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Abstract. We apply Megiddo's parametric searching technique to several geometric 
optimization problems and derive significantly improved solutions for them. We 
obtain, for any fixed e > 0, an O(n 1+~) algorithm for computing the diameter 
of a point set in 3-space, an O( s/5 +~) algorithm for computing the width of such a 
set, and an O(n s/s +~) algorithm for computing the closest pair in a set of n lines in 
space. All these algorithms are deterministic. 

1. Introduction 

In 1983 Megiddo proposed an optimizat ion technique, known  as parametric 
searching, which has since proven very powerful and versatile. We apply his 
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technique to solve basic problems in computational geometry. Here is an overview 
of the problems considered in this paper. 

Diameter of  a Point Set in 3-Space. Compute the diameter of a set ~ of n points 
in 3-space, defined as the maximum distance between a pair of points in ~.  This 
problem was solved by Clarkson and Shor [13] by a randomized algorithm with 
optimal expected running time O(n log n). However, the previously best-known 
deterministic algorithm for this problem runs in time O(n 4/3+') [2]. In this paper 
we give a deterministic solution that runs in time O(n I +,).1 

Width of a Point Set in 3--Space. Given a point-set ~ as above, compute the width 
of ~ ,  defined as the smallest distance between a pair of parallel planes that bound 
a slab containing ~.  As far as we know, the best previous solution to this problem 
takes O(n 2) time [18]. We present a (deterministic) algorithm that runs in time 
O(n~/~ +'). 

Closest Line Pair in 3-Space. Given a set ~ of n lines in 3-space, compute the 
closest pair in .~, with the distance between two lines 11, 12 defined as the minimum 
Euclidean distance d(p, q) between a point p e l l  and a point q e 12. We present a 
(deterministic) algorithm that runs in time O(nS/5+'). 

Although the application of Megiddo's parametric searching to the first three 
problems is rather natural, we are not aware of any previous attempt to apply 
the technique to these problems. The number of efficient geometric algorithms 
that make use of this technique is still rather small (see [11 [3]-[6], [15], and 
[23]-[28] for results of this kind); we believe that the potential of the technique 
in computational geometry is still quite far from being exhausted, as this paper 
well demonstrates. 

The parametric-searching technique has been reviewed in many of the papers 
just cited. For the sake of completeness, we review it briefly here as well. 

Suppose we have a problem ~(d) that receives as input n data items and a real 
parameter d. We want to find a value d* of d at which the output of ~(d) satisfies 
certain properties. Suppose we have an efficient (serial) algorithm As for solving 
~(d) at any given d, and that, as a by-product, the algorithm A s can also 
determine whether the given d is equal to, smaller than, or larger than the desired 
value d*. Assume moreover that the flow of execution of As depends on compar- 
isons, each of which is testing the sign of a low-degree polynomial in d and in the 
input items. 

Megiddo's technique then runs the algorithm As "generically," without specify- 
ing the value of d, with the intention of simulating its execution at the unknown 
d*. Each time a comparison is made, the few roots dl,  d2 . . . .  of the associated 

l The precise meaning of such a bound (similar bounds are given below) is that, given any fixed 
> O, we can fine-tune the algorithm so that its running time is O(n1+~), with the constant of 

proportionality depending on 5. 
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polynomial are computed, and we run As at each of them, thereby determining the 
location of d* among these roots, and thus also the sign of the polynomial at d*, 
namely the outcome of the comparison at d*. (Of course, if any of these roots turns 
out to be d*, the algorithm stops right there.) Then execution of the generic As 
can be resumed. As we proceed through this execution, each comparison that we 
resolve further constrains the range where d* can lie, and we thus obtain a sequence 
of progressively smaller intervals, each known to contain d*, until we either hit 
d* as one of the roots being tested, or As terminates with a final interval/.  In our 
applications, though, the second possibility cannot arise. (Indeed, it follows that 
the outcome of A s will be combinatorially the same when we run it on any de  L 
Since we seek the smallest d that meets the problem constraints, it follows that 
d* must be left endpoint o f / ,  so it would have been detected earlier as one of the 
tested roots.) 

