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Abstract

Dialkylbiaryl phosphines are a valuable class of ligand for Pd-catalyzed amination reactions and

have been applied in a range of contexts. This review attempts to aid the reader in the selection of

the best choice of reaction conditions and ligand of this class for the most commonly encountered

and practically important substrate combinations.

1. Introduction

Palladium-catalyzed amination of aryl, vinyl and heteroaryl halides and pseudohalides has

rapidly emerged as a valuable tool in the synthesis of pharmaceuticals, natural products and

novel materials.1–4 The development of Pd-catalyzed C–N coupling has significantly

contributed to the streamlining of the synthesis of small molecule pharmaceutical agents,

allowing more efficient syntheses and facilitating a modular approach to analogue

synthesis.5–7 The significance of this methodology in this regard stems from the prevalence

of aromatic amines in biologically active molecules,8 important classes include kinase

inhibitors,9, 10 antibiotics11, 12 and CNS active agents.13

Breakthroughs in this area have typically been driven by the implementation of new classes

of ligands. Notable examples include chelating diphenylphosphino ligands such as

BINAP,14, 15 dppf16 and Xantphos,17 more electron-rich chelating phosphines such as

Josiphos,18 N-heterocyclic carbenes19 and trialkylphosphines20, 21 that have served to

continually increase the substrate scope and to render the reactions more efficient.22, 23

Despite the plethora of systems currently available for Pd-catalyzed C–N coupling, only a

relatively limited group has seen extensive practical application. This reflects on a

combination of the ease of use of a catalyst system, its robustness, availability of ligands and

substrate scope. Catalysts based on dialkylbiaryl phosphines compare favorably with other

systems in this regard and have been extensively applied in the synthesis of biologically

active molecules.4 These ligands were first described by Buchwald for Pd-catalyzed cross-

coupling in 1998.24 Since then further work25–37 has led to the development of a versatile

family of structurally related ligands (Section 2.1) that have been shown to generate highly

active catalysts for a range of reactions, notably Pd-catalyzed amination4 and etherification

of aryl halides,38, 39 arylation of enolates,40 and Suzuki-Miyaura cross-coupling.41, 42 A key

advantage of these ligands over some others is that the reactions can typically be performed

without a dry-box in standard laboratory glassware.
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Progress in this field has been brisk and reactions with these ligand systems can now be

applied to a diverse array of substrates. The optimal ligand and other reaction parameters

(such as Pd source, base, solvent and temperature) can vary for different substrate

combinations. Part of the reason for this disparity stems from the wide variation in the

electronic and steric properties of the nitrogen-based nucleophiles when compared to other

cross-coupling processes such as the Suzuki-Miyaura reaction. The amine and amides can

differ in nucleophilicity and pKa which means that the rate determining step of the catalytic

cycle can vary with substrate,43 contributing to the difficulty in selecting the best conditions.

It is the goal of this review to provide a practical guide to the use of these catalysts that will

enable the practitioner to more easily select the most efficacious conditions for a given

substrate combination. As a result, mechanistic details will only be discussed where they

directly impinge on the choice of reaction conditions. A generalized catalytic cycle is

illustrated in order to aid later discussion (Scheme 1).

There are a number of other thorough reviews on Pd-catalyzed C–N bond formation that the

reader is guided to for descriptions of the advancement of the field and

applications,22, 23, 44–57 for mechanistic aspects58–62 or applications on process development

scale.2, 63, 64 There are also reviews specifically focussed on applications of dialkylbiaryl

phosphine ligands in Pd-catalyzed amination and Suzuki cross-coupling reactions.4, 41

2. Key Variables

The key reaction parameters of ligand, Pd source, base and solvent are discussed in detail

below (Scheme 2). The selection is typically determined by both the structure of the amine

and electrophile (see Section 3).

It is worth noting that there is often an interaction between these variables, for example, the

best base for a reaction may change depending on the solvent employed. Therefore the

optimization of reaction conditions can often be most efficiently achieved by a statistical

DOE (Design of Experiment) approach.65, 66 Some of the considerations in the optimization

of Pd-catalyzed amination reactions with dialkylbiaryl phosphine ligands may also apply to

other ligand systems, however, the reader should be aware that many observations will not

be directly transferable.

2.1 Ligand

One of the most important determinants of the success of a given amination reaction with

dialkylbiaryl phosphine-based catalysts is the structure of the ligand. These ligands can

typically be made in a one step procedure via addition of an aryl lithium or Grignard reagent

to an appropriate aryne followed by quenching with a chlorophosphine.67, 68 As a result of

the modularity afforded by this synthetic route numerous derivatives have been described

and this has allowed fine-tuning of ligand structure for each application (Figure 1).

These ligands are air stable,69 easily handled crystalline solids and a number are now

commercially available. The original studies made use of DavePhos (L8) and JohnPhos (L9)

for amination reactions24, 70 and these ligands have found ongoing application in the

synthesis of natural products5, 71–74 and pharmaceuticals,75–79 including examples in

process development.80, 81 Subsequently, several structural variants have been reported.82–88

A major breakthrough came with the discovery of XPhos (L3)83 and RuPhos (L2),84 which

supply improved reactivity in a diversity of amination reactions. More recently, the ligand

BrettPhos (L1)85 was disclosed which confers the most active dialkylbiaryl-based phosphine

system for the selective arylation of 1° amines. To date, the two most generally useful of

these ligands for amination are L185, 89 for the arylation of 1° amines and L2 for 2° amines

(Figure 2).89, 90

Surry and Buchwald Page 2

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



A number of other ligands of this class are also commercially available and are valuable in

Pd-catalyzed amination, their particular applications are discussed below (Figure 3). It

should be noted that several closely related ligands were later developed by others and these

can also provide active catalysts for Pd-catalyzed amination.26, 28, 31, 33, 34, 91

The recent realization of the high reactivity of monoligated Pd(0) complexes towards

oxidative addition has been decisive in the utilization of aryl chlorides in cross-coupling

reactions.92 This might lead the reader to the conclusion that the ideal ratio of metal to

ligand in these reactions is 1:1. For simple substrates this may be true, but an extra

equivalent of ligand relative to Pd is often needed in order to stabilize the catalyst in difficult

cases in which long reaction times are required or when a high TON at the metal center is

desired.90, 93 This tactic is effective when using dialkylbiaryl phosphine ligands because in

the presence of an extra equivalent of ligand the L1Pd complex can still be the dominant

species in solution.94 It is also worth mentioning that an extra equivalent of ligand could be

necessary for catalyst activation. This will be discussed in more detail in the following

section.

