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Abstract

Dialog state tracking is used to estimate the

current belief state of a dialog given all the pre-

ceding conversation. Machine reading com-

prehension, on the other hand, focuses on

building systems that read passages of text

and answer questions that require some un-

derstanding of passages. We formulate dialog

state tracking as a reading comprehension task

to answer the question what is the state of the

current dialog? after reading conversational

context. In contrast to traditional state track-

ing methods where the dialog state is often

predicted as a distribution over a closed set of

all the possible slot values within an ontology,

our method uses a simple attention-based neu-

ral network to point to the slot values within

the conversation. Experiments on MultiWOZ-

2.0 cross-domain dialog dataset show that our

simple system can obtain similar accuracies

compared to the previous more complex meth-

ods. By exploiting recent advances in contex-

tual word embeddings, adding a model that ex-

plicitly tracks whether a slot value should be

carried over to the next turn, and combining

our method with a traditional joint state track-

ing method that relies on closed set vocabu-

lary, we can obtain a joint-goal accuracy of

47.33% on the standard test split, exceeding

current state-of-the-art by 11.75%**.

1 Introduction

A task-oriented spoken dialog system involves

continuous interaction with a machine agent and a

human who wants to accomplish a predefined task

through speech. Broadly speaking, the system has

*Authors contributed equally.
**We note that after publication, a new state-of-the-art

can now be obtained with a similar attention mechanism fol-
lowed by a enoder-decoder architecture (Wu et al., 2019).

four components, the Automatic Speech Recog-

nition (ASR) module, the Natural Language Un-

derstanding (NLU) module, the Natural Language

Generation (NLG) module, and the Dialog Man-

ager. The dialog manager has two primary mis-

sions: dialog state tracking (DST) and decision

making. At each dialog turn, the state tracker up-

dates the belief state based on the information re-

ceived from the ASR and the NLU modules. Sub-

sequently, the dialog manager chooses the action

based on the dialog state, the dialog policy and

the backend results produced from previously ex-

ecuted actions.

Table 1 shows an example conversation with the

associated dialog state. Typical dialog state track-

ing system combines user speech, NLU output,

and context from previous turns to track what has

happened in a dialog. More specifically, the dia-

log state at each turn is defined as a distribution

over a set of predefined variables (Williams et al.,

2005). The distributions output by a dialog state

tracker are sometimes referred to as the tracker’s

belief or the belief state. Typically, the tracker has

complete access to the history of the dialog up to

the current turn.

Traditional machine learning approaches to di-

alog state tracking have two forms, generative and

discriminative. In generative approaches, a dia-

log is modeled as a dynamic Bayesian network

where true dialog state and true user action are un-

observed random variables (Williams and Young,

2007); whereas the discriminative approaches are

directly modeling the distribution over the dialog

state given arbitrary input features.

Despite the popularity of these approaches, they

often suffer from a common yet overlooked prob-

lem — relying on fixed ontologies. These systems,

therefore, have trouble handling previously unseen

mentions. On the other hand, reading compre-

hension tasks (Rajpurkar et al., 2016; Chen et al.,
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2017; Reddy et al., 2019) require us to find the

answer spans within the given passage and hence

state-of-the-art models are developed in such a

way that a fixed vocabulary for an answer is usu-

ally not required. Motivated by the limitations of

previous dialog state tracking methods and the re-

cent advances in reading comprehension (Chen,

2018), we propose a reading comprehension based

approach to dialog state tracking. In our approach,

we view the dialog as a passage and ask the ques-

tion what is the state of the current dialog? We use

a simple attention-based neural network model to

find answer spans by directly pointing to the to-

kens within the dialog, which is similar to Chen

et al. (2017). In addition to this attentive read-

ing model, we also introduce two simple models

into our dialog state tracking pipeline, a slot car-

ryover model to help the tracker make a binary

decision whether the slot values from the previ-

ous turn should be used; a slot type model to pre-

dict whether the answer is {Yes, No, DontCare,

Span}, which is similar to Zhu et al. (2018). To

summarize our contributions:

• We formulate dialog state tracking as a read-

ing comprehension task and propose a sim-

ple attention-based neural network to find the

state answer as a span over tokens within the

dialog. Our approach overcomes the limi-

tations of fixed-vocabulary issue in previous

approaches and can generalize to unseen state

values.