The cost of this implicit parametric searching is usually dominated by CsTs, 
where Cs is the maximum number of comparisons executed by A s, and T s is the 
maximum running time of As. Since this bound is generally too high, Megiddo 
suggests replacing the generic A s by a parallel algorithm, A v. If Ap uses P 
processors and runs in Tp parallel steps, then each such step involves at most 
P independent comparisons, that is, each can be carried out without having to 
know the outcome of the others. We can then compute the roots of all the P 
polynomials associated with these comparisons, and run a binary search to find 
the location of d* among them (using, say, the serial algorithm A s at each binary 
search step). This requires O(P+ Ts log P) time per parallel step, for a total of 
O(PTp+TsT p log P) time, which often results in a saving of nearly an order of 
magnitude in the running time. A further improvement by Cole [14] can in certain 
cases reduce the running time by another logarithmic factor. We remark that, 
since the parallel algorithm is simulated sequentially, we do not have to worry 
about processor allocation, interprocessor communication, and other issues that 
arise in real parallel algorithms. We therefore assume the weak parallel model of 
Valiant [29], where the complexity of the algorithm is measured only by the 
number of comparisons that it makes. 

We show in subsequent sections how this paradigm can be applied to the 
problems under consideration. The diameter problem is studied in Section 2, the 
width problem in Section 3, and the closest-line-pair problem in Section 4. 

2. Diameter in 3-Space 

Let ~ be a given set of n points in 3-space. The diameter of :~ is defined as 

diam(~) = max{d(p, q): p, q e ~}, 

where d(p, q) is the Euclidean distance between p and q. 
A quadratic algorithm for computing diam(~) is trivial. Faster algorithms have 

been obtained in [2-1. Using randomization, Clarkson and Shor [13] have obtained 
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an algorithm whose expected running time (over the internal randomizations 
that it performs) is O(n log n). We obtain a deterministic algorithm that comes 
close--its running time is O(n 1 +') for any e > 0. 

Since we want to apply parametric searching, we first need to solve the 
"fixed-size" problem. That is, given d, determine whether diam(~) is greater than, 
equal to, or less than d. This problem can be restated as follows. Let B(p, d) denote 
a ball of radius d around the point p. Note that diam(P) < d if any only if, for 
each p e ~ ,  the ball B(p, d) contains ~.  Hence diam(~) < d if and only if 

~ _  ~ B(p,d). 
pe~ 

Ideally, we would like to calculate the intersection K = Nv~" B(p, d), preprocess 
it for fast point location, and then test each p e ~ for containment in K. Aiming 
toward this goal, we first note that, as shown in [13], the combinatorial complexity 
of K is linear in n. Unfortunately, we are not aware of any deterministic algorithm 
that constructs K in O(n log n) time. The only algorithm that achieves such a 
performance is the randomized algorithm given in [13]. We did not manage to 
derandomize this algorithm directly, and instead we give a somewhat different 
solution, based on sampling the input points (in a manner explained below). The 
disadvantage of the revised approach is that it is slightly less effficient--it runs in 
time O(n 1 +~) for any e > 0. The advantages are that this approach is deterministic 
and that it can be easily parallelized (in Valiant's model). This gives us all the 
ingredients needed to apply parametric searching. 

Before we go any further, let us briefly recall some basic facts about the theory 
of range spaces--see [17] for details. A range space (X, ~ )  of VC-dimension d is 
a set system with the property that the largest subset Y of X to be shattered by 

is of size d: we say that Y is shattered by ~ if each of the 2 Irl subsets of Y can 
be expressed as Y c~ R for some R e ~.  Assuming that X is finite, a subset N of X 
is called an e-net for (X, ~ )  if every set of ~ of size greater than elXI intersects N. 
The existence of e-nets of size O(e-1 log e-1) is established in [17]. 