2.2 Catalyst Activation

The efficiency with which the catalytically active, monoligated Pd(0) complex is formed

before entry into the catalytic cycle is a key factor in the selection of reaction conditions for

Pd-catalyzed amination reactions. If a Pd(II) salt such as Pd(OAc)2 is used, reduction of

Pd(II) to Pd(0) must occur before the cross-coupling reaction can take place. This can be

brought about by the amine component in an amination reaction if the amine possesses

hydrogen atoms α to the nitrogen atom as this enables the Pd(II) amine complex to undergo

β-hydride elimination.95 The efficiency of this process varies between amines and it may

take a significant amount of time for all of the Pd(OAc)2 to be reduced and enter into the

catalytic cycle.96, 97 Furthermore, for the arylation of nucleophiles lacking a β-hydrogen

such as 1° amides, 1° anilines or ammonia, another reductant must be present. Pd(OAc)2,

however, remains attractive on an industrial scale, although its source and morphology can

have a strong impact on reactivity.98 In some instances, reduction of Pd(II) to Pd(0) has

been expedited by the addition of a tertiary amine (typically NEt3).32, 99 Inclusion of

phenylboronic acid as a reducing agent for Pd in the reaction mixture has been beneficial in

some contexts.83, 100 This method is not always effective, however, perhaps because when

the boronic acid is present stoichiometrically with respect to Pd the concentration of the

boronic acid in the reaction medium is low which may have a deleterious effect on the

efficacy and rate of the reduction step.

The phosphine ligand may also affect the reduction of Pd(II), however this process is likely

slow with bulky, electron-rich dialkylbiaryl phosphines.101 In order to address this issue and

to provide a convenient means of ensuring efficient reduction of Pd(II) a protocol has been

developed whereby water mediates reduction of Pd(OAc)2 by the phosphine.102 This

procedure rapidly produces a highly active Pd catalyst that gives superior results to

Pd2(dba)3, Pd(OAc)2/PhB(OH)2 or [(allyl)PdCl]2 for the arylation of both amides103 and

anilines under the conditions examined. Using this method a number of demanding

transformations can be efficiently accomplished, including the arylation of anilines with aryl

chlorides at low catalyst loadings and the arylation of electron-deficient anilines in the

presence of the weak base K2CO3 (Scheme 3).

An active catalyst can also be produced by [(allyl)PdCl]2, here the catalytically active Pd(0)

is generated by the attack of a nucleophile upon the allyl group.19 Unfortunately this

complex is only applicable in a limited range of amination reactions with dialkylbiaryl

phosphines.33, 88, 104

Surry and Buchwald Page 3

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



The need for a reduction step to form Pd(0) can be avoided by the use of a stable Pd(0)

complex as the Pd source. In conjunction with dialkylbiaryl phosphines the air-stable

complexes Pd2(dba)3 or Pd(dba)2 are suitable in a variety of situations.82–84, 87, 105–109

Coordination of dba to the metal can, however, attenuate the activity of the Pd

catalyst.110, 111 Preheating Pd2(dba)3, ligand and base in solvent prior to the introduction of

substrates can have beneficial effects on reproducibility,81, 112, 113 perhaps highlighting the

importance of efficient formation of the L1Pd complex.

As a result of the issues faced by these various Pd sources, efforts were made to devise a

stable precatalyst19, 114, 115 containing the dialkylbiaryl phosphine ligand that would give

direct access to a Pd complex within the catalytic cycle. Such a complex would also

potentially be advantageous in providing a single component source of both Pd and ligand.

Earlier efforts attempted to address this goal still required an exogenous reductant be

present.83, 99 The intramolecularly coordinated amine complexes 1–5 have proven to be an

ideal Pd source that can form the catalytically active L1Pd complex under the reaction

conditions simply by mixing with the reagents (i.e., no need to add a reducing agent) and are

air and moisture stable.93 These precatalysts can be made with a variety of biaryl phosphine

ligands in 3 high yielding steps. Precatalysts with the ligands BrettPhos 1, XPhos 2, SPhos

3, RuPhos 4 and tBuXPhos 5 are commercially available (Scheme 4).

Under the reaction conditions the amine nitrogen is deprotonated and the resulting Pd amide

undergoes rapid reductive elimination to generate L1Pd and indoline (this small amount of

indoline is readily removed during workup and purification at the end of the reaction)

(Scheme 5).

The active catalyst is fully generated in around 3 minutes at room temperature in the

presence of a strong base such as NaOt-Bu. Activation can also be achieved with a weak

base such as K2CO3 at 80 °C. These air-stable precatalysts provide extremely active

catalysts in a variety of amination reactions, notably allowing the arylation of anilines with

aryl chlorides to be performed with both low catalyst loadings and short reaction times

(Scheme 6).89, 90, 116, 117

The efficiency of these precatalysts is evidenced by the mild conditions under which these

reactions can be performed. Indeed the oxidative addition of Pd(0) to an aryl chloride occurs

at −40 °C with these precatalysts, illustrating the virtue of not having inhibitory additives

such as dba present in the reaction mixture.93

In summary, Pd(OAc)2 and Pd2(dba)3 have been the most commonly utilized sources of Pd

in amination reactions, however, the precatalysts 1–5 present a number of advantages

(Scheme 7), ensuring that the active catalyst is formed. Many of these benefits are

particularly felt in the case of difficult substrates or when low catalyst loadings or short

reaction times are needed.

2.3 Solvent

Pd-catalyzed amination reactions with dialkylbiaryl phosphine ligands can be performed in a

wide variety of solvents. Toluene and 1,4-dioxane are most commonly employed, although

1,4-dioxane has an unfavorable toxicity profile and can typically be replaced with Bu2O.85

Other ethereal solvents including THF,106, 118 2-MeTHF81 and DME24 can also be used.

Toluene is particularly advantageous in the coupling of aryl iodides due its weak ability to

solubilize the inorganic iodide salts formed during the course of the reaction (Section 3.1).90

t-BuOH is an appropriate solvent in a numerous instances and when a higher reaction

temperature is needed t-AmOH may be substituted.98 These solvents have the beneficial

property of aiding in the solubilization of inorganic bases, such as K3PO4, K2CO3 or KOH83
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leading to rate enhancement of the desired cross-coupling reactions. Furthermore, mixing t-

BuOH with less polar solvents such as toluene can have a significant accelerating effect on

amination reactions.83 These solvents can also be effective in the dissolution of polar

substrates. Similarly, polar, aprotic solvents such as DMSO, DMF and DMA have been

successfully used in some examples,75, 119–122 both alone and in mixtures with other

solvents.

