
Discrete Comput Geom 10:183-196 (1993)
Discrete & Computational Geometry

�9 1993 Springer-Verlag New York Inc.

Diameter, Width, Closest Line Pair, and Parametric Searching*

Bernard Chazelle, 1 Herbert Edelsbrunner, 2 Leonidas Guibas, 3 and
Micha Sharir 4

~Department of Computer Science, Princeton University,
Princeton, NJ 08544, USA

2Computer Science Department, University of Illinois,
Urbana, IL 61801, USA

3Computer Science Department, Stanford University,
Stanford, CA 94305, USA, and
DEC Systems Research Center, Palo Alto, CA 94301, USA

~Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012, USA, and
School of Mathematics, Tel Aviv University,
Ramet Aviv 69 978, Israel

Abstract. We apply Megiddo's parametric searching technique to several geometric
optimization problems and derive significantly improved solutions for them. We
obtain, for any fixed e > 0, an O(n 1+~) algorithm for computing the diameter
of a point set in 3-space, an O(s/5 +~) algorithm for computing the width of such a
set, and an O(n s/s +~) algorithm for computing the closest pair in a set of n lines in
space. All these algorithms are deterministic.

1. Introduction

In 1983 Megiddo proposed an optimizat ion technique, known as parametric
searching, which has since proven very powerful and versatile. We apply his

*Work by Bernard Chazelle was supported by NSF Grant CCR-90-02352. Work by Herbert
Edelsbrunner was supported by NSF Grant CCR-89-21421. Work by Leonidas Guibas and Micha
Sharir was supported by a grant from the U.S.-Israeli Binational Science Foundation. Work by Micha
Sharir was also supported by ONR Grant N00014-90-J-1284, by NSF Grant CCR-89-01484, and by
grants from the Fund for Basic Research administered by the Israeli Academy of Sciences, and the
G.I.F., the German-Israeli Foundation for Scientific Research and Development.

184 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

technique to solve basic problems in computational geometry. Here is an overview
of the problems considered in this paper.

Diameter of a Point Set in 3-Space. Compute the diameter of a set ~ of n points
in 3-space, defined as the maximum distance between a pair of points in ~. This
problem was solved by Clarkson and Shor [13] by a randomized algorithm with
optimal expected running time O(n log n). However, the previously best-known
deterministic algorithm for this problem runs in time O(n 4/3+') [2]. In this paper
we give a deterministic solution that runs in time O(n I +,).1

Width of a Point Set in 3--Space. Given a point-set ~ as above, compute the width
of ~ , defined as the smallest distance between a pair of parallel planes that bound
a slab containing ~. As far as we know, the best previous solution to this problem
takes O(n 2) time [18]. We present a (deterministic) algorithm that runs in time
O(n~/~ +').

Closest Line Pair in 3-Space. Given a set ~ of n lines in 3-space, compute the
closest pair in .~, with the distance between two lines 11, 12 defined as the minimum
Euclidean distance d(p, q) between a point p e l l and a point q e 12. We present a
(deterministic) algorithm that runs in time O(nS/5+').

Although the application of Megiddo's parametric searching to the first three
problems is rather natural, we are not aware of any previous attempt to apply
the technique to these problems. The number of efficient geometric algorithms
that make use of this technique is still rather small (see [11 [3]-[6], [15], and
[23]-[28] for results of this kind); we believe that the potential of the technique
in computational geometry is still quite far from being exhausted, as this paper
well demonstrates.

The parametric-searching technique has been reviewed in many of the papers
just cited. For the sake of completeness, we review it briefly here as well.

Suppose we have a problem ~(d) that receives as input n data items and a real
parameter d. We want to find a value d* of d at which the output of ~(d) satisfies
certain properties. Suppose we have an efficient (serial) algorithm As for solving
~(d) at any given d, and that, as a by-product, the algorithm A s can also
determine whether the given d is equal to, smaller than, or larger than the desired
value d*. Assume moreover that the flow of execution of As depends on compar-
isons, each of which is testing the sign of a low-degree polynomial in d and in the
input items.

Megiddo's technique then runs the algorithm As "generically," without specify-
ing the value of d, with the intention of simulating its execution at the unknown
d*. Each time a comparison is made, the few roots dl, d2 of the associated

l The precise meaning of such a bound (similar bounds are given below) is that, given any fixed
> O, we can fine-tune the algorithm so that its running time is O(n1+~), with the constant of

proportionality depending on 5.