Returning to our problem, here is a detailed description of our solution. Let 
us first define a spherical tetrahedron as the convex hull conv(A u {q}), where A is 
a spherical trian#le on some sphere a (a portion of a bounded by three arcs of 
great circles) and q is a point inside the ball bounded by a. Consider the range 
space (X, ~), where X is the set of balls B(p, d), for p e ~ ,  and ~ is the family of 
subsets of X obtained by intersecting the interior of every possible spherical 
tetrahedron with the boundaries of the balls of X. This range space is easily seen 
to have finite VC-dimension. We fix some sufficiently large constant integer 
parameter r, and apply the recent algorithm of Matou~ek [22] for computing a 
(1/r)-net N of size O(r log r). All this takes O(n) time, with the constant of 
proportionality depending on r. 

Next we construct the intersection E of the balls bounded by the spheres of N 
in constant time, using any brute-force method. (A simple method is to apply a 
standard "lifting" transformation, which maps the balls into half-spaces of 4-space, 
then compute the intersection M of these half-spaces, compute the intersection of 
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M with the paraboloid x4 = x 2 + x 2 + x 2, and finally project the resulting 
intersection back into 3-space.) If the intersection E is empty or a singleton, then 
we stop right away--the diameter of ~ (even the diameter of the subset of t~ 
consisting of the centers of the spheres in N) is larger than d. Otherwise, we choose 
any point q in the interior of the convex set E, triangulate the boundary of E into 
a collection of spherical triangles by drawing great circular arcs between vertices, 
as needed, and connect q to each such spherical triangle, to obtain a decomposition 
of E into a collection of spherical tetrahedra; since the combinatorial complexity 
of E is O(r log r), it follows that the number of spherical tethedra in the decomposi- 
tion is also O(r log r). Moreover, since N is a (1/r)-net, any spherical tetrahedron 
z is crossed by at most n/r boundaries of the given balls B(p, at). Any other ball 
B(p, at) either fully contains �9 or is disjoint from it. We also compute, for each 
point p ~ ~ ,  the tetrahedron z containing it. This again can be done by brute force, 
testing each point against every tetrahedron. If any point of ~ falls out of E, again 
we can stop the algorithm, because the diameter then is clearly larger than d. 
Similarly, if some points of ~ fall inside a spherical tetrahedron z and at least one 
ball B(p, d) is disjoint from ~, then we also stop the algorithm because the desired 
diameter must be larger than d. 

We are now left with O(r log r) subproblems, each corresponding to some 
spherical tetrahedron z, and involving n~ < n/r balls and m r points of ~ ;  the 
subproblem at z is to determine whether all these points lie in the intersection of 
all these balls. Note that ~ me = n. Each of these subproblems is solved recursively 
in the same manner described above. When the size of each subproblem becomes 
a sufficiently small constant, we solve it by brute force, as described above for the 
sample N. The algorithm terminates in one of two ways. Either it successfully 
asserts that at each subproblem all points lie in the intersection of all balls, or else 
it is stopped prematurely in one of the cases described above. In the former case 
we conclude that the diameter of ~ is smaller than or equal to d, whereas in the 
latter case the diameter must be larger than d. By fine-tuning the algorithm we 
can also disambiguate between the cases diam(~) < d and diam(~) = d (in the 
second case some point must lie on the boundary of some ball). 

The running time of the algorithm is easy to bound by noticing that the 
recursion has only O(log, n) stages, and that the cost of each stage is linear in the 
total size of all subproblems at that stage. The overall number of points in the 
subproblems at s tagej  always remains at most n, while the total number of balls 
in these subproblems is bounded by (c log r)Jn for some absolute constant c. From 
this it easily follows that the total running time is at most O(nl+~), where 

= O(log log r/log r). In other words, for any e > 0 we can choose r = r(e) 
sufficiently large so that the running time of the algorithm is O(n 1 +~), where the 
constant of proportionality depends on r, and thus on e. 