• We present the task of dialog state tracking as

making three sequential decisions: i) a binary

carryover decision by a simple slot carryover

model ii) a slot type decision by a slot type

model iii) a slot span decision by an atten-

tive reading comprehension model. We show

effectiveness of this approach.

• We adopt recent progress in large pre-

trained contextual word embeddings, i.e.,

BERT (Devlin et al., 2018) into dialog state

tracking, and get considerable improvement.

• We show our proposed model outperforms

more complex previously published methods

on the recently released MultiWOZ-2.0 cor-

pus (Budzianowski et al., 2018; Ramadan

et al., 2018). Our approach achieves a joint-

goal accuracy of 42.12%, resulting in a 6.5%

absolute improvement over previous state-of-

User: I need to book a hotel in the east that has 4 stars.
Hotel area=east, stars=4

Agent: I can help you with that. What is your price range?
User: That doesn’t matter if it has free wifi and parking.
Hotel parking=yes, internet=yes

price=dontcare, stars=4, area=east

Agent: If you’d like something cheap,
I recommend Allenbell

User: That sounds good, I would also like a
taxi to the hotel from cambridge

Hotel parking=yes, internet=yes

price=dontcare, area=east, stars=4

Taxi departure=Cambridge

destination=Allenbell

Table 1: An example conversation in MultiWOZ-2.0

with dialog states after each turn.

the-art. Furthermore, if we combine our re-

sults with the traditional joint state tracking

method in Liu and Lane (2017), we achieve

a joint-goal accuracy of 47.33%, further ad-

vancing the state-of-the-art by 11.75%.

• We provide an in-depth error analysis of

our methods on the MultiWOZ-2.0 dataset

and explain to what extent an attention-based

reading comprehension model can be effec-

tive for dialog state tracking and inspire fu-

ture improvements on this model.

2 Related Work

Dialog State Tracking Traditionally, dialog

state tracking methods assume a fixed ontology,

wherein the output space of a slot is constrained

by the predefined set of possible values (Liu and

Lane, 2017). However, these approaches are not

applicable for unseen values and do not scale

for large or potentially unbounded vocabulary

(Nouri and Hosseini-Asl, 2018). To address these

concerns, a class of methods employing scoring

mechanisms to predict the slot value from a en-

dogenously defined set of candidates have been

proposed (Rastogi et al., 2017; Goel et al., 2018).

In these methods, the candidates are derived from

either a predefined ontology or by extraction of

a word or n-grams in the prior dialog context.

Previously, Perez and Liu (2017) also formulated

state tracking as a machine reading comprehen-

sion problem. However, their model architec-

ture used a memory network which is relatively

complex and still assumes a fixed-set vocabulary.

Perhaps, the most similar technique to our work

is the pointer networks proposed by Xu and Hu

(2018) wherein an attention-based mechanism is



employed to point the start and end token of a

slot value. However, their formulation does not in-

corporate a slot carryover component and outlines

an encoder-decoder architecture in which the slot

type embeddings are derived from the last state of

the RNN.

Reading Comprehension A reading compre-

hension task is commonly formulated as a super-

vised learning problem where for a given train-

ing dataset, the goal is to learn a predictor, which

takes a passage p and a corresponding question

q as inputs and gives the answer a as output. In

these tasks, an answer type can be cloze-style

as in CNN/Daily Mail (Hermann et al., 2015),

multiple choice as in MCTest (Richardson et al.,

2013), span prediction as in SQuaD (Rajpurkar

et al., 2016), and free-form answer as in Narra-

tiveQA (Kočiskỳ et al., 2018). In span prediction

tasks, most models encode a question into an em-

bedding and generate an embedding for each to-

ken in the passage and then a similarity function

employing attention mechanism between the ques-

tion and words in the passage to decide the starting

and ending positions of the answer spans (Chen

et al., 2017; Chen, 2018). This approach is fairly

generic and can be extended to multiple choice

questions by employing bilinear product for dif-

ferent types (Lai et al., 2017) or to free-form text

by employing seq-to-seq models (Sutskever et al.,

2014).