Diameter, Width, Closest Line Pair, and Parametric Searching 185

polynomial are computed, and we run As at each of them, thereby determining the
location of d* among these roots, and thus also the sign of the polynomial at d*,
namely the outcome of the comparison at d*. (Of course, if any of these roots turns
out to be d*, the algorithm stops right there.) Then execution of the generic As
can be resumed. As we proceed through this execution, each comparison that we
resolve further constrains the range where d* can lie, and we thus obtain a sequence
of progressively smaller intervals, each known to contain d*, until we either hit
d* as one of the roots being tested, or As terminates with a final interval/. In our
applications, though, the second possibility cannot arise. (Indeed, it follows that
the outcome of A s will be combinatorially the same when we run it on any de L
Since we seek the smallest d that meets the problem constraints, it follows that
d* must be left endpoint o f / , so it would have been detected earlier as one of the
tested roots.)

The cost of this implicit parametric searching is usually dominated by CsTs,
where Cs is the maximum number of comparisons executed by A s, and T s is the
maximum running time of As. Since this bound is generally too high, Megiddo
suggests replacing the generic A s by a parallel algorithm, A v. If Ap uses P
processors and runs in Tp parallel steps, then each such step involves at most
P independent comparisons, that is, each can be carried out without having to
know the outcome of the others. We can then compute the roots of all the P
polynomials associated with these comparisons, and run a binary search to find
the location of d* among them (using, say, the serial algorithm A s at each binary
search step). This requires O(P+ Ts log P) time per parallel step, for a total of
O(PTp+TsT p log P) time, which often results in a saving of nearly an order of
magnitude in the running time. A further improvement by Cole [14] can in certain
cases reduce the running time by another logarithmic factor. We remark that,
since the parallel algorithm is simulated sequentially, we do not have to worry
about processor allocation, interprocessor communication, and other issues that
arise in real parallel algorithms. We therefore assume the weak parallel model of
Valiant [29], where the complexity of the algorithm is measured only by the
number of comparisons that it makes.

We show in subsequent sections how this paradigm can be applied to the
problems under consideration. The diameter problem is studied in Section 2, the
width problem in Section 3, and the closest-line-pair problem in Section 4.

2. Diameter in 3-Space

Let ~ be a given set of n points in 3-space. The diameter of :~ is defined as

diam(~) = max{d(p, q): p, q e ~},

where d(p, q) is the Euclidean distance between p and q.
A quadratic algorithm for computing diam(~) is trivial. Faster algorithms have

been obtained in [2-1. Using randomization, Clarkson and Shor [13] have obtained

186 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

an algorithm whose expected running time (over the internal randomizations
that it performs) is O(n log n). We obtain a deterministic algorithm that comes
close--its running time is O(n 1 +') for any e > 0.

Since we want to apply parametric searching, we first need to solve the
"fixed-size" problem. That is, given d, determine whether diam(~) is greater than,
equal to, or less than d. This problem can be restated as follows. Let B(p, d) denote
a ball of radius d around the point p. Note that diam(P) < d if any only if, for
each p e ~ , the ball B(p, d) contains ~. Hence diam(~) < d if and only if

~ _ ~ B(p,d).
pe~

Ideally, we would like to calculate the intersection K = Nv~" B(p, d), preprocess
it for fast point location, and then test each p e ~ for containment in K. Aiming
toward this goal, we first note that, as shown in [13], the combinatorial complexity
of K is linear in n. Unfortunately, we are not aware of any deterministic algorithm
that constructs K in O(n log n) time. The only algorithm that achieves such a
performance is the randomized algorithm given in [13]. We did not manage to
derandomize this algorithm directly, and instead we give a somewhat different
solution, based on sampling the input points (in a manner explained below). The
disadvantage of the revised approach is that it is slightly less effficient--it runs in
time O(n 1 +~) for any e > 0. The advantages are that this approach is deterministic
and that it can be easily parallelized (in Valiant's model). This gives us all the
ingredients needed to apply parametric searching.

Before we go any further, let us briefly recall some basic facts about the theory
of range spaces--see [17] for details. A range space (X, ~) of VC-dimension d is
a set system with the property that the largest subset Y of X to be shattered by

is of size d: we say that Y is shattered by ~ if each of the 2 Irl subsets of Y can
be expressed as Y c~ R for some R e ~. Assuming that X is finite, a subset N of X
is called an e-net for (X, ~) if every set of ~ of size greater than elXI intersects N.
The existence of e-nets of size O(e-1 log e-1) is established in [17].

Returning to our problem, here is a detailed description of our solution. Let
us first define a spherical tetrahedron as the convex hull conv(A u {q}), where A is
a spherical trian#le on some sphere a (a portion of a bounded by three arcs of
great circles) and q is a point inside the ball bounded by a. Consider the range
space (X, ~), where X is the set of balls B(p, d), for p e ~ , and ~ is the family of
subsets of X obtained by intersecting the interior of every possible spherical
tetrahedron with the boundaries of the balls of X. This range space is easily seen
to have finite VC-dimension. We fix some sufficiently large constant integer
parameter r, and apply the recent algorithm of Matou~ek [22] for computing a
(1/r)-net N of size O(r log r). All this takes O(n) time, with the constant of
proportionality depending on r.