To apply parametric seaching we still need to design a parallel version of this 
algorithm (in Valiant's model). Fortunately, this is fairly easy to do. A close 
inspection of the algorithms of [22] reveals that they are all parallelizable, when 
r is a constant--the main algorithm for constructing e-approximation runs in a 
logarithmic number of stages, and in each stage it examines in parallel many 
subsets of X of relatively small size. As we move from stage to stage the size of 
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the sets in question keeps growing and then shrinks back. As described in [22], the 
sizes grow at a geometric rate, so the maximum size (in the middle stage) can be 
rather high, but it is not hard to see that the algorithm also works properly with 
a much smaller growth rate followed by a similarly slow rate of decrease. Since 
there are only logarithmically many stages, this implies that the algorithms of [22] 
can be parallelized to run in polylogarithmic time, using a linear number of 
processors. See [12] for details. The construction and decomposition of the 
intersection E takes constant time, and the distribution of the balls and points 
among the subproblems is also easy to do in parallel--simply test each ball and 
each point against every tetrahedron. All this implies that the entire algorithm can 
be executed in parallel in a polylogarithmic number of parallel stages, using 
O(n 1 +~) processors (where the dependence on e is as in the serial algorithm). 

Plugging all this into the machinery of parametric searching, we readily obtain 
our first result: 

Theorem 2.1. Given a set ~ o f  n points in 3-space, the diameter o f  ~ can be 
computed deterministically in time O(n I +*) for  any t > O. 

Remarks. The main reason why the performance of our algorithm is worse than 
the expected performance O(n log n) of the randomized algorithm of [13] is that 
we were unable to design a more efficient deterministic algorithm for constructing 
the intersection ofn congruent balls in 3-space. Such an intersection is constructed 
in [13] by a randomized incremental algorithm. It is an interesting challenge to 
find a technique to derandomize their algorithm (in the spirit of the recent 
technique of [8]), or to find any other deterministic method for this problem. (For 
the diameter problem, even if we had such an algorithm, there would still remain 
the issue of designing an efficient parallel version of it, and even then we would 
still lose a couple of logarithmic factors in the application of parametric searching. 
Still, the intersection problem is an intriguing challenge, which we pose as an open 
problem of independent interest.) 

3. Width in 3-Space 

In this section we consider the problem of computing the width of a point set in 
3-space. Given a set ~ of n points in 3-space, its width is the smallest distance 
between a pair of parallel planes with the property that all points of ~ are 
contained in the closed slab bounded by the planes. In two dimensions the width 
can be trivially computed in time O(n log n), or even in linear time if the convex 
hull of ~ is given. However, in three dimensions the problem becomes harder, and 
the best-known algorithms for computing width take O(n 2) time [18]. In this 
section we present a deterministic algorithm with running time O(n sis +0 for any 
~ > 0 .  

It clearly suffices to compute the width of the convex hull of ~ ,  so we may 
assume, without loss of generality, that the points of ~ are in convex position, 
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and that the structure of their convex hull, denoted conv(~), is known (it takes 
only O(n log n) time to compute the hull). It is easy to verify that any two planes 
defining the width are such that either one touches conv(~) at a face and one 
at a vertex, or each of the planes touches conv(~) at an edge. 

The first case is easy to handle. For each face F of K - conv(:~) let nr denote 
the outward unit normal to F. We can draw on the unit sphere S 2 a spherical 
map Jr known as the Gaussian diagram or the normal diagram of K, whose vertices 
are the vectors nr, whose edges are great circular arcs, each being the locus of the 
outward normal directions of all planes supporting K at a fixed edge, and whose 
faces are regions, each being the locus of the outward normal directions to all 
planes supporting K at a fixed vertex. Given K, it is easy to construct ~r and to 
preprocess it for fast point location in overall O(n) time [16], [19]. Then, for each 
face F of K, we take the vector - n r  and locate it in Jr thereby obtaining the 
vertex of K"ant ipodal  to F," namely, the vertex supported by a plane with outward 
normal direction opposite of that of F. The distance between this supporting plane 
and the plane containing Fgives us a candidate for the width o f~ ,  and the smallest 
such distance, W o, over all faces F of K, gives us the best candidate for the width 
attained between a plane supporting a face and a plane supporting a vertex of K. 
So far, the procedure takes only O(n log n) time. 

