
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, pages 305–314,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

Dialog state tracking,
a machine reading approach using Memory Network

Julien Perez

Xerox Research Centre Europe

Grenoble, France

julien.perez@xrce.xerox.com

Fei Liu ∗

The University of Melbourne

Victoria, Australia

fliu3@student.unimelb.edu.au

Abstract

In an end-to-end dialog system, the aim

of dialog state tracking is to accurately

estimate a compact representation of the

current dialog status from a sequence of

noisy observations produced by the speech

recognition and the natural language un-

derstanding modules. This paper intro-

duces a novel method of dialog state track-

ing based on the general paradigm of

machine reading and proposes to solve

it using an End-to-End Memory Net-

work, MemN2N, a memory-enhanced neu-

ral network architecture. We evaluate the

proposed approach on the second Dia-

log State Tracking Challenge (DSTC-2)

dataset. The corpus has been converted

for the occasion in order to frame the hid-

den state variable inference as a question-

answering task based on a sequence of ut-

terances extracted from a dialog. We show

that the proposed tracker gives encourag-

ing results. Then, we propose to extend

the DSTC-2 dataset and the definition of

this dialog state task with specific reason-

ing capabilities like counting, list mainte-

nance, yes-no question answering and in-

definite knowledge management. Finally,

we present encouraging results using our

proposed MemN2N based tracking model.

1 Introduction

One of the core components of state-of-the-art and

industrially deployed dialog systems is a dialog

state tracker. Its purpose is to provide a compact

representation of a dialog produced from past user

inputs and system outputs which is called the di-

alog state. The dialog state summarizes the infor-

∗Work carried out as an intern at XRCE

mation needed to successfully maintain and finish

a dialog, such as users’ goals or requests. In the

simplest case of a so-called slot-filling schema, the

state is composed of a predefined set of variables

with a predefined domain of expression for each

of them. As a matter of fact, in the recent con-

text of end-to-end trainable machine learnt dialog

systems, state tracking remains a central element

of such architectures (Wen et al., 2016). Current

models, mainly based on the principle of discrim-

inative learning, tend to share three common lim-

itations. First, the tracking task is perform using

a fixed window of the past dialog utterances as

support for decision. Second, the possible cor-

relations between the set of tracked variables are

not leveraged and individual trackers tend to be

learnt independently. Third, the tracking task is

summarized as the capability of inferring values

for a predefined set of latent variables. Starting

from these observations, we propose to formalize

the task of state tracking as a particular instance of

machine reading problem. Indeed, these formal-

ization and the proposed resolution model called

MemN2N (Weston et al., 2015) allow to define a

tracker that is be able to decide at the utterance

level on the basis on the current entire dialog. In-

deed, the model learns to focus its attention on the

meaningful parts of the dialog regarding the cur-

rently asked slot and can eventually capture possi-

ble correlation between slots. As far as our knowl-

edge goes, it is the first attempt to explicitly frame

the task of dialog state tracking as a machine read-

ing problem. Finally, such formalization allows

for the implementation of approximate reasoning

capability that has been shown to be crucial for

any machine reading tasks (Weston et al., 2015)

while extending the task from slot instantiation

to question answering. This paper is structured

as follows, Section 2 recalls the main definitions

associated to transactional dialogs and describes
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the associated problem of statistical dialog state

tracking with both the generative and discrimina-

tive approaches. At the end of this section, the

limitations of the current models in terms of nec-

essary annotations and reasoning capabilities are

addressed. Then, Section 3 depicts the proposed

machine reading model for dialog state tracking

and proposes to extend a state of the art dialog

state tracking dataset, DSTC-2, to several simple

reasoning capabilities. Section 4 illustrates the ap-

proach with experimental results obtained using a

state of the art benchmark for dialog state track-

ing.

2 Dialog state tracking

2.1 Main Definitions

A dialog state tracking task is formalized as fol-

lows: at each turn of a dyadic dialog, the dialog

agent chooses a dialog act d to express and the

user answers with an utterance u. In the simplest

case, the dialog state at each turn is defined as

a distribution over a set of predefined variables,

which define the structure of the state (Williams

et al., 2005). This classic state structure is com-

monly called slot filling or semantic frame. In

this context, the state tracking task consists of

estimating the value of a set of predefined vari-

ables in order to perform a procedure or trans-

action which is the purpose of the dialog. Typ-

ically, a natural language understanding module

processes the user utterance and generates an N-

best list o = {(d1, f1), . . . ,(dn, fn)}, where di is the

hypothesized user dialog act and fi is its confi-

dence score. Various approaches have been pro-

posed to define dialog state trackers. The tradi-

tional methods used in most commercial imple-

mentations use hand-crafted rules that typically

rely on the most likely result from an NLU module

(Yeh et al., 2014) and hardly models uncertainty.