Next we construct the intersection E of the balls bounded by the spheres of N
in constant time, using any brute-force method. (A simple method is to apply a
standard "lifting" transformation, which maps the balls into half-spaces of 4-space,
then compute the intersection M of these half-spaces, compute the intersection of

Diameter, Width, Closest Line Pair, and Parametric Searching 187

M with the paraboloid x4 = x 2 + x 2 + x 2, and finally project the resulting
intersection back into 3-space.) If the intersection E is empty or a singleton, then
we stop right away--the diameter of ~ (even the diameter of the subset of t~
consisting of the centers of the spheres in N) is larger than d. Otherwise, we choose
any point q in the interior of the convex set E, triangulate the boundary of E into
a collection of spherical triangles by drawing great circular arcs between vertices,
as needed, and connect q to each such spherical triangle, to obtain a decomposition
of E into a collection of spherical tetrahedra; since the combinatorial complexity
of E is O(r log r), it follows that the number of spherical tethedra in the decomposi-
tion is also O(r log r). Moreover, since N is a (1/r)-net, any spherical tetrahedron
z is crossed by at most n/r boundaries of the given balls B(p, at). Any other ball
B(p, at) either fully contains �9 or is disjoint from it. We also compute, for each
point p ~ ~ , the tetrahedron z containing it. This again can be done by brute force,
testing each point against every tetrahedron. If any point of ~ falls out of E, again
we can stop the algorithm, because the diameter then is clearly larger than d.
Similarly, if some points of ~ fall inside a spherical tetrahedron z and at least one
ball B(p, d) is disjoint from ~, then we also stop the algorithm because the desired
diameter must be larger than d.

We are now left with O(r log r) subproblems, each corresponding to some
spherical tetrahedron z, and involving n~ < n/r balls and m r points of ~ ; the
subproblem at z is to determine whether all these points lie in the intersection of
all these balls. Note that ~ me = n. Each of these subproblems is solved recursively
in the same manner described above. When the size of each subproblem becomes
a sufficiently small constant, we solve it by brute force, as described above for the
sample N. The algorithm terminates in one of two ways. Either it successfully
asserts that at each subproblem all points lie in the intersection of all balls, or else
it is stopped prematurely in one of the cases described above. In the former case
we conclude that the diameter of ~ is smaller than or equal to d, whereas in the
latter case the diameter must be larger than d. By fine-tuning the algorithm we
can also disambiguate between the cases diam(~) < d and diam(~) = d (in the
second case some point must lie on the boundary of some ball).

The running time of the algorithm is easy to bound by noticing that the
recursion has only O(log, n) stages, and that the cost of each stage is linear in the
total size of all subproblems at that stage. The overall number of points in the
subproblems at s tagej always remains at most n, while the total number of balls
in these subproblems is bounded by (c log r)Jn for some absolute constant c. From
this it easily follows that the total running time is at most O(nl+~), where

= O(log log r/log r). In other words, for any e > 0 we can choose r = r(e)
sufficiently large so that the running time of the algorithm is O(n 1 +~), where the
constant of proportionality depends on r, and thus on e.

To apply parametric seaching we still need to design a parallel version of this
algorithm (in Valiant's model). Fortunately, this is fairly easy to do. A close
inspection of the algorithms of [22] reveals that they are all parallelizable, when
r is a constant--the main algorithm for constructing e-approximation runs in a
logarithmic number of stages, and in each stage it examines in parallel many
subsets of X of relatively small size. As we move from stage to stage the size of

188 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

the sets in question keeps growing and then shrinks back. As described in [22], the
sizes grow at a geometric rate, so the maximum size (in the middle stage) can be
rather high, but it is not hard to see that the algorithm also works properly with
a much smaller growth rate followed by a similarly slow rate of decrease. Since
there are only logarithmically many stages, this implies that the algorithms of [22]
can be parallelized to run in polylogarithmic time, using a linear number of
processors. See [12] for details. The construction and decomposition of the
intersection E takes constant time, and the distribution of the balls and points
among the subproblems is also easy to do in parallel--simply test each ball and
each point against every tetrahedron. All this implies that the entire algorithm can
be executed in parallel in a polylogarithmic number of parallel stages, using
O(n 1 +~) processors (where the dependence on e is as in the serial algorithm).

Plugging all this into the machinery of parametric searching, we readily obtain
our first result:

Theorem 2.1. Given a set ~ o f n points in 3-space, the diameter o f ~ can be
computed deterministically in time O(n I +*) for any t > O.

