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Abstract. Large-signal simulation is carried out in this 

paper to investigate the prospects and potentiality of Dou-

ble-Drift Region (DDR) Impact Avalanche Transit Time 

(IMPATT) device based on semiconducting type-IIb dia-

mond as millimeter-wave source operating at 94 GHz 

atmospheric window frequency. Large-signal simulation 

method developed by the authors and presented in this 

paper is based on non-sinusoidal voltage excitation. The 

simulation is carried out to obtain the large-signal char-

acteristics such as RF power output, DC to RF conversion 

efficiency etc. of DDR diamond IMPATT device designed 

to operate at 94 GHz. The results show that the device is 

capable of delivering a peak RF power output of 7.01 W 

with 10.18% DC to RF conversion efficiency for a bias 

current density of 6.0×108 Am-2 and voltage modulation of 

60% at 94 GHz; whereas for the same voltage modulation 

94 GHz DDR Si IMPATT can deliver only 693.82 mW RF 

power with 8.74 efficiency for the bias current density of 

3.4×108 Am-2.  
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1. Introduction 

The electronic, optical, mechanical and thermal prop-

erties of semiconducting type-IIb diamond having 5.48 eV 

bandgap and the recent development of its epitaxial growth 

technique have aroused a lot of interest to use this material 

for fabrication of high power, high frequency semicon-

ductor devices. Prospects of diamond (C) based electronic 

devices such as Metal Semiconductor Field-Effect Tran-

sistor (MESFET), IMPATT diode and Bipolar Junction 

Transistor (BJT) for microwave and mm-wave power gen-

eration was studied by Trew et al. [1] in 1991. Impact 

Avalanche Transit Time (IMPATT) devices are well es-

tablished as high power, high efficiency solid-state sources 

at microwave (3-30 GHz) and millimeter-wave (30 to 

300 GHz) frequency bands [2]-[4]. In the decades of sev-

enties, Si and GaAs were mostly used as base materials for 

IMPATT diodes [5]-[10]. In recent years IMPATT diodes 

based on wide bandgap (WBG) semiconductor materials 

(SiC, GaN) have been reported for generation of RF power 

at mm-wave and terahertz frequencies [11]-[19]. Material 

properties of diamond are also suitable for fabrication of 

IMPATT diodes at mm-wave frequencies [20]-[24]. This 

fact influenced the authors to study the millimeter-wave 

properties of DDR IMPATTs based on diamond at 94 GHz 

atmospheric window to explore its potentiality as possible 

mm-wave source. In the present paper, the large-signal 

simulation based on non-sinusoidal voltage excitation 

model [25]-[28] is carried out to investigate the large-sig-

nal properties of DDR IMPATT device based on type-IIb 

diamond designed to operate at 94 GHz. The large-signal 

parameters such as RF power output, DC to RF conversion 

efficiency, negative conductance, susceptance, optimum 

frequency, avalanche resonance frequency etc. of the de-

vice are obtained from the simulation. These results are 

compared with the simulation results of conventional DDR 

Si IMPATT operating at 94 GHz to ensure the superiority 

of diamond as semiconductor base material of IMPATT 

devices. 

2. Large-Signal Modeling and 

Simulation Technique 

One-dimensional model of reverse biased n+-n-p-p+ 

structure of DDR IMPATT device, shown in Fig. 1 (a) is 

used for large-signal simulation since the physical phe-

nomena take place in the semiconductor bulk along the 
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symmetry axis of the mesa structure of the device. The 

fundamental time and space dependent device equations 

i.e., Poisson’s equation, continuity equations, current den-

sity equations involving mobile space charge are simulta-

neously solved under large-signal condition subject to 

suitable boundary conditions to obtain the snap-shots of 

electric field ξ(x,t) and normalized current density P(x,t) = 

(Jp(x,t) – Jn(x,t))/J0(t); where J0(t) = Jp(x,t) + Jn(x,t) for 

different bias current densities at several instants of time of 

one complete cycle of steady-state oscillation. The large-

signal simulation [25]-[28] is carried out by considering 

500 space steps and 150 time steps. In the present simula-

tion method, the IMPATT device is considered as a non-

sinusoidal voltage driven source as shown in Fig. 1 (b). 

The input AC voltage is taken as 

    tpsinmVtV
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p

p
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where VRF is the RF voltage, VB is the breakdown voltage 

of the device, mx is the voltage modulation factor and ω is 

the angular frequency. The bias voltage is applied through 

a coupling capacitor C to study the performance of the 

device at a given fundamental frequency f = ω/2π with its 

n harmonics. 

 

Fig. 1. (a) One-dimensional model of DDR IMPATT device, 

(b) voltage driven IMPATT oscillator and associated 

circuit. 