However, these rule-based systems are prone to

frequent errors as the most likely result is not al-

ways the correct one (Williams, 2014).

More recent methods employ statistical ap-

proaches to estimate the posterior distribution over

the dialog states allowing them to leverage the un-

certainty of the results of the NLU module. In

the simplest case where no ASR and NLU mod-

ules are employed, as in a text based dialog system

(Henderson et al., 2013), the utterance is taken as

the observation using a so-called bag of words rep-

resentation. If an NLU module is available, stan-

dardized dialog act schemes can be considered as

observations (Bunt et al., 2010). Furthermore, if

prosodic information is available from the ASR

component of the dialog system (Milone and Ru-

bio, 2003), it can also be considered as part of the

observation definition. A statistical dialog state

tracker maintains, at each discrete time step t, the

probability distribution over states, b(st), which

is the system’s belief over the state. The actual

slot filling process is composed of the cyclic tasks

of information gathering and integration, in other

words – dialog state tracking. In such framework,

the purpose is to estimate as early as possible in

the course of a given dialog the correct instantia-

tion of each variable. In the following, we will as-

sume the state is represented as a set of variables

with a set of known possible values associated to

each of them. Furthermore, in the context of this

paper, only the bag of words has been considered

as an observation at a given turn but dialog acts or

detected named entity provided by an SLU mod-

ule could have also been incorporated.

Two statistical approaches have been consid-

ered for maintaining the distribution over a state

given sequential NLU output. First, the discrimi-

native approach aims to model the posterior prob-

ability distribution of the state at time t + 1 with

regard to state at time t and observations z1:t . Sec-

ond, the generative approach attempts to model the

transition probability and the observation proba-

bility in order to exploit possible interdependen-

cies between hidden variables that comprise the

dialog state.

2.2 Generative Dialog State Tracking

A generative approach to dialog state tracking

computes the belief over the state using Bayes’

rule, using the belief from the last turn b(st−1)
as a prior and the likelihood given the user ut-

terance hypotheses p(zt |st), with zt the observa-

tion gathered at time t. In prior works (Williams

et al., 2005), the likelihood is factored and

some independence assumptions are made: bt ∝

∑st−1,zt
p(st |zt ,st−1)p(zt |st−1)b(st−1). A typical

generative model uses a factorial hidden Markov

model (Ghahramani and Jordan, 1997). In this

family of approaches, scalability is considered as

one of the main issues. One way to reduce the

amount of computation is to group the states into

partitions, as proposed in the Hidden Information

State (HIS) model (Gasic and Young, 2011). Other
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approaches to cope with the scalability problem in

dialog state tracking is to adopt a factored dynamic

Bayesian network by making conditional inde-

pendence assumptions among dialog state compo-

nents, and then using approximate inference algo-

rithms such as loopy belief propagation (Thom-

son and Young, 2010) or a blocked Gibbs sam-

pling as (Raux and Ma, 2011). To cope with such

limitations, discriminative methods of state track-

ing presented in the next part of this section aim

at directly model the posterior distribution of the

tracked state using a chosen parametric form.

2.3 Discriminative Dialog State Tracking

The discriminative approach of dialog state track-

ing computes the belief over a state via a para-

metric model that directly represents the belief

b(st+1) = p(ss+1|st ,zt). For example, Maximum

Entropy has been widely used in the discrimina-

tive approach (Metallinou et al., 2013). It for-

mulates the belief as follows: b(s) = P(s|x) =
η .ewT φ(x,s), where η is the normalizing constant,

x = (du
1 ,dm

1 ,s1, . . . ,d
u
t ,dm

t ,st) is the history of user

dialog acts, du
i , i ∈ {1, . . . , t}, the system dialog

acts, dm
i , i ∈ {1, . . . , t}, and the sequence of states

leading to the current dialog turn at time t. Then,

φ(.) is a vector of feature functions on x and s.

