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Abstract

Thek-forest problemis a common generalization of both thek-MSTand thedense-k-subgraphproblems.
Formally, given a metric space onn verticesV , with m demand pairs⊆ V × V and a “target”k ≤ m,
the goal is to find a minimum cost subgraph that connectsat leastk demand pairs. In this paper, we
give anO(min{√n,

√
k})-approximation algorithm fork-forest, improving on the previous best ratio

of O(n2/3 log n) by Segev & Segev [SS06].

We then apply our algorithm fork-forest to obtain approximation algorithms for severalDial-a-Ride
problems. The basic Dial-a-Ride problem is the following: given ann point metric space withm
objects each with its own source and destination, and a vehicle capable of carryingat mostk ob-
jects at any time, find the minimum length tour that uses this vehicle to move each object from its
source to destination. We prove that anα-approximation algorithm for thek-forest problem implies
an O(α · log2 n)-approximation algorithm for Dial-a-Ride. Using our results for k-forest, we get an
O(min{√n,

√
k} · log2 n)-approximation algorithm for Dial-a-Ride. The only previous result known

for Dial-a-Ride was anO(
√

k log n)-approximation by Charikar & Raghavachari [CR98]; our results
give a different proof of a similar approximation guarantee—in fact, when the vehicle capacityk is
large, we give a slight improvement on their results.

The reduction from Dial-a-Ride to thek-forest problem is fairly robust, and allows us to obtain ap-
proximation algorithms (with the same guarantee) for the following generalizations: (i) Non-uniform
Dial-a-Ride, where the cost of traversing each edge is an arbitrary non-decreasing function of the num-
ber of objects in the vehicle; and (ii) Weighted Dial-a-Ride, where demands are allowed to have dif-
ferent weights. The reduction is essential, as it is unclearhow to extend the techniques of Charikar &
Raghavachari to these Dial-a-Ride generalizations.

1 Introduction
In the Steiner forest problem, we are given a set of vertex-pairs, and the goal is to find a forest such that
each vertex pair lies in the same tree in the forest. This is a generalization of the Steiner tree problem,
where all the pairs contain a common vertex called the root; both the tree and forest versions are well-
understood fundamental problems in network design [AKR91,GW92]. An important extension of the
Steiner tree problem studied in the late 1990s was thek-MST problem, where one sought the least-cost
tree that connected anyk of the terminals: several approximations algorithms were given for the problem,

∗Computer Science Department, Carnegie Mellon University.Supported in part by an NSF CAREER award CCF-0448095, and
by an Alfred P. Sloan Fellowship.

†Computer Science Department, Carnegie Mellon University.Supported in part by NSF ITR grant CCR-0122581 (The AL-
ADDIN project).

‡Tepper School of Business, Carnegie Mellon University. Supported in part by NSF grants CCF-0430751 and ITR grant CCR-
0122581 (The ALADDIN project).

1

http://arxiv.org/abs/0707.0648v1


culminating in the2-approximation of Garg [Gar05]; thek-MST problem proved crucial in many subsequent
developments in network design and vehicle routing [CGRT03, FHR03, BCK+03, BBCM04]. One can
analogously define thek-forest problem where one needs to connectonly k of the pairsin some Steiner
forest instance: surprisingly, very little is known about this problem, which was first studied formally as
recently as last year [HJ06, SS06]. In this paper, we give a simpler and improved approximation algorithm
for thek-forest problem.

Moreover, just like thek-MST variant, thek-forest problem seems to be useful in applications to network
design and vehicle routing. In the second half of the paper, we show a (somewhat surprising) reduction of
a well-studied vehicle routing problem called the Dial-a-Ride problem to thek-forest problem. In the Dial-
a-Ride problem, we are given a metric space with people having sources and destinations, and a bus of
some capacityk; the goal is to find a route for this bus so that each person can be taken from her source
to destination without exceeding the capacity of the bus at any point, such that the length of the bus route
is minimized. We show how the results for thek-forest problem slightly improve upon existing results for
the Dial-a-Ride problem; in fact, they give the first approximation algorithms for some generalizations of
Dial-a-Ride which do not seem amenable to previous techniques.

1.1 Thek-Forest Problem

Our starting point is thek-forest problem, which generalizes both thek-MST and the dense-k-subgraph
problems.

Definition 1 (The k-Forest Problem) Given ann-vertex metric space(V, d), and demands{si, ti}mi=1 ⊆
V × V , find the least-cost subgraph that connects at leastk demand-pairs.

Note that thek-forest problem is a generalization of the (minimization version of the) well-studied dense-k-
subgraph problem, for which nothing better than anO(n1/3−δ) approximation is known. Thek-forest prob-
lem was first defined in [HJ06], and the first non-trivial approximation was given by Segev and Segev [SS06],
who gave an algorithm with an approximation guarantee ofO(n2/3 log n) for the case whenk = O(poly(n)).
We improve the approximation guarantee of thek-forest problem toO(min{√n,

√
k}); formally, we prove

the following theorem in Section 2.

Theorem 2 (Approximating k-forest) There is anO(min{√n · log k
log n ,

√
k})-approximation algorithm for

the k-forest problem. For the case whenk is less than a polynomial inn, the approximation guarantee
improves toO(min{√n,

√
k}).

Apart from giving an improved approximation guarantee, ouralgorithm for thek-forest problem is
arguably simpler and more direct than that of [SS06] (which is based on Lagrangian relaxations for the
problem, and combining solutions to this relaxation). Indeed, we give two algorithms, both reducing thek-
forest problem to thek-MST problem in different ways and achieving different approximation guarantees—
we then return the better of the two answers. The first algorithm (giving an approximation ofO(

√
k)) uses

thek-MST algorithm to find good solutions on the sources and the sinks independently, and then uses the
Erdős-Szekeres theorem on monotone subsequences to find a “good” subset of these sources and sinks to
connect cheaply; details are given in Section 2.1. The second algorithm starts off with a single vertex as
the initial solution, and uses thek-MST algorithm to repeatedly find a low-cost tree that satisfies a large
number of demands which have one endpoint in the current solution and the other endpoint outside; this tree
is then used to greedily augment the current solution and proceed. Choosing the parameters (as described in
Section 2.2) gives us anO(

√
n) approximation.
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1.2 The Dial-a-Ride Problem

In this paper, we use thek-forest problem to give approximation algorithms for the following vehicle routing
problem.

Definition 3 (The Dial-a-Ride Problem) Given ann-vertex metric space(V, d), a starting vertex (orroot) r,
a set ofm demands{(si, ti)}mi=1, and a vehicle of capacityk, find a minimum length tour of the vehicle start-
ing (and ending) atr that moves each objecti from its sourcesi to its destinationti such that the vehicle
carries at mostk objects at any point on the tour.

We say that an object ispreemptedif, after being picked up from its source, it can be left at some intermediate
vertices before being delivered to its destination. In thispaper, we will not allow this, and will mainly be
concerned with thenon-preemptiveDial-a-Ride problem.1

The approximability of the Dial-a-Ride problem is not very well understood: the previous best upper
bound is anO(

√
k log n)-approximation algorithm due to Charikar and Raghavachari[CR98], whereas

the best lower bound that we are aware of is APX-hardness (from TSP, say). We establish the following
(somewhat surprising) connection between the Dial-a-Rideandk-forest problems in Section 3.