Deep Contextual Word Embeddings The re-

cent advancements in the neural representation of

words includes using character embeddings (Seo

et al., 2016) and more recently using contextu-

alized embeddings such as ELMO (Peters et al.,

2018) and BERT (Devlin et al., 2018). These

methods are usually trained on a very large cor-

pus using a language model objective and show

superior results across a variety of tasks. Given

their wide applicability (Liu et al., 2019), we em-

ploy these architectures in our dialog state tracking

task.

3 Our Approach

3.1 DST as Reading Comprehension

Let us denote a sub-dialog Dt of a dialog D as

prefix of a full dialog ending with user’s tth ut-

terance, then state of the dialog Dt is defined by

the values of constituent slots sj(t), i.e., St =
{s1(t), s2(t), .sj(t), . . . , sM (t)}.

Using the terminology in reading comprehen-

sion tasks, we can treat Dt as a passage, and for

each slot i, we formulate a question qi: what is

the value for slot i? The dialog state tracking task

then becomes understanding a sub-dialog Dt and

to answer the question qi for each slot i.

3.2 Encoding

Dialog Encoding For a given dialog Dt at turn

t, we first concatenate user utterances and agent

utterances {u1, a1, u2, a2, . . . , ut}. To differenti-

ate between user utterance and agent utterance, we

add symbol [U] before each user utterance and

[A] before each agent utterance. Then, we use

pre-trained word vectors to form pi for each token

in the dialog sequence and pass them as input into

a recurrent neural network, i.e.,

{d1, d2, . . . dL} = RNN(p1, p2, . . . pL) (1)

where L is the total length of the concatenated di-

alog sequence and di is the output of RNN for

each token, which is expected to encode context-

aware information of the token. In particular, for

pre-trained word vectors pi, we experiment with

using deep contextualized word embeddings us-

ing BERT (Devlin et al., 2018). For RNN, we

use a one layer bidirectional long short-term mem-

ory network (LSTM) and each di is the concate-

nation of two LSTMs from both directions, i.e.,

di = (
←−
di ;
−→
di). Furthermore, we denote e(t) as our

dialog embedding at turn t as follows:

e(t) = (
←−
d1;
−→
dL) (2)

Question Encoding In our methodology, we

formulate questions qi defined earlier as what is

the value for slot i? For each dialog, there are

M similar questions corresponding to M slots,

therefore, we represent each question qi as a fixed-

dimension vector qi to learn.

3.3 Models

Overview In our full model set up, three dif-

ferent model components are used to make a se-

quence of predictions: first, we use a slot carry-

over model for deciding whether to carryover a

slot value from the last turn. If the first model de-

cided not to carry over, a slot type model is exe-

cuted to predict type of the answer from a set of

{Yes, No, DontCare, Span}. If the slot type

model predicts span, slot span model will finally

be predicting the slot value as a span of tokens
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Prediction Layer

Contextual 
Representation

Context Encoding 
Layer (RNN)

Word Embedding 
Layer

Figure 1: Our attentive reading comprehension system for dialog state tracking. There are three prediction com-

ponents on top (from right to left): 1) slot carryover model to predict whether a particular slot needs to be updated

from previous turn 2) slot type model to predict the type of slot values from {Yes, No, DontCare, Span} 3) slot

span model to predict the start and end span of the value within the dialog.

within the dialog. The full model architecture is

shown in Figure 1.

Slot Carryover Model To model dynamic na-

ture of dialog state, we introduce a model whose

purpose is to decide whether to carry over a slot

value from the previous turn. For a given slot

sj , Cj(t) = 1 if sj(t) 6= sj(t − 1) and 0 if

they are equal. We multiply the dialog embedding

e(t) with a fully connected layer Wi to predict the

change for slot i as:

P (Ci(t)) = sigmoid(e(t) ·Wi) (3)

The network architecture is shown in Figure 1. In

our implementation, the weights Wi for each slot

are trained together, i.e., the neural network would

predict the slot carryover change Ci(t) jointly for

all M slots.