Finally, w is the set of model parameters to be

learned from annotated dialog data. Finally, deep

neural models, performing on a sliding window of

features extracted from previous user turns, have

also been proposed in (Henderson et al., 2014c;

Mrksic et al., 2016). Of the current literature,

this family of approaches have proven to be the

most efficient for publicly available state tracking

datasets. Recently, deep learning based models

implementing this strategy (Mrksic et al., 2016;

Henderson et al., 2014a; Williams et al., 2016)

have shown state of the art results. This ap-

proaches tends to leverage unsupervised training

word representation (Mikolov et al., 2013).

2.4 Current Limitations

Using error analysis (Henderson et al., 2014b),

three limitations can be observed in the application

of these inference approaches. First, current mod-

els tend to fail at considering long-tail dependen-

cies that occurs on dialogs. For example, coref-

erences, inter-utterances informations and correla-

tions between slots have been shown to be difficult

to handle even with the usage of recurrent network

models (Henderson et al., 2014a). To illustrate the

Figure 1: T-SNE transformation of the final state

of DSTC-2 train set.

inter-slot correlation, Figure 1 depicted the t-SNE

(van der Maaten and Hinton, 2008) projected fi-

nal state of the dialog of the DSTC-2 training set.

On the other hand, reasoning capabilities, as re-

quired in machine reading applications (Poon and

Domingos, 2010; Etzioni et al., 2007; Berant et

al., 2014; Weston et al., 2015) remain absent in

these classic formalizations of dialog state track-

ing. Finally, tracking definition is limited to the

capability to instantiate a predefined set of slots.

In the next section, we present a model of dialog

state tracking that aims at leveraging the current

advances of MemN2N, a memory-enhanced neural

networks and their approximate reasoning capabil-

ities that seems particularly adapted to the sequen-

tial, long range dependency equipped and sparse

nature of complex dialog state tracking tasks. Fur-

thermore, this model allows to relax the hypothe-

sis of strict utterance-level annotation that does not

corresponds to common practices in industrial ap-

plications of transactional conversational user in-

terfaces where annotations tend to be placed at a

multi-utterance level or full-dialog level only.

3 Machine Reading Formulation of

Dialog State Tracking

We propose to formalize the dialog state tracking

task as a machine reading problem (Etzioni et al.,

2007; Berant et al., 2014). In this section, we re-

call the main definitions of the task of machine

reading, then describes the MemN2N, a memory-

enhanced neural network architectures proposed

to handle such tasks in the context of dialogs. Fi-

nally, we formalize the task of dialog state track-

ing as a machine reading problem and propose to
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solve it using a memory-enhanced neural architec-

ture of inference.

3.1 Machine Reading

The task of textual understanding has recently

been formulated as a supervised learning problem

(Kumar et al., 2015; Hermann et al., 2015). This

task consists in estimating the conditional prob-

ability p(a|d,q) of an answer a to a question q

where d is a document. Such an approach requires

a large training corpus of {Document - Query -

Answer} triples and until now such corpora have

been limited to hundreds of examples (Richard-

son et al., 2013). In the context of dialog state

tracking, it can be understood as the capability of

inferring a set of latent values l associated with

a set of variables v related to a given dyadic or

multi-party conversation d, from direct correlation

and/or reasoning, using the course of exchanges of

utterances, p(l|d,v).

State updates at an utterance-level are rarely

provided off-the-shelf from a production environ-

ment. In these environments, annotation is of-

ten performed afterhand for the purpose of log-

ging, monitoring or quality assessment. In the

limit cases, as in human-to-human dialog sys-

tems, dialog-level annotations remains a common

practice of annotation especially in personal assis-

tance, customer care dialogs and, in a more gen-

eral sense, industrial application of transactional

conversational user interfaces. Another frequent

setting consist of informing the state after a given

number of utterance exchange between the locu-

tors. So an additional effort of specific annota-

tion is often needed in order to train a state of

the art statistical state tracking model (Henderson

et al., 2014b). In that sense, formalizing dialog

state tracking at a sub-dialog level in order to in-

fer hidden state variables with respect to a list of

utterances started from the first one to any given

utterance of a given dialog seems particularly ap-

propriate. In the context of dialog state tracking

challenges, the DSTC-4 dialog corpus have been

designed in such purpose but only consists of 22

dialogs. Concerning the DSTC-2 corpus, the train-

ing data contains 2207 dialogs (15611 turns) and

the test set consists of 1117 dialogs (Williams et

al., 2016). This dataset is more suitable for our

experiments.