Theorem 4 (Reducing Dial-a-Ride tok-forest) Given anα-approximation algorithm fork-forest, there is
anO(α · log2 n)-approximation algorithm for the Dial-a-Ride problem.

In particular, combining Theorems 2 and 4 gives us anO(min{
√

k,
√

n} · log2 n)-approximation guarantee
for Dial-a-Ride. Of course, improving the approximation guarantee fork-forest would improve the result
for Dial-a-Ride as well.

Note that our results match the results of [CR98] up to a logarithmic term, and even give a slight im-
provement when the vehicle capacityk ≫ n, the number of nodes. Much more interestingly, our algorithm
for Dial-a-Ride easily extends to generalizations of the Dial-a-Ride problem. In particular, we consider a
substantially more general vehicle routing problem where the vehicle has noa priori capacity, and instead
the cost of traversing each edgee is an arbitrary non-decreasing functionce(l) of the number of objectsl
in the vehicle; settingce(l) to the edge-lengthde whenl ≤ k, andce(l) = ∞ for l > k gives us back the
classical Dial-a-Ride setting. In Section 3.2, we show thatthis generalnon-uniform Dial-a-Rideproblem
admits an approximation guarantee that matches the best known for the classical Dial-a-Ride problem. An-
other extension we consider is theweighted Dial-a-Rideproblem. In this, each object may have a different
size, and total size of the items in the vehicle must be bounded by the vehicle capacity; this has been earlier
studied as thepickup and deliveryproblem [SS95]. We show in Section 3.3 that this problem can be reduced
to the (unweighted) Dial-a-Ride problem at the loss of only aconstant factor in the approximation guarantee.

As an aside, we consider the effect of preemptions in the Dial-a-Ride problem (Section 4). It was shown
in Charikar & Raghavachari [CR98] that the gap between the optimal preemptive and non-preemptive tours
could be as large asΩ(n1/3). We show that the real difference arises betweenzeroandonepreemptions:
allowing multiple preemptions does not give us much added power. In particular, we show in Section 16
that for any instance of the Dial-a-Ride problem, there is a tour that preempts each objectat most onceand
has length at mostO(log2 n) times an optimal preemptive tour (which may preempt each object an arbitrary
number of times). Motivated by obtaining a better guaranteefor Dial-a-Ride on the Euclidean plane, we

1A note on the parameters: a feasible non-preemptive tour canbe short-cut over vertices that do not participate in any demand,
and we can assume that every vertex is an end point of some demand, andn ≤ 2m. We may also assume, by preprocessing some
demands, thatm ≤ n2 · k. However in general, the number of demandsm and the vehicle capacityk may be much larger than the
number of verticesn.
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also study the preemption gap in such instances. We show thateven in this case, there are instances having
a gap ofΩ̃(n1/8) between optimal preemptive and non-preemptive tours.

1.3 Related Work

The k-forest problem: Thek-forest problem is relatively new: it was defined by Hajiaghayi & Jain [HJ06].
An Õ(k2/3)-approximation algorithm for even the directedk-forest problem can be inferred from [CCyC+98].
Recently, Segev & Segev [SS06] gave anO(n2/3 log n) approximation algorithm fork-forest.

Densek-subgraph: Thek-forestproblem is a generalization of the dense-k-subgraph problem [FPK01], as
shown in [HJ06]. The best known approximation guarantee forthe dense-k-subgraph problem isO(n1/3−δ)
whereδ > 0 is some constant, due to Feige et al. [FPK01], and obtaining an improved guarantee has been a
long standing open problem. Strictly speaking, Feige et al.[FPK01] study a potentially harder problem: the
maximizationversion of dense-k-subgraph, where one wants to pickk vertices to maximize the number of
edges in the induced graph. However, nothing better is knowneven for theminimizationversion of dense-k-
subgraph (where one wants to pick the minimum number of vertices that inducek edges), which is a special
case ofk-forest. Thek-forest problem is also a generalization ofk-MST, for which a 2-approximation is
known (Garg [Gar05]).

Dial-a-Ride: While the Dial-a-Ride problem has been studied extensivelyin the operations research litera-
ture, relatively little is known about its approximability. The currently best known approximation ratio for
Dial-a-Ride isO(

√
k log n) due to Charikar & Raghavachari [CR98]. We note that their algorithm assumes

instances with unweighted demands. Krumke et al. [KRW00] give a 3-approximation algorithm for the
Dial-a-Ride problem on aline metric; in fact, their algorithm finds a non-preemptive tour that has length at
most 3 times the preemptive lower bound. (Clearly, the cost of an optimal preemptive tour is at most that of
an optimal non-preemptive tour.) A2.5-approximation algorithm forsingle sourceversion of Dial-a-Ride
(also called the “capacitated vehicle routing” problem) was given by Haimovich & Kan [HK85]; again,
their algorithm output a non-preemptive tour with length atmost 2.5 times the preemptive lower bound.
For thepreemptiveDial-a-Ride problem, Charikar & Raghavachari [CR98] gave the current-bestO(log n)
approximation algorithm, and Gørtz [rtz06] showed that it is hard to approximate this problem to better than
Ω(log1/4−ǫ n). Recall that no super-constant hardness results are known for the non-preemptive Dial-a-Ride
problem.

2 Thek-forest problem

In this section, we study thek-forest problem, and give an approximation guarantee ofO(min{√n,
√

k}).
This result improves upon the previous bestO(n2/3 log n)-approximation guarantee [SS06] for this problem.
The algorithm in Segev & Segev [SS06] is based on a Lagrangianrelaxation for this problem, and suitably
combining solutions to this relaxation. In contrast, our algorithm uses a more direct approach and is much
simpler in description. Our approach is based on approximating the following “density” variant ofk-forest.

Definition 5 (Minimum-ratio k-forest) Given ann-vertex metric space(V, d), m pairs of vertices{si, ti}mi=1,
and a targetk, find a treeT that connectsat mostk pairs, and minimizes the ratio of the length ofT to the
number of pairs connected inT .2

We present two different algorithms forminimum-ratiok-forest, obtaining approximation guarantees of
O(
√

k) (Section 2.1) andO(
√

n) (Section 2.2); these are then combined to give the claimed result for the

2Even if we relax the solution to be any forest, we may assume (by averaging) that theoptimal ratiosolution is a tree.

4



k-forest problem. Both our algorithms are based on subtle reductions to thek-MST problem, albeit in very
different ways.

As is usual, when we say that our algorithmguessesa parameter in the following discussion, it means
that the algorithm is run for each possible value of that parameter, and the best solution found over all the
runs is returned. As long as only a constant number of parameters are being guessed and the number of
possibilities for each of these parameters is polynomial, the algorithm is repeated only a polynomial number
of times.

2.1 An O(
√

k) approximation algorithm

In this section, we give anO(
√

k) approximation algorithm for minimum ratiok-forest, which is based on a
simple reduction to thek-MST problem. The basic intuition is to look at the solutionS to minimum-ratiok-
forest and consider an Euler tour of this treeS—a theorem of Erdős & Szekeres on increasing subsequences
implies that there must be at least

√

|S| sources which are visited in the same order as the corresponding
sinks. We use this existence result to combine the source-sink pairs to create an instance of

√

|S|-MST from
which we can obtain a good-ratio tree; the details follow.