In some instances Pd-catalyzed amination reactions are faster in DMF or DMA than in less

polar solvents with K3PO4 as base,123 however other studies have indicated lower yields124

and increases in side reactions such as aryl halide reduction.125 These polar solvents have

also been found to be advantageous for amination reactions with these ligands in

conjunction with microwave heating.126, 127

Water can be an attractive reaction medium for performing cross-coupling reactions128, 129

due to its lack of toxicity or flammability. In certain cases Pd-catalyzed amination can be

brought about in water with unmodified ligands such as L3.32, 83 If water immiscible, non-

polar substrates are used the active metal catalyst presumably dissolves in micelles of the

substrate. Hydrophilic derivatives of dialkylbiaryl phosphines with improved water

solubility130 have also been prepared,131–133 however, they have not yet been applied in Pd-

catalyzed amination reactions. Biphasic reactions with water and a non-polar solvent such as

toluene can result in enhanced functional group tolerance of bases such as KOH compared

to monophasic systems.134–136

Another solvent worthy of particular mention is α,α,α-trifluorotoluene.137 Studies of Pd-

catalyzed amination with dialkylbiaryl phosphine ligands in this medium or mixtures have

shown it to possess certain advantages over toluene including reduced foaming in biphasic

reactions135 and better heating under microwave irradiation.138, 139 (For more specific

recommendations of the choice of solvent, see Figures 6 – 8)

2.4 Base

The choice of base has a large bearing on the functional groups that may be present in

amination substrates and thus has been the subject of considerable interest, including

detailed mechanistic studies with some ligand systems.140 Unfortunately, it is not possible to

select the base purely on the grounds of the pKa of the free N nucleophile as the pKa is

changed significantly by binding to Pd, which typically occurs before deprotonation

(Scheme 1). Furthermore, inorganic bases such as Cs2CO3 can act heterogeneously in non-

polar solvents where they can behave as much stronger bases than might be predicted from

their solution phase pKa value.141

Early studies of the Pd-catalyzed coupling of amines with aryl halides utilized NaOt-Bu as

base in toluene.142 This remains the most versatile base for Pd-catalyzed amination reactions

with dialkylbiaryl phosphine ligands, often giving the highest reaction rates and enabling the

lowest catalyst loadings. Unfortunately, because NaOt-Bu is a relatively strong base (pKa =

17.0) it can participate in undesirable side reactions with various electrophilic functional

groups and some aromatic heterocycles and cause epimerization at acidic centers. KOt-Bu

has also seen some application77 but suffers from similar limitations and is generally less

satisfactory. These observations have prompted the search for alternative bases. NaOMe is

somewhat less basic (pKa = 15.5) and can give better functional group tolerance than NaOt-

Bu.99, 143 It should be noted that studies with other ligand systems for Pd-catalyzed

amination have revealed NaOPh to be a useful base for the arylation of heteroaryl amines,

perhaps as a result of its good solubility in dioxane.144
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LHMDS is another valuable strong base in Pd-catalyzed amination145 with dialkylbiaryl

phosphine ligands. In particular, LHMDS allows amination of aryl halides to be performed

in the presence of protic functional groups such as phenols, aliphatic alcohols and amides

(Scheme 8).86, 89, 106

This base is especially convenient because of the commercial availability of solutions in

both toluene and THF, removing the necessity of storage and handling of the hygroscopic

solid base. LHMDS also allows the amination of haloheterocycles possessing a free NH

group.84, 86, 89

Hydroxide bases such as KOH or NaOH98 are attractive on scale from an economic

standpoint and these can be used in conjunction with dialkylbiaryl phosphines in Pd-

catalyzed amination reactions, although they generally give slower reactions than

alkoxides.83, 99 If powdered, hydroxide bases can be employed in toluene,98 although

aqueous phase reactions of water immiscible substrates have also been demonstrated without

the need for a phase transfer catalyst.83, 146 It has been noted that the absence of a phase

transfer catalyst can result in improved functional group tolerance.136 Ba(OH)2 can also

mediate amination under very mild, biphasic conditions, rendering it applicable to substrates

which are prone to base-mediated epimerization.135

Weak inorganic bases such as Cs2CO3, K3PO4 or K2CO3 in place of alkoxides can bring

significant benefits in the functional group tolerance of Pd-catalyzed amination reactions.147

These bases provide more general conditions for substrates containing electrophilic

functional groups such as ketones, esters and nitro aromatics.147 Weak bases also facilitate

the exploitation of aryl sulfonates as electrophiles, allowing these substrates to be cross-

coupled without the requirement for slow addition of the electrophile.148 They have also

been instrumental in allowing the arylation of amides (Section 3.3). In non-polar solvents

such as toluene, in which these inorganic bases have very low solubility, the deprotonation

of the Pd-bound amine is thought to occur at the solid-liquid boundary.149 In this situation,

the particle size and shape of the inorganic base can be important in determining the rate and

ultimate success of a cross-coupling reaction.150, 151 This topic has seen the most detailed

discussion by Maes in the use of Cs2CO3 in Pd-catalyzed amination with BINAP as

ligand,149 although the findings are almost certainly applicable to biaryl phosphine ligands.

Cs2CO3 from different suppliers exhibited varying reactivity and SEM imaging of the base

showed a correlation between the particle properties and the activity of the base. In point of

fact, pregrinding the Cs2CO3 or K3PO4 before application in amination reactions has

sometimes been recommended.112, 113, 149 Such particle size effects have also been invoked

in a recent study at Merck to explain the difference in outcome between reactions carried out

with a magnetic stir bar and with an overhead stirrer.81 Reactions performed with the

overhead stirrer took up to five times longer to reach completion, presumably because the

magnetic stirrer facilitated the reaction by grinding the base in situ. Studies at Pfizer have

revealed that the rate of agitation can severely impact the rate of these amination reactions as

the high density of Cs2CO3 can lead it to sink to the bottom of the reaction vessel.100

Scientists at LEO Pharma have found that inclusion of Celite in a reaction with Cs2CO3 as

base in a Pd-catalyzed amination with L3 as ligand had a significant beneficial effect on the

yield, it was hypothesized that this effect results from the Celite preventing clumping of the

Cs2CO3.152 Aggregation effects may also be responsible for the large excess of base that

some authors have shown to be necessary in certain amination reactions.153

On the other hand, in some reactions with weak inorganic bases it is the solubilized base that

is important in bringing about the reaction154 as evidenced by the rate accelerations that

have been observed with more polar solvents such as DMA,123 the presence of water155, 156

or additives such as 18-crown-6157 when used in conjunction with these weaker inorganic
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bases. Furthermore, it frequently turns out that Cs2CO3 is a more efficient base for

amination reactions than K2CO3, which may relate to its greater solubility in organic

solvents.158

Typically, alkali metal bases are moderately hygroscopic but they can usually be weighed

into the reaction mixture in air without special precautions. If a substrate is moisture

sensitive, however, (for example a hydrolyzable electrophile such as an aryl triflate)

rigorous drying of the base159 and/or the addition of molecular sieves87, 88 may be desirable.