The difficult case, however, is to find the smallest distance between a pair of 
parallel planes supporting K at a pair of antipodal edges, because in the worst 
case there could be | 2) such pairs, and of course we do not want to inspect all 
of those. To handle this case we apply parametric searching. The corresponding 
"fixed-size decision problem" is: Given a real parameter W > 0, determine whether 
the width of ~ is equal to, or greater than, or smaller than W. If we can obtain 
efficient serial and parallel algorithms for this decision problem, then application 
of the parametric searching paradigm will give us an efficient algorithm for 
computing the width of ~.  

In what follows we assume that the given W is less than or equal to I4:0, for 
otherwise it is clear that the width of ~ is less than IV. Let J / '  denote the spherical 
map Jr  reflected through the origin, and consider the superposition of Jr  and 
~/'. By symmetry, it suffices to superimpose the top parts of Jr' and ~" ,  i.e., their 
portions within the hemisphere z > 0. Each intersection between an edge of dr 
and an edge of Jr gives us a direction n for which there exist two parallel planes 
orthogonal to n and supporting K at a pair of antipodal edges. If there is any 
such intersection for which the distance between the corresponding planes is less 
than W, then the width of ~ is clearly less than IV; if there is a pair of planes 
with distance W and no pair with distance less than W, then the width is equal 
to W; otherwise the width is greater than IV. 

We solve the decision problem in two stages. In the first stage we compute, for 
each edge e of Jr the subset of all edges of ~t' that intersect it, represented 
compactly as the disjoint union of a small number of "canonical" subsets, using 
standard range-searching techniques. This produces a collection of subproblems, 
each involving a subset 8 of the edges of Jr  and a subset 8' of the edges of d/ ' ,  
with the additional property that each edge of 8'  intersects all edges of 8. We next 
map the edges of 8 into certain surfaces in 4-space and the edges of 8'  into points 
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in 4-space, which reduces the subproblem to another in which we have to 
determine whether any  of the points lies above any of the surfaces. This latter 
problem is then solved using the point-location technique of [10]. 

In more detail we proceed as follows. We centrally project (the top portions of) 
~ '  and ~r162 from the origin onto the plane z = 1. In this manner each edge of Jr  
or of Jr is mapped either to a straight line segment or to a straight ray. The first 
stage is then easy to accomplish: we process the collection of segments and rays 
obtained from the projection of the edges of ~r of J / '  into a hereditary segment 
tree structure, by the technique given in [11]. This produces a collection of pairs 
(d~, ~'), where r is a canonical subset of the edges of ~/represented at some node 
v of the structure, and ~' is a subset of the edges of J / '  corresponding to segments 
that are stored at v and intersect all the segments that correspond to the members 
ofg .  We refer the reader to [11] for more details, but remark that the total number 
of pairs (g, g') that this procedure generates is O(n log n), and that their overall 
size is O(n log 2 n). 

Next consider a fixed pair (~, r of subsets of edges produced by the first stage. 
We know that each edge of ~ intersects every edge of r The subproblem induced 
by this pair is to determine whether there is a pair of edges, e E ~, e' E o ~', so that 
the (unique) pair of parallel planes passing through the corresponding pair of 
edges, s, s', of K are at distance < W. This subproblem is not affected by assuming 
that s and s' are full lines in 3-space. Moreover, we can also ignore the constraints 
that limit the amount by which these planes can rotate about s or s' (originally, 
these planes could rotate only between the two faces incident to s or to s'); this 
is an easy consequence of the property that all pairs of edges in r and r  intersect, 
which ensures that no spurious pairs of planes will arise if the constraints are 
dropped. Finally, it is easy to check that each line corresponds to an edge of 
lies above all the lines that correspond to the edges of 8'. 

