DIAMOND-TURNING HP-21 BERYLLIUM TO ACHIEVE AN OPTICAL SURFACE
D. R. Allen
F. W. Hauschildt
J. B. Bryan

September 25, 1975
MASTER

Prepared for U.S. Energy Research \& Development Administration under contract No. W-7405-Eng-48

NOTICE,

"This report wis prepared as an account of watk iponsored by the United Statet Government. Neither the United States nor the United States Eneriy Resparth et Devilopment Admtaistration, nor any of their employecs, nor any of their contractors, subcontractors, or thuit employens, mikes any whitiaty, express or inplied, or essumes sny legal libility or responsibility for the accuracy, compritenes or usefulnets of any information, npperatus, product or procese disclosed, of represents that its use would not infringe privately-otwated sighte"

Printed in the United States of America Available from
National Technical Inforination Service
U.S. Department of Commerce 5285 Port Royal Road
Springfield, Virginia 22151
Price: Printed Copy \$ $\$$; Microfiche $\$ 2.25$
${ }^{*}$ Pages

$1-50$
$151-150$
$326-325$
$501-1000$

NTIS
Selling Price
$\$ 4.00$
$\$ 5.45$
$\$ 7.60$
$\$ 10.60$
501-1000
$\$ 13.60$

UCRL-51916
 DIAMOND-TURNING HP-21 BERYLLIUM TO ACHIEVE AN OPTICAL SURFACE

D. K. Allen, H. W. Hauschildt, and J. B. Bryan

MS. date: September 25, 1975

Tha reporl tar propues an in acerount of wotk pronkuted by thr thuted Statea Gowarniment lienthat Wewifich and Teenopprent Admanesimition, mot any of theiz employert, not afy of thes contraciunt. wartanty. rapress ar impled. os avimat ang kial proci's ducfoted, of repirksth that ith we tould not in Incur panalebs owned nuth?

Contents

Abstract 1
Introduction 1
Material 2
Equipment and Tooling 3
Hardinge Frecision Lathe 3
Cutting Tools 4
Cutting Fluids 4
Test Procedure 6
Facing Cuts - Preliminary Tests 6
Longitudinal Turning Cuts - Wear Tests 6
Facing of Disk Specimens 6
Test Data and Discussion of kesults 7
Facing Cuts - Preliminary Tests 7
Longitudinal Turning cuts - Wear 'Fests 15
Facing Cuts on Disk Specimens 39
Conriustons 47
Recommendations 49
References 30
Appendix A. HP-21 Log Analysis 51
Appendix B. HP-21 Radiograph and Nondestructive Test Report 52
Appendix C. Spectfications and Analysis of Pure Beryllium 53
Appendix D. Results of Cuts and Tests 56

DIAMOND-TURNING HP-21 BERYLLIUM TO ACHIEVE AN OPTICAL SURFACE

Abstract

The investigation of diamond turning on beryllium was made in anticipation of obtaining an optical. finish. Although results of past experiences were poor, it was decided to continue diamond turning on beryllium beyond initial failures. By ctaanging speed and using coolant, partial success was achieved. Tool wear was the major problem. Tests were made to establish and plot wear as a function of cutining speed and time. Slower speeds did cause lower wear rates, but at no time did wear reach an acceptable level.

The machine, tools, and procedure used were chosen based on the resulta of our preliminazy attempts and on previous experiezce. It was unnecessary to use an air-bearing spindle because rool failure governed the best finish that coild be expericed.

All tools of diamond composition, whether single cryatal or polycrystalline, wore at unacceptable rates. Based on present technology it must be concluded that beryllium cannot be feasibly diamond turned to achfeve an optical finish.

Introduction

The United States Air Force, in conjunction with Honeywell, Inc., Radiation Center of Lexington, Massachusetts, is engaged in establishIng new or improved fabricacion and assembly techniques for avionics systems and subsystems. This study includes an investigation of diamondtwining techniques for achieving
optical finishing, Kawecki alP-2". beryllium.*

[^0]Because of extensive prior experience with diamond-turning techniques and the avallability of specialized equipment, Lawrence Idvermore Laboratory has been asked to undertake the machining investigation.

The objective of this investigation is to obtain an optical surface
on an HP-21 beryllium test specimen, using diamond-turning techniques. In the event th.t an optical surface cannot be generated by this method, complete documentation will be furnished to the sponsor te aid in subsequent investigations.

Material

The test material used in this investigation is an HP-2l beryllium rod, 1.5 in. in diameter by 3 in . long, supplied by Honeywell. The mechanical properties of this material are:
a) Ultimate tensile strength $=$ 45,000 psi
b) Yield strength $=35,000 \mathrm{psi}$
c) Elongation $=2 \%$ in 1 in.
d) Srain size is listed as not to exceed 25μ

The chemical composition for HP-21 is given in Table 1.

As shown in Table 1 there is a considerable number of alloy elements and impurity metals in the HP-21 composition. Because of severe dia. mond wear problems the HP-2l beryllinm was examined liy a $14-\mathrm{kV} x$ ray to determine the distribution and size of impurity elements as a possible explanation of the rapid diamond

Table 1. Chemical composition of HP-21 beryllium.

Beryllium assay	$\%$ minimum	98.0
Beryllium oxide	$\%$ maximum	2.0
Aluminum	$\%$ maximum	0.15
Carbon	$\%$ maximum	0.15
Iron	$\%$ maximum	0.18
Magnesium	$\%$ maximum	0.08
Silicon	$\%$ maximum	0.03
Other metallic	$\%$ maximum	0.04
impurities, each		

Note: The minimun bulk deasity is given at $1.84 \mathrm{~g} / \mathrm{cm}^{3}$. (Theoretical densit. is $1.85 \mathrm{~g} / \mathrm{cm}^{3}$.)
wear. Results of this examination are In Appendix B, It car be seen that a large number of impuricy elements are distributed throughout the material. Although an investigation was not made to determine the actual form in which these elenents were present, thoy are thought to be combined as beryllium carbide, $A l \mathrm{FeBe}_{4}$, and FePe_{11}.

To give some idea of the abrasiveness of these hard intermetallic compounds, the following figures ate cited: diamond registers 10 oil Mohs" scale, berylifum oxide 7.8, aluminum oxide 9t, and beryllium carbide 9+. Ail these particles are very abrasive, and some are used as lapping compounds.

Investigation of single berylifum crystals reveal the extreme anisotropy present. For example, preliminary compression tests by London et al..1 and Mclean ${ }^{2}$ indicate that
plastic flow and/or fracture occur $3 \boldsymbol{c}$ stresses on the crder of $300,000 \mathrm{psi}$ at roon temperature along the c axis. However, shear stresaes requited to initiate fracture along the basal plane are only about one-thousandth of that necessary for c-axis fracture. The above figures are for single crystals, but it could be expected that when machining polycrustalline beryllium, a wide variation of mechanical shear stresses would be encountered due to differences in grain orientation.