Let S denote an optimal ratio tree, that coversq demands & has lengthB, and letD denote the largest
distance between any demand pair that is covered inS (noteD ≤ B). We define a new metricl on the set
{1, · · · ,m} of demands as follows. The distance between demandsi andj, li,j = d(si, sj)+d(ti, tj), where
(V, d) is the original metric. TheO(

√
k) approximation algorithm first guesses the number of demandsq

& the largest demand-pair distanceD in the optimal treeS (there are at mostm choices for each ofq &
D). The algorithm discards all demand pairs(si, ti) such thatd(si, ti) > D (all the pairs covered in the
optimal solutionS still remain). Then the algorithm runs the unrootedk-MST algorithm [Gar05] with target
⌊√q⌋, in the metricl, to obtain a treeT on the demand pairsP . FromT , we easily obtain treesT1 (on all
sources inP ) andT2 (on all sinks inP ) in metricd such thatd(T1) + d(T2) = l(T ). Finally the algorithm
outputs the treeT ′ = T1 ∪ T2 ∪ {e}, wheree is any edge joining a source inT1 to its corresponding
sink in T2. Due to the pruning on demand pairs that have large distance,d(e) ≤ D and the length ofT ′,
d(T ′) ≤ l(T ) + D ≤ l(T ) + B.

We now argue that the cost of the solutionT found by thek-MST algorithml(T ) ≤ 8B. Consider the
optimal ratio treeS (in metricd) that hasq demands{(s1, t1), · · · , (sq, tq)}, and letτ denote an Euler tour
of S. Suppose that in a traversal ofτ , thesourcesof demands inS are seen in the orders1, · · · , sq. Then in
the same traversal, thesinksof demands inS will be seen in the ordertπ(1), · · · , tπ(q), for some permutation
π. The following fact is well known (see, e.g., [Ste95]).

Theorem 6 (Erdős & Szekeres)Every permutation on{1, · · · , q} has either an increasing subsequence of
length⌊√q⌋ or a decreasing subsequence of length⌊√q⌋.

Using Theorem 6, we obtain a setM of p = ⌊√q⌋ demands such that (1) the sources inM appear in increas-
ing order in a traversal of the Euler tourτ , and (2) the sinks inM appear in increasing order in a traversal of
eitherτ or τR (the reverse traversal ofτ ). Let j0 < j1 < · · · < jp−1 denote the demands inM in increasing
order. From statement (1) above,

∑p−1
i=0 d(s(ji), s(ji+1)) ≤ d(τ), where the indices in the summation are

modulop. Similarly, statement (2) implies that
∑p−1

i=0 d(t(ji), t(ji+1)) ≤ max{d(τ), d(τR)} = d(τ). Thus
we obtain:

p−1
∑

i=0

[d(s(ji), s(ji+1)) + d(t(ji), t(ji+1))] ≤ 2d(τ) ≤ 4B

But this sum is precisely the length of the tourj0, j1, · · · , jp−1, j0 in metric l. In other words, there is a tree
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of length4B in metric l, that contains⌊√q⌋ vertices. So, the cost of the solutionT found by thek-MST
approximation algorithm is at most8B.

Now the final solutionT ′ has length at mostl(T ) + B ≤ 9B, and ratio that at most9
√

q B
q ≤ 9

√
kB

q .

Thus we have anO(
√

k) approximation algorithm for minimum ratiok-forest.

2.2 An O(
√

n) approximation algorithm

In this section, we show anO(
√

n) approximation algorithm for the minimum ratiok-forest problem. The
approach is again to reduce to thek-MST problem; the intuition is rather different: either we find a vertex
v such that a large number of demand-pairs of the form(v, ∗) can be satisfied using a small tree (the “high-
degree” case); if no such vertex exists, we show that a repeated greedy procedure would cover most vertices
without paying too much (and since we are in the “low-degree”case, covering most vertices implies covering
most demands too). The details follow.

Let S denote an optimal solution to minimum ratiok-forest, andq ≤ k the number of demand pairs
covered inS. We define thedegree∆ of S to be the maximum number of demands (among those covered in
S) that are incident at any vertex inS. The algorithm first guesses the following parameters of theoptimal
solutionS: its lengthB (within a factor 2), the number of pairs coveredq, the degree∆, and the vertex
w ∈ S that has∆ demands incident at it. Although, there may be an exponential number of choices for
the optimal length, a polynomial number of guesses within a binary-search suffice to get aB such that
B ≤ d(S) ≤ 2 ·B. The algorithm then returns the better of the two proceduresdescribed below.
Procedure 1 (high-degree case):Since the degree of vertexw in the optimal solutionS is ∆, there is tree
rooted atw of lengthd(S) ≤ 2B, that contains at least∆ demands having one end point atw. We assign
a weight to each vertexu, equal to the number of demands that have one end point at thisvertexu and the
other end point atw. Then we run thek-MST algorithm [Gar05] with rootw and a target weight of∆. By
the preceding argument, this problem has a feasible solution of length2B; so we obtain a solutionH of
length at most4B (since the algorithm of [Gar05] is a 2-approximation). The ratio of solutionH is thus at
most4B/∆ = 4q

∆
B
q .

Procedure 2 (low-degree case):Sett = q
2∆ ; note thatq ≤ ∆·n

2 and sot ≤ n/4. We maintain a current tree
T (initially just vertexw), which is updated in iterations as follows: shrinkT to a supernodes, and run the
k-MST algorithm with roots and a target oft new vertices. If the resultings-tree has length at most4B,
include this tree in the current treeT and continue. If the resultings-tree has length more than4B, or if all
the vertices have been included, the procedure ends. Sincet new vertices are added in each iteration, the
number of iterations is at mostn

t ; so the length ofT is at most4n
t B. We now show thatT contains at least

q
2 demands. Consider the setS \ T (recall,S is the optimal solution). It is clear that|S \ T | < t; otherwise
thek-MST instance in the last iteration (with the currentT ) would haveS as a feasible solution of length
≤ 2B (and hence would find one of length at most4B). So the number of demands covered inS that have
at least one end point inS \ T is at most|S \ T | ·∆ ≤ t ·∆ = q/2 (as∆ is the degree of solutionS). Thus
there are at leastq/2 demandscontainedin S ∩ T , in particular inT . ThusT is a solution having ratio at
most 4n

t B · 2
q = 8n

t
B
q .

The better ratio solution amongH andT from the two procedures has ratio at mostmin{4q
∆ , 8n

t } · B
q =

min{8t, 8n
t } · B

q ≤ 8
√

n · B
q ≤ 8

√
n · d(S)

q . So this algorithm is anO(
√

n) approximation to the minimum
ratiok-forest problem.

2.3 Approximation algorithm for k-forest

Given the two algorithms for minimum ratiok-forest, we can use them in a standard greedy fashion (i.e.,
keep picking approximately minimum-ratio solutions untilwe obtain a forest connecting at leastk pairs);
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the standard set cover analysis can be used to show anO(min{√n,
√

k} · log k)-approximation guarantee
for k-forest. A tighter analysis of the greedy algorithm (as done, e.g., in Charikar et al. [CCyC+98]) can be
used to remove the logarithmic terms and obtain the guarantee stated in Theorem 2.