With all these relaxations, we can parametrize each edge e of ~ (or of ~') by 
four real parameters, namely those that define the line in 3-space containing the 
corresponding edge of K. We choose these parameters (xl, x2, x3, x4) in such a 
way that the last parameter xr determines the distance by which the line has to 
be translated in the positive z-direction from some restricted position determined 
by the first three parameters. This allows us to map the edges of g into points in 
4-space. Each edge e e 8', corresponding to an edge s of K, is mapped into a surface 
ae in 4-space which is the locus of all points w corresponding to lines in 3-space 
which lie above the line l containing s and whose distance from l is exactly W. 
Removal of ae partitions 4-space into two subsets, one, denoted a~-, consisting of 
points for which the corresponding lines either lie below/,  or lie above and the 
interline distance is < W and the other, denoted tr~ +, consisting of points whose 
corresponding lines lie above l and whose distance from l is > W. Our choice of 
the parameter x4 implies that a~ is monotone in the xtx2x3-direction (meaning 
that it is the graph of a function x 4 =f(x~,  x2, x3)) and that a~ + is the half-space 
that lies above tr~ (in the xr (The definition and properties of a~ have to 
be slightly restated for lines whose xy-projections are parallel to that of/,  but this 
will not concern us in the algorithm that follows.) Symmetrically, we can map the 
edges of ~" into points in 4-space, and the edges of ~ into surfaces, defined in a 
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symmetric manner, with the direction of the z-axis reversed. It is also easy to verify 
that the surfaces tre (in either case) are all algebraic of small constant degree, 
assuming appropriate representation of lines in space as points in 4-space. 

We thus obtain a collection o f a  = Ig'l surfaces and b = I~1 points in 4-space, 
and our goal is to determine the relative position of the points with respect to the 
surfaces. More precisely, we wish to determine whether any point lies in the union 
of the regions tr e, over all e e r  instead, we use the contrapositive variant: 
determine whether all the points lie in the region above (or on) the upper envelope 
of the given surfaces. For this we preprocess the arrangement of the surfaces ae 
into a data structure that supports fast point-location queries. We follow the 
partitioning technique of [10], but adjust it to the particular structure that arises 
in our problem. 

We construct a partition of 4-space as follows. We fix some sufficiently large 
constant parameter r, and choose a sample R of O(r log r) of the given surfaces. We 
now form the arrangement of the surfaces in R and triangulate the cell of the 
arrangement that lies above the upper envelope of R (this is where we deviate 
from the technique of [10], where the entire arrangement is triangulated; actually, 
to be precise, we should speak of a stratification and not a triangulation, but this 
is a technicality which is of no importance here, because r is a constant.) To do 
so, we fix a surface tre R, and intersect it with all the other surfaces of R to obtain 
a system of two-dimensional surfaces within tr. We now triangulate the three- 
dimensional arrangement that these surfaces induce within tr. The vertical de- 
composition technique of [10], in three dimensions, yields a triangulation into 
O(r 3 +~) cells, each having constant-description complexity. We now erect, for each 
resulting cell c, a semi-infinite vertical cylinder c § bounded from below by c, and 
discard those cylinders that are crossed by another surface of R. The surviving 
cylinders, over all surfaces tre R, give us the desired triangulation of the uppermost 
cell of the arrangement of R; the number of cylinders is clearly O(r4+e). We refer 
the reader to [10] for more details and for comparison between our technique 
and the more general technique given there, which produces O(r s +e) cells (for the 
entire arrangement). 

Next, we partition the given points among the resulting cylinders (halting the 
algorithm immediately if any point lies outside all cylinders), and recurse in each 
cylinder with its associated set of points and the set of surfaces that cross it. Let 
us look at this operation more closely. We choose R to be a (1/r)-net, of size 
O(r log r), of the set of given surfaces. (The relevant range space with respect to 
which the net is constructed consists of ranges each being the subset of surfaces 
intersecting a cylindrical cell of the form obtained in the vertical decomposition 
procedure described above.) This can be done in linear time by random sampling 
or, in a deterministic fashion, by using the recent technique of [22]. It follows that 
the triangulation of the uppermost cell consists of O(r 4+') cylindrical cells, each 
being crossed by at most a/r surfaces. 

Thus, we obtain a collection of O(r 4+') subproblems, where the subproblem 
corresponding to the ith cylinder involves at most a/r surfaces and bi points (those 
lying in the cell), and the goal is to determine whether all these points lie above 
all these surfaces. We solve each subproblem recursively using the same partition- 
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ing technique. The recursion bottoms out when the number ai of surfaces is greater 
than the fourth power of the number bi of points. In this case we flip the roles of 
g and g', turning the given surfaces into points and points into surfaces, and then 
we apply the following technique. 