Equipment and īooling

HARDINGE PRECISION LATHE

We used a Hard'nge model HLVD. 11, 1.5-hp precision lathe. This lathe was chosen because of its excellent spindle bearings and its ability $=0$ achieve optical finishes. It is equipped with an infinitely variable spindle speed and carriage feed drive Ideally suited for machir:ing studies. The minimum speed is 30 rpm, and the minimum crossfeed rate is $0.130 \mathrm{in} . \mathrm{min}$.

The lathe was enclosed in a protective hood produced by Allied Engineering and Production Corporation
to contain any beryllium chips produced during tine test. A highvelocity air syster pulled all beryllium particies into a special filtering system. The lathe and hood setup are shown in Fig. 1.

Pending the successful outcome of initial test cuts, the Moore diamond-turning machine, using an air-bearing spindle, was ro be used to achieve the ultimate in precision turning. However, because of problems that will be discussed later, this machine was not reguired to carry out the test.

Fig. 1. Harding Lathe and enclosure.

CUTTING FLUIDS

Several cutting fluids were also
used to ascertain their effect in reducing tool wear. These fluids included liquid Freon TF (trichlorotrifluoroethane). Freon spray (dichlorodifluoromethane), and perchloroethylene. The fluids were Intenced to reduce both the temperature at the tool chip interface and friction, and a steady flow of fluid was maintained on the tool by a special dispenser (Figs. 1 and 2).

Table 2. Tool materials used in beryllium machining study.

Tool types
Nose radius, in.

Moore single-crystal. diamond	0.030	$4^{\circ} 40^{\prime}$ to $9^{\circ} 38^{\prime}$
Megadiamand, polycrystalline diamond	0.015	$4^{\circ} 20^{\prime}$
907 carbide	0.030	$7^{\circ} 40^{\prime}$
Ca-6 ceramic	0.030	$4^{\circ} 40^{\prime}$
Citco single-crystal diamond	0.030	3^{\prime}

Fig. 2. Collet setup for machining disks.

Test Pr:cedure

The basic procedise followed in evaluating the turning capabilities of various tool materials on beryllium was as fullows.

FACING CUTS - PRELIMIK. RY TESTS

The beryllium teat \log was mounted in a four-jaw chuck in the test lathe, and the diamond tool was held in an Aloris tool holder as shown in Fig. 2. A center hole was drilled in the test specimen to overcome problems of establishing exact se:-height. The tool was fed radially ostward from the center of the test specimen. A Port-l-Tak was used to get exaci spindle rpm, and a scopwatch was used to check the crossslide feed rate. In most instances a $0.001-1 \mathrm{n}$. ($0.0254-\mathrm{mm})$ depth of cut was used with a feed rate of approximately 0.001 in./rev. (0.0254 mm/ rev.).

During the initial cut, the diamond-turned surface appeared to be of marginal success. However, we observed that significant tool wear had occurred during the cut. As a result of this and several other test face cu^{-s}, we decided that a serles of cuts should be taken on the periphery of the workpiece to maintain a constant surface feed and to
evaluate the tool wear rates at various cutring speeds. We used Fre:on TF cutting flu: ${ }^{\prime}$ on the final test face cut to reduce temperature and friction, and it proved to be helpful in achieving a better finish.

LONGITUDINAL TURNING CUTS - WFAR TESTS

These cuts were made to maintain constant surface speeds for establishing tool wear rates. The turning test involved operating the lathe at various speeds from 30 to 2000 rpm . Feed rates were selected to maintain 0.001 in . rev . (C. $0254 \mathrm{mon} / \mathrm{rev}$.$) . To$ minimize the difficulty of accurately maintaining the low feed rates at low spindle rpm's, we ajded a speciai variable-speed drive to the carriage. This consisted of a gear-reduction Bodine motor driven by a Miniark variable-speed control unit. The carriage was driven through a double 0 -ring belt-drive system.

FACING OF DISK SPECIMENS

To provide a series of historical samples, 0.25-in.-thick (6.35-mmthick) specimens were parted off from the $3-i n$. ($76.2-\mathrm{mm}$) test \log, and a spectal soft-jaw collet chuck was used to hold them (Fig. 2). It was
on these specimens that the effects of various tool materials were intestigated.

Preliminary tests showed it so be unnecessary to feed at rates of less than $0.001 \mathrm{in} . / \mathrm{rev}$. ($0.0254 \mathrm{~mm} /$
rev.). The minimum feed the machine drive system could produce was 0.130 in. $/ \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min}$). at 100 rpm his would achieve 0.0013 in. $/$ rev. ($0.033 \mathrm{~mm} / \mathrm{rev}$), a suitable feed rate iot these tests.

Test Data and Discussion of Results

FACING CUTS - PRELIMINARY TESTS

Test Cut No. 1
for the first cut, the beryllium test \log was mounted in a four-jaw chuck. The test log was drilled with a No. 2 center drill, the face wes cleaneo up with a carbide tool, and the edge was chamfered. Nocre diamond tool :T-44 was mounted in the Aloris tool lulder. The spindle speed sas set at 900 rpm , the feed rate at $0.00035 \mathrm{in} . / \mathrm{rev} .(0.009 \mathrm{~mm} /$ rev.) , that is, $0.320 \mathrm{in} . / \mathrm{min}(8.128 \mathrm{~mm} / \mathrm{min})$, and the depar of cur at 0.001 in . (0.0254 mm). This should provide a 0.5-isin. (0.0127-i) peak-to-vallay ($P /!$) theoretical finish.

During the first portion of the cut, out to about a $1 \cdot \mathrm{in}$. (25.4 mm) diameter, the machined surface was reflective. The remainder of the machined surface was torn. The tool was removed and examined by microscope. Approximately 0.002 to 0.003
in. (0.0508 to 0.0762 mm) flank weat land was present (Figs. 3a, 3b, and 3c).

Test Cut Mo. 2

The work was then re-inserted into the chuck, and a second pass was made at $0.130 \mathrm{in} . / \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$ feed rate and at 375 rpm . The intent of this sacond cut was to help ascertain the predominant faflure mode on the diamond tool (i.e., did the thermal mode or the abrasive mode predominate?). A surface profile trace of the test log facs was made revealing the rapid diamond wear rate. During the first 25 revolutions of the cut, the surface roughness was in the 3 - to $5-\mu \mathrm{in}$. (0.07 - to $0.127-\mu$) range, but rapidly deteriorated to a rough, torn surface appearance. This trace is shown in Fig. 4.

The microscopic examination of the workpiece surface is shown in Figs. Sa and 5b. Figure 5a was taker at the beginning of the cut and Fig.

Fig. 3. Moore diamond tool $k \mathrm{~L}-44$. (a) Top view, 121X.

5 b was taken 0.125 in . (3.175 mm)
from the end of the cut. Figure 5a confirms the 3 - to $5-\mu \mathrm{in}$. (0.07 to $0.27-\mu) P / V$ roughness shown on the profile trace, while Fig. 5b shows a severe form error due to excessive tool wear and pressure. The tool was also examined under the microscope and revealed a series of parallel grooves in the wear flank. These grooves, known as "Pekelharing grooves," have a spacing between them
approximating the fead rate (Fig. 3d). The mechanism of tool failure is not known at this time, but it appears to be primarily an abrasive type wear.