3 Applications to Dial-a-Ride problems
In this section, we study applications of thek-forest problem to the Dial-a-Ride problem (Definition 3), and
some generalizations. A natural solution-structure for Dial-a-Ride involves servicing demands in batches
of at mostk each, where a batch consisting of a setS of demands is served as follows: the vehicle starts
out being empty, picks up each of the|S| ≤ k objects from their sources, then drops off each object at its
destination, and is again empty at the end. If we knew that theoptimal solution has this structure, we could
obtain a greedy framework for Dial-a-Ride by repeatedly finding the best ‘batch’ ofk demands. However,
the optimal solution may involve carrying almostk objects at every point in the tour, in which case it can
not be decomposed to be of the above structure. In Theorem 7, we show that there is always a near optimal
solution having this ‘pick-drop in batches’ structure. Building on Theorem 7, we obtain approximation
algorithms for the classical Dial-a-Ride problem (Section3.1), and two interesting extensions: non-uniform
Dial-a-Ride (Section 3.2) & weighted Dial-a-Ride (Section3.3).

Theorem 7 (Structure Theorem) Given any instance of Dial-a-Ride, there exists a feasible tour τ satisfy-
ing the following conditions:

1. τ can be split into a set of segments{S1, · · · , St} (i.e., τ = S1 · S2 · · ·St) where each segmentSi

services a setOi of at mostk demands such thatSi is a path that first picks up each demand inOi

and then drops each of them.

2. The length ofτ is at mostO(log m) times the length of an optimal tour.

Proof: Consider an optimal non-preemptive tourσ: let c(σ) denote its length, and|σ| denote the number
of edge traversals inσ. Note that if in some visit to a vertexv in σ there is no pick-up or drop-off, then
the tour can be short-cut over vertexv, and it still remains feasible. Further, due to triangle inequality, the
lengthc(σ) does not increase by this operation. So we may assume that each vertex visit inσ involves a
pick-up or drop-off of some object. Since there is exactly one pick-up & drop-off for each object, we have
|σ| ≤ 2m + 1. Define thestretchof a demandi to be the number of edge traversals inσ between the
pick-up and drop-off of objecti. The demands are partitioned as follows: for eachj = 1, · · · , ⌈log(2m)⌉,
groupGj consists of all the demands whose stretch lie in the interval[2j−1, 2j). We consider each group
Gj separately.

Claim 8 For eachj = 1, · · · , ⌈log(2m)⌉, there is a tourτj that serves all the demands in groupGj , satisfies
condition 1 of Theorem 7, and has length at most6 · c(σ).

Proof: Consider tourσ as a lineL, with every edge traversal inσ represented by a distinct edge inL.
Number the vertices inL from 0 toh, whereh = |σ| is the number of edge traversals inσ. Note that each
vertex inV may be represented multiple times inL. Each demand is associated with the numbers of the
vertices (inL) where it is picked up & dropped off.

Let r = 2j−1, and partitionGj as follows: forl = 1, · · · , ⌈hr ⌉, setOl,j consists of all demands inGj

that are picked up at a vertex numbered between(l − 1)r andlr − 1. Since every demand inGj has stretch
in the interval[r, 2r], every demand inOl,j is dropped off at a vertex numbered betweenlr and(l +2)r− 1.
Note that|Ol,j | equals the number of demands inGj carried over edge(lr − 1, lr) by tourσ, which is at
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mostk. We define segmentSl,j to start at vertex number(l − 1)r and traverse all edges inL until vertex
number(l+2)r−1 (servicing all demands inOl,j by first picking up each demand between vertices(l−1)r
& lr − 1; then dropping off each demand between verticeslr & (l + 2)r − 1), and then return (with the
vehicle being empty) to vertexlr. Clearly, the number of objects carried over any edge inSl,j is at most the
number carried over the corresponding edge traversal inσ. Also, each edge inL participates in at most 3
segmentsSl,j, and each edge is traversed at most twice in any segment. So the total length of all segments
Sl,j is at most6 · c(σ). We define tourτj to be the concatenationS1,j · · ·S⌈h/r⌉,j. It is clear that this tour
satisfies condition 1 of Theorem 7.�

Applying this claim to each groupGj , and concatenating the resulting tours, we obtain the tourτ satis-
fying condition 1 and having length at most6 log(2m) · c(σ) = O(log m) · c(σ).�

Remark: The ratioO(log m) in Theorem 7 is almost best possible. There are instances of Dial-a-Ride (even
on an unweighted line), where every solution satisfying condition 1 of Theorem 7 has length at least
Ω(max{ log m

log log m , k
log k}) times the optimal non-preemptive tour. So, if we only use solutions of this structure,

then it is not possible to obtain an approximation factor (just in terms of capacityk) for Dial-a-Ride that
is better thanΩ(k/ log k). The solutions found by the algorithm for Dial-a-Ride in [CR98] also satisfy
condition 1 of Theorem 7. It is interesting to note that when the underlying metric is a hierarchically well-
separated tree, [CR98] obtain a solution of such structure having lengthO(

√
k) times the optimum, whereas

there is a lower bound ofΩ( k
log k ) even for the simple case of an unweighted line.

3.1 Classical Dial-a-Ride

Theorem 7 suggests a greedy strategy for Dial-a-Ride, basedon repeatedly finding the best batch ofk
demands to service. This greedy subproblem turns out to be the minimum ratiok-forest problem (Defini-
tion 5), for which we already have an approximation algorithm. The next theorem sets up the reduction from
k-forest to Dial-a-Ride.

Theorem 9 (Reducing Dial-a-Ride to minimum ratiok-forest) A ρ-approximation algorithm for mini-
mum ratiok-forest implies anO(ρ log2 m)-approximation algorithm for Dial-a-Ride.

Proof: The algorithm for Dial-a-Ride is as follows.

1. C = φ.

2. Until there are no uncovered demands, do:

(a) Solve the minimum ratiok-forest problem, to obtain a treeC coveringkC ≤ k new demands.

(b) SetC ← C ∪ C.

3. For each treeC ∈ C, obtain an Euler tour onC to locally service all demands (pick up allkC objects in the first
traversal, and drop them all in the second traversal). Then use a 1.5-approximate TSP tour on the sources, to
connect all the local tours, and obtain a feasible non-preemptive tour.