On the other hand, in some situations a beneficial effect of added water has been

noted155, 156 perhaps as a result of improved solubilization of the base or by aiding in

catalyst activation.102

A potential alternative solution to improving the functional group tolerance is provided by

soluble organic bases, such as DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) or MTBD (7-

methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene). These bases are, however, relatively expensive

and have so far only proven effective in the amination of aryl nonaflates with anilines under

microwave irradiation.160

The advantages and disadvantages of the most commonly used bases are summarized in

Figure 4.

3. Substrate

The structures of both the nucleophile and electrophile weigh substantially on the choice of

reaction conditions. Aryl chlorides, bromides, iodides and sulfonates have distinct properties

with respect to ease of oxidative addition. Furthermore, the halide or pseudohalide anion

produced during the course of the reaction can also be significant.161–163 The presence of

electron-donating or withdrawing substituents on the aromatic ring or of heteroatoms within

the ring also impinges on the rate of all steps of the catalytic cycle. The presence of

substituents ortho to the aryl halide can be critical in determining the rate of reaction; such

substitution can facilitate some steps of the catalytic cycle (for example, reductive

elimination), while potentially retarding others (for example, oxidative addition).

Similarly, N nucleophiles (e.g., aliphatic amines, anilines, amides, NH heterocycles) can

possess widely differing nucleophilicity and pKa values as well as variable steric properties.

These can also affect the rates of various steps on the catalytic cycle such as amine

binding,43 deprotonation and reductive elimination, therefore necessitating different ligands

or reaction conditions. Hence the origin of the variation in optimal reaction conditions for

different substrate combinations.

3.1 Electrophile

Initial studies on Pd-catalyzed aminations were carried out predominantly with aryl

bromides as electrophiles. Aryl chlorides, however, are typically more attractive substrates

due to their lower cost and wider availability.164, 165 The discovery of dialkylbiaryl

phosphine ligands, among others, allowed these substrates to be engaged in amination

reactions under milder conditions than had previously been reported.20, 166–168 The

implementation of L8 as ligand permitted deactivated aryl chlorides to be used24 (this may

now be effected with a variety of ligands).21–23, 26 With more modern ligand systems

oxidative addition of L1Pd(0) is facile at or below room temperature (Scheme 9).93 The

amination of aryl chlorides is now a routine procedure and in some cases aryl chlorides

gives more efficient reactions than aryl bromides.109
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Catalysts systems based on L1 and L2 allow the amination of electron-poor, -rich and -

neutral aryl bromides and chlorides both with and without ortho substitution, to be achieved

with high efficiency and low catalyst loadings for a broad range of 1° and 2° amines. For

unfunctionalized substrates this is best brought about by using NaOt-Bu in combination with

an ethereal solvent or toluene. For substrates bearing protic functional groups the

combination of LHMDS and THF or dioxane is most useful. Weak bases can also give good

results, a typical starting point for optimization is K2CO3/t-BuOH.

Intriguingly, aryl iodides, which are typically the easiest class of electrophile for C–C cross-

coupling reactions, are relatively challenging substrates in Pd-catalyzed amination

reactions.18, 169 Mechanistic studies have suggested that this results from the formation of

unreactive Pd dimers bridged by iodide anions.170 L1, however, which produces monomeric

oxidative addition complexes in solution, allows aryl and heteroaryl iodides to be efficiently

aminated with 1° amines (and L2 may be used for 2° amines) (Scheme 10).90 The choice of

solvent has a strong influence on these reactions, non-polar solvents such as toluene give the

best results due to the low solubility of the iodide salts formed during the course of the

reaction, although t-BuOH can also be used successfully when dealing with polar substrates.

At 100 °C a range of solvents can be used, although this can reduce the efficiency of the

reactions. By using 1, it is possible to accomplish the arylation of anilines with as little as

0.1 mol% Pd with Cs2CO3 as base, the lowest catalyst loadings that have yet been attained

with a weak base.

A range of aromatic sulfonates is suitable as electrophiles for the Pd-catalyzed amination.

The applicability of these substrates expands the range of available synthetic building blocks

for cross-coupling as these compounds are readily accessible from phenols. Aryl triflates are

the most reactive towards oxidative addition of this class.171 Unfortunately, they are also the

most readily hydrolyzed by adventitious water, which can necessitate the addition of

powdered molecular sieves to the reactions in order to improve yields.88 Strong bases such

as NaOt-Bu can also mediate triflate hydrolysis, particularly of electron-deficient

substrates.172 This problem can be partly resolved by slow introduction of the aryl triflate to

the reaction mixture173 or by using LiOt-Bu which causes slower hydrolysis of the

sulfonate.174 The most convenient solution is provided by employing milder inorganic bases

such as Cs2CO3.148

Alternatively, aryl nonaflates175 as electrophiles give similar reactivity in Pd-catalyzed

amination with ligands including L3 and L4,88, 107, 160 but undergo hydrolysis more

slowly.176 For these substrates implementation of soluble organic bases such as DBU, or for

more difficult examples MTBD, is beneficial in conjunction with microwave heating

(Scheme 11).160

Aryl tosylates and benzenesulfonates are much more demanding substrates for Pd-catalyzed

amination177 due to their lower propensity to undergo oxidative addition.163 They are,

however, attractive from an economic standpoint due to their lower cost than aryl triflates.

Dialkylbiaryl phosphine ligands can be successfully used for this transformation with a

range of nitrogen nucleophiles, although the exact nature of the ligand has a strong influence

on the outcome of the reaction, with L3 providing much higher yields and conversion than

less bulky ligands such as L8.83 The most useful results are obtained with t-BuOH as the

solvent in conjunction with a weak base such as Cs2CO3 or K2CO3. L3 also allows the

amidation of aryl tosylates to be realized.

Aryl mesylates present a more exacting class of substrates due to the even greater difficulty

of oxidative addition, however, both L185 and Kwong’s indole-based dialkylbiaryl

phosphine ligands32 have been found capable of aminating these compounds. The weak base

Surry and Buchwald Page 8

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



K2CO3 is critical to the favorable outcome of these reactions (Scheme 12), stronger bases

give lower yields due to competing cleavage of the sulfonate to the corresponding phenol.

By using L6 it is also possible to affect the amidation of aryl mesylates (Scheme 13).104 The

combination of Cs2CO3 in t-BuOH is important in ensuring a successful outcome. The

reaction is suitable for aryl mesylates with a range of steric and electronic properties,

however, heteroaryl mesylates bearing a nucleophilic nitrogen atom provide lower yields,

perhaps because these substrates act as nucleophilic catalysts for the undesired

desulfonylation of the mesylates.