Test Cut No. 3

Tape was placed over the first end to protect it for later microscopic examination, and the workpiece was reversed in the chuck. A new

Fig. 3. Moore diamond tool \#L-44. (b) Front view showing flank wear, 337x.
center hole was drilled and a cleanup cut was taken with a carbide cutting tool. A new diamond tool was used (Moore 汭-'?). Feed rate was 0.130 in. $/ \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min}$), speed 375 rpm, and depth of cut 0.001 in . (0.0254 mm). The intent of this cut was to ascertain repeatability of the test using a new diamond tool.

Following this test the specimen was examined under the microscope,
and photomicrographs of the specimen were taken. Clevite suzface finish analyzer readings were also taken for both ends of the specimen and correlated with the interferometric photographs. This test definitely confirmed the repeatability of the tool fallure mode. (Figs. 6a, 6b, and 7).

After some discussion we
decided that both cutting temperature and abrasiveness of the workpiece may

Fig．3．Moore diamond tool $⿰ 丬 士 口$ L－44．
（c）Wear land caused by first pass，611X．
be the cause of rapid tool wear．A series of experiments was set up in which it was felt important to reduce speed，apply cutting fluid，and check the effects of tool temperature and abrasiveness．

Test Cut No． 4

A cut was made using carbide grade 907 to compare the wear rates
of carbide tools with that of dia－ mond．Two cuts were taken，one on each end of the workpiece．These were later evaluated，and we found that a finish of 30 to $40 \mu \mathrm{in}$ ．（ 0.76 to 1.01μ ）P / V was obtained．This finish，while good，was not of optical quality．Wear rate on the carbjide was approximately one－half that of the single－crystal diamond．Cutting conditions for the carbide tool were

750 rpm speed and $0.600 \mathrm{in} . / \mathrm{min}$ ($15.24 \mathrm{~mm} / \mathrm{min}$) feed rate. No cutting fluid was used with this cut. Tool flank wear was 0.0016 in. (Figs. 8 and 9 b).

Test Cut No. 5
diamond turning as indicated previously. A slow rpm with a coolant was used. The speed was 100 rpm , the feed rate was standardized at 0.130 in. $/ \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min}$), and a Moore diamond tool (\#E-4) was used. The depth of cut was approximately 0.0005 in. (0.0127 mm). The cutting fluid

The next cut was made to ascertaln Freon TF was used. The specimen and the comblned effects of temperatureand friction-reducing methods on
the diamond tool were examined for flank wear after the cut. Flank wear

Fig. 4. Trace of face cut with tool 非-44: second pass, no coolant.

Fig. 5. Interference photomicrographs of Test Cut No, 2. (a) Finish at start of cut, 337 X .
was found to be about 0.0018 in. (0.04572 mm), and a $2-$ to $30-\mu \mathrm{in}$. (0.05- to $0.76-1$) P / V surface finish was achieved (Figs 9a, 10a, 10b, 11a, 11b, and 12).

Test Cut No. 6

We learned from Bill Pope of the Megadiamond Corporation that diamond begins to graphitize at approximately $1200^{\circ} \mathrm{C}$ or below. We also learned that beryllium acts as a catalyst in
promoting graphitization. :.lis, along with information on grinding steel with diamond tools, ${ }^{3-5}$ led to the formulation of the theory that the failure mechanism when nachining beryllium is graphitization. The diamond wear surface appeared to graphitize, after which it was rapioly abraded by hard particles and the beryllium chip. Consequently, tests wose made at reduced temperatures to help reduce the rate of diamond graphitization and flank wear.

Fig. 5. Interference photomicrographs of Test Cut No. 2. (b) Finish 0.125 in. from end of cut, 337 K .

One attempt to reduce graphltization was to use a bonded polycrystalline diamond, anticipatrig that the bonding agent would enhance heat conductivity and consequently keep the tool temperature lower. A Megadiamond tool (\#2-A) was held in the negative sake tool holder, spindle speed was set to approximately 100 rpm , and feed rate was $0.130 \mathrm{in} . / \mathrm{min}$ (3.302 $\mathrm{mm} / \mathrm{min}$) with a depth of cut
of 0.001 in . (0.0254 mm). Freon TF was used as a cutting fluid. The nose radius was small on this tool, approximately $0.007 \mathrm{in} .(0.1778 \mathrm{~mm})$. Because of the poor radius of the unlapped tool and the resulting poor surface finish, an effort was made to obtain polycrystalline diamonds with a lapped face. Several specimens were provided for the experiment by Megadiamond Corporation.

A comparison of the results of the facing cuts is given in Table $\mathrm{D}-1$ in Appendix D.

LONGITUINAL TURNING CUTS - WEAR TESTS

Following the receipt of the lapped Megadiamond inserts, we made a series of longitudinal turning cuts at constant surface speed to ascertain the tool wear rate at various cutting
speeds. These tools had a 0.015-1n. (0.381-mm) nose radius and consequently required smaller feed rates than those for the single-crystal diamond tools to achieve the same theoretical surface finish. The coolant used was Freon TF. Cutting conditions were standardized at a depth of cut of $0.001 \mathrm{in} .(0.0254 \mathrm{~mm})$, and feed rate was set at 0.105 in. $/$ $m i n(2.667 \mathrm{~mm} / \mathrm{min})$.

Fig. 6. Maore diamond tool \#L-42
(b) Front view showing flank wear, 337X.

Flank wear was measured using a Bausch and Lamb Stereozoom Microscope with a 20X eyepiece and 0.7 to 3.0 x zoom lens. An eyepiece reticle was used for measuring flank wear. A stopwatch was used for accurately measuring cutting time, and tests were run at total laped times of 10 ,
$20,50,100,200$, and 500 s . Data from these tests were plotted and are shown in Figs. 13 through 20. A \log / \log plot for the tool-life curve of diamond tool wear is show in Fig. 20. This plot shows that diamond tool life follows the general Taylor Relationship.

Fig. 7. Trace of face cut with tool \#L-42: no coolant.

Fig. 8. Trace of face cut with 907 grade carbide: no coolant.

Fig. 9. Surface photographs. (a) Diamond turned with Moore tool jE-4, 3x. Pencil shows reflectivity.

Fig, 9. Surface photographs. (b) Cut with 907 grade carbide tool, 3X.

Fig. 10. Moore diamond tool $\mathrm{Z}_{\mathrm{E}} \mathrm{E}-4$. (a) Top view, 121 X .

Fig. 10. Moore diamond tool \#E-4. (b) Front view showing flank wear, 337X.

Fig. 11. Interference phocomicrographs of Test Cut No. 5. (a) Finish at start of cut, 337 X .

Fig. 11. Interference photomicrographs of Test Cut No. 5.
(b) Finish at end of cut, 337 K .
3 CONTROL DIVISION EL MONTE, CALIF. PWINTED IN US A

Fig. 13. Plot of tool wear for Megadiamond A, Wear Tes: No. 1.

Fig. 14. Megadiamond A after hear Test No. 1. (a) Top view, 121X.