The large-signal program [25]-[28] is run till the limit 

of one complete cycle (i.e. 0 ≤ ωt ≤ 2π) is reached. The 

bias current density, RF voltage amplitude and frequency 

are J0, VRF and f respectively. The terminal current and 

voltage waveforms for a complete cycle of oscillation are 

analyzed to study the RF performance of the device at 

different phase angles of one complete cycle of oscillation 

i.e., ωt = 0, π/2, π, 3π/2, 2π. 

3. Results and Discussion 

The active layer widths (Wn, Wp) and background 

doping concentrations (ND, NA) of 94 GHz DDR diamond 

IMPATT are initially chosen by using the transit time for-

mula of Sze and Ryder [29]. The structural and doping 

parameters of the device are designed for optimum per-

formance at 94 GHz by using the method described in 

earlier paper [25]. The doping concentrations of n+- and 

p+-layers (Nn+ and Np+) are taken in the order of ~1025 m-3 

in the simulation. Structural and doping parameters of the 

designed DDR diamond IMPATT device are given in 

Tab. 1. The realistic field dependence of ionization rates 

(αn, αp), drift velocities (vn, vp) of charge carriers and other 

material parameters such as bandgap (Eg), intrinsic carrier 

concentration (ni), effective density of states of conduction 

and valance bands (Nc, Nv), diffusion coefficients (Dn, Dp), 

mobilities (μn, μp) and diffusion lengths (Ln, Lp) of diamond 

are taken from the recently published experimental reports 

[30]-[35]. Junction diameter of the device (Dj) is taken as 

35 μm for continuous-wave (CW) operation at 94 GHz [5], 

[6]. 

 

DESIGN PARAMETER VALUE 

fd (GHz) 94 

Wn (μm) 0.795 

Wp (μm) 0.790 

ND (×1023 m-3) 0.460 

NA (×1023 m-3) 0.530 

Nn+ (×1025 m-3) 5.000 

Np+ (×1025 m-3) 2.700 

Tab 1.  Structural and doping parameters. 

3.1 Static Properties 

Bias current density (J0) is varied from 3.0×108 to 

6.0×108 Am-2 to study the static or DC characteristics of 

the device. Fig. 2 shows the static (i.e. when mx = 0) elec-

tric field profiles of DDR diamond IMPATT for different 

bias current densities. It is observed from Fig. 2 that the 

electric field profiles are getting distorted due to the mobile 

space charge effect at higher bias current densities [36], 

[37]. The normalized current density profiles, i.e. P(x)-

profiles of the device at different bias current densities are 

shown in Fig. 3. It is worthwhile to note that the P(x)-pro-

file of the device smears out with the increase of bias cur-

rent density. This indicates the sharp expansion of ava-

lanche zone width xA and consequent decrease in DC to RF 

conversion efficiency at higher bias current densities. 

The important DC parameters such as peak electric 

field ξp, breakdown voltage VB, avalanche voltage VA, ratio 

of drift layer voltage to breakdown voltage VD/VB; where 

VD = VB – VA, avalanche layer width xA; where 

xA = |xA1| + xA2, ratio of avalanche layer width to total drift 

layer width xA/W; where W = Wn + Wp of the device are 

obtained by taking the time averages of respective time 

varying parameters for different bias current densities and 

given in Tab. 2. Fig. 4 shows the variations of ξp, VB and 

VA with bias current density. It is observed from Tab. 2 and 

Fig. 4 that the peak electric field ξp decreases while both 

the breakdown voltage VB and avalanche voltage VA in-

crease with the increase of bias current density J0. The rate 



626 A. ACHARYYA, ET AL., DIAMOND BASED DDR IMPATTS: PROSPECTS AND POTENTIALITY AS MILLIMETER-WAVE SOURCE … 

of increase of avalanche voltage with respect to bias cur-

rent density (i.e. dVA/dJ0) is found to be larger than that of 

breakdown voltage (i.e. dVB/dJ0). That is why the ratio of 

drift zone voltage to breakdown voltage VD/VB decreases 

appreciably with bias current density J0. The ratio of VD/VB 

is maximum (53.07%) at the bias current density J0 of 

3.0×108 Am-2. The avalanche layer width xA and the ratio 

of avalanche layer width to total drift layer width xA/W 

increase from 0.534 to 1.027 μm and 35.59 to 68.47% 

respectively when the bias current density J0 increases 

from 3.0×108 to 6.0×108 Am-2. 

 

Fig. 2. Static electric field profiles for different bias current 

densities. 

 

Fig. 3. Static P(x)-profiles for different bias current densities. 

 

Fig. 4. Variations of peak electric field, breakdown voltage 

and avalanche voltage with bias current density. 
 