For these reasons, the machine reading

paradigm becomes a promising formulation for

the general problem of dialog state tracking.

Furthermore, current approaches and available

datasets for state tracking do not explicitly cover

reasoning capabilities such as temporal and spatial

reasoning, counting, sorting and deduction. We

suggest that in the future dataset dialogs express-

ing such specific abilities should be developed. In

this last part, several reasoning enhancements are

suggested to the DSTC-2 dataset.

3.2 End-to-End Memory Networks

The MemN2N architecture, introduced by (Weston

et al., 2015), consists of two main components:

supporting memories and final answer prediction.

Supporting memories are in turn comprised of a

set of input and output memory representations

with memory cells. The input and output memory

cells, denoted by mi and ci, are obtained by trans-

forming the input context x1, . . . ,xn (i.e a set of ut-

terances) using two embedding matrices A and C

(both of size d×|V | where d is the embedding size

and |V | the vocabulary size) such that mi = AΦ(xi)
and ci =CΦ(xi) where Φ(·) is a function that maps

the input into a bag of dimension |V |.
Similarly, the question q is encoded using an-

other embedding matrix B ∈ R
d×|V |, resulting in a

question embedding u = BΦ(q). The input mem-

ories {mi}, together with the embedding of the

question u, are utilized to determine the relevance

of each of the stories in the context, yielding in a

vector of attention weights

pi = softmax(u⊤mi) (1)

where softmax(ai) =
eai

∑i eai
. Subsequently, the re-

sponse o from the output memory is constructed

by the weighted sum:

o = ∑
i

pici (2)

Other models of parametric encoding for the ques-

tion and the document have been proposed in (Ku-

mar et al., 2015). For the purpose of this presenta-

tion, we will keep with definition of Φ.

For more difficult tasks requiring multiple sup-

porting memories, the model can be extended to

include more than one set of input/output memo-

ries by stacking a number of memory layers. In

this setting, each memory layer is named a hop

and the (k + 1)th hop takes as input the output of

the kth hop:

uk+1 = ok +uk (3)
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Lastly, the final step, the prediction of the an-

swer to the question q, is performed by

â = softmax(W (oK +uK)) (4)

where â is the predicted answer distribution, W ∈
R
|V |×d is a parameter matrix for the model to learn

and K the total number of hops.

Two weight tying schemes of the embedding

matrices have been introduced in (Weston et al.,

2015):

1. Adjacent: the output embedding matrix in

the kth hop is shared with the input embed-

ding matrix in the (k + 1)th hop, i.e., Ak+1 =
Ck for k ∈ {1,K − 1}. Also, the weight ma-

trix W in Equation (4) is shared with the out-

put embedding matrix in the last memory hop

such that W⊤ = CK .

2. Layer-wise: all the weight matrices Ak and

Ck are shared across different hops, i.e., A1 =
A2 = . . . = AK and C1 = C2 = . . . = CK .

In the next section, we show how the task of di-

alog state tracking can be formalized as machine

reading task and solved using such memory en-

hanced model.

3.3 Dialog Reading Model for State Tracking

In this section, we formalize dialog state tracking

using the paradigm of machine reading. As far as

our knowledge goes, it is the first attempt to ap-

ply this approach and develop a specific dataset

format, detailed in Section 4, from an existing

and publicly available dialog state tracking chal-

lenge dataset to fulfill this task. Assuming (1)

a dyadic dialog d composed of a list of utter-

ances, (2) a state composed with (2a) a set of

variables vi with i = {1, . . . ,n}and (2b) a set of

corresponding assigned values li. One can de-

fine a question qv that corresponds to the specific

querying of a variable in the context of a dialog

p(li|qvi
,d). In such context, a dialog state track-

ing task consists in determining for each variable

v, l∗ = argmaxli∈L p(li|qvi
,d), with L the specific

domain of expression of a variable vi.

In addition to the actual dataset, we propose

to investigate four general reasoning tasks using

DSTC-2 dataset as a starting point. In such way,

we leverage the dataset of DSTC-2 to create more

complex reasoning task than the ones present in

the original dialogs of the dataset by performing

rule-based modification over the corpus. Obvi-

ously, the goal is to develop resolution algorithms

that are not dedicated to a specific reasoning task

but inference models that will be as generic as pos-

sible. In the rest of the section, each of the reason-

ing tasks associated with dialog state tracking are

described and the generation protocol is explained

with examples.