Fig. 14. Megadiamond A after Wear Test No. 1. (b) Front view showing flank wear, 121 X .

Fig. 15. Plot of tool wear for Megadiamond A, Wear Test No. 2.

Fig. 16. Plot of extended-time tool wear for Megaulamond A, Wear Test No. 2.

Fig. 17. Plot of tool wear for Megadiamond A, Wear Test No. 3.

Fig. 18. Plot of tool wear for Megndiamond A, Wear Test No. 4.

Fig. 19. Plot of tool wear for Megadyamond B, Wear Test Nos. 5 anc 10.

Based on 0.006 in. flank wear land

Fig. 20. Tool-life plot, \log / \log, Wear Test Nos. $1,2,3,4,5,6,10$, and A.

Wear Test No. 1

Wear Test No. 1 was a cylindrical cut on a beryllium log. The tool used was Megadiamond A, upper left corner, with a nose radius of 0.015 in. (0.381 man). The cutting speed was 100 rpm , equivalent to 39 surface it $/ \mathrm{min}$. The feed rate was $0.105 \mathrm{in} . /$ $\mathrm{min}(2.667 \mathrm{~mm} / \mathrm{min})$, and the coolant used was Freon TF.

The total length of time on this cut was 500 s , with the tool removed and inspected for wear at total lapsed times of $10,20,50,100,200$, and 500 s . The total wear was 0.0087 in . (0.2210 mm). The data taken from the different test times are plotted in Fig. 13, and the tool used is shown in Figs. 14a and 14b.

Wear Test No. 2

Wear Test No. 2 was also a cylindrical cut using Megadiamand A, upper right corner. The cutting speed was 30 rpm , and the feed rate was $0.105 \mathrm{in} . / \mathrm{min}(2.667 \mathrm{~mm} / \mathrm{min})$. The coolant used was Freon TF.

The slower sreed allowed us to cut for a considarably longer period of time, and the data taken were extended through a time period of 2400 s . At the end of the $2400-\mathrm{s}$ cutting period, the tool wear measured 0.009 in . (0.2338 mm). The data from
this cut are plotted in Figs. 15 and 16. Figure 16 shows wear beyond the 500-s time period.

Wear Test No. 3

Wear Test No. 3 was a cylindrical cut using regadiamond A, lower left corner. The cutting speed for this test was 66 rpm , equivalent to 25 surface $\mathrm{ft} / \mathrm{min}(7.62 \mathrm{~m} / \mathrm{min}$). The feed rate was $0.100 \mathrm{in} . / \mathrm{min}(2.54 \mathrm{~mm} /$ min), and the coolanc used was Freon TF. The duration of cut was a total of 500 s , and tool wear at the end of this time was 0.0082 in . (0.2083 mm). Data for this test are plotted in Fig. 17.

Wear Test No. 4

Wear Test No. 4 was conducted with Megadiamond A, lower right corner, at a speed of 2000 rpm in an effort to :elp ascertain the effect of high temperature on graphitization. Freon TF was used as a cutting fluid, and the cut was run for 20 s , after which the flank wear was found to be 0.0068 in. (0.1727 mm). This provided an additional point on the tool-life crirve and was found to ift well into the previous data (Fig. 18).

Wear Test No. 5

Wear Test No. 5 was conducted using Magadiamond B, upper left corner, at 30 rpm and a feed rate of $0.070 \mathrm{in} . / \mathrm{min}(1.778 \mathrm{~mm} / \mathrm{min})$. "Freeze-It" cutting fluid, supplied by Aervoe Products, was used in this test. The Freeze-It solution was sprayed over the tool to reduce its temperature to $-50^{\circ} \mathrm{F}\left(-46^{\circ} \mathrm{C}\right)$.

We observed a very low wear rate on the polycrystalline diamond during the 200 s it was used in the test. Flenk wear land was 0.0028 in . (0.0711 mm) (Fig. 19). A repeat of this test using "Microduster," another Freon spray, for a longer time period is also shown in Fig. 19 for comparison.

Wear Test No. A

Wear Test No. A was initially a cleamup cut. for the workpiece, but was timed at 21 min ; the flank wear after 2 J min was 0.0103 in . (0.2616 mun). This test also provided an additional point on the tool-life surve (Fig. 20).

Wear Test No. 6

Wear Test No. 6 was a bestfinish effort with polycrystalline diamond. The cutting speed was 66 rpm with a cutting time of 400 s .

Freon TF was used as the cutting fluid. The theoretical surface finish was $14 \mu \mathrm{in}$. (0.35μ) P/V. The actual surface finish achieved was in the range 25 to $80 \mu \mathrm{in}$. (0.635 to 1.65μ)

P/V. This was an unsatisfactory finish and may be partially attributed to the poor finish on the tool nose.

Wear Test No. 7

Wear Test No. 7 was the same as test No. 6, but we used a singlecrystal diamond, Moore tool $1 \mathrm{E}-3$. Cutting conditions were the same except that the depth of cut was 0.00075 in . (0.0191 mm) instead of 0.001 in. (0.0254 mm). The surface finish was measured in the range 15 to $100 \mu \mathrm{in}$. (0.381 to 2.54μ) P / V as compared to 25 to $80 \mu \mathrm{in}$. (0.635 to 1.65μ) for the polycrystalline diamond. During the initial phases of the test, the single-crystal diamond produced a much better surface than did the polycrystalline diamond, but the single-crystal-diamond finish deterforated more rapidly.

Wear Test No. 8

In Wear Test No. 8 a facing cut was made to determine if, using the information we gathered on cutting speeds and fluids, a surface finish
of optfcal quality could be obtained. Hoore singie-crystal-dLamond tool /fe-3 was used, For this test the cutting speed was 66 rpm , and the feed rate was $0.024 \mathrm{in} . / \mathrm{min}$ (0.6096 $\mathrm{mn} / \mathrm{min}$). This should have given us a theoretical finish of $0.5 \mu \mathrm{fn}$. (0.0127 μ) P/V. The coolant used was Freon TF.

Because of the exceedingly slow feed rate and because wear is a factor of time, the tool wore to the point where tool pressure was finally high enough to break it. This occurred at approximately 17.5 min in cutting time. The finish was then evaluated and charts made.

It is interesting to note that although the theoretical finfsh was set at $0.5 \mu \mathrm{in}$. (0.0177μ), the actual finish was not that good on the piece, partly because of the machine capability; the finish was apparently no better than would have previously been achieved with a coarser feed rate. For this reason all subsequent machining on beryllium was done at about a $0.001-1 \mathrm{n} . / \mathrm{rev}$. ($0.0254-\mathrm{mm} /$ rev.) feed rate.

Wear Test No, 9

Wear Test No. 9 was not documented because of the problem encountered with the diamond tool breaking in the previous cut. It is
noteworthy that here an attempt was made to use liquid nitrogen as a coolant to further lower cutting temperatures. We found it very difficult to cool sufficiently using liquid nitrogen, because unless the material to be cut were at the anbient temperature of the liquid nitrogen, the coolant would tend to splatter off the surface and not effectively cool at all. Another problem was in trying to maintain a steady flow of liquid nitrogen. Freeze-It aerosol spray was far more effective in cooling the bar quickly.