Slot Type Model A typical dialog state com-

prises of slots that can have both categorical and

named entities within the context of conversa-

tion. To adopt a flexible approach and inspired

by the state-of-the-art reading comprehension ap-

proaches, we propose a classifier that predicts the

type of slot value at each turn. In our setting,

we prescribe the output space to be {Yes, No,

DontCare, Span} where Span indicates the

slot value is a named entity which can be found

within the dialog. As shown in Figure 1, we con-

catenate the dialog embedding e(t) with the ques-

tion encoding qi for slot i as the input to the affine

layer A to predict the slot type Ti(t) as:

P (Ti(t)) ∝ exp(A · (e(t); qi)) (4)

Slot Span Model We map our slot values into

a span with start and end position in our flattened

conversation Dt. We then use the dialog encoding

vectors {d1, d2, . . . dL} and the question vector qi

to compute the bilinear product and train two clas-

sifiers to predict the start position and end position

of the slot value. More specifically, for slot j,

P
(start)
j (x) =

exp (dxΘ
(start)qj)

∑
x′ exp (dx′Θ(start)qj)

(5)

Similarly, we define P
(end)
j (x) with Θ(end). Dur-

ing span inference, we choose the best span from

word i to word i′ such that i ≤ i′ and P
(start)
j (i)×

P
(end)
j (i′) is maximized, in line with the approach

by Chen et al. (2017).

4 Experiments

4.1 Data

We use the recently-released MultiWOZ-2.0

dataset (Budzianowski et al., 2018; Ramadan

et al., 2018) to test our approach. This dataset con-

sists of multi-domain conversations from seven

domains with a total of 37 slots across domains.

Many of these slot types such as day and people

are shared across multiple domains. In our experi-

ments, we process each slot independently by con-

sidering the concatenation of slot domain, slot cat-

egory, and slot name, e.g., {bus.book.people},
{restaurant.semi.food}. An example of

conversation is shown in Table 1. We use stan-

dard training/development/test present in the data

set.

It is worth-noting that the dataset in the current

form has certain annotation errors. First, there is



Method Accuracy

MultiWOZ Benchmark 25.83%

GLAD (Zhong et al., 2018) 35.57%

GCE (Nouri and Hosseini-Asl, 2018) 35.58%

Our approach (single) 39.41%

Our approach (ensemble) 42.12%

HyST (ensemble) (Goel et al., 2019) 44.22%

Our approach + JST (ensemble) 47.33%

Table 2: Joint goal accuracy on MultiWOZ-2.0. We

present both single and ensemble results for our ap-

proach.

lack of consistency between the slot values in the

ontology and the ground truth in the context of

the dialog. For example, the ontology has mod-

erate but the dialog context has moderately. Sec-

ond, there are erroneous delay in the state updates,

sometimes extending turns in the dialog. This er-

ror negatively impacts the performance of the slot

carryover model.

4.2 Experimental Setup

We train our three models independently without

sharing the dialog context. For all the three mod-

els, we encode the word tokens with BERT (De-

vlin et al., 2018) followed by an affine layer with

200 hidden units. This output is then fed into

a one-layer bi-directional LSTM with 50 hidden

units to obtain the contextual representation as

show in Figure 1. In all our experiments, we keep

the parameters of the BERT embeddings frozen.

For slot carryover model, we predict a binary

vector over 37 slots jointly to get the decisions of

whether to carry over values for each slot. For

slot type and slot span models, we treat dialog–

question pairs (Dt, qi) as separate prediction tasks

for each slot.

We use the learning rate of 0.001 with ADAM

optimizer and batch size equal to 32 for all three

models. We stop training our models when the

loss on the development set has not been decreas-

ing for ten epochs.

5 Results

Table 2 presents our results on MultiWOZ-2.0

test dataset. We compare our methods with

global-local self-attention model (GLAD) (Zhong

et al., 2018), global-conditioned encoder model

(GCE) (Nouri and Hosseini-Asl, 2018), and hy-

brid joint state tracking model (OV ST+JST) (Liu

and Lane, 2017; Goel et al., 2019). As in previous

work, we report joint goal accuracy as our met-

ric. For each user turn, joint goal accuracy checks

whether all predicted states exactly matches the

ground truth state for all slots. We can see that

our system with single model can achieve 39.41%

joint goal accuracy, and with the ensemble model

we can achieve 42.12% joint goal accuracy.