For each group of b~ surfaces (formerly points), we apply the cell decomposition 
technique described above. This time, however, we conceptually reverse the x4-axis , 
so that we now compute and triangulate the cell below the lower envelope. We 
locate the a~ points (formerly surfaces) inside each cell of the triangulation, and 
proceed recursively from there (not flipping points and surfaces anymore). Adapt- 
ing the analysis of [10], it easily follows that the resulting procedure requires 
O(b~ § preprocessing time and storage, for any e > 0, and supports point-location 
queries (each determining whether a given query point lies below all surfaces of 
bi) in O(log b~) time per query. We thus obtain an algorithm whose running time 
is O(b~ +~ + al log hi), which, by assumption, is only O(a~ +~). 

The running time of the algorithm is thus easily seen to be governed by the 
recurrence 

o'+,(a) 
T(a, b) < ~ T , bi + O(a + b) if a < b 4, 

i = l  

T(a, b) = O(a 1 +~) if a _> b 4. 

The solution of this recurrence is 

T(a, b) = O(a 4/5 +'b 4/5+~ + a 1 +~ + b 1 +~). 

We now apply this procedure to each pair (g, g') obtained in the first stage of the 
algorithm. Since the total number of pairs is O(n log n) and their overall size is 
O(n log 2 n), it is not difficult to show that the overall cost of these applications is 
O(n a/s+~) for a slightly larger, but still arbitrarily small, e. Hence, it can be 
determined whether the width of : is greater than, or equal to, or smaller than 
a given parameter W, in deterministic time O(n a/5 +~) for any e > 0. 

To apply parametric searching we also need to derive a parallel version of the 
algorithm (in Valiant's model). Note that the first stage does not invoke parametric 
searching and thus need not be parallelized. The second stage, which depends on 
the parameter W, is easy to parallelize. As in the preceding section, the construction 
of the (1/r)-nets can be done in parallel in polylogarithmic time per net. Since r is 
a constant, the partitioning of 4-space described above can be constructed in 
constant parallel time, and the subproblems that are generated can then be solved 
in parallel. This requires O(n 8/5§ processors and polylogarithmic parallel time. 
We omit the more refined details of this parallelization, and, plugging all this into 
the parametric search paradigm, we conclude, in summary: 

Theorem 3.1. Given a set : o f  n points in 3-space, the width o f :  can be computed 
(deterministically) in time O(n a/s +~) f o r  any e > O. 
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4. Closest Line Pair in 3-Space 

In this section we consider the following problem. Let ~ be a given set of n lines 
in 3-space. The distance d(ll, 12) between two lines is defined as minp~t,.qE~fl(p, q), 
where d(p, q) is the Euclidean distance between the points p and q. The closest- 
line-pair problem calls for computing 

min d( l l ,  12). 

This problem arises in many applications, for example in proximity detection 
between airplane flight paths. In this section we provide an algorithm, based on 
parametric searching, that computes the closest line pair in time O(n sis +~) for any 
e > 0 .  

As above, the first task is to solve the fixed-size problem: Given a set ~ of n 
lines in space and a parameter d > 0, determine whether there is a pair of lines 
at distance less that d apart, or, if not, whether there is a pair at distance exactly 
d apart. 

This problem is solved using a technique very similar to that of the preceding 
section. We first split ~ into two subsets ~L~al, Aa2 of roughly equal size. We test 
recursively whether any pair of lines in ,Sa 1 lie at distance < d (or = d) apart, and 
similarly for ~f~'2, and are left with a "bichromatic" version of the problem, namely 
to determine whether there is a pair of lines l 1 ~ ~f'~, 12 ~ ~2 at distance < d or = d 
apart. For technical reasons, similar to those in the preceding section, we only 
study the restricted version of the problem, in which we also assume that all lines 
in L,a~ lie below all lines in -~2- To ensure that this can be done with no loss of 
generality, we proceed as follows. 