It should be noted that vinyl bromides, chlorides and triflates also constitute effective

substrates under similar reaction conditions to the corresponding aryl halides,121, 159, 178–181

a feature that has been exploited in several innovative procedures to access

heterocycles182–187 as well as in natural product synthesis.188

Heteroaryl halides are a particularly important class of electrophile for C–N cross-coupling

reactions because of the appearance of heteroaryl amines in a range of valuable

pharmaceutical agents, notably kinase inhibitors.9, 10 Unfortunately these substrates are

especially troublesome in metal-catalyzed C–N cross-coupling reactions; indeed even

heteroaryl halides which are serviceable for Pd-catalyzed carbon-carbon bond forming

reactions can be recalcitrant in amination reactions.189 Such electrophiles can be envisaged

to produce a number of difficulties. First, they display a wide spectrum of electronic

properties relative to aryl halides and can thus present a more stringent test of the metal to

undergo the steps of the catalytic cycle such as oxidative addition190, 191 or reductive

elimination. Furthermore, if the heterocycles contain heteroatoms capable of coordination,

for example pyridines, displacement of the phosphine ligand can occur, resulting in catalyst

deactivation.192 Finally, these problems are compounded by the low solubility of these polar

substrates in the solvents typically recommended for Pd-catalyzed amination such as toluene

and dioxane. In these situations other solvents such as t-BuOH and DMF can be

advantageous.89, 90

The combination of the utility and challenge of these coupling partners has spurred research

in this area. The coupling of halopyridines, -quinolines and -pyrimidines has received

particular attention and some highly efficient catalyst systems are now available.18, 193 Early

studies in this area with dialkylbiaryl phosphine ligands showed L9 to constitute an effective

catalyst system for the coupling of simple 1° and 2° amines with chloropyridines.82 These

conditions were soon adopted by others in various synthetic applications.5, 75, 194–197

Following later developments in ligand design, synthetic work demonstrated that both

L7198, 199 and L3 can be very useful ligands in this context. More recent studies have shown

that the most advantageous catalyst systems for the Pd-catalyzed amination of halogenated

6-membered ring heterocycles are comprised of L1 for 1° amines and L2 for 2° amines

(Scheme 14).90

5-Membered ring heteroaryl halides are recalcitrant substrates for Pd-catalyzed amination

and low yields have often been encountered.200 Mechanistic studies have been directed

towards understanding this effect with other ligand systems such as dppf201 and P(t-Bu)3,202

however, these results do not seem to be directly transferable to biaryl phosphines. Early

efforts to engage these electrophiles in amination with dialkylbiaryl phosphine ligands

showed that the successful outcome of the reactions is dependent on the correct choice of

ligand. For the amination of halogenated thiophenes, furans, benzoxazoles and

benzothiazoles with simple nucleophiles, L3, L7 and L2 were the ligands of choice.84 Once

again, L1 and L2 are the best ligands at the present time for these substrates (Scheme 15),

however, it must be noted that these ligands do not represent a general solution for this class
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of substrate.89 Furthermore, catalyst loadings are typically higher and reactions times longer

than for simple aryl halides.

3.2 Nucleophile: Anilines

The coupling of simple 1° anilines has typically been one of the easier classes of amination

reactions due to the absence of β-hydrogen atoms capable of undergoing undesirable

elimination of Pd-H. Furthermore the importance of diarylamines as a structural unit of

numerous pharmaceutical agents9, 10 has prompted interest in this reaction. The coupling of

anilines has also attracted study because of the attenuated nucleophilicity of anilines relative

to aliphatic amines, which limits the applicability of SNAr reactions in the construction of

diarylamines. A number of examples of the coupling of anilines using dialkylbiaryl

phosphines in the synthesis of pharmaceuticals have appeared.6, 120, 122, 197, 203 Catalysts

based on L1 are the most active for the arylation of these substrates and provide excellent

selectivity for mono-:diarylated products (ie. for formation of diarylamine rather than

triarylamine). A precatalyst that can activate under the reaction conditions is markedly

advantageous for this class of substrate as a result of the inability of anilines to mediate

reduction of Pd(II). By using the combination of precatalyst 1 and L1 it is possible to bring

about the arylation of 1° anilines with aryl chlorides with both low catalyst loadings (0.01

mol% Pd) and short reaction times (1 h), a considerable improvement over other currently

available catalyst systems (Scheme 16). Note in this case, the use of NaOt-Bu in conjunction

with Bu2O, a solvent that presents advantages over other ethereal solvents such as dioxane

when used on scale.

Indeed, with L1 it is possible to achieve the selective N-arylation of aminophenols (Scheme

17), providing complementary selectivity to that observed with Cu-based catalysts.117

The coupling of anilines in the presence of primary amides can be problematic. Use of

catalyst based on L3 effectively overcomes this issue and allows for the selective arylation

of anilines in the presence of primary amides (Scheme 18).83 Further, analogous to the

results presented in Scheme 19, this provides complementary selectivity to what is observed

when using a Cu-based catalyst.

The coupling of heteroaryl amines can be notably demanding, perhaps as a result of their

low nucleophilicity and potential difficulty in undergoing reductive elimination. In this

context the ligand L4 is especially efficacious, allowing the arylation of a range of pyridyl-

and pyrazoyl amines (Scheme 19).86

L1 is also an effective ligand for this class of nucleophile under a variety of conditions,

serving to further broaden the substrate scope (Scheme 20).89

For the coupling of N-alkyl anilines, L2 is generally the ligand of choice, the base/solvent

combinations of NaOt-Bu/THF or Cs2CO3/t-BuOH providing a broad substrate scope

(Scheme 21).89

Cyclic amines such as indoline and N,N-diarylanilines are typically better coupling partners

than N-alkyl anilines. An exception is N-methyl aniline which appears to be a privileged

substrate for Pd-catalyzed amination. This amine readily undergoes arylation with a wide

variety of ligand systems, often at lower catalyst loadings than are possible with other

nucleophiles.

The synthesis of triarylamines has also been investigated. Using a catalyst based on L2

diarylamines can be arylated to afford the corresponding triarylamines in excellent yields

(Scheme 22).89,90
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Further, utilizing a catalyst based on L9, triarylamines can be assembled in a one pot

procedure from an aniline and two different aryl halides. This method provides a means for

the rapid formation of the desired unsymmetrical product from readily available starting

materials in one step (Scheme 23).204

3.3 Nucleophile: Aliphatic Amines

The arylation of primary aliphatic amines has been the subject of study with numerous

classes of ligand and some highly efficient catalyst systems have been described.18, 205

Dialkylbiaryl phosphines are also very successful in this context; catalysts based on L1 are

the most efficacious. By exploiting this system simple aliphatic amines can be coupled with

electron-neutral, -rich and -poor, as well as ortho-substituted, aryl chlorides with 0.05 mol%

Pd (Scheme 24). The best results are given by a base/solvent combination of NaOt-Bu/

Bu2O.85

Substrates bearing protic functional groups can also be efficiently employed when LHMDS

is used as base in conjunction with 1 (Scheme 25).89

Importantly, these catalysts are much less efficient for the arylation of secondary amines

which means that excellent selectivity for monoarylation of a 1° amine can be achieved.