Table 3 shows the accuracy for each slot

type for both our method and the joint state

tracking approach with fix vocabulary in Goel

et al. (2019). We can see our approach

tends to have higher accuracy on some of

the slots that have larger set of possible val-

ues such as attraction.semi.name and

taxi.semi.destination. However, it is

worth-noting that even for slots with smaller

vocabulary sizes such as hotel.book.day

and hotel.semi.pricerange, our approach

achieves better accuracy than using closed vocab-

ulary approach. Our hypothesis for difference is

that such information appear more frequently in

user utterance thus our model is able to learn it

more easily from the dialog context.

We also reported the result for a hybrid model

by combining our approach with the JST approach

in (Goel et al., 2019). Our combination strategy is

as follows: first we calculated the slot type accu-

racy for each model on the development dataset;

then for each slot type, we choose to use the pre-

dictions from either our model or JST model based

on the accuracy calculated on the development

set, whichever is higher. With this approach, we

achieve the joint-goal accuracy of 46.28%. We

hypothesize that this is because our method uses

an open vocabulary, where all the possible values

can only be obtained from the conversation; the

joint state tracking method uses closed ontology,

we can get the best of both the worlds by combin-

ing two methods.

5.1 Ablation Analysis

Table 4 illustrates the ablation studies for our

model on development set. The contextual em-

bedding BERT (Devlin et al., 2018) can give us

around 2% gains. As for the oracle models, we

can see that even if using all the oracle results

(ground truth), our development set accuracy is

only 73.12%. This is because our approach is

only considering the values within the conversa-

tion, if values are not present in the dialog, the



Slot Name Ours JST Vocab

Size

attraction.semi.area 0.9637 0.9719 16

attraction.semi.name 0.9213 0.9013 137

attraction.semi.type 0.9205 0.9637 37

bus.book.people 1.0000 1.0000 1

bus.semi.arriveBy 1.0000 1.0000 1

bus.semi.day 1.0000 1.0000 2

bus.semi.departure 1.0000 1.0000 2

bus.semi.destination 1.0000 1.0000 5

bus.semi.leaveAt 1.0000 1.0000 2

hospital.semi.department 0.9991 0.9988 52

hotel.book.day 0.9863 0.9784 11

hotel.book.people 0.9714 0.9847 9

hotel.book.stay 0.9736 0.9809 9

hotel.semi.area 0.9679 0.9570 24

hotel.semi.internet 0.9713 0.9718 8

hotel.semi.name 0.9147 0.9056 89

hotel.semi.parking 0.9563 0.9657 8

hotel.semi.pricerange 0.9679 0.9666 9

hotel.semi.stars 0.9627 0.9759 13

hotel.semi.type 0.9140 0.9261 18

restaurant.book.day 0.9874 0.9871 10

restaurant.book.people 0.9787 0.9881 9

restaurant.book.time 0.9882 0.9578 61

restaurant.semi.area 0.9607 0.9654 19

restaurant.semi.food 0.9741 0.9691 104

restaurant.semi.name 0.9113 0.8781 183

restaurant.semi.pricerange 0.9662 0.9626 11

taxi.semi.arriveBy 0.9893 0.9719 101

taxi.semi.departure 0.9665 0.9304 261

taxi.semi.destination 0.9634 0.9288 277

taxi.semi.leaveAt 0.9821 0.9524 119

train.book.people 0.9586 0.9718 13

train.semi.arriveBy 0.9738 0.9491 107

train.semi.day 0.9854 0.9783 11

train.semi.departure 0.9599 0.9710 35

train.semi.destination 0.9538 0.9699 29

train.semi.leaveAt 0.9595 0.9478 134

Table 3: Slot accuracy breakdown for our approach

versus joint state tracking method. Bolded slots are the

ones have better performance using our attentive read-

ing comprehension approach.