Remarks. The main reason why the performance of our algorithm is worse than
the expected performance O(n log n) of the randomized algorithm of [13] is that
we were unable to design a more efficient deterministic algorithm for constructing
the intersection ofn congruent balls in 3-space. Such an intersection is constructed
in [13] by a randomized incremental algorithm. It is an interesting challenge to
find a technique to derandomize their algorithm (in the spirit of the recent
technique of [8]), or to find any other deterministic method for this problem. (For
the diameter problem, even if we had such an algorithm, there would still remain
the issue of designing an efficient parallel version of it, and even then we would
still lose a couple of logarithmic factors in the application of parametric searching.
Still, the intersection problem is an intriguing challenge, which we pose as an open
problem of independent interest.)

3. Width in 3-Space

In this section we consider the problem of computing the width of a point set in
3-space. Given a set ~ of n points in 3-space, its width is the smallest distance
between a pair of parallel planes with the property that all points of ~ are
contained in the closed slab bounded by the planes. In two dimensions the width
can be trivially computed in time O(n log n), or even in linear time if the convex
hull of ~ is given. However, in three dimensions the problem becomes harder, and
the best-known algorithms for computing width take O(n 2) time [18]. In this
section we present a deterministic algorithm with running time O(n sis +0 for any
~ > 0 .

It clearly suffices to compute the width of the convex hull of ~ , so we may
assume, without loss of generality, that the points of ~ are in convex position,

Diameter, Width, Closest Line Pair, and Parametric Searching 189

and that the structure of their convex hull, denoted conv(~), is known (it takes
only O(n log n) time to compute the hull). It is easy to verify that any two planes
defining the width are such that either one touches conv(~) at a face and one
at a vertex, or each of the planes touches conv(~) at an edge.

The first case is easy to handle. For each face F of K - conv(:~) let nr denote
the outward unit normal to F. We can draw on the unit sphere S 2 a spherical
map Jr known as the Gaussian diagram or the normal diagram of K, whose vertices
are the vectors nr, whose edges are great circular arcs, each being the locus of the
outward normal directions of all planes supporting K at a fixed edge, and whose
faces are regions, each being the locus of the outward normal directions to all
planes supporting K at a fixed vertex. Given K, it is easy to construct ~r and to
preprocess it for fast point location in overall O(n) time [16], [19]. Then, for each
face F of K, we take the vector - n r and locate it in Jr thereby obtaining the
vertex of K"ant ipodal to F," namely, the vertex supported by a plane with outward
normal direction opposite of that of F. The distance between this supporting plane
and the plane containing Fgives us a candidate for the width o f~ , and the smallest
such distance, W o, over all faces F of K, gives us the best candidate for the width
attained between a plane supporting a face and a plane supporting a vertex of K.
So far, the procedure takes only O(n log n) time.

The difficult case, however, is to find the smallest distance between a pair of
parallel planes supporting K at a pair of antipodal edges, because in the worst
case there could be | 2) such pairs, and of course we do not want to inspect all
of those. To handle this case we apply parametric searching. The corresponding
"fixed-size decision problem" is: Given a real parameter W > 0, determine whether
the width of ~ is equal to, or greater than, or smaller than W. If we can obtain
efficient serial and parallel algorithms for this decision problem, then application
of the parametric searching paradigm will give us an efficient algorithm for
computing the width of ~.

In what follows we assume that the given W is less than or equal to I4:0, for
otherwise it is clear that the width of ~ is less than IV. Let J / ' denote the spherical
map Jr reflected through the origin, and consider the superposition of Jr and
~/'. By symmetry, it suffices to superimpose the top parts of Jr' and ~" , i.e., their
portions within the hemisphere z > 0. Each intersection between an edge of dr
and an edge of Jr gives us a direction n for which there exist two parallel planes
orthogonal to n and supporting K at a pair of antipodal edges. If there is any
such intersection for which the distance between the corresponding planes is less
than W, then the width of ~ is clearly less than IV; if there is a pair of planes
with distance W and no pair with distance less than W, then the width is equal
to W; otherwise the width is greater than IV.

We solve the decision problem in two stages. In the first stage we compute, for
each edge e of Jr the subset of all edges of ~t' that intersect it, represented
compactly as the disjoint union of a small number of "canonical" subsets, using
standard range-searching techniques. This produces a collection of subproblems,
each involving a subset 8 of the edges of Jr and a subset 8' of the edges of d/ ' ,
with the additional property that each edge of 8' intersects all edges of 8. We next
map the edges of 8 into certain surfaces in 4-space and the edges of 8' into points

190 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

in 4-space, which reduces the subproblem to another in which we have to
determine whether any of the points lies above any of the surfaces. This latter
problem is then solved using the point-location technique of [10].