We project all lines of ~ onto the xy-plane, orient the projections from left to 
right, and partition ~ so that all lines in Z~I have projections with slope smaller 
than those of the projections of the lines in &~'2. Then, as shown in [9], a line 
l~ ~ s lies below a line l 2 E ~'a 2 if and only if the Plficker point image of l~ lies (in 
5-space) on a given side of the Plficker hyperplane image of l 2. Excluding special 
cases which we can handle directly, we can readily find a direction in 5-space, 
which by convention we call vertical, corresponding to that side. Thus we map 
the lines of s to Plficker points and the lines of ~2 to Pliicker hyperplanes. We 
next choose a sufficiently large constant parameter r, construct a (1/r)-net R of 
size O(r log r) in the collection of hyperplanes (with respect to ranges, each being 
the set of hyperplanes crossing some simplex), form the arrangement of R, extract 
from it the zone of the (quadric) Pliicker surface (on which all our a points lie), 
and triangulate the zone cells into simplices. By the recent results of [7], the 
number of resulting simplices is O(r 4 log ~ r). Each simplex s is crossed by at most 
b/r hyperplanes, where b = n/2 is the size of Aa2, and all other hyperplanes pass 
fully above or fully below it. We thus obtain, for each simplex s, three subproblems, 
involving, respectively, 

(i) the points in s and the hyperplanes passing above s, 
(ii) the points in s and the hyperplanes passing below s, and 

(iii) the points in s and the hyperplanes crossing s. 
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The first two subproblems are solved directly, using the technique to be 
described in a moment,  because in each of them we have, when passing back to 
3-space, two sets of lines, with all lines in one set lying above all lines in the 
other. The third subproblem is solved recursively, for each of the simplices. 

We thus have reduced the problem to the case where we have two sets of 
lines, Z~a,, ~ - ,  consisting of, say, p lines and q lines, respectively, so that each 
line in ~ce' passes below every line of ~ " ,  and our goal is to determine whether 
there is any pair of lines, l' e L~', l" e ~ " ,  at distance < d (or = d) apart. However, 
this is exactly the subproblem that we ended up with in the preceding section, so 
we can solve it in time O ( p 4 / 5 + ~ q 4 / 5 + * q  - pl+~+ q1+~) for any e > 0. Since in 
the preceding partitioning we have only a constant number of such subproblems 
(of types (i) or (ii)), it follows that the cost of all these nonrecursive subproblems 
is O(a4/5+*b4/5+* + a l+~ + bl+~), for any e > 0, where a = I~11 and b = 1~21. 

We derive that the overall time T(a, b) for solving the bichromatic problem 
involving two sets of lines with a and b lines, respectively, satisfies the recurrence 

T(a, b) = O(a4/5+*br + a 1+~ + b 1+~) + 
O(r41og5r) 

T(a,, b,), 
i=1 

where, for each i, we have b i < b/r  and ~ i  al = a. It then easily follows that 

T(a, b) = O(a4/5+~b 4/5+~ + a x+` + b 1§ 

for any e > 0. Hence, the time T'(n) required for solving the original problem 
involving a single set of n lines satisfies the recurrence 

T'(n) = 2 T ' ( ~ )  + O(n 8/5+~) 

whose solution is T' (n)= O(n 8/5§ for any e > 0. We can thus conclude that 
the fixed-size problem can be solved (deterministically) in time O(n 8/5§ for 
any e > 0, and can also be solved by a parallel algorithm (in Valiant's model) 
which takes polylogarithmic parallel time and uses O(n 8/5 +~) processors. Plugging 
all these into the machinery of parametric searching, we obtain, as in the previous 
section: 

Theorem 4.1. Given a set Ze o f  n lines in 3-space, the closest pair in ~r (under 
the Euclidean distance between lines in space) can be found (deterministically) 
in time O(nS/S+~) for  any e > O. 

5. Discussion 

In this paper  we have investigated applications of  parametric searching to 
geometric problems. We have applied the technique to several basic problems in 
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