Consider the tourτ and its segments as in Theorem 7. If the number of uncovered demands in some
iteration ism′, one of the segments inτ is a solution to the minimum ratiok-forest problem of value at
most d(τ)

m′ . Since we have aρ-approximation algorithm for this problem, we would find a segment of ratio

at mostO(ρ) · d(τ)
m′ . Now a standard set cover type argument shows that the total length of trees inC is

at mostO(ρ log m) · d(τ) ≤ O(ρ log2 m) · OPT , whereOPT is the optimal value of the Dial-a-Ride
instance. Further, the TSP tour on all sources is a lower bound on OPT , and we use a 1.5-approximate
solution [Chr77]. So the final non-preemptive tour output instep 5 above has length at mostO(ρ log2 m) ·
OPT .�
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This theorem is in fact stronger than Theorem 4 claimed earlier: it is easy to see that any approximation
algorithm fork-forest implies an algorithm with the same guarantee for minimum ratiok-forest. Note that,
m andk may be super-polynomial inn. However, we show in Section 3.3 that with the loss of a constant
factor, the general Dial-a-Ride problem can be reduced to one where the number of demandsm ≤ n4.
Based on this and Theorem 9, aρ approximation algorithm for minimum ratiok-forest actually implies
anO(ρ log2 n) approximation algorithm for Dial-a-Ride. Using the approximation algorithm for minimum
ratio k-forest (Section 2), we obtain anO(min{√n,

√
k} · log2 n) approximation algorithm for the Dial-a-

Ride problem.
Remark: If we use theO(

√
k) approximation fork-forest, the resulting non-preemptive tour is in fact

feasible even for a
√

k capacity vehicle! As noted in [CR98], this property is also true of their algorithm,
which is based on an entirely different approach.

3.2 Non-uniform Dial-a-Ride

The greedy framework for Dial-a-Ride described above is actually more generally applicable than to just the
classical Dial-a-Ride problem. In this section, we consider the Dial-a-Ride problem under a substantially
more general class of cost functions, and show how thek-forest problem can be used to obtain an approx-
imation algorithm for this generalization as well. In fact,the approximation guarantee we obtain by this
approach matches the best known for the classical Dial-a-Ride problem. Our framework for Dial-a-Ride
is well suited for such a generalization since it is a ‘primal’ approach, based on directly approximating a
near-optimal solution; this approach is not too sensitive to the cost function. On the other hand, the Charikar
& Raghavachari [CR98] algorithm is a ‘dual’ approach, basedon obtaining a good lower bound, which
depends heavily on the cost function. Thus it is unclear whether their techniques can be extended to handle
such a generalization.

Definition 10 (Non-uniform Dial-a-Ride) Given ann vertex undirected graphG = (V,E), a root vertex
r, a set ofm demands{(si, ti)}mi=1, and a non-decreasing cost functionce : {0, 1, · · · ,m} → R

+ on each
edgee ∈ E (wherece(l) is the cost incurred by the vehicle in traversing edgee while carrying l objects),
find a non-preemptive tour (starting & ending atr) of minimumtotal costthat moves each objecti from si

to ti.

Note that the classical Dial-a-Ride problem is a special case when the edge costs are given by:ce(l) = de

if l ≤ k & ce(l) = ∞ otherwise, wherede is the edge length in the underlying metric. We may assume
(without loss in generality) that for any fixed valuel ∈ [0,m], the edge costsce(l) induce a metric onV .
Similar to Theorem 7, we have a near optimal solution with a ‘batch’ structure for the non-uniform Dial-a-
Ride problem as well, which implies the algorithm in Theorem12. The proof of the following corollary is
almost identical to that of Theorem 7, and is omitted.

Corollary 11 (Non-uniform Structure Theorem) Given any instance of non-uniform Dial-a-Ride, there
exists a feasible tourτ satisfying the following conditions:

1. τ can be split into a set of segments{S1, · · · , St} (i.e., τ = S1 · S2 · · ·St) where each segmentSi

services a setOi of demands such thatSi is a path that first picks up each demand inOi and then
drops each of them.

2. The cost ofτ is at mostO(log m) times the cost of an optimal tour.
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Theorem 12 (Approximating non-uniform Dial-a-Ride) A ρ-approximation algorithm for minimum ra-
tio k-forest implies anO(ρ log2 m)-approximation algorithm for non-uniform Dial-a-Ride. Inparticular,
there is anO(

√
n log2 m)-approximation algorithm.

Proof: Corollary 11 again suggests a greedy algorithm for non-uniform Dial-a-Ride based on the following
greedy subproblem: find a setT of uncovered demands and a pathτ0 that first picks up each object inT
and then drops off each of them, such that the ratio of the costof τ0 to |T | is minimized. However, unlike
in the classical Dial-a-Ride problem, in this case the cost of path τ0 does not come from a single metric.
Nevertheless, the minimum ratiok-forest problem can be used to solve this subproblem as follows.

1. For everyk = 1, · · · , m:

(a) Define length functiond(k)
e = ce(k) on the edges.

(b) Solve the minimum ratiok-forest problem on metric(V, d(k)) with targetk, to obtain treeT ′

k covering
nk ≤ k demands.

(c) Obtain an Euler tourTk of T ′

k that services thesenk demands, by picking up all demands in one traversal
and then dropping them all in a second traversal.

2. Return the tourTk having the smallest ratioc(Tk)
nk

(over all1 ≤ k ≤ m).

Assuming aρ-approximation algorithm for minimum ratiok-forest (for all values ofk), we now show
that the above algorithm obtains a16ρ-approximate solution to the greedy subproblem. The cost oftour Tk

in step 3 isc(Tk) ≤ 4 · d(k)(T ′
k), sinceTk involves traversing a tour on treeT ′

k twice and the vehicle carries

at mostnk ≤ k objects at every point inTk. So the ratio of tourTk is c(Tk)
nk
≤ 4

d(k)(T ′
k)

nk
= 4 · ratio(T ′

k).
Let τ denote the optimal path for the greedy subproblem,T the set of demands that it services, andt = |T |.
Let T1 denote the last34t demands that are picked up, andT2 denote the first34t demands that are dropped
off. It is clear thatT ′ = T1 ∩ T2 has at leastt/2 demands; letT ′′ ⊂ T ′ be any subset with|T ′′| = t/4.
Let τ ′ denote the portion ofτ between thet

4 -th pick up and the3t
4 -th drop off. Note that when pathτ

is traversed, there are at leastt
4 objects in the vehicle while traversing each edge inτ ′. So the cost ofτ ,

c(τ) ≥∑

e∈τ ′ ce(t/4). Sinceτ ′ contains the end points of all demands inT ′ ⊃ T ′′, it is a feasible solution
(covering the demandsT ′′) to minimum ratiok-forest with targetk = t/4 in the metricd(t/4), having ratio
(
∑

e∈τ ′ ce(t/4))/
t
4 ≤

4c(τ)
t . So the ratio of tourTt/4 (obtained from theρ-approximate treeT ′

t/4) is at most

4·ratio(T ′
k) ≤ 4ρ4c(τ)

t = 16ρ c(τ)
t . Thus we have a16ρ-approximation algorithm for the greedy subproblem.

Based on Corollary 11, it can now be shown (as in Theorem 9) that aρ′-approximation algorithm for the
greedy subproblem implies anO(ρ′ · log2 m)-approximation algorithm for non-uniform Dial-a-Ride. Using
the above16ρ-approximation for the greedy subproblem, we have the theorem.�

3.3 Weighted Dial-a-Ride

So far we worked with the unweighted version of Dial-a-Ride,where each object has the same weight. In
this section, we extend our greedy framework for Dial-a-Ride to the case when objects have different sizes,
and the total size of objects in the vehicle must be bounded bythe vehicle capacity. Here we only extend the
classical Dial-a-Ride problem and not the generalization of Section 3.2. The problem studied in this section
has been studied earlier as thepickup and deliveryproblem [SS95].