In more detail we proceed as follows. We centrally project (the top portions of)
~ ' and ~r162 from the origin onto the plane z = 1. In this manner each edge of Jr
or of Jr is mapped either to a straight line segment or to a straight ray. The first
stage is then easy to accomplish: we process the collection of segments and rays
obtained from the projection of the edges of ~r of J / ' into a hereditary segment
tree structure, by the technique given in [11]. This produces a collection of pairs
(d~, ~'), where r is a canonical subset of the edges of ~/represented at some node
v of the structure, and ~' is a subset of the edges of J / ' corresponding to segments
that are stored at v and intersect all the segments that correspond to the members
ofg . We refer the reader to [11] for more details, but remark that the total number
of pairs (g, g') that this procedure generates is O(n log n), and that their overall
size is O(n log 2 n).

Next consider a fixed pair (~, r of subsets of edges produced by the first stage.
We know that each edge of ~ intersects every edge of r The subproblem induced
by this pair is to determine whether there is a pair of edges, e E ~, e' E o ~', so that
the (unique) pair of parallel planes passing through the corresponding pair of
edges, s, s', of K are at distance < W. This subproblem is not affected by assuming
that s and s' are full lines in 3-space. Moreover, we can also ignore the constraints
that limit the amount by which these planes can rotate about s or s' (originally,
these planes could rotate only between the two faces incident to s or to s'); this
is an easy consequence of the property that all pairs of edges in r and r intersect,
which ensures that no spurious pairs of planes will arise if the constraints are
dropped. Finally, it is easy to check that each line corresponds to an edge of
lies above all the lines that correspond to the edges of 8'.

With all these relaxations, we can parametrize each edge e of ~ (or of ~') by
four real parameters, namely those that define the line in 3-space containing the
corresponding edge of K. We choose these parameters (xl, x2, x3, x4) in such a
way that the last parameter xr determines the distance by which the line has to
be translated in the positive z-direction from some restricted position determined
by the first three parameters. This allows us to map the edges of g into points in
4-space. Each edge e e 8', corresponding to an edge s of K, is mapped into a surface
ae in 4-space which is the locus of all points w corresponding to lines in 3-space
which lie above the line l containing s and whose distance from l is exactly W.
Removal of ae partitions 4-space into two subsets, one, denoted a~-, consisting of
points for which the corresponding lines either lie below/, or lie above and the
interline distance is < W and the other, denoted tr~ +, consisting of points whose
corresponding lines lie above l and whose distance from l is > W. Our choice of
the parameter x4 implies that a~ is monotone in the xtx2x3-direction (meaning
that it is the graph of a function x 4 =f(x~, x2, x3)) and that a~ + is the half-space
that lies above tr~ (in the xr (The definition and properties of a~ have to
be slightly restated for lines whose xy-projections are parallel to that of/, but this
will not concern us in the algorithm that follows.) Symmetrically, we can map the
edges of ~" into points in 4-space, and the edges of ~ into surfaces, defined in a

Diameter, Width, Closest Line Pair, and Parametric Searching 191

symmetric manner, with the direction of the z-axis reversed. It is also easy to verify
that the surfaces tre (in either case) are all algebraic of small constant degree,
assuming appropriate representation of lines in space as points in 4-space.

We thus obtain a collection o f a = Ig'l surfaces and b = I~1 points in 4-space,
and our goal is to determine the relative position of the points with respect to the
surfaces. More precisely, we wish to determine whether any point lies in the union
of the regions tr e, over all e e r instead, we use the contrapositive variant:
determine whether all the points lie in the region above (or on) the upper envelope
of the given surfaces. For this we preprocess the arrangement of the surfaces ae
into a data structure that supports fast point-location queries. We follow the
partitioning technique of [10], but adjust it to the particular structure that arises
in our problem.

We construct a partition of 4-space as follows. We fix some sufficiently large
constant parameter r, and choose a sample R of O(r log r) of the given surfaces. We
now form the arrangement of the surfaces in R and triangulate the cell of the
arrangement that lies above the upper envelope of R (this is where we deviate
from the technique of [10], where the entire arrangement is triangulated; actually,
to be precise, we should speak of a stratification and not a triangulation, but this
is a technicality which is of no importance here, because r is a constant.) To do
so, we fix a surface tre R, and intersect it with all the other surfaces of R to obtain
a system of two-dimensional surfaces within tr. We now triangulate the three-
dimensional arrangement that these surfaces induce within tr. The vertical de-
composition technique of [10], in three dimensions, yields a triangulation into
O(r 3 +~) cells, each having constant-description complexity. We now erect, for each
resulting cell c, a semi-infinite vertical cylinder c § bounded from below by c, and
discard those cylinders that are crossed by another surface of R. The surviving
cylinders, over all surfaces tre R, give us the desired triangulation of the uppermost
cell of the arrangement of R; the number of cylinders is clearly O(r4+e). We refer
the reader to [10] for more details and for comparison between our technique
and the more general technique given there, which produces O(r s +e) cells (for the
entire arrangement).