Indeed 1° amines can be arylated in the presence of 2° amines with this catalyst system

(Scheme 26).85

The ability to selectively perform arylation in this way alleviates the need for protecting

groups and can contribute to improving the efficiency of synthetic routes. The high

selectivity exhibited by L1-based catalysts is exemplified by the ability to monoarylate

methylamine, providing a convenient access to N-methyl anilines (Scheme 27). It should be

noted that the selective arylation of anilines in the presence of aliphatic amines is also

possible by using L3 or L7 as ligand.43, 83

The cross-coupling of secondary aliphatic amines with aryl halides was one of the earliest

reaction classes to be explored in Pd-catalyzed amination.142 N-Aryl cyclic amines, in

particular N-aryl piperazines, are a frequent constituent of CNS-active pharmaceutical

agents.13 L2 is the best dialkylbiaryl phosphine for this transformation, permitting the

arylation of a range of simple cyclic amines at low catalyst loadings with aryl and heteroaryl

chlorides in a variety of substitution patterns (Scheme 28).89

The lowest catalyst loadings are generally secured by using NaOt-Bu as base; Cs2CO3 or

LHMDS can alternatively be used in conjunction with more highly functionalized

substrates, although somewhat higher catalyst loadings are typically required (Scheme 29).

Acyclic secondary amines are often more challenging substrates, presumably as a result of

the greater propensity of these substrates to undergo undesired β-hydride elimination.48 L2,

however, can also provide highly efficient catalysts for the arylation of this class of substrate

(Scheme 30).89 At present no suitable catalyst system has been reported for the coupling of

hindered secondary amines, particularly with ortho-substituted aryl halides. This is

presumably due to two factors: 1) a slower rate of transmetallation (amine binding/

deprotonation) and 2) a competitive rate of β-H elimination relative to reductive elimination.

The arylation of dimethylamine can present a particular difficulty, perhaps due to the further

enhanced potential of the intermediate Pd amido complex to undergo undesired β hydride

elimination. This transformation can be realized, however, under mild conditions, either

with L4 in conjunction with LHMDS as base at room temperature or L3 with K3PO4 at

110°C.116 Under these conditions dimethylamine can be arylated with a range of electron-
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rich and electron-deficient aryl chlorides in the presence of a number of functional groups

(Scheme 31).

3.4 Nucleophile: Amides

The Pd-catalyzed arylation of amides provides a convenient complementary approach to the

Cu-mediated Goldberg reaction.206 This process was initially demonstrated with the

chelating ligand Xantphos207, 208 and it was thought that a chelating ligand was necessary in

order to prevent the formation of unwanted κ2 interactions of the amide with the Pd

center.209 However, it was shown that L3 is able to affect the arylation of lactams,

carbamates, primary amides and N-methyl formamides, including for the first time the

amidation of aryl sulfonates.83, 210 L3 has also been established to be superior to chelating

ligands for intramolecular amidation of aryl chlorides.113

Detailed studies with dialkylbiaryl phosphines have been directed towards the arylation of

oxazolidinones,211 sulfonamides,212 and sulfamides.213 Scientists at GlaxoSmithKline have

determined that L4 is the optimal ligand for the room temperature arylation of t-Bu-

carbamate.214 The use of this ligand is also fruitful in the vinylation of N-Boc hydrazine.121

Further studies revealed that ligand L5 is more effective than L3 for amidation, providing an

effective catalyst system for a range of substrates including lactams, primary amides and

sulfonamides and a single example of an N-methyl substituted amide.87 Subsequently the

scope of aryl amidation was expanded to include ortho-substituted aryl chlorides by the

introduction of L6 (Scheme 32).103 Notably, the H2O activation procedure proved to be the

most effective way to generate an active catalyst (Section 2.1). In all cases amidation is best

accomplished with weak bases such as K2CO3, K3PO4 or Cs2CO3.

Similar conditions are effective for the amidation of aryl mesylates (Scheme 13). So far L6

is the only ligand that has been reported to be effective for this transformation.104

The biaryl phosphine ligand L10 allows the intermolecular arylation of acyclic secondary

amides.88 This had not previously been achieved with either Pd or Cu catalysis except for

formamides and N-methyl and N-phenyl amides (Scheme 33), which explains the difficulty

of the reaction and the design of the ligand. Note that the presence of molecular sieves is

usually necessary in these reactions in order to prevent hydrolysis of the amide by

adventitious water.

3.5 Nucleophile: NH Heterocycles

The Pd-catalyzed coupling of NH heterocycles with aryl halides is also an area of

considerable interest. Studies with chelating ligands have suggested that reductive

elimination can be challenging in these cases.215 The first application of dialkylbiaryl

phosphines in this context was for the N-arylation of indoles with aryl bromides and triflates

and in one example an aryl chloride.105 A range of indoles can be arylated efficiently with

aryl bromides, chlorides, iodides and triflates, the preferred ligand depending both on the

nature of the leaving group of the electrophile and the steric hindrance about the indole NH.

For simple substrates L8 can be used. By employing a variety of other ligands including

L11 and L12 it was also possible for the first time to bring about the Pd-catalyzed N-

arylation of both 2- and 7-substituted indoles, as well as the N-arylation of indoles with

ortho-substituted aryl bromides (Scheme 34). Previously such reactions had been plagued by

competing arylation at C3 as well as the formation bis-arylated products.216

Subsequent studies by Beletskaya have shown that the use of di- or trivalent metal

counterions in these reactions can result in selective arylation at the 2 or 3 position of indole

(i.e., C–C rather than C–N bond formation).217 Typically, NaOt-Bu was found to be the base

of choice, however, K3PO4 can be used for substrates bearing electrophilic functional
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groups. Unfortunately, some of the best ligands used in these studies are not trivial to access.