Definition 13 (Weighted Dial-a-Ride) Given a vehicle of capacityQ ∈ N, ann-vertex metric space(V, d),
a root vertexr, and a set ofm objects{(si, ti, wi)}mi=1 (with objecti having sourcesi, destinationti & an
integer size1 ≤ wi ≤ Q), find a minimum length (non-preemptive) tour of the vehiclestarting (and ending)
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at r that moves each objecti from its source to its destination such that the total size ofobjects carried by
the vehicle is at mostQ at any point on the tour.

The classical Dial-a-Ride problem is a special case whenwi = 1 for all demands and the vehicle
capacityQ = k. The following are two lower bounds for weighted Dial-a-Ride: a TSP tour on the set of
all sources & destinations (Steiner lower bound); and

∑m
i=1

wi·d(si,ti)
Q (flow lower bound). In fact, as can be

seen easily, these two lower bounds are valid even for the preemptive version of weighted Dial-a-Ride; so
they are termedpreemptive lower bounds.

The main result of this section (Theorem 15) reduces weighted Dial-a-Ride to the classical Dial-a-
Ride problem with the additional property that the number ofdemands (m) is small (polynomial in the
number of verticesn). This shows that in order to approximate weighted Dial-a-Ride, it suffices to consider
instances of the classical Dial-a-Ride problem with a smallnumber of demands. The next lemma shows
that even if the vehicle is allowed to split each object over multiple deliveries, the resulting tour isnot
much shorter than the tour where each object is required to beserved in a single delivery (as is the case in
weighted Dial-a-Ride). This lemma is the main ingredient inthe proof of Theorem 15. In the following, for
any instance of weighted Dial-a-Ride, we define theunweighted instancecorresponding to it as a classical
Dial-a-Ride instance with vehicle capacityQ, andwi (unweighted) demands each having sourcesi and
destinationti (for each1 ≤ i ≤ m).

Lemma 14 Given any instanceI of weighted Dial-a-Ride, and a solutionτ to the unweighted instance
corresponding toI, there is a polynomial time computable solution toI having length at mostO(1) · d(τ).

Proof: Let J denote the unweighted instance corresponding toI. Define lineL as in the proof of Theo-
rem 7 by traversingτ from r: for every edge traversal inτ , add a new edge of the same length at the end of
L . For each unweighted object inJ corresponding to demandi in I, there is a segment inτ (correspond-
ingly in L ) where it is moved fromsi to ti. So each demandi ∈ I corresponds towi segments inτ (each
being a path fromsi to ti). For each demandi in I, we assigni to one of itswi segments picked uniformly
at random: call this segmentli. For an edgee ∈ L , let Ne =

∑

i:e∈li
wi denote the random variable which

equals thetotal weightof demands whose assigned segments containe. Note that the expected value ofNe

is exactly the number of unweighted objects carried byτ when traversing the edge corresponding toe. Since
τ is a feasible tour forJ , E[Ne] ≤ Q for all e ∈ L .

Consider a random instanceR of Dial-a-Ride on lineL with vehicle capacityQ and demands as
follows: for each demandi in I, an object of weightwi is to be moved along segmentli (chosen randomly as
above). Clearly, any feasible tour forR corresponds to a feasible tour forI of the same length. Note that the
flow lower bound for instanceR is F =

∑

e∈L
de⌈Ne

Q ⌉, and the Steiner lower bound is
∑

e∈L
de = d(τ).

Using linearity of expectation,E[F ] ≤
∑

e∈L
de(

E[Ne]
Q + 1) ≤ 2 · d(τ). Let R∗ denote the instance (on

line L ) obtained by assigning each demandi in I to its shortest length segment (among thewi segments
corresponding to it). Clearly this assignment minimizes the flow lower bound (over all assignments of
demands to segments). SoR∗ has flow bound≤ E[F ] ≤ 2 · d(τ), and Steiner lower boundd(τ).

Finally, we note that the 3-approximation algorithm for Dial-a-Ride on a line [KRW00] extends to
a constant factor approximation algorithm for the case withweighted demands as well (this can be seen
directly from [KRW00]). Additionally, this approximationguarantee is relative to the preemptive lower
bounds. Thus, using this algorithm onR∗, we obtain a feasible solution toI of length at mostO(1) ·d(τ).�

Theorem 15 (Weighted Dial-a-Ride to unweighted)Suppose there is aρ-approximation algorithm for in-
stances of classical Dial-a-Ride with at mostO(n4) demands. Then there is anO(ρ)-approximation algo-
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rithm for weighted Dial-a-Ride (with any number of demands). In particular, there is anO(
√

n log2 n)
approximation for weighted Dial-a-Ride.

Proof: Let I denote an instance of weighted Dial-a-Ride with objects{(wi, si, ti) : 1 ≤ i ≤ m}, andτ∗ an
optimal tour forI. LetP = {(s1, t1), · · · , (sl, tl)} be the distinct pairs of vertices that have some demand
between them, and letTi denote the total size ofall objects having sourcesi and destinationti. Note that
l ≤ n(n − 1). LetPhigh = {i ∈ P : Ti ≥ Q

2 }, Plow = {i ∈ P : Ti ≤ Q
l }, andP ′ = P \ (Phigh ∪ Plow).

We now show how to separately service objects inPlow, Phigh & P ′.
Servicing Plow: The total size inPlow is at mostQ; so we can service all these pairs by traversing a

single 1.5-approximate tour [Chr77] on the sources and destinations. Note that the length of this tour is at
most 1.5 times the Steiner lower bound, hence at most1.5 · d(τ∗).

ServicingPhigh: Let C be a 1.5-approximate minimum tour on all the sources. The pairs inPhigh are
serviced by a tourτ1 as follows. Traverse alongC, and when a sourcesi in Phigh is visited, traverse the
direct edge to the corresponding destinationti & back, as few times as possible so as to move all the objects
betweensi and ti, as described next. Note that every object to be moved between si andti has size (the
original wi size) at mostQ, and the total size of such objectsTi ≥ Q/2. So these objects can be partitioned
such that the size of each part (except possibly the last) is in the interval[Q2 , Q]. So the number of times
edge(si, ti) is traversed to service the demands between them is at most2⌈2Ti

Q ⌉ ≤ 2(2Ti
Q + 1) ≤ 8Ti

Q . Now,

the length of tourτ1 is at mostd(C) +
∑

(si,ti)∈Phigh
8d(si, ti)

Ti
Q ≤ d(C) + 8

∑m
i=1

wi·d(si,ti)
Q . Note that

d(C) is at most 1.5 times the minimum tour on all sources (Steiner lower bound), and the second term above
is the flow lower bound. So tourτ1 has length at mostO(1) times the preemptive lower bounds forI, which
is at mostO(1) · d(τ∗).

ServicingP ′: We know that the total sizeTi of each pairi in P ′ lies in the interval(Q/l,Q/2). Let I ′
denote the instance of weighted Dial-a-Ride with demands{(si, ti, Ti) : i ∈ P ′} and vehicle capacityQ;
note that the number of demands inI ′ is at mostl. The tourτ∗ restricted to the objects corresponding to
pairs inP ′ is a feasible solution to theunweighted instancecorresponding toI ′ (but it may not feasible for
I ′ itself). However Lemma 14 implies that the optimal value ofI ′, opt(I) ≤ O(1) · d(τ∗).