Next, we partition the given points among the resulting cylinders (halting the
algorithm immediately if any point lies outside all cylinders), and recurse in each
cylinder with its associated set of points and the set of surfaces that cross it. Let
us look at this operation more closely. We choose R to be a (1/r)-net, of size
O(r log r), of the set of given surfaces. (The relevant range space with respect to
which the net is constructed consists of ranges each being the subset of surfaces
intersecting a cylindrical cell of the form obtained in the vertical decomposition
procedure described above.) This can be done in linear time by random sampling
or, in a deterministic fashion, by using the recent technique of [22]. It follows that
the triangulation of the uppermost cell consists of O(r 4+') cylindrical cells, each
being crossed by at most a/r surfaces.

Thus, we obtain a collection of O(r 4+') subproblems, where the subproblem
corresponding to the ith cylinder involves at most a/r surfaces and bi points (those
lying in the cell), and the goal is to determine whether all these points lie above
all these surfaces. We solve each subproblem recursively using the same partition-

192 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

ing technique. The recursion bottoms out when the number ai of surfaces is greater
than the fourth power of the number bi of points. In this case we flip the roles of
g and g', turning the given surfaces into points and points into surfaces, and then
we apply the following technique.

For each group of b~ surfaces (formerly points), we apply the cell decomposition
technique described above. This time, however, we conceptually reverse the x4-axis ,
so that we now compute and triangulate the cell below the lower envelope. We
locate the a~ points (formerly surfaces) inside each cell of the triangulation, and
proceed recursively from there (not flipping points and surfaces anymore). Adapt-
ing the analysis of [10], it easily follows that the resulting procedure requires
O(b~ § preprocessing time and storage, for any e > 0, and supports point-location
queries (each determining whether a given query point lies below all surfaces of
bi) in O(log b~) time per query. We thus obtain an algorithm whose running time
is O(b~ +~ + al log hi), which, by assumption, is only O(a~ +~).

The running time of the algorithm is thus easily seen to be governed by the
recurrence

o'+,(a)
T(a, b) < ~ T , bi + O(a + b) if a < b 4,

i = l

T(a, b) = O(a 1 +~) if a _> b 4.

The solution of this recurrence is

T(a, b) = O(a 4/5 +'b 4/5+~ + a 1 +~ + b 1 +~).

We now apply this procedure to each pair (g, g') obtained in the first stage of the
algorithm. Since the total number of pairs is O(n log n) and their overall size is
O(n log 2 n), it is not difficult to show that the overall cost of these applications is
O(n a/s+~) for a slightly larger, but still arbitrarily small, e. Hence, it can be
determined whether the width of : is greater than, or equal to, or smaller than
a given parameter W, in deterministic time O(n a/5 +~) for any e > 0.

To apply parametric searching we also need to derive a parallel version of the
algorithm (in Valiant's model). Note that the first stage does not invoke parametric
searching and thus need not be parallelized. The second stage, which depends on
the parameter W, is easy to parallelize. As in the preceding section, the construction
of the (1/r)-nets can be done in parallel in polylogarithmic time per net. Since r is
a constant, the partitioning of 4-space described above can be constructed in
constant parallel time, and the subproblems that are generated can then be solved
in parallel. This requires O(n 8/5§ processors and polylogarithmic parallel time.
We omit the more refined details of this parallelization, and, plugging all this into
the parametric search paradigm, we conclude, in summary:

Theorem 3.1. Given a set : o f n points in 3-space, the width o f : can be computed
(deterministically) in time O(n a/s +~) f o r any e > O.

Diameter, Width, Closest Line Pair, and Parametric Searching 193

4. Closest Line Pair in 3-Space

In this section we consider the following problem. Let ~ be a given set of n lines
in 3-space. The distance d(ll, 12) between two lines is defined as minp~t,.qE~fl(p, q),
where d(p, q) is the Euclidean distance between the points p and q. The closest-
line-pair problem calls for computing

min d(l l , 12).

This problem arises in many applications, for example in proximity detection
between airplane flight paths. In this section we provide an algorithm, based on
parametric searching, that computes the closest line pair in time O(n sis +~) for any
e > 0 .

As above, the first task is to solve the fixed-size problem: Given a set ~ of n
lines in space and a parameter d > 0, determine whether there is a pair of lines
at distance less that d apart, or, if not, whether there is a pair at distance exactly
d apart.