Prior deprotonation of the heterocycle with BuLi can also be successful.178 Later it was

discovered that L3 is an effective ligand for the N-arylation of indoles, even permiting the

N-arylation of indoles with aryl benzenesulfonates.83

The cross-coupling of more acidic heterocycles such as indazole and pyrazole has proven to

be more problematic with Pd catalysis. By the use of L4 or L5, however, it is possible to

couple indazoles, pyrazoles, benzimidazole and in one case imidazole with a variety of aryl

and heteroaryl halides (Scheme 35).86

The formation of N1 or N2 arylated indazole was found to be dependent on the nature of

base and the reaction temperature. For the arylation of indazole with 3-bromoanisole,

arylation occurs selectively at N1 in the presence of NaOt-Bu in toluene at 80°C or with

Cs2CO3 at 105°C in 1,4-dioxane. If, however, NaOt-Bu is used at 100°C mixtures of N1 and

N2 arylated products are formed. A possible explanation for these observations is that

kinetic binding of Pd occurs at N2 and so when deprotonation of the Pd-bound amine is

rapid, arylation at N2 is observed. If, however, deprotonation of the Pd-bound amine is slow

(e.g., NaOt-Bu in toluene at 80 °C) then migration of the metal to N1 can take place and

arylation is seen at this position.

In order to bring about the arylation of imidazole or benzimidazole L5 is the best

dialkylbiaryl phosphine (Scheme 36).86 This is, however, a challenging transformation and

the reaction has not yet been extended to more complex nucleophiles of this type.

3.6 Nucleophile: Benzophenone imine and hydrazone

The Pd-catalyzed cross-coupling of benzophenone imine with aryl halides with subsequent

hydrolysis of the resultant N-aryl imine permits the conversion of aryl halides to anilines,218

a process that has been extensively applied in organic synthesis. A number of other

ammonia equivalents have been used to accomplish this goal,219–223 however,

benzophenone imine remains the most widely used as the reaction can be performed in the

presence of a range of functional groups, with aryl bromides, chlorides and triflates as

electrophile and with ortho-substituted electrophiles. Benzophenone imine is commercially

available and the intermediate N-aryl imine can be converted to the desired aniline by

hydrogenation, transamination with hydroxylamine, or by acid-catalyzed hydrolysis. The

direct Pd-catalyzed coupling of free NH3 with aryl halides is also possible,108, 224–226

however, the functional group tolerance remains limited unless a high pressure of NH3 is

used.227 Of the dialkybiaryl phosphines, both L982 and L383, 228 have been used

successfully for the arylation of benzophenone imine with aryl chlorides and sulfonates. The

mildest conditions reported to date are afforded by exploiting L4 (Scheme 37).157

The use of the weak base K3PO4 at 30°C provides excellent functional group tolerance,

however, the reaction is limited to aryl bromides and extended reaction times are required.

By using NaOt-Bu in toluene at 65°C reactions could be completed in 0.5 h. It is important

to note that it is strongly advised that commercial benzophenone imine be distilled before

use as nucleophile in any Pd-catalyzed amination reaction.229

The arylation of LiHMDS using a catalyst based on L13 has also been reported as an

efficient and more atom economical method for the conversion of aryl chlorides or bromides

to the corresponding anilines in high yields (Scheme 38).221 However, because LiHMDS is

hindered, ortho-substituted aryl halides are poor substrates. Further, the high basicity of

LiHMDS limits the functional group tolerance of this method. On this basis benzophenone

imine still remains the ammonia equivalent of choice for discovery chemists.
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The Pd-catalyzed arylation of benzophenone hydrazone is also of interest as the resulting N-

aryl hydrazones are intermediates in the Fischer indole synthesis and as such can undergo

thermal or acid-catalyzed sigmatropic rearrangement to yield indoles.230 The mildness of the

conditions permits access to indoles which are challenging to make under more conventional

conditions. Alternatively, reaction of the intermediate hydrazones with 1,3-diketones

permits access to functionalized pyrazoles.196 As a result of the practical utility of these

processes, the Pd-catalyzed arylation of benzophenone hydrazone with aryl bromides and

chlorides using dialkylbiaryl phosphines has undergone thorough optimization by scientists

at Rhodia (Scheme 39).98

These studies revealed that L3, L8 and L14 can all constitute highly efficient catalyst

systems for this reaction,83 allowing the reaction to be performed in 3 – 4 h with 0.1 mol%

Pd. When using protic solvents such as t-AmOH, finely ground NaOH is the best base,

however, in toluene NaOt-Bu is more effective. Pd(OAc)2 is a useful Pd source here despite

the absence of a nucleophile capable of reducing Pd(II) to Pd(0) for entry into the catalytic

cycle. In these experiments adventitious H2O-mediated reduction of Pd(II) by the phosphine

must have occurred.

4 Guidelines for Optimization

Figures 6 – 8 provide a summary of typical reaction conditions for Pd-catalyzed cross-

coupling reactions with various substrate classes. The exact choice of conditions will depend

to a large extent on both the structure of the substrate as well as the goals of optimization,

for example, maximization of yield, minimization of catalyst loading, minimization of

reaction time or generality for a variety of substrates if analogues of a particular compound

are to be synthesized. When attempting to improve a set of reaction conditions, analysis of

the by-products of reaction can be informative. For example, observation of significant

amounts of reduced aryl halide (ArX → ArH) can indicate that reductive elimination is slow

relative to β-hydride elimination and that a ligand which is better at promoting reductive

elimination should be used (e.g., by switching from a dicyclohexylphosphino to di-t-

butylphosphino ligand86). Sometimes formation of this by-product can also be suppressed

by running reactions at a lower temperature, perhaps implying that in some instances the

formation of this by-product is related to catalyst decomposition. Indeed the nature of the

reductant in these reactions is not always obvious, even reactions with nucleophiles

possessing no β-hydrogen atoms, such as anilines, can produce significant quantities of the

reduced arene. Conversely, low conversion of starting aryl halide can be improved by

raising the reaction temperature or increasing the catalyst loading. An important cause of

low conversion is also inefficient formation of L1Pd, hence switching from Pd(OAc)2 or

Pd2(dba)3 to precatalysts 1–5 can also be highly beneficial.93 Alternatively, if mass balance

is poor this can reveal that the base is interacting adversely with a functional group in one of

the substrates, suggesting the use of a weaker base, for example, Cs2CO3 in place of NaOt-

Bu. Another common by-product is the phenol corresponding to the aryl halide or pseudo-

halide (ArX → ArOH). This results from either desulfonylation of an aryl sulfonate

substrate or from competing coupling of water with the aryl halide.231 In either case this

product can be minimized by thorough drying of the reagents159 and the addition of

activated molecular sieves to the reaction mixture.88 The phenol thus formed can also

undergo Pd-catalyzed C-O bond formation with another molecule of aryl electrophile to

generate the symmetrical diaryl ether (ArX → ArOAr).38 Pd-Catalyzed amination reactions

can also produce symmetrical biaryls (ArX → ArAr). Various mechanistic hypotheses have

been advanced to explain the formation of these by-products,232–237 however, they tend to

occur most commonly in amination reactions when transmetallation is difficult. Hence

switching to ligands that are less sterically encumbered or more electron-deficient at

phosphorus can be helpful. Furthermore, this reaction can be more prevalent in dipolar,
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aprotic solvents such as DMF, DMA and DMSO,233, 234 hence moving to an ethereal

solvent or t-BuOH can bring improvements in the outcome of the reaction while maintaining

substrate solubility (Figure 5).