Wear Test No. 10

In Wear Test No. 10 a cylindrical cut was taken at 30 rpm and a feed rate of $0.070 \mathrm{in} . / \mathrm{m}(2.778 \mathrm{~mm} / \mathrm{min})$ with a cutting depth of 0.001 in. (0.0254 mm) using Microduster. By inverting the can, the freezing application that we had obtained previously with Freeze-It was duplicated.

The purpose of this test was to extend what had been done in Test No. 5 to a cotal time of 400 s to help plot the previous test and determine what the wear rate really would be. This was done, and there was flank wear of 0.007 in . $(0.1778 \mathrm{~mm})$ at the end of 400 s cutting time. This
cerrelated well with the information obtained earlier (Fig. 19).

Wear Test No. 11

Wear Test No. 11 was a cylindrical cut using a carbide grade 907 tool at 400 rpm with a $1.1-1 \mathrm{n} . / \mathrm{min}$ (27.94$\mathrm{mm} / \mathrm{min})$ feed rate, and a $0.001-1 \Omega$. ($0.0254-\mathrm{mm}$) depth of cut. This was cut dry and was merely a cleanup cut, but it was timed and the flank -iar on the tool was checked. The length of the cut was approximately 1.5 in . (38.1 mm). The cutting time was 95 s . Flank wear was measured at 0.002 in . (0.0508 mm), considerably less than expected with a diamond tool.

Wear Test No. 12

Wear Test No. 12 was a facing cut using a 907 grade carbide tool with a $0.130-\mathrm{in}$. $(0.762-\mathrm{mm})$ nose radius. The cuiting speed was 100 rpm, and the feed rate was $0.130 \mathrm{in} . /$ $\mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$. The depth of cut was $0.001 \mathrm{in} .(0.0254 \mathrm{~mm})$, and the cutting fluid was perchloroethylene, commonly called "perk."

The object of this test was to determine whether or not perk was a better cutting fluid than Freon TF.

Tool flank wear was measured on this test at 0.003 in . (0.0762 mma). Because of the slow feed rate and speed the tool falled at a diameter of approximately $0.6 \mathrm{1n}$. (15.24 mm). The reason for this cut at this speed and feed was to compare the carbide tool to the diamond tool at the same cutting parameters described in Wear Test No. 13.

Wear Test No. 13

Wear Test No. 13 was a facing cut also using perk as a cutting fluid. We used a Moore diamond tool th-44 located on a fresh tool edge. The cutting speed was 100 rpm , the feed sate $0.130 \mathrm{in} . / \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$, and the depch of cut 0.001 in. (0.0254 rum). The flank wear was measured at 0.0059 in . (0.1499 mm).

The finish on the plece was not as good as that obtained with Freon TF. This piece was parted off the end of the \log as a disk 0.25 in. (6.35 mm) thick and 1.5 in . (38.1 mm) in diameter. This disk was then studied under the scanning electron microscope, and a microanalysis of the material was performed.

A comparison of the results of the wear tests is given in Table B-2 in Appendix D.

FACING CUTS ON DISK SPECLMENS

To document more completely the attempts to achieve an optical finish on beryllium using diamond tools, we decided to supply the reçuestor of this report with samples of the actual turned surfaces. This was accomplished using a carbide parting tool to part off disks approximately 0.25 in. (6.35 mm) thick and 1.5 in . (38.1 mm) in diameter. The disks were held in the aluminum soft-jaw collet in the Hardinge spindle (Fig. 2). This facilitated the easy removal and replacement of disks to maintain parallelism and allowed us to take a series of facing cuts when necessary.

In the process of cutting these disks, two trial cuts were made using ceramic tools. These cuts proved that the ceramic tool not only wore to the extent of diamond tools, but produced an unacceptable finish in terms of optical quality. The data received from these tests can be seen in Table D-3 (Appendix D), but will not be included in the sample disks provided.

Disk A

Disk A was a brass disk face cut to show the maximum machining capability of the Hardinge Lathe on a material that can be diamond turned
to optical surfaces. Because brass can be readily diamond machined to optical quality surfaces, it was selected to give a reference as to what the machine could produce.

Disk A was placed in the collet, faced with a preliminary facing cut with a carbide tool, and Moore diamond tool $\$ \mathrm{~L}-23$ was inserted into the Aloris holder. The spindle speed for this cut was 400 rpm , the feed rate was $0.130 \mathrm{in} . / \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$, and a 0.001-in. ($0.0254-\mathrm{mm}$) depth of cut was taken. Kerosene was used as a cutting fluid.

The theoretical finish for which we set the machine spindle speed and feed rate was $0.5 \mu \mathrm{in}$. (0.0127 н) P/V. The disk was then checked on the Clevite analyzer and found to have an actual surface finish of from 2 no 5 $\mu \mathrm{in}$. (0.0508 to 0.127μ) P / V, not including flaws in the material (voids and pits). This is the best finish that we achieved on the Hardinge Lathe.

Disk B

Disk B was also a brass disk used for establishing a surface standard. The cutting parameters used were the same as those used for all the diamond turning of the beryllium disk samples. The cutting speed was 100
rpm, and the feed rate was 0.130 in. $/$ $\mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$. The theoretical finish of this feed rate and speed is $7 \mu \mathrm{in}$. (0.1778μ) P / V. The depth of cut was 0.001 in . (0.0254 mm), and again kerosene was used as the cutting fluid.

Moore diamond tool 非-23 was again used; it had not been worn on the Disk A cut. Disk B was also checked with the Clevite analyzer and had a surface finish of 5 to $8 \mu \mathrm{in}$. (0.127 to 0.203μ) P / V, excluding material flaws. The overall finish proved to be very close to the theoretical 7-uin. ($0.1778-\mu$) P/V finish.

Disk C

Disk C was a $\mathrm{HP}-21$ beryllium disk. It was cut with a 907 grade carbide tool and was included to show the surface to which all disks were cut prior to the diamond-turning cut described as a basic surface. Disk C was provided to show the type of finish normally achieved on berylilum with standari manufacturing techniques. The cutting speed was 460 rpm , and the feed rate was $0.500 \mathrm{in} . /$ $\mathrm{min}(12.7 \mathrm{~mm} / \mathrm{min})$.

This should have created a 5$\mu \mathrm{in}$. ($0.127-\mu$) P/V theoretical finish. The carbide tool radius is the same
as that of diamond tools, i.e., a $0.030-1 \mathrm{n}$. ($0.762-\mathrm{mm})$ radius. The beryllium was cut dry in this test. It is interesting to note that the flank wea from this cut on the carbide tool was 0.001 in. (0.0254 mm), considerably less than that noted on diamond tools in the subsequent tests. The finish on Disk C was checked on the Clevite analyzer and found to be from 20 to $90 \mu \mathrm{in}$. (0.508 to $2.413 \mu) P / V$. The disk flatriess was within 100 in. (0.00254 mm$)$ of the capability of this machine when compared to those cuts previously made on the brass disks. The concavity of the carbide-turned face did not result in a significant increase in depth of cut for subsequent diamond-tool cuts.