 

 

 

PARAMETER J0 (A m-2) 

 3.0×108 4.0×108 5.0×108 6.0×108 

ξp (×107 V m-1) 9.2174 9.1118 9.0368 8.9431 

VB (V) 105.87 111.54 116.08 119.39 

VA (V) 49.69 58.33 71.34 86.64 

VD/VB (%) 53.07 47.71 38.52 27.43 

xA (μm) 0.534 0.658 0.827 1.027 

xA/W (%) 35.59 43.88 55.18 68.47 

Tab. 2. Static parameters. 

3.2 Large-Signal Properties 

Fig. 5 shows the diode voltage VB(t) and particle cur-

rent I0(t) = J0(t)×Aj waveforms at different bias current 

densities for two consecutive cycles of steady-state oscilla-

tion taking 60% voltage modulation. Both the voltage and 

current waveforms are observed to be non-sinusoidal. The 

average values of diode voltage and particle current are 

found to be 105.87, 111.54, 116.08, 119.39 V and 288.6, 

384.8, 481.1, 577.3 mA respectively. Further it is observed 

from Fig. 5 that the phase shift between the diode voltage 

and particle current is nearly 1800, an essential condition 

for realizing maximum negative resistance and power from 

the device. 

 

Fig. 5. Diode voltage and particle current waveforms at differ-

ent bias current densities for two consecutive cycles of 

steady-state oscillation taking 60% voltage modula-

tion. 

The large-signal electric field snap-shots at quarter 

cycle intervals are shown in Fig. 6 (a) through (e) for five 

different phase angles at different bias current levels but at 

a fixed value of voltage modulation mx = 60%. With in-

creasing bias current density from 3.0×108 to 6.0×108 Am-2 

and corresponding bias current from 288.6 to 577.3 mA, 

distortion and non-linearity is observed in the snap-shots at 

each phase angles ωt = 0, π/2, π, 3π/2, 2π. This is due to 

the mobile space charge effect at higher current densities 

[36]. [37]. The electric field snap-shots exhibit depletion 

width modulation at large-signal level for 60% voltage 

modulation (Fig. 6 (a) – (e)). This modulation changes both 

with time and bias current density. Higher depletion width 

modulation suggests higher punch through factor where 

punch through factor is defined as 
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where WBn(t) and WBp(t) are the depletion layer widths of 

n- and p-sides respectively at time t required for the electric 

field to be just punch through The punch through factors 

PTFn(t) and PTFp(t) for different bias current densities and 

phase angles, obtained from the large-signal electric field 

snap-shots are given in Tab. 3. It is observed from Tab. 3 

that the punch through factor PTF is highest at ωt = π/2 

when the peak electric field is also highest and lowest at 

ωt = 3π/2 when the peak electric field is lowest. This holds 

good for all bias current densities. But at a particular phase 

angle, PTF(t) increases with increasing bias current den-

sity. This is due to the fact that the field distortion due to 

mobile space charges increases at higher bias current 

density. 

 
Fig. 6. Large signal electric field snap-shots at each quarter cycle of steady-state oscillation (a) ω = 0, (b) ω = π/2, (c) ω = π, (d) ω = 3π/2 and 

(e) ω = 2π for different bias current densities (voltage modulation is 60%). 
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J0 

(×108 A m-2) 

PTFn(t) and PTFp(t) at different phase angles 

ωt = 0 ωt = π/2 ωt = π ωt = 3π/2 ωt = 2π  

PTFn(t) PTFp(t) PTFn(t) PTFp(t) PTFn(t) PTFp(t) PTFn(t) PTFp(t) PTFn(t) PTFp(t) 

3.0 1.0705 1.3194 3.0641 3.3194 1.0705 1.3194 0.8974 0.8403 1.0705 1.3194 

4.0 1.4103 1.5556 4.7436 5.1389 1.4103 1.5556 0.9231 0.9028 1.4103 1.5556 

5.0 1.6923 1.9167 5.8590 6.3472 1.6923 1.9167 0.9744 1.0278 1.6923 1.9167 

6.0 2.5000 2.7778 9.1026 9.8611 2.5000 2.7778 1.0000 1.0694 2.5000 2.7778 

Tab. 3. Punch through factors for different bias current densities at different phase angles. 

 

Variations of peak negative conductance Gp and cor-

responding susceptance Bp with RF voltage VRF consider-

ing the voltage modulation factor mx from 5 to 70% for 

different bias current densities are shown in Fig. 7. The 

magnitude of Gp (|Gp|) decreases with the RF voltage VRF 

for a particular bias current density and increases with the 

increase of bias current density for a particular RF voltage 

VRF. On the other hand |Bp| also decreases with the RF 

voltage VRF for a particular bias current density and with 

increase of bias current density for a particular RF voltage 

VRF. 

 

Fig. 7. Variations of peak negative conductance and corre-

sponding susceptance with RF voltage at different bias 

current densities. 