Factoid Questions : This first task corresponds

to the current formulation of dialog state tracking.

It consists of questions where a previously given

a set of supporting facts, potentially amongst a set

of other irrelevant facts, provides the answer. This

kind of task was already employed in (Weston et

al., 2014) in the context of a virtual world. In that

sense, the result obtained to such task are compa-

rable with the state of the art approaches.

Yes/No Questions : This task tests the ability

of a model to answer true/false type questions like

“Is the food italian ?”. The conversion of a dialog

to such format is deterministic regarding the fact

that the utterances and corresponding true states

are known at each utterance of a given dialog.

Indefinite Knowledge : This task tests a more

complex natural language construction. It tests

if statements can be models in order to describe

possibilities rather than certainties, as proposed in

(Weston et al., 2014). In our case, the answer will

be “maybe” to the question “Is the price-range re-

quired moderate ?” if the slot hasn’t been men-

tioned yet throughout the current dialog. In the

case of state tracking, it will allow to seamlessly

deal with unknown information about the dialog

state. Concretely, this set of questions and an-

swers are generated has a super-set of the Yes-No

Questions set. First, sub-dialog starting from the

first utterance of a given dialog are extracted un-

der the condition that a given slot is not informed

in the corresponding annotation. Then, a question-

answering question is generated.

Counting and Lists/Sets : This last task tests

the capacity of the model to perform simple count-

ing operations, by asking about the number of ob-

jects with a certain property, e.g. “How many area

are requested ?”. Similarly, the ability to produce

a set of single word answers in the form of a list,

e.g. “What are the area requested ?” is inves-

tigated. Table 1 give an example of each of the

question type presented below on a dialog sample

of DSTC-2 corpus.

Inference procedure: Concretely, the current

set of utterances of a dialog will be placed into the

memory using sentence based encoding and the
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Figure 2: Illustration of the proposed MemN2N based state dialog tracker model with 3 hops.

question will be encoded as the controller state at

t = 1. The answer will be produced using a soft-

max operation over the answer vocabulary that is

supposed fixed. We consider this hypothesis valid

in the case of factoid and list questions because

the set of value for a given variable is often con-

sidered known. In the cases of Yes/No and Indef-

inite knowledge question, {Yes, No, Maybe} are

added to the output vocabulary. Following (We-

ston et al., 2014), a list-task answer will be consid-

ered as a single element in the answer set and the

count question. A possible alternative would be to

change the activation function used at the output of

the MemN2N from softmax activation function to a

logistic one and to use a categorical cross entropy

loss. A drawback of such alternative would be the

necessity of cross-validating a decision threshold

in order to select a eligible answers. Concerning

the individual numbers for the count question set,

the numbers founded on the training set are added

into the vocabulary.

We believe more reasoning capabilities need to

be explore in the future, like spacial and tempo-

ral reasoning or deduction as suggested in (We-

ston et al., 2015). However, it will probably need

the development of a new dedicated resource. An-

other alternative could be to develop a question-

answering annotation task based on a dialog cor-

pus where reasoning task are present. The closest

work to our proposal that can be cited is (Bordes

and Weston, 2016). In this paper, the authors de-

fines a so-called End-to-End learnable dialog sys-

tem to infer an answer from a finite set of eligible

answers w.r.t the current list of utterances of the di-

alog. The authors generate 5 artificial tasks of dia-

log. However the reasoning capabilities are not ex-

plicitly addressed and the author explicitly claim

that the resulting dialog system is not satisfactory

yet. Indeed, we believe that having a proper di-

alog state tracker where a policy is built on top

can guarantee dialog achievement by properly op-

timizing a reward function throughout a explicitly

learnt dialog policy. In the case of proper end-to-

end systems, the objective function is still not ex-

plicitly defined (Serban et al., 2015) and the result-

ing systems tend to be used in the context of chat-

oriented and non-goal oriented dialog systems. In

the next section, we present experimental details

and results obtained on the basis of the DSTC-2

dataset and its conversion to the four mentioned

reasoning tasks.