2isk D

For the Disk D test a diamond tocl manufactured by Moore ($/ \mathrm{L}-45$) was used. This tool had a $0.030-\mathrm{in}$. ($0.762-\mathrm{mm}$) nose radius. The cutting speed was 100 rpm , and the feed rate was $0.130 \mathrm{In} . / \mathrm{min}(3.302 \mathrm{~mm} / \mathrm{min})$. This was intended to give a surface finish comparable to the brass Disk B, $7 \mu \mathrm{in}$. (0.1778 mm) P/V. The depth of cut was $0.001 \mathrm{in} .(0.0254 \mathrm{~mm})$, and Freon TF was used as a cutting fluid.

By visual inspection we found a deterioration of finish with tool
wear as it goes across the cut. The finish at the center of the disk measured $5 \mu \mathrm{in}$. (0.127μ) P / V and compares well to the finish achleved on brass; howev: : as the tool progressed across the piece and neared the end of the cut, the P / V value is $95 \mu \mathrm{in}$. (2.413 ر), or approximately that achfeved with carbide tools on this same material. The flank wear on the diamond tool measured 0.0047 in. (0.1194 mm).

Disk E

This cut on a beizyllium disk was made using a diamond tool from a different manufacturing source Citco Dfamond Tool Company. It was a single-crystal diamond with a $0.030-i n$. ($0.762-\mathrm{mm}$) radius and was the same geometry as the tool used on Disk D. Orfentation of the diamond was not known.

The cutting parameters were also the same as Disk D. The cut was made and the tool was inspected for wear. The flank wear measured 0.0059 in. (0.1499 mm). The disk was also inspected on the Clevite analyzer and found to have a finish of from 10 to $95 \mu \mathrm{in}$. (0.254 to 2.413μ) P/V. This tool did not give a finish as good as that of the Moore tool, and flank wear was slightly greater. Differences in these results might be
explained by differences in diamond orienterion. It is well known that diamond has stiong directional properties.

Disk F

The Disk F cut was made using a Megadiamond that had a lapped radius of $0.015 \mathrm{in} .(0.381 \mathrm{~mm})$. Because this radius is one-half that of the single-crystal diamonds, the theoretical Einish was approximately $14 \mu \mathrm{in}$. (0.3556μ) F/V. The same cutting parameters were used once more. The flank wear on the tool at the end of the cut was measured at 0.0076 in . (0.1930 mm) .

This disk was also inspected on the clevite analyzer, and the surface profile was from 35 to $70 \mu \mathrm{in}$. (0.889 to 1.778μ) I/V. The finish was never as good as the theoretical finish, atcributed to the edge shape and smoothness of the Negadiamond insert. However, the tool did give a slightly better finish at the end of the cut than did the single-crystal diamonds. We believe this occurs because as the tool wears, new diamond particles are constantiy being introduced that in effect give a sharper edge even though the tool has worn. Single-crystal diamond does not have this advantage.

Disk G

Disk G was chemically milled 0.005 in . (0.127 mm) off each face to remove any surface impurities possibly causing major tool wear. Because of uncertainty as to the depth that etching could remove impurities, a minimum depth cut was taken to clean the surface. The back side of the disk was faced using a diamond tool until parallel to the front. The piece was then turned in the collet, and the uncut face was checked for run out and found to be less than 0.0002 in. (0.0051 mm). A cut 0.0005 in. (0.0127) deep was taken on the freshly etched surface.

Disk G exemplifies the greatest success in achieving an optical surface with diamond turning. The finish values ranged from 5 to 35 $\mu \mathrm{in}$. (0.127 to 0.889μ) P/V. This was perhaps the most encouraging information we had received to date. The flank wear on the Moore diamond tool \#E-5 was measured to be 0.0025 in. (0.0635 mm). Photomicrographs of the surface are shown in Figs. 21a and 21b.

Disk H

Disk H provided a comparison in machining a purer grade of beryllium. As can be seen in Appendix C, the history of analysis of this material showed it to have a purity of 99.8% with very small amounts of beryllium oxide and other hard impurities. The disk was parted from a bar 2 in. (50.8 mm) in diameter and approximately 12 in . (304.8 mm) long. It was faced using carbide tools and drilled to relieve the center area.

For this test the Moore diamond tool $\# \mathrm{E}-5$ used on Disk G was again used by moving to a fresh portion of the tool. Prior to the finishing cut, a diamond roughing cut was made to remove any surface impurities introduced by the carbide tool. A Moore. diamond tool $/ \mathrm{L}-23$ was used with a $0.001-1 n .(0.0254-\mathrm{mm})$ depth of cut. This tool was measured to have 0.0024 in. (0.06096 mm) flank wear. The surface of this disk was measured on the Clevite analyzer and found to have from 10 to $90 \mu \mathrm{in}$. (0.254 to 2.286μ) P/V and was nct as reflective as the chemically milled HP-21 disk.

Fig. 21. Disk G surface photomicrographs.
(a) Start of cut, 121X.

Fig. 21. Disk G surface photomicrographs. (b) End of cut, 121X.

Fig. 22. Disk h surface interference photomicrographs. (a) Start of cut, 121x.

Disk H also is an example of the problems inherent in achieving an optical finish on materials made by powder metallurgy. It was assumed that the high-purity material would cause less tool wear and result in a better surface. However, the results indicited that the absence of impurity
elements did not improve tool life or surface finish. Figures 22a and 22b show the surface at a higher magnification. Specifications and the radiograph report are in Appendix C.

The disk test data are given in tabular form as Table D-3 in Appendix 0.

Fig. 22. Disk H surface interference photomicrographs. (b) Typical surface (note grain boundaries), 121X.

Conclusions

Before making conclusions it is necessary to make a few comments regarding the test procedures.

It is Lawrence Livermore Laboratory practice to use theoretical P/V values to roughly predict surface finish. The relationship between tool nose radius and feed per revolucion determines the theoretical finish desired. The formula used is

$$
P / V=\frac{(\text { feed } / \text { revolution })^{2}}{8 \times \text { tool nose radius }}
$$

Where feed is $0.0013 \mathrm{in} . / \mathrm{rev}$, and tool nose radius is $0.030 \mathrm{in} .$, for exauple,

$$
\begin{aligned}
P / V & =\frac{(0.0013)^{2}}{8 \times 0.030}=\frac{1.69 \times 10^{-6}}{0.24} \\
& \approx 0.00000704 \approx 7 \mu \mathrm{ir} .
\end{aligned}
$$

Peak-to-valley surface findsh can be checked directly on a Clevite analyzer to determine whether the theoretical value has been achieved. Assuming a uniformly random waveform, the AA value is 0.2 times the F/V value (Fig. 23).