oracle models would fail. It is interesting to see

that if we replace our slot carryover model with

an oracle one, the accuracy improves significantly

to 60.18% (+19.08%) compared to replacing other

two models (41.43% and 45.77%). This is because

our span-based reading comprehension approach

model already gives us accuracy as high as 96%

per slot on development data, there is not much

room for improvement. Whereas our binary slot

carryover model only achieve an accuracy of 72%

per turn. We hypothesis that for slot carryover

problem is imbalanced, i.e., there are significantly

more slot carryovers than slot updates, making the

Ablation Dev Accuracy

Oracle Models 73.12%

Our approach 41.10%

- BERT 39.19%

+ Oracle Slot Type Model 41.43%

+ Oracle Slot Span Model 45.77%

+ Oracle Slot Carryover Model 60.18%

Table 4: Ablation study on our model components for

MultiWOZ-2.0 on development set for joint goal accu-

racy.

model training and predictions harder. This sug-

gest further improvements are needed for slot car-

ryover model to make overall state tracking accu-

racy higher.

5.2 Error Analysis

In Table 5, we conduct an error analysis of our

models and investigate its performance for differ-

ent use cases. Since we formulate the problem

to be an open-vocabulary state tracking approach

wherein the slot values are extracted in the dialog

context, we divide the errors into following cate-

gories:

• Unanswerable Slot Error This category

contains two type of errors: (1) Ground truth

slot is a not None value, but our prediction is

None; (2) Ground truth slot is None, but our

prediction is a not None value. This type of

error can be attributed to the incorrect predic-

tions made by our slot carryover model.

• Imprecise Slot Reference where multiple

potential candidates in the context exists. The

model refers to the incorrect entity in the con-

versation. This error can be largely attributed

to following reasons: (1) the model overfits

to the set of tokens that it has seen more

frequently in the training set; (2) the model

does not generalize well for scenarios where

the user corrects the previous entity; (3) the

model incorrectly overfits to the order or po-

sition of the entity in the context. These rea-

sons motivate future research in incorporat-

ing more neural reading comprehension ap-

proaches for dialog state tracking.

• Imprecisie Slot Resolution In this type of

errors, we cannot find the exact match of

ground truth value in the dialog context.



Category Hypothesis Reference Context (%)

Unanswerable

Slot Error

not None None . . . 42.4

None not None . . . 23.1

Incorrect slot

Reference

4 8 . . . 3 nights, and 4 people. Thank You! [A]

Booking was unsuccessful . . . I’d like to book

there Monday for 1 night with 8 people. . . .

19.1

Incorrect Slot

Resolution

3:30 15:30 . . . you like to arrive at the Cinema? [U] I

want to leave the hotel by 3:30 [A] Your taxi

reservation departing . . .

12.9

Imprecise Slot

Boundary

nandos city

centre

nandos . . . number is 01223902168 [U] Great I am

also looking for a restaurant called nandos

city centre . . .

2.5

Table 5: Error categorization and percentage distribution: representative example from each category and an

estimate breakdown of the error types on development set, based on the analysis of 200 error samples produced by

our model. Numbers of the first category is exact because we are able to summarize this error category statistically.

However, our predicted model span is a para-

phrase or has very close meaning to the

ground truth. This error is inherent in ap-

proaches that do not extract the slot value

from an ontology but rather the dialog con-

text. On similar lines, we also observe cases

where the slot value in the dialog context

is resolved (or canonicalized) to a differ-

ent surface-form entity that is perhaps more

amenable for downstream applications.

• Imprecise Slot Boundary In this category of

errors, our model chooses a span that is ei-

ther a superset or subset of the correct ref-

erence. This error is especially frequent for

proper nouns where the model has a weaker

signal to outline the slot boundary precisely.

Table 5 provides us the error examples and es-

timated percentage from each category. ”Unan-

swerable Slot” accounts for 65.5% errors for our

model, this indicates further attention may be

needed to the slot carryover model, otherwise it

would become a barrier even if we have a perfect

span model. This finding is in alignment with our

ablation studies in Table 4, where oracle slot carry-

over model would give us the most boost in joint

goal accuracy. Additionally, 12.9% of errors are

due to imprecise slot resolution, this suggests fu-

ture directions of resolving the context words to

the ontology.

5.3 Evaluating Different Context Encoders

for Slot Carryover Model

As shown in oracle ablation studies in Table 4,

slot carryover model plays a significant role in our

pipeline. Therefore we explore the different types

of context encoders for slot carryover model to see

whether if it improves the performance in table 6.