This problem is solved using a technique very similar to that of the preceding
section. We first split ~ into two subsets ~L~al, Aa2 of roughly equal size. We test
recursively whether any pair of lines in ,Sa 1 lie at distance < d (or = d) apart, and
similarly for ~f~'2, and are left with a "bichromatic" version of the problem, namely
to determine whether there is a pair of lines l 1 ~ ~f'~, 12 ~ ~2 at distance < d or = d
apart. For technical reasons, similar to those in the preceding section, we only
study the restricted version of the problem, in which we also assume that all lines
in L,a~ lie below all lines in -~2- To ensure that this can be done with no loss of
generality, we proceed as follows.

We project all lines of ~ onto the xy-plane, orient the projections from left to
right, and partition ~ so that all lines in Z~I have projections with slope smaller
than those of the projections of the lines in &~'2. Then, as shown in [9], a line
l~ ~ s lies below a line l 2 E ~'a 2 if and only if the Plficker point image of l~ lies (in
5-space) on a given side of the Plficker hyperplane image of l 2. Excluding special
cases which we can handle directly, we can readily find a direction in 5-space,
which by convention we call vertical, corresponding to that side. Thus we map
the lines of s to Plficker points and the lines of ~2 to Pliicker hyperplanes. We
next choose a sufficiently large constant parameter r, construct a (1/r)-net R of
size O(r log r) in the collection of hyperplanes (with respect to ranges, each being
the set of hyperplanes crossing some simplex), form the arrangement of R, extract
from it the zone of the (quadric) Pliicker surface (on which all our a points lie),
and triangulate the zone cells into simplices. By the recent results of [7], the
number of resulting simplices is O(r 4 log ~ r). Each simplex s is crossed by at most
b/r hyperplanes, where b = n/2 is the size of Aa2, and all other hyperplanes pass
fully above or fully below it. We thus obtain, for each simplex s, three subproblems,
involving, respectively,

(i) the points in s and the hyperplanes passing above s,
(ii) the points in s and the hyperplanes passing below s, and

(iii) the points in s and the hyperplanes crossing s.

194 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

The first two subproblems are solved directly, using the technique to be
described in a moment, because in each of them we have, when passing back to
3-space, two sets of lines, with all lines in one set lying above all lines in the
other. The third subproblem is solved recursively, for each of the simplices.

We thus have reduced the problem to the case where we have two sets of
lines, Z~a,, ~ - , consisting of, say, p lines and q lines, respectively, so that each
line in ~ce' passes below every line of ~ " , and our goal is to determine whether
there is any pair of lines, l' e L~', l" e ~ " , at distance < d (or = d) apart. However,
this is exactly the subproblem that we ended up with in the preceding section, so
we can solve it in time O (p 4 / 5 + ~ q 4 / 5 + * q - pl+~+ q1+~) for any e > 0. Since in
the preceding partitioning we have only a constant number of such subproblems
(of types (i) or (ii)), it follows that the cost of all these nonrecursive subproblems
is O(a4/5+*b4/5+* + a l+~ + bl+~), for any e > 0, where a = I~11 and b = 1~21.

We derive that the overall time T(a, b) for solving the bichromatic problem
involving two sets of lines with a and b lines, respectively, satisfies the recurrence

T(a, b) = O(a4/5+*br + a 1+~ + b 1+~) +
O(r41og5r)

T(a,, b,),
i=1

where, for each i, we have b i < b/r and ~ i al = a. It then easily follows that

T(a, b) = O(a4/5+~b 4/5+~ + a x+` + b 1§

for any e > 0. Hence, the time T'(n) required for solving the original problem
involving a single set of n lines satisfies the recurrence

T'(n) = 2 T ' (~) + O(n 8/5+~)

whose solution is T' (n)= O(n 8/5§ for any e > 0. We can thus conclude that
the fixed-size problem can be solved (deterministically) in time O(n 8/5§ for
any e > 0, and can also be solved by a parallel algorithm (in Valiant's model)
which takes polylogarithmic parallel time and uses O(n 8/5 +~) processors. Plugging
all these into the machinery of parametric searching, we obtain, as in the previous
section:

Theorem 4.1. Given a set Ze o f n lines in 3-space, the closest pair in ~r (under
the Euclidean distance between lines in space) can be found (deterministically)
in time O(nS/S+~) for any e > O.

5. Discussion

In this paper we have investigated applications of parametric searching to
geometric problems. We have applied the technique to several basic problems in

194 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

The first two subproblems are solved directly, using the technique to be
described in a moment, because in each of them we have, when passing back to
3-space, two sets of lines, with all lines in one set lying above all lines in the
other. The third subproblem is solved recursively, for each of the simplices.