An air-bearing lathe was not used in these tests because of contamination problems. Because neither diamond-turning machine is presently used for cutting contaminated material, the time and cost involved in

Waveform: $h=1$	$M_{L}{ }^{*}$	$M_{M}{ }^{\prime \prime}$	As	mm	h/AA	h / mm	G/h	$G / A A$	$\mathrm{rms} / \mathrm{AA}$
	---	---	0.2	0.25	5.0	4.0	0.5	2.5	1.25
Round erested parobolic	0.523	---	0.256	0.298	3.91	3.36	0.333	1.29	1.16
Sharp crested parabolic	0.770	---	0.256	0.298	3,91	3.36	0.687	2.60	1.16
sinusaidal $\vec{G} \rightarrow$	0.678	0.612	0.318	0.353	3.14	2.83	0.5	1.57	1.11
Saw toath	0.630	0.578	0.25	0.289	4.0	3.46	0.5	2.0	1.16
Square	1.0	1.0	0.5	0.5	2.0	2.0	0.5	1.0	1.0

${ }^{\prime} h_{\text {eL }}=M_{L} h_{;} h_{O M}=M_{M} h$,

Fig. 23. Average neight values for various waveforms. This figure shows the relationship between P / V values and $A A$ and rms values.
adapting these machines for contaminated material cutting was considered excessive unless it were pstablished that addjtional accuracy wJs needed.

Freon TF was used as a coolant becacse it was found to be successful In other machinability tests performed here at Lawrence Livermore Laboratory. It was found to be as good a cutting fiuld as carbon tetrachloride, whics: was banned berause of health hazards. Freon TF dres not promote oxidation on the surface of the beryllium, as does water, and leaves the surface clean and free of contamination. It also prevented the built-up edge from forming on the diamond tool and provided considerable cooling. The pieces were chflled to the touch at the end of each cut from the rapid evaporation of the Freon.

The finish on the brass disks was nivt of the surface quality that could be obtained on the diamond-turning machine with the air-bearing spindle. However, the firish was good enough to determine whether or not diamond turning was feasible. $u t$ is noteworthy that when the slower feed rates were used to obtain a $0.5-\mu i n$. (0.127- $)$ P/V theoretical finish, the diamond tools were unable to make a cut all the way across the face of
the beryllium disk without early failure. Tool wear was in all cases the governing factor, except on the brass-disk cuts.

It is generally not good practice to use form error as an indicator of tool wear because such things as chucking influences and machine travel. errors can also affect form. By comparing the flatness of the sample disks it is possible to estimate the differences of wear rates, verify the earlier findings, and correlate flank wear. The form errors and finishes of the disks cut with Megadiamond can then be compared with those cut with a single-crystal diamond. It is seen that although the Megadiamond wears slightl, faster, it tends to cut longer because it is continuously exposing fresh diamond to the cutting surface as the tool wears. It $1 s$ also noteworchy that the carbide tool produced the least form error.

The conclusion that can be drawn based on these tests may be simply stated: diamond tools cannot presently provide optical finishes on beryllium. This must be qualified somewhat because there was marginal success for very short distances in achieving theoretical iinishes. Surface finish at the start of the cut was of ten the theoretical ralue to which the machine
had been set. However, because of tool wear, most of the finishes had sufficiently degraded by the time the end of the cut was reached to be no better (and often worse) than the finish provided by a carbide tool.

The most successful cit obtained was on Disk G, which had been chemically milled $0.005 \mathrm{in} .(0.127 \mathrm{~mm})$ off each face. We first thought that the reason for the success was that purer bery ilum resulted from etching.

However, the next test on Disk H served to disprove this theory. Disk H was of a higher purity and showed no high-density inclusions in the radiograph (Appendix C), yet caused tool wear equal to that caused by the HP-21 beryllium disks. The chemically milled beryllium seemec to smear as the tool dulled and appeared to give a better finish throughout the cut. Close cbservation of this surface under a microscope tends to verify this (Figs. 21 and 22).

Recommendations

It is recommended that, money and time permitting, the study of wear mecharics on diamond tools be continued. The satisfactory turning of an optical finish on beryllium would be only one valuable result. Other materials not previously machinable with diamond tools, i.e., steel and other ferrous materials, may be successfully finished also.

In these tests, the theory of graphitization was neither proved nor
disapproved. (See Refs. 3, 4, and 5 for discussion of this theory.) Although the tests tend to confirm the theory, the mechanics of wear are still really unknown. It would be beneficial to all forms of machining using diamond-turning techniques to know what the wear mechanics are and whether or not it is possible to somehow eliminate the cause of wear or prepare or modify the material to make diamond-turning feasible.

References

1. G. J. London, V. V. Damino, and H. Conrad, "Mifrostrain Compression of Beryllium Alloy Single Crystals Parallel to the (0001), " Trans. AIME 242, 979 (1968).
2. D. McLean, "The Plastic Behavior of Beryllium and Some Other Metals," Conference International Sur La Metallurtgie du Beryllium, Grenoble, France, 1965.
3. A. J. Pekelharing, "Built-up Edge (BUE); Is the Mechanism Understood?" CIRP 23/2 (1974).
4. R. Komanduri and M. C. Shats, "Wear of Synthetic Diamond when Grinding Ferrous Metals," Nature 255, 211 (1975).
5. C. A. Brookes, "The Friction of Diamond at Elevated Temperatures and Its Interfacial Reactions with Steel," Industrial Diamond Review, 21 (January 1971).

Appendix A. HP-21 Log Analysis

Ciloment	KAWECKI BERYICO INDUSTRIES, INC. POST OFFICE BOX 429 HAZLETON, PENNSYLVANIA 1 bzol	bate
Honeywell, Inc.		Yay 23, 1975
customer igcaion Lexington, inass.		$\begin{aligned} & \text { BRVICO Onder } \\ & 58 .-8941 \end{aligned}$
customer $12-81699$		$\begin{gathered} \text { SFEC RUMBERS } \\ \quad 5 P-21 \end{gathered}$
	QUALITY CONTROL MATERIAL TEST REPORT	

DESCRIPTION

K.E.I. unititit 57 IP
K. B. I. FIIL:... : : ish-9098

\qquad
\qquad
\qquad
\qquad
REMARXS Penetrant and radinaraphic insprction conforms to the above specification. Cone (1) rack of fi?m enclosed with shipment.

HEC.IA

Appendix B. HP-21 Radiograph and Nondestructive Test Report

Interdepartmental letferhead
Mail StationL- 415
Ext: $\quad 7601$

MEMORANDUM - September 8, 1975
Reference No. 27805
T0: Jim Bryan
FROM: Nondestructive Testing Section Materials Engineering Division

SUBJECT: Beryllium Specimen

Radiographic Inspection
No evidence of any abnormality is detected either by dye penetrant or radiographic inspection.

The sample contains an estimated 120 high density inclusions, the largest about . 23 mm in diameter.