Next we reduce instanceI ′ to an instanceJ of weighted Dial-a-Ride satisfying the following conditions:
(i) J has at mostl demands,(ii) each object inI has size at most2l, (iii) any feasible solution toJ is feasible
for I ′, and(iv) the optimal valueopt(J ) ≤ O(1) · opt(I ′). If Q ≤ 2l, J = I ′ itself satisfies the required
conditions. SupposeQ ≥ 2l, then definep = ⌊Ql ⌋; note thatQ ≥ l · p ≥ Q − l ≥ Q

2 . Round up each
sizeTi to the smallest integral multipleT ′

i of p, and round down the capacityQ to Q′ = l · p. Since each
sizeTi ∈ (Q

l , Q
2 ), all sizesT ′

i ∈ {p, 2p, · · · , lp}. Now letI ′′ denote the weighted Dial-a-Ride instance with
demands{(si, ti, T

′
i ) : i ∈ P ′} and vehicle capacityQ′ = lp. One can obtain a feasible solution forI ′′

from any feasible solutionσ for I ′ by traversingσ a constant number of times: this follows fromQ′ ≥ Q
2

& T ′
i ≤ max{2Ti, Q

′}.3 So the optimal value ofI ′′ is at mostO(1) · opt(I ′). Now note that all sizes and
the vehicle capacity inI ′′ are multiples ofp; scaling down each of these quantities byp, we get an instance
J equivalentto I ′′ where the vehicle capacity isl (and every demand size is at mostl). This instanceJ
satisfies all the four conditions claimed above.

Now observe that the instanceJ can be solved usingρ-approximation algorithm assumed in the the-
orem. SinceJ has at mostl demands (each of size≤ 2l), the unweighted instance corresponding toJ

3In particular, consider simulating a traversal alongσ of a capacityQ vehicle (T0) by 8 capacityQ′ vehiclesT ′
1, · · · , T ′

8, each
running in parallel alongσ. Whenever vehicleT0 picks-up an objecti, one of the vehicles{T ′

g}
8
g=1 picks-upi: if wi ≤ Q

4
, any

vehicle{T ′
g}

4
g=1 that has free capacity picks-upi; if wi > Q

4
, any vehicle{T ′

g}
8
g=5 that is empty picks-upi. It is easy to see that

if at some point none of the vehicles{T ′
g}

8
g=1 picks-up an object, there must be a capacity violation inT0.
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has at most2l2 ≤ 2n4 demands. Thus, this unweighted instance can be solved usingtheρ-approximation
algorithm for such instances, assumed in the theorem. Then using the algorithm in Lemma 14, we obtain a
solution toJ , of length at mostO(ρ) · opt(J ) ≤ O(ρ) · opt(I ′) ≤ O(ρ) ·d(τ∗). Since any feasible solution
toJ corresponds to one forI ′, we have a tour servicingP ′ of length at mostO(ρ) · d(τ∗).

Finally, combining the tours servicingPlow, Phigh & P ′, we obtain a feasible tour forI having length
O(ρ) · d(τ∗), which gives us the desired approximation algorithm.�

Theorem 15 also justifies the assumptionlog m = O(log n) made at the end of Section 3. This is important
because in generalm may be super-polynomial inn.

4 The Effect of Preemptions
In this section, we study the effect of the number of preemptions in the Dial-a-Ride problem. We mentioned
two versions of the Dial-a-Ride problem (Definition 3): in the preemptive version, an object may be pre-
empted any number of times, and in the non-preemptive version objects are not allowed to be preempted
even once. Clearly the preemptive version is least restrictive and the non-preemptive version is most restric-
tive. One may consider other versions of the Dial-a-Ride problem, where there is a specified upper boundP
on the number of times an object can be preempted. Note that the caseP = 0 is the non-preemptive version,
and the caseP = n is the preemptive version. We show that for any instance of the Dial-a-Ride prob-
lem, there is a tour that preempts each object at most once (i.e.,P = 1) and has length at mostO(log2 n)
times an optimal preemptive tour (i.e.,P = n). This implies that the real gap between preemptive and
non-preemptive tours is between zero and one preemption perobject. A tour that preempts each object at
most once is called a1-preemptive tour.

Theorem 16 (Many preemptions to one preemption)Given any instance of the Dial-a-Ride problem, there
is a 1-preemptive tour of length at mostO(log2 n) · OPTpmt, whereOPTpmt is the length of an optimal
preemptive tour. Such a tour can be found in randomized polynomial time.

Proof: Using the results on probabilistic tree embedding [FRT03],we may assume that the given metric is
a hierarchically well-separatedtreeT . This only increases the expected length of the optimal solution by
a factor ofO(log n). Further, treeT hasO(log dmax

dmin
) levels, wheredmax anddmin denote the maximum

and minimum distances in the original metric. We first observe that using standard scaling arguments, it
suffices to assume thatdmax

dmin
is polynomial inn. Without loss of generality, any preemptive tour involves at

most2m · n edge traversals: each object is picked or dropped at most2n times (once at each vertex), and
every visit to a vertex involves picking or dropping at leastone object (otherwise the tour can be shortcut
over this vertex at no increase in length). By retaining onlyvertices within distanceOPTpmt/2 from the
root r, we preserve the optimal preemptive tour and ensure thatdmax ≤ OPTpmt. Now consider modifying
the original metric by setting all edges of length smaller thanOPTpmt/2mn3 to length 0; the new distances
are shortest paths under the modified edge lengths. So any pairwise distance decreases by at mostOPTpmt

2mn2 .
Clearly the length of the optimal preemptive tour only decreases under this modification. Since there are at
most2mn edge traversals in any preemptive tour, the increase in tourlength in going from the new metric to
the original metric is at most2mn · OPTpmt

2mn2 ≤ OPTpmt

n . Thus at the loss of a constant factor, we may assume
thatdmax/dmin ≤ 2mn3. Further, the reduction in Theorem 14 also holds for preemptive Dial-a-Ride; so
we may assume (at the loss of an additional constant factor) that the number of demandsm ≤ O(n4). So
we havedmax/dmin ≤ O(n7) and hence treeT hasO(log n) levels.

The treeT resulting from the probabilistic embedding has several Steiner vertices that are not present in
the original metric; so the tour that we find onT may actually preempt objects at Steiner vertices, in which
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case it is not feasible in the original metric. However as shown by Gupta [Gup01], these Steiner vertices
can be simulated by vertices in the original metric (at the loss of a constant factor). Based on the preceding
observations, we assume that the metric is a treeT on the original vertex set havingl = O(log n) levels,
such that the expected length of the optimal preemptive touris O(log n) ·OPTpmt.