We thus have reduced the problem to the case where we have two sets of
lines, Z~a,, ~ - , consisting of, say, p lines and q lines, respectively, so that each
line in ~ce' passes below every line of ~ " , and our goal is to determine whether
there is any pair of lines, l' e L~', l" e ~ " , at distance < d (or = d) apart. However,
this is exactly the subproblem that we ended up with in the preceding section, so
we can solve it in time O (p 4 / 5 + ~ q 4 / 5 + * q - p l+~+ q1+~) for any e > 0. Since in
the preceding partitioning we have only a constant number of such subproblems
(of types (i) or (ii)), it follows that the cost of all these nonrecursive subproblems
is O(a4/5+*b4/5+* + a l+~ + bl+~), for any e > 0, where a = I~11 and b = 1~21.

We derive that the overall time T(a, b) for solving the bichromatic problem
involving two sets of lines with a and b lines, respectively, satisfies the recurrence

T(a, b) = O(a4/5+*br + a 1+~ + b 1+~) +
O(r41og5r)

T(a,, b,),
i=1

where, for each i, we have b i < b/r and ~ i al = a. It then easily follows that

T(a, b) = O(a4/5+~b 4/5+~ + a x+` + b 1§

for any e > 0. Hence, the time T'(n) required for solving the original problem
involving a single set of n lines satisfies the recurrence

T'(n) = 2 T ' (~) + O(n 8/5+~)

whose solution is T' (n)= O(n 8/5§ for any e > 0. We can thus conclude that
the fixed-size problem can be solved (deterministically) in time O(n 8/5§ for
any e > 0, and can also be solved by a parallel algorithm (in Valiant's model)
which takes polylogarithmic parallel time and uses O(n 8/5 +~) processors. Plugging
all these into the machinery of parametric searching, we obtain, as in the previous
section:

Theorem 4.1. Given a set Ze o f n lines in 3-space, the closest pair in ~r (under
the Euclidean distance between lines in space) can be found (deterministically)
in time O(nS/S+~) for any e > O.

5. Discussion

In this paper we have investigated applications of parametric searching to
geometric problems. We have applied the technique to several basic problems in

196 B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir

13. K. Clarkson and P. Shor, Applications of random sampling to computational geometry, II, Discrete
Comput. Geom. 4 (1989), 387-421.

14. R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, J. Assoc. Comput.
Mach. 34 (1987), 200-208.

15. R. Cole, M. Sharir, and C. Yap, On k-hulls and related problems, SIAM J. Comput. 16 (1987),
61-77.

16. H. Edelsbrunner, L. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision, SIAM
J. Comput. 15 (1986), pp. 317-340.

17. D. Haussler and E. Welzl, e-nets and simplex range queries, Discrete Comput. Geom. 2 (1987),
127-151.

18. M. Houle and G. Toussaint, Computing the width of a set, Proc. 1st ACM Syrup. on Computational
Geometry, 1985, pp. 1-7.

19. D. Kirkpatrick, Optimal search in planar subdivisions, SIAM J. Comput. 12 (1983), 28-35.
20. J. Matou~ek, Efficient partition trees, Proc. 7th A CM Syrup. on Computational Geometry, 1991,

pp. 1-9.
21. J. Matou~ek, Randomized optimal algorithm for slope selection, Inform. Process. Lett. 39 (1991),

183-187.
22. J. Matou~ek, Approximations and optimal geometric divide-and-conquer, Proc. 23rd ACM Syrup.

on Theory o f Computing, 1991, pp. 1-10.
23. J. Matou~ek, Computing the center of planar point sets, in Discrete and Computational Geometry

DIMACS (J. E. Goodman, R. Pollack, and W. Steiger, eds.), American Mathematical Society,
Providence, RI, 1991, pp. 221-230.

24. J. Matou~ek, Linear optimization queries, J. Algorithms, to appear.
25. N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms, J. Assoc.

Comput. Mech. 30 (1983), 852-865.
26. N. Naor and M. Sharir, Computing a point in the center of a point set in three dimensions. Proc.

2nd Canadian Conference on Computational Geometry, 1990, pp. 10-13.
27. A. Stein and M. Werrnan, Finding the repeated median regression line, Proc. 3rd A C M - S I A M

Syrup. on Discrete Algorithms, 1992, pp. 409413.
28. S. Toledo, Extremal polygon placement problems, Proc. 7th ACM Syrup. on Computational

Geometry, (1991), pp. 176-185.
29. L. Valiant, Parallelism in comparison problems, SIAM J. Comput. 4 (1975), 348-355.

Received January 3, 1992, and in revised form December 1, 1992.