Fig. 8 shows the variations of optimum frequency fp 

for peak negative conductance Gp and avalanche resonance 

frequency fa (frequency at which device conductance just  

 

Fig. 8. Variations of avalanche resonance frequency and opti-

mum frequency with RF voltage at different bias cur-

rent densities. 

becomes negative) with RF voltage for different bias cur-

rent densities. Both the optimum frequency fp and ava-

lanche resonance frequency fa of the device decrease with 

the increase of RF voltage for a particular bias current 

density. But it is interesting to observe from Fig. 8 that the 

rate of decrease of optimum frequency with respect to RF 

voltage (i.e. dfp/dVRF) is much sharper as compared to that 

of avalanche resonance frequency (i.e. dfa/dVRF) for a par-

ticular bias current density. On the other hand both the 

optimum frequency fp and avalanche resonance frequency 

fa of the device increases with the increase of bias current 

density for a particular RF voltage. 

The large-signal admittance characteristics of the de-

vice are shown in Fig. 9 for different bias current densities 

at 60% voltage modulation. The Q-factor Qp = –Bp/Gp of 

the device decreases from 3.79 to 5.08 when the bias cur-

rent density increases from 3.0×108 to 6.0×108 Am-2 for 

mx = 60%.  

 

Fig. 9. Large-signal admittance characteristics of 94 GHz 

DDR diamond IMPATT for different bias current den-

sities at 60% voltage modulation. 

Fig. 10 shows the variations of RF power output 

PRF = (1/2)×VRF
2×|Gp|×Aj; where Aj = π(Dj/2)2 and large-

signal DC to RF conversion efficiency ηL = PRF/PDC; where 

PDC = VB×J0×Aj with RF voltage for different bias current 

densities. It is interesting to observe that the RF power 

output increases initially with the increase of voltage 

modulation mx attaining a peak at a value of mx = 60% and 

then the same decreases for all current densities. The 

variations of large-signal efficiency ηL with RF voltage for 

all bias current densities are similar to that of PRF with RF 

voltage. The results clearly indicate that the voltage 

modulation should be kept around 60% to obtain the opti-

mum performance from the device. On the other hand RF 
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power output PRF of the device increases while large-signal 

DC to RF conversion efficiency ηL decreases with the in-

crease of bias current density J0 for a particular voltage 

modulation factor mx. The maximum power output of 

7.01 W with 10.18% DC to RF conversion efficiency is 

obtained from the device at a bias current density of 

6.0×108 Am-2 and voltage modulation of 60%. 

 

Fig. 10. Variations of RF power output and large-signal DC to 

RF conversion efficiency with RF voltage at different 

bias current densities. 

3.3 Comparison with Experimental Results 

The large-signal simulation of 94 GHz DDR Si 

IMPATT device which was reported by the authors in an 

earlier paper [25] show that the device is capable of deliv-

ering about 593 to 694 mW of power output with 7.45 to 

8.74% conversion efficiency for 50 to 60% voltage modu-

lation. Luy et al. [5] experimentally obtained maximum 

600 mW of power output with 6.7% efficiency from 

94 GHz DDR Si IMPATT fabricated using molecular-

beam epitaxy (MBE) technique. Dalle et al. [6] reported 

experimental results of flat profile DDR Si IMPATT 

source at 94 GHz and they obtained about 500 mW of RF 

power output with 8.0% efficiency. Thus the experimental 

results are in very close agreement with the simulation 

results for DDR Si IMPATTs which validates the large-

signal simulation technique developed by the authors and 

used in this paper. The large-signal simulation results pre-

sented in this paper indicate that 94 GHz DDR diamond 

IMPATT device can deliver 5.76 to 7.01 W peak RF power 

with 8.35 to 10.18% DC to RF conversion efficiency at 

a bias current density of 6.0×108 Am-2 and voltage modula-

tion of 50 to 60%. This simulation study clearly indicates 

that the DDR diamond IMPATT excels DDR Si IMPATTs 

at millimeter-wave 94 GHz window frequency as regards 

power output and conversion efficiency. But so far as the 

authors’ knowledge is concerned, no experimental report 

on the diamond based DDR IMPATT source is available in 

published literatures. That is why the simulation results 

presented in this paper could not be compared with 

experimentally obtained results. 

4. Conclusions 

Large-signal simulation is carried out in this paper to 

investigate the potentiality of DDR diamond IMPATT 

device as millimeter-wave source at 94 GHz window. 

Simulation results strongly established the fact that, dia-

mond is an excellent base material for IMPATT devices at 

mm-wave frequencies. The simulation results and corre-

sponding design would be useful for undertaking an ex-

perimental program to fabricate the 94 GHz DDR diamond 

IMPATTs by using microwave plasma-assisted chemical 

vapor deposition (MPCVD) followed by appropriate ion-

implantation techniques. 
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