In addition to use a flat dialog context of user

and agent turns [U] and [A] to predict carryover

for every slot in the state, we explored hierarchi-

cal context encoder with an utterance-level LSTM

over each user and agent utterance and a dialog-

level LSTM over the whole dialog with both con-

strained and unconstrained context window, simi-

lar to Liu and Lane (2017). However, we did not

witness any significant performance change across

the two variants as show in Table 6. Lastly, we em-

ployed self-attention over the flattened dialog con-

text in line with Vaswani et al. (2017). However,

we can see from Table 6 that this strategy slightly

hurts the model performance. One hypothesis for

sub par slot carryover model performance is due

to the inherent noise in the annotated data for state

updates. Through a preliminary analysis on the

development set, we encountered few erroneous

delay in the state updates sometimes extending to

over multiple turns. Nevertheless, these experi-

mental results motivate future research in slot car-

ryover models for multi-domain conversations.

5.4 Analyzing Conversation Depth

In Table 7, we explore the relationship between the

depth of a conversation and the performance of our

models. More precisely, we segment a given set of

dialogs into individual turns and measure the state

accuracy for each of these segments. We mark a

turn correct only if all the slots in its state are pre-

dicted correctly. We observe that the model perfor-



Context Feature Per Turn

Carryover

Accuracy

Flat Context (LSTM) 75.10%

Hierarchical Context (all turns) 75.98%

Hierarchical Context (≤ 3 turns) 75.60%

Flat Context (Self-Attention) 74.75%

Table 6: Analyzing the different types of context fea-

tures for Slot Carryover Model

Conversation Total % Incorrect

Depth t Turns Turns

1 1000 23.90

2 1000 38.30

3 997 50.85

4 959 61.52

5 892 71.52

6 811 76.82

7 656 82.77

8 475 87.37

9 280 89.64

10 153 94.77

Table 7: Analyzing the overall model robustness for

conversation depth for MultiWOZ-2.0

mance degrades as the number of turns increase.

The primary reason for this behavior is that an er-

ror committed earlier in the conversation can be

carried over for later turns. This results in a strictly

higher probability for a later turn to be incorrect as

compared to the turns earlier in the conversation.

These results motivate future research in formulat-

ing models for state tracking that are more robust

to the depth of the conversation.

6 Conclusion

The problem of tracking user’s belief state in a

dialog is a historically significant endeavor. In

that context, research on dialog state tracking

has been geared towards discriminative methods,

where these methods are usually estimating the

distribution of user state over a fixed vocabulary.

However, modern dialog systems presents us with

problems requiring a large scale perspective. It is

not unusual to have thousands of slot values in the

vocabulary which could have millions variations

of dialogs. So we need a vocabulary-free way to

pick out the slot values.

How can we pick the slot values given an in-

finite amount of vocabulary size? Some methods

adopt a candidate generation mechanism to gener-

ate slot values and make a binary decision with the

dialog context. Attention-based neural network

gives a clear and general basis for selecting the

slot values by direct pointing to the context spans.

While this type of methods has already been pro-

posed recently, we explored this type of idea fur-

thermore on MultiWOZ-2.0 dataset.

We introduced a simple attention based neural

network to encode the dialog context and point to

the slot values within the conversation. We have

also introduced an additional slot carryover model

and showed its impact on the model performance.

By incorporating the deep contextual word embed-

dings and combining the traditional fixed vocabu-

lary approach, we significantly improved the joint

goal accuracy on MultiWOZ-2.0.

We also did a comprehensive analysis to see to

what extent our proposed model can achieve. One

interesting and significant finding from the obla-

tion studies suggests the importance of the slot car-

ryover model. We hope this finding can inspire

future dialog state tracking research to work to-

wards this direction, i.e., predicting whether a slot

of state is none or not.

The field of machine reading comprehension

has made significant progress in recent years. We

believe human conversation can be viewed as a

special type of context and we hope that the de-

velopments suggested here can help dialog related

tasks benefit from modern reading comprehension

models.
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Tseng, Iñigo Casanueva, Ultes Stefan, Ramadan Os-
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