5 Conclusions

The Pd-catalyzed arylation of nitrogen nucleophiles using dialkylbiaryl phosphine ligands

has undergone considerable development since the discovery of this ligand class. Much of

this progress has been driven by innovations in ligand design, but also by attention to the

optimization of reaction conditions. As a result, useful catalyst systems of this type are

available for many classes of electrophile and nitrogen nucleophile. The reactions can now

often be employed with complex substrates and low catalyst loading.

In general, catalysts based on the ligand L1 are the most powerful for 1° amines, and those

based on L2 for 2° amines. For certain classes of nucleophile such as amides and NH

heterocycles, other dialkylbiaryl phosphine ligands are typically more appropriate.

Individual substrate combinations may, however, necessitate a different ligand system as a

result of structural peculiarities of the nucleophile and electrophile. It is also crucial to

realize that the base/solvent combination is not a hard and fast selection for a given type of

substrate. The reaction conditions summarized in Figures 6 – 8 are given as starting points

for optimization.

It is important to reemphasize the significance of efficient formation of catalytically active,

yet kinetically stable (towards decomposition), L1Pd species under the reaction conditions,

which depends on the correct choice of Pd source for the reaction. In this regard precatalysts

1–5 that activate very effectively in situ are often the most desirable.

It is hoped that this review has supplied some insight into the selection of reaction

conditions for a given amination process and the rationale for further optimization. The

reader should be aware, however, that some substrates such as certain heteroaryl halides and

hindered amines are at present refractory to Pd-catalyzed cross-coupling and remain enticing

challenges for the on-going further development of ever more efficient and general catalyst

systems.
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Figure 1.

Important structural features of dialkylbiaryl phosphine ligands.
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Figure 2.

Key dialkylbiaryl phosphine ligands for amination.
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Figure 3.

Other important dialkylbiaryl phosphine ligands for amination.
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Figure 4.

Comparison of bases typically used in Pd-catalyzed amination.
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Figure 5.

Simplistic troubleshooting guide for Pd-catalyzed amination.
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Figure 6.

Summary of reaction conditions used for different classes of nucleophile.
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Figure 7.

Summary of reaction conditions used for different classes of electrophile.
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Figure 8.

Summary of reaction conditions used for different classes of heteroaryl electrophile.
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Scheme 1.

Generalized catalytic cycle for Pd-catalyzed amination with dialkylbiaryl phosphines.
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Scheme 2.

Factors influencing the outcome of a Pd-catalyzed amination reaction.

Surry and Buchwald Page 32

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 3.

Water-mediated reduction of Pd(II) salts permits efficient amination of electron-deficient

anilines.
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Scheme 4.

Synthesis of amine bound oxidative addition precatalyst.
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Scheme 5.

Activation of intramolecularly coordinated amine oxidative addition precatalyst.
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Scheme 6.

The application of precatalyst 1 allows arylation of anilines with low catalyst loading and

short reaction times.
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Scheme 7.

Considerations for choice of Pd source for amination reactions.
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Scheme 8.

Use of LHMDS as base permits the cross-coupling of substrates bearing protic functional

groups.
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Scheme 9.

Amination of aryl chlorides at or below room temperature.
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Scheme 10.

Efficient Pd-catalyzed amination of aryl iodides using L1 and L2 as ligands in toluene.
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Scheme 11.

Pd-catalyzed coupling of anilines and aryl nonaflates under microwave irradiation.
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Scheme 12.

Pd-catalyzed coupling of anilines and aryl mesylates employing L1 as ligand.
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Scheme 13.

Amidation of aryl mesylates employing L6 as ligand.
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Scheme 14.

Pd-catalyzed amination of 6-membered ring heteroaryl halides using L1 and L2.
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Scheme 15.

Amination of 5-membered ring heteroaryl halides using L1 or L2 as ligand.
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Scheme 16.

The selective arylation of 1° anilines can be conducted with high efficiency using L1.
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Scheme 17.

L1-based catalyst systems permit the selective N-arylation of aminophenols.
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Scheme 18.

L3-based catalysts allow the selective arylation of an aniline in the presence of a primary

amide.83
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Scheme 19.

L4 can be a useful ligand for the arylation of electron-deficient heteroarylamines.

Surry and Buchwald Page 49

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 20.

L1 provides an efficient catalyst system for the amination of 1° heteroarylamines under

various reaction conditions.
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Scheme 21.

L2 is the best dialkylbiaryl phosphine for the arylation of 2° anilines.
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Scheme 22.

L2-based catalyst for the arylation of diarylamines.
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Scheme 23.

The use of an L9-based catalyst for the synthesis of triarylamines from anilines and aryl

halides.
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Scheme 24.

L1 permits the coupling of 1° aliphatic amines with low catalyst loadings and short reaction

times.
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Scheme 25.

L1 is the best ligand for the reaction of 1° aliphatic amines.
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Scheme 26.

L1-based catalyst systems provide excellent selectivity for the arylation of 1° amines in the

presence of 2° amines.
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Scheme 27.

The efficient monoarylation of methylamine can be accomplished by the use of a L1-based

catalyst system.
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Scheme 28.

L2 can be used for the arylation of cyclic 2° aliphatic amines under a variety of conditions.
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Scheme 29.

L2 can be used for the arylation of cyclic 2° aliphatic amines under a variety of conditions.
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Scheme 30.

L2 is the most effective ligand for the cross-coupling of acyclic aliphatic amines.
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Scheme 31.

Catalysts based on L3 or L4 can affect the arylation of dimethylamine.
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Scheme 32.

L6 is the best dialkylbiaryl phosphine for the arylation of 1° amides.
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Scheme 33.

Arylation of 2° amides, ureas, carbamates and sulfonamides is possible by using L10 as

ligand.
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Scheme 34.

A variety of dialkylbiaryl phosphine ligands are suitable for the N-arylation of indoles.
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Scheme 35.

L4 is a useful ligand for the arylation of indazoles and pyrrazoles.

Surry and Buchwald Page 65

Chem Sci. Author manuscript; available in PMC 2012 March 17.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Scheme 36.

The arylation of imidazole and benzimidazole can be brought about in some cases by using

L5 as ligand.
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Scheme 37.

L4 is a useful ligand for the conversion of aryl bromides to anilines.157
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Scheme 38.

L13 is a useful ligand for the conversion of aryl halides to anilines using LiHMDS as the

ammonia surrogate.221
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Scheme 39.

Benzophenone hydrazone can be effectively arylated with aryl chlorides and bromides.
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