4 Experiments

4.1 Dataset and Data Preprocessing

In the DSTC-2 dialog corpus, a user queries a

database of local restaurants by interacting with

a dialog system. A dialog proceeds as follows:

first, the user specifies constraints concerning the

restaurant. Then, the system offers the name of

a restaurant that satisfies the constraints. Finally,

the user accepts the offer and requests additional

information about the accepted restaurant. In this

context, the dialog state tracker should be able to

track several types of information that compose

the state like the geographic area, the food type

and the price range slots. In order to make com-

parable experiments, sub-dialogs generated from

the first utterance to each utterance of each dia-

log of the corpus have been generated. The corre-

sponding question-answer pairs have been gener-

ated using the annotated state for each of the sub-

dialog. In the case of factoid question, this setting

allows for fair comparison at the utterance-level

state tracking gains with the prior art. The same

protocol has been adopted for the generated rea-

soning task. In that sense, the tracker task consists
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Index Actor Utterance

1 Cust Im looking for a cheap restaurant in the west or east part of town.

2 Agent Thanh Binh is a nice restaurant in the west of town in the cheap price range.

3 Cust What is the address and post code.

4 Agent Thanh Binh is on magdalene street city centre.

5 Cust Thank you goodbye.

6 Factoid Question What is the pricerange ? Answer: {Cheap}
7 Yes/No Question Is the Pricerange Expensive ? Answer: {No}
8 Indefinite Knowledge Is the FoodType chinese ? Answer: {Maybe}
8 Listing task What are the areas ? Answer: {West,East}

Table 1: : Dialog state tracking question-answering examples from DSTC2 dataset

in finding the value l∗ as defined in Section 3.3. In

the overall dialog corpus, Area slot counts 5 pos-

sible values, Food slot counts 91 possible values

and Pricerange slot counts 3 possible values. In or-

der to exhibit reasoning capability of the proposed

model in the context of dialog state tracking, three

other dataset have been automatically generated

from the dialog corpus in order to support 3 capa-

bilities of reasoning described in Section 3.3. Dia-

log modification has been required for two reason-

ing tasks, List and Count. Two types of rules have

been developed to automatically produce modified

dialogs. On a first hand, string matching has been

performed to determine the position of a slot val-

ues in a given utterance and an alternative state-

ment has been produced as a substitution. For ex-

ample, the utterance “I’m looking for a chinese

restaurant in the north” can be replaced by “I’m

looking for a chinese restaurant in the north or the

west of town”. A second type of modification has

been performed in an inter-utterance fashion. For

example, assuming a given value “north” has been

informed in the current state of a given dialog, one

can add lately in the dialog a remark like “I would

also accept a place east side of town”. This kind

of statement tends to not affect the overall flow

of the dialog and allows to add richer semantic

to the dialog. In the future, we plan to develop

a richer set of generation procedures to augment

the dataset. Nevertheless, we believe this simple

dialog augmentation strategy allows to exhibit the

competency of the proposed model beyond factoid

questions.

4.2 Training Details

As suggested in (Sukhbaatar et al., 2015), 10% of

the set was held-out to form a validation set for

hyperparameter tuning. Concerning the utterance

encoding, we use the so-called Temporal Encod-

ing technique. In fact, reading tasks require some

notion of temporal context. To enable the model

to address them, the memory vector is modified

as such mi = ∑ j Axi j + TA(i), where TA(i) is the

ith row of a dedicated matrix TA that encodes tem-

poral information. The output embedding is aug-

mented in the same way with a matrix Tc (e.g.

ci = ∑ j Cxi j + TC(i)). Both TA and TC are learned

during training in an end-to-end fashion. They are

also subject to the same sharing constraints as A

and C. The embedding matrix A and B are ini-

tialized using GoogleNews word2vec embedding

model (Mikolov et al., 2013). Also suggested on

(Sukhbaatar et al., 2015), utterances are indexed

in reverse order, reflecting their relative distance

from the question so that x1 is the last sentence

of the dialog. Furthermore, adjacent weight tying

schema has been adopted. Learning rate η is ini-

tially assigned a value of 0.005 with exponential

decay applied every 25 epochs by η/2 until 100

epochs are reached. Then, linear start is used in

all our experiments as proposed by (Sukhbaatar et

al., 2015). More precisely, the softmax function in

each memory layer is removed and re-inserted af-

ter 20 epochs. Batch size is set to 16 and gradients

with an L2 norm larger than 40 are divided by a

scalar to have norm 40. All weights are initialized

randomly from a Gaussian distribution with zero

mean and σ = 0.1. In all our experiments, we have

tested a set of the embedding size d ∈ {20,40,60}.

After validation, each model uses a 5-hops depth

configuration.