We now partition the demands inT into l sets withDi (for i = 1, · · · , l) consisting of all demands
having their least common ancestor (lca) in leveli. We service eachDi separately using a tour of length
O(OPTpmt). Then concatenating the tours for each leveli, we obtain the theorem.
Servicing Di: For each vertexv at level i in T , let Lv denote the demands inDi that havev as their
lca. Consider an optimalpreemptivetour that services the demandsDi. Since the subtrees under any
two different leveli vertices are disjoint and there is no demand inDi across such subtrees, we may as-
sume that this optimal tour is a concatenation of disjoint preemptive tours servicing eachLv separately. If
OPTpmt(v) denotes the length of an optimal preemptive tour servicingLv with v as the starting vertex,
∑

v OPTpmt(v) ≤ OPTpmt.
Now consider an optimal preemptive tourτv servicingLv. Since thesj− tj path of each demandj ∈ Lv

crosses vertexv, at some point in tourτv the vehicle is atv with objectj in it. Consider the tourσv obtained
by modifying τv so that it drops each objectj at v when the vehicle is atv with object j in it. Clearly
d(σv) = d(τv) = OPTpmt(v). Note thatσv is a feasible preemptive tour for thesingle source Dial-a-
Rideproblem with sinkv and all sources inLv. Thus the algorithm of [HK85] gives a non-preemptive tour
σ′

v that moves all objects inLv from their sources tov, having length at most2.5d(σv) = 2.5OPTpmt(v).
Similarly, we can obtain a non-preemptive tourσ′′

v that moves all objects inLv from v to their destinations,
having length at most2.5OPTpmt(v). Now σ′

v · σ′′
v is a 1-preemptive tour servicingLv of length at most

5 ·OPTpmt(v).
We now run a DFS onT to visit all vertices in leveli, and use the algorithm described above for

servicing demandsLv whenv is visited in the DFS. This results in a tour servicingDi, having length at
most2d(T ) + 5

∑

v OPTpmt(v). Here2d(T ) is the Steiner lower bound, and
∑

v OPTpmt(v) ≤ OPTpmt.
Thus the tour servicingDi has length at most6 ·OPTpmt.

Finally concatenating the tours for each leveli = 1, · · · , l, we obtain a 1-preemptive tour onT of
length O(log n) · OPTpmt, which translates to a 1-preemptive tour on the original metric having length
O(log2 n) ·OPTpmt. �

Motivated by obtaining an improved approximation for Dial-a-Ride on the Euclidean plane, we next
consider the worst case gap between an optimal non-preemptive tour and the preemptive lower bounds. As
mentioned earlier, [CR98] showed that there are instances of Dial-a-Ride where the ratio of the optimal non-
preemptive tour to the optimal preemptive tour isΩ(n1/3). However, the metric involved in this example
was the uniform metric onn points, which can not be embedded in the Euclidean plane. Thefollowing
theorem shows that even in this special case, there can be a polynomial gap between non-preemptive and
preemptive tours, and implies that just preemptive lower bounds do not suffice to obtain a poly-logarithmic
approximation guarantee.

Theorem 17 (Preemption gap in Euclidean plane)There are instances of Dial-a-Ride on the Euclidean
plane where the optimal non-preemptive tour has lengthΩ( n1/8

log3 n
) times the optimal preemptive tour.

Proof: Consider a square of side 1 in the Euclidean plane, in which a set ofn demand pairs are distributed
uniformly at random (each demand point is generated independently and is distributed uniformly at random
in the square). The vehicle capacity is set tok =

√
n. LetR denote a random instance of Dial-a-Ride ob-

tained as above. We show that in this case, the optimal non-preemptive tour has length̃Ω(n1/8) with high
probability. We first show the following claim.
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Claim 18 The minimum length of a tree containingk pairs inR is Ω(n1/8

log n), w.h.p.

Proof: Take any setS of k =
√

n demand pairs. Note that the number of such setsS is
(

n
k

)

. This setS has
2k points each of them generated uniformly at random. It is known that there arepp−2 different labeled trees
onp vertices (see e.g. [vLW92], Ch.2). The termlabeledemphasizes that we are not identifying isomorphic
graphs, i.e., two trees are counted as the same if and only if exactly the same pairs of vertices are adjacent.
Thus there are at most(2k)2k−2 such trees just on setS. Consider any treeT among these trees and root it
at the source point with minimum label. Here we assume thatT has been generated using the “Principle of
Deferred Decisions”, i.e., nodes will be generated one by one according to some breadth-first ordering ofT .
We say that an edge isshort if its length is at mostc

αk (c andα ∈ (0, 1
2 ) will be fixed later).

If T has length at mostc, it is clear that at most anα fraction of its edges arenotshort. SoPr[length(T ) ≤
c] ≤ ∑

H Pr[edges in H are short], whereH in the summation ranges over all edge-subsets inT
with |H| ≥ (1 − α)2k. For a fixedH, we boundPr[edges in H are short] as follows. For any edge
(v, parent(v)) (note parent(v) is well-defined sinceT is rooted), assuming that parent(v) is fixed, the prob-
ability that this edge is short isp = π( c

αk )2. So we can upper bound the probability that edgesH are short
by p|H| ≤ p(1−α)2k. So we havePr[length(T ) ≤ c] ≤ 22k · p(1−α)2k, as the number of different edge sets
H is at most22k.

By a union bound over all such labeled treesT , the probability that the length of the minimum spanning
tree onS is less thanc is at most(2k)2k ·22k ·p(1−α)2k. Now taking a union bound over allk-setsS, the prob-
ability that the minimum length of a tree containingk pairs is less thanc is at most

(

n
k

)

(2k)2k22kp(1−α)2k.
Sincek =

√
n, this term can be bounded as follows:

(ek)k(4k)2kπ(1−α)2k(
c

αk
)(1−α)4k ≤ 500kk3k(

c

αk
)(1−α)4k = [500 · ( c

α
)4−4α(

1

k
)1−4α]k ≤ 2−k

The last inequality above holds whenc ≤ α
1000 · k1/4−3α/(1−4α). Settingα = 1

log k , we get

Pr[∃ k1/4

8000 · log k
length tree containingk pairs inR] ≤ 2−k

So, with probability at least1 − 2−
√

n, the minimum length of a tree containingk pairs inR is at least
Ω(n1/8

log n). �

From Theorem 7, we obtain that there is a near optimal non-preemptive tour servicing all the demands
in segments, where each segment (except possibly the last) involves servicing a set ofk2 ≤ t ≤ k demands.
Although the lower bound ofk/2 is not stated in Theorem 7, it is easy to extend the statement to include it.
This implies that any solution of this structure has at leastn

k = k segments. Since each segment covers at
leastk/2 pairs, Claim 18 implies that each of these segments has length Ω(n1/8/ log n). So the best solution

of the structure given in Theorem 7 has lengthΩ(n1/8

log nk). But since there is a near-optimal solution of this

structure, the optimal non-preemptive tour onR has lengthΩ( n1/8

log2 n
k).

On the other hand, the flow lower bound forR is at mostnk = k, and the Steiner lower bound is at most
O(
√

n) = O(k) (anO(
√

n) length tree on the2n points can be constructed using a
√

2n×
√

2n gridding).
So the preemptive lower bounds are bothO(k); now using the algorithm of [CR98], we see that the optimal
preemptive tour has lengthO(k log n). Combined with the lower bound for non-preemptive tours, weobtain
the Theorem.�

Acknowledgements:We thank Alan Frieze for his help in proving Theorem 17.
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