∑

m=0

23m
l∑

n=m

23(n−m)

[
1

7

(

23(l−n+1) − 1
)

+ n

]

=
1

73

[(
588 l2 + 812 l + 360

)
23l − 17

]

(64)

∼ O
(
L log(L)2

)
,

which are nonvanishing on the diagonal r1 = r2. This set contains the nonseparable part of the set (63),
with respect to the Coulomb interaction. Finally we consider the remaining case of pointwise products of
“hyperbolic” tensor products. The cardinality of this set is given by

card {Ξma,nb (r1, r2) Ξpc,qd (r2, r3)} =

l∑

j=0

23j
j

∑

n=0

l∑

p=0

23 max{p−n,0} 1

7

(

23(l−p+1) − 1
)

=
1

74

[

(7168 l + 1536) 26l −
(
392 l2 + 168 l − 856

)
23l + 9

]

(65)

∼ O
(
L2 log(L)

)
.

Every characteristic function on level n has nonvanishing overlap with 23max{p−n,0} characteristic functions
on level p, which has to be multiplied with the number of “hyperbolic” tensor products with level p kept
fixed.

In order to generalize our results to an isotropic 3d-wavelet basis, we have to introduce certain mod-
ifications. Instead of a single type of characteristic function, we have to deal with seven different types

of wavelets γ
(p)
ja with p = 1, . . . 7. As a consequence, the formulas (60), (62), (63), (64), and (65) have

to be multiplied by weight factors 72, 72, 73, 73, and 74, respectively. On each level, the various types
of wavelets are centered on regular grids, however, these grids are generically shifted to each other for
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different types of wavelets. Furthermore, these shifts affect the overlaps between wavelets of the same type
on different levels. This yields additional overlaps which are not taken into account by the model. The
additional overlaps increase the constants in the formulas (60), (62), (63), (64), and (65) but otherwise
do not affect the asymptotic behaviour. We have further assumed that there is no overlap between char-
acteristic functions on the same level. For wavelets with compact support, this is obviously not satisfied
in general. Depending on its regularity, a wavelet has nonvanishing overlap with the supports of a certain
number of neighboring wavelets on the same level. Since the number of overlaps does not depend on the
specific level, this enters in leading order as a multiplicative constant into our formulas.

D Supplement to the recurrence scheme

In order to complete our presentation of the recurrence scheme, we provide the remaining steps in Figs. 15,
16, 17, 18, 19, and 20.

1−2−1−1 1−2−1−2

1−3−1

1−3−2 1−3−3

1−3−1−1 1−3−1−2

1−4−1 1−4−2

1−2

1−3

1−4

1−2−2 1−2−3
1−2−1

Figure 15: Recurrence scheme for diagrams emerging from sets of type 1-2 to 1-4 diagrams.
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1−5−2

1−6−2

1−6−11−5−1

1−5
1−6

1−7−1

1−7

Figure 16: Recurrence scheme for diagrams emerging from sets of type 1-5 to 1-7 diagrams.

2−3−22−3−1

2−3

2−2−1−22−2−1−1

2−2−32−2−22−2−1

2−2
2−1

2−1−1−2

2−1−1

2−1−1−1

2−1−4

2−1−2 2−1−3

Figure 17: Recurrence scheme for diagrams emerging from sets of type 2-1 to 2-3 diagrams.
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3−1−2
3−2−1

3−1−1

3−1−3

3−2−2

2−4

2−4−1 2−4−2

2−5

2−5−1 2−5−2

2−5−3

3−1
3−2

Figure 18: Recurrence scheme for diagrams emerging from sets of type 2-4, 2-5, 3-1, and 3-2 diagrams.

3−3−1 3−3−2 3−4−1 3−4−2 3−5−1 3−6−1 3−6−2

3−4 a 3−4 b 3−5 3−6

3−3

Figure 19: Recurrence scheme for diagrams emerging from sets of type 3-3 to 3-6 diagrams.

4−2−1 4−3−1

4−1
4−2

4−3−2 4−4−14−2−2

4−4

4−1−1 4−1−2

4−3

Figure 20: Recurrence scheme for diagrams emerging from sets of type 4-1 to 4-4 diagrams.
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