4.3 Experimental results

Table 3 presents tracking accuracy obtained for

three variables of the DSTC2 dataset formulated

as Factoid Question task. We compare with two

established utterance-level discriminative neural

trackers, a Recurrent Neural Network (RNN)

model (Henderson et al., 2014a) and the Neural

Belief Tracker (Mrksic et al., 2016). As suggested

in this last work, the first RNN baseline model

uses no semantic (i.e. synonym) dictionary, while
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Locutor Utterance Hop 1 Hop 2 Hop 3 Hop 4 Hop 5

Cust Im looking for a cheap restaurant that serves chinese food 0.00 0.18 0.11 0.04 0.00

Agent What part of town do you have in mind 0.33 0.30 0.00 0.00 0.00

Cust I dont care 0.00 0.00 0.17 0.37 1.00

Agent Rice house serves chinese food in the cheap price range 0.01 0.00 0.00 0.00 0.00

Cust What is the address and telephone number 0.58 0.09 0.01 0.00 0.00

Agent Sure rice house is on mill road city centre 0.03 0.00 0.00 0.00 0.00

Cust Phone number 0.00 0.00 0.00 0.00 0.00

Agent The phone number of rice house is 765-239-09 0.02 0.01 0.00 0.00 0.00

Cust Thank you good bye 0.02 0.42 0.71 0.59 0.00

What is the area ? Answer: dontcare

Table 2: Attention shifting example for the Area slot from DSTC2 dataset, the values corresponds the pi

values affected to each memory block mi at each hop of the MemN2N

the improved baseline uses a hand-crafted seman-

tic dictionary designed for the DSTC2 ontology.

In this context, a MemN2N model allows to ob-

tain competitive results with the most close, non-

memory enhanced, state of the art approach of re-

current neural network with word embedding as

prior knowledge.

Model Area Food Price Joint

RNN - no dict. 0.92 0.86 0.86 0.69

RNN + sem. dict. 0.91 0.86 0.93 0.73

NBT-DNN 0.90 0.84 0.94 0.72

NBT-CNN 0.90 0.83 0.93 0.72

MemN2N(d = 40) 0.89 0.88 0.95 0.74

Table 3: One supporting fact task : Acc. ob-

tained on DSTC2 test set

As a second result, Table 4 presents the perfor-

mance obtained for the four reasoning tasks. The

obtained results lead us to think that MemN2N are

a competitive alternative for the task dialog state

tracking but also increase the spectrum of def-

inition of the general dialog state tracking task

to machine reading and reasoning. In the future,

we believe new reasoning capabilities like spacial

and temporal reasoning and deduction should be

exploited on the basis of a specifically designed

dataset.

5 Conclusion and Further Work

This paper describes a novel method of dialog

state tracking based on the paradigm of machine

reading and solved using MemN2N, a memory-

enhanced neural network architecture. In this con-

text, a dataset format inspired from the current

datasets of machine reading tasks has been devel-

oped for this task. It is the first attempt to solve

this classic sub-problem of dialog management in

Variable d Yes-No I.K. Count. List.

20 0.85 0.79 0.89 0.41

Food 40 0.83 0.84 0.88 0.42

60 0.82 0.82 0.90 0.39

20 0.86 0.83 0.94 0.79

Area 40 0.90 0.89 0.96 0.75

60 0.88 0.90 0.95 0.78

20 0.93 0.86 0.93 0.83

PriceRange 40 0.92 0.85 0.90 0.80

60 0.91 0.85 0.91 0.81

Table 4: Reasoning tasks : Acc. on DSTC2 rea-

soning datasets

such way. Beyond the experimental results pre-

sented in the experimental section, the proposed

approach offers several advantages compared to

state of the art methods of tracking. First, the pro-

posed method allows to perform tracking on the

basis of segment-dialog-level annotation instead

of utterance-level one that is commonly admitted

in academic datasets but tedious to produce in a

large scale industrial environment. Second, we

propose to develop dialog corpus requiring rea-

soning capabilities to exhibit the potential of the

proposed model. In future work, we plan to ad-

dress more complex tasks like spatial and tempo-

ral reasoning, sorting or deduction and experiment

with other memory enhanced inference models.

Indeed, we plan to experiment and compare the

same approach with Stacked-Augmented Recur-

rent Neural Network (Joulin and Mikolov, 2015)

and Neural Turing Machine (Graves et al., 2014)

that sounds also promising for these family of rea-

soning tasks.
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