E.M. Placas

EMP:c1w
cc: P. Landon

Appendix C. Specifications and Analysis of Pure Beryllium

CuStomet		bate
University of caldforuta	KAWECKI BERYLCO INDUSTRIES, INC. POST OFFICE BOX 429 HAZLETON, PENNSYLYANIA 1820t QUALITY CONTROL MATERIAL TEST REPORT	:lay 1, 1975
CUSTOMER LOCATion Live more, Galiformia		BERTICO ORDET NO. 53-9 341
$\begin{aligned} & \text { TMER P. © NUKESR } \\ & 8305 \end{aligned}$		

OESCRIPTION

\% El.
$\overline{\mathrm{p}} \mathrm{CSSIT}$
\qquad
\qquad
\qquad

\qquad

LAWRENCE LIVERMORE LABOIZATORY

May 30, 1975

X-IUAY FLUCOPESCENGE ANALYSIS

SAMPLLES: \quad XF-498 KBI Beryllium rods XT -1167 58 -8341

REDUESTCR: Richard Becker

ANALYSIS REQUESTED: Semi-quantitative estimate of impurities present
RESULTS: The only impurities observed are those listed below. With the onalysis procadure used, the elements with the approximate Z range of $24-42$, plus W, Ta, Pb , and $\mathrm{J}_{\text {, would }}$ be observed at the trace lovel. The rods were washed with nitric acid before the analysis to elelminate surface contaimination.

	Gr	Fe	Ni	Gu	Ni
Rod *1	420:100	195士 25	65 ± 10	<30	195士 10
Rod \#2	<50	195 525	80 ± 10	≤ 20	45
Rod \#3	<50	220 ± 25	225 ± 20	≤ 20	<5
Rod \%/4	<50	105 ± 20	85 ± 10	≤ 20	<5

MBTHOD; Energy dispersive spectrometer, W tube +Sn filter. Quantitation obtained from boron carbide standards, corrected for matrix absorption differences.

Analyat: Richard Ryon
intercepartmental rertorthead
MallStationL415

Ext: 7601

MEMORANDUM - September 10, 1975 Reference No. 27823
T0: H. W. Hauschildt
FROM: Nondestructive Testing Saction Materials Engineering Division

SUEJECT: BERYLLIUM SPECIMEN
ITEMS: 2

Radiographic Inspection
The one minimal high density inclusion noted is probably surface contamination.
The motrled appearance soen is probably a difffaction pattern resulting from enlarged grain sîze.

EMP:cIm
cc: P. Landon

Table J-1. Results of facing cuts.

Test No.	Tool material	Speed		Feed		$\begin{aligned} & \text { Dept } h_{1} \\ & \text { of } \\ & \text { cut, in. } \end{aligned}$	Cutting f1uid	Flank wear land, in.	P/V surface finish		Remarks
		rpm	sfma	in./min	1n./rev.				Theor., uin.	range, ${ }^{\text {dina }}$.	
1	Moare singlecrystal diamond (lu-44, $0.030-$ in. radius	900	350	0.320	0.0035	0.001	Dry	0.0021	0.5	2-130	Diamond tool chipped during initial contact
2	Moore singlecrystal diamond 7L-44, 0.030 in. radfus (new position)	375	145	0.130	0.0034	0.001	Dry	0.0027	0.5	5-130	Slower speed didn't help much
3	Moore singlecrystal diamond 12-42, 0.030In. radius	375	145	0.130	0.0034	0.001	Bry	0.0023	0.5	5-130	Repeatabllity of test Uith different diamond tool.
4	Carbide grade 907	750	290	0.600	0.0008	0.001	Dry	0.0016	3	20-50	Standard precision finish using carbide
5	Moore singlecrystal diamond \#E-4, 0.030- in. radius	200	39	0.130	0.0013	0.0005	Freon TF	0.0018	7	2-30	Freon TF was of significant value as a cutting fluid
6	Megadiamond, $0.007-1 n$. radiue, unlappes corner very rough	100	39	0.130	0.0013	0.001	Freon TF	0.0041	32	60-120	Poor finish probably due to nose-tadius quality

[^1]Table D-2. Results of longitudinal turning cuts.

[^2]Table D-2. Results of longitudinal turning cuts (cont.).

[^3]Table D-2. Results of longitudinal turning cuts (cont.).

[^4]Tat?e D-3. Disk test data.

Dfsk	Disk material	Tool description	$\begin{aligned} & \text { Speed, } \\ & \text { rpm } \end{aligned}$	$\begin{gathered} \text { Feed } \\ \mathrm{in} . / \mathrm{min} \end{gathered}$	Theor. P/V, uin.	Actual P/V, uin.	Part form, un.	Tool flank wear, in.	Remarks
A	Brass	Moore singlecrystal diamond \#L-23, 0.030-1n. radius	400	0.130	0.5	$\begin{aligned} & 2-25, \\ & \text { ine. } \\ & \text { matl. } \\ & \text { flaws } \end{aligned}$	$10 \mathrm{r}$ concave	None	Best finish possible on Hardinge Lathe $/ \mathrm{L}-325$
B	Brass	Moore singlecrystal diamond in. radius	100	0.130	7	$\begin{aligned} & 5-65, \\ & \text { inc. } \\ & \text { matl. } \\ & \text { flaws } \end{aligned}$	$110,$ concave	None	Results of slowest machine feed at 100 rpm for comparative $7-\mu 1 n . ~ P / V$ surface to beryllium disks
\mathcal{C}	HP-21 berylifum as rec'd	$\begin{aligned} & 907 \text { grade } \\ & \text { carbide tool, } \\ & 0.030-1 n . \\ & \text { radius } \end{aligned}$	460	0.500	5	20-95	$200,$ concave	0.001	Basic surface on which diamond cuts were made
D	HP-21 berylifum as rec'd	Moore singlecrystal diamond /h-45, 0.030 in. radius	100	0.130	7	5-95	725 concave	0.0047	Tool falled at $\sim 1 \mathrm{in}$. diameter typical of initial facing cut surfaces
E	HP-21 beryllium as rec'd	```Citco single- crystal diamond #53, 0.030-1n. radius```	100	0.130	7	10-95	875 concave	0.0059	Test to see erfect of different diamond orientation in mounting
F	HP-21 beryllium as rec'd	Megadiamond polycrystalline square insert "C, 0.015-in. radius	100	0.130	14	36-70	$620,$ concave	0.0076	Small nose radius and edge quality result in poorer initial finish
G	HP-21 beryllium chemically milled 0.005in. off each face	Moore singlecrystal diamond IE-5, 0.030-in. radius	100	0.130	7	- 35	725 concave	0.0025	Best finish; appears to have smeared at end of cut when tool got dull
H	KBI 99.8\% pure beryllium	Moore singlecrystal diamond fe-5, $0.030-$ in. radius	100	0.130	7	10-90	$780,$ concave	0.0024	Porous appearance

[^0]: *Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U,S. Energy Research \& Development Administration to the exclusion of others that may be suttable.

[^1]: $a_{s f t}=$ surface $\mathrm{ft} / \mathrm{min}$.

[^2]: $a_{s f m}=$ surface $\mathrm{fr} / \mathrm{min}$.

[^3]: ${ }^{a}$ afm $=$ surface $\mathrm{ft} / \mathrm{min}$.

[^4]: $\mathbf{a}_{\mathrm{sfra}}=$ surface $\mathrm{ft} / \mathrm{min}$.

