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ABSTRACT

Context. Thanks to the advent of the space-based missions CoRoT and NASA’s Kepler, the asteroseismology of solar-like oscillations
is now at the base of our understanding about stellar physics. The Kepler spacecraft, especially, is releasing excellent photometric
observations of more than three years length in high duty cycle, which contain a large amount of information that has not yet been
investigated.
Aims. To exploit the full potential of Kepler light curves, sophisticated and robust analysis tools are now required more than ever.
Characterizing single stars with an unprecedented level of accuracy and subsequently analyzing stellar populations in detail are
fundamental to further constrain stellar structure and evolutionary models.
Methods. We developed a new code, termed D, for Bayesian parameter estimation and model comparison by means of the
nested sampling Monte Carlo (NSMC) algorithm, an efficient and powerful method very suitable for high-dimensional and multi-
modal problems. A detailed description of the features implemented in the code is given with a focus on the novelties and differences
with respect to other existing methods based on NSMC. D is then tested on the bright F8 V star KIC 9139163, a challenging
target for peak-bagging analysis due to its large number of oscillation peaks observed, which are coupled to the blending that occurs
between ℓ = 2, 0 peaks, and the strong stellar background signal. We further strain the performance of the approach by adopting a
1147.5 days-long Kepler light curve, accounting for more than 840 000 data bins in the power spectrum of the star.
Results. The D code is able to provide robust results for the peak-bagging analysis of KIC 9139163, while preserving a
considerable computational efficiency for identifying the solution at the same time. We test the detection of different astrophysical
backgrounds in the star and provide a criterion based on the Bayesian evidence for assessing the peak significance of the detected
oscillations in detail. We present results for 59 individual oscillation frequencies, amplitudes and linewidths and provide a detailed
comparison to the existing values in the literature, from which significant deviations are found when a different background is used.
Lastly, we successfully demonstrate an innovative approach to peak bagging that exploits the capability of D to sample
multi-modal distributions, which is of great potential for possible future automatization of the analysis technique.

Key words. methods: data analysis – methods: statistical – stars: individual: KIC 9139163 – stars: solar-type – methods: numerical –
stars: oscillations

1. Introduction

The advent of the space-based photometric missions, CoRoT
(Baglin et al. 2006; Michel et al. 2008) and NASA’s Kepler
(Borucki et al. 2010; Koch et al. 2010), has revolutionized the as-
teroseismology of stars exhibiting solar-like oscillations, a type
of stellar oscillation that is stochastically excited and intrinsi-
cally damped, which was observed for the first time in the Sun
(e.g. see Bedding & Kjeldsen 2003, 2006, for a summary on
solar-like oscillations).

Since May 2009, the Kepler spacecraft in particular has been
providing an incredible amount of high-quality data, which al-
lows us to study the asteroseismic properties of a large sample
of low-mass stars (e.g. see García 2013, for a review). As a re-
sult, asteroseismology now confirms its key role in improving
our understanding of stellar structure and evolution.

⋆ Software package available at the D code website:
https://fys.kuleuven.be/ster/Software/Diamonds/https:

//fys.kuleuven.be/ster/Software/Diamonds/

In addition to the ensemble studies of stellar populations,
which became possible for the first time already from the
beginning of the Kepler mission (Chaplin et al. 2011), the need
for investigating detailed asteroseismic properties, such as fre-
quencies, lifetimes and amplitudes of individual oscillations, is
becoming even more important at present times. The increasing
observing length of the Kepler light curves is opening up possi-
bilities for extremely detailed data analysis and modeling of stars
similar to our Sun. These studies are able to yield constraints on
fundamental stellar properties, such as mass, radius, and age, the
internal structure, and composition (e.g. Christensen-Dalsgaard
2004). Detailed modeling of some bright targets observed by
Kepler have already been published (e.g. see Metcalfe et al.
2010, 2012).

However, measuring a complete set of characteristic aster-
oseismic parameters from informative power spectra that con-
tain tens of resolved oscillations, while being able to retrieve re-
sults in a reasonable amount of time in parallel, is still a very
challenging task to be accomplished. This analysis, often re-
ferred to as peak bagging (e.g. see Appourchaux 2003), involves
fitting models in high-dimensional spaces and typically deals
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with pronounced degeneracies that convey a number of possible
solutions. In addition, as peak bagging also implies the aster-
oseismic identification of the oscillation peak, the use of some
model selection criterion is often required. For this purpose,
Bayesian statistics offers a valuable choice (e.g. see Sivia &
Skilling 2006; Trotta 2008; Benomar et al. 2009; Gruberbauer
et al. 2009; Kallinger et al. 2010; Handberg & Campante 2011;
Corsaro et al. 2013).

Nevertheless, Bayesian methods are typically more compu-
tationally demanding than standard classical approaches, such as
maximum likelihood estimators (MLE; e.g. see Anderson et al.
1990; Toutain & Appourchaux 1994). Since the amount of as-
teroseismic data to be investigated is very large, adopting more
efficient Bayesian techniques can significantly reduce the time
required for performing an entire peak-bagging analysis.

In this paper, we present a new code termed D,
based on the nested sampling Monte Carlo (NSMC, Skilling
2004, hereafter SK04), a powerful and efficient method for in-
ference analyses of high-dimensional and multi-modal prob-
lems that incorporates a robust Bayesian approach (see also
Mukherjee et al. 2006; Shaw et al. 2007; Feroz & Hobson 2008;
Feroz et al. 2009; Feroz & Skilling 2013, hereafter M06, S07,
FH08, F09, FS13, respectively). We show how the code can be
used as a tool for the peak bagging of solar-like oscillations, en-
suring a considerable computational speed and efficiency in per-
forming the analysis.

2. Bayesian inference

The heart of the D code is Bayes’ theorem:

p (θ | D,M) =
L (θ | D,M) π (θ | M)

p (D | M)
, (1)

where θ = (θ1, θ2, . . . , θk) is the parameter vector, that is, the
k-dimensional vector containing the free parameters that formal-
ize a given modelM, and D is the dataset used for the inference.
L (θ | D,M) (hereafter, L (θ) for simplicity) is the likelihood
function, which represents the way we sample the data, while
π (θ | M) is the prior probability density function (PDF) that re-
flects our knowledge about the model parameters (see Sect. 4.2).
The left-hand side of Eq. (1) is the posterior PDF, which has a
key role in the parameter estimation problem as we shall discuss
more in detail in Sect. 4.5.

2.1. Model comparison

The denominator on the right-hand side of Eq. (1) is instead a
normalization factor, generally known as the Bayesian evidence
(or marginal likelihood), which is defined as

E ≡ p (D | M) =
∫

ΣM

L (θ) π (θ | M) dθ (2)

with ΣM the k-dimensional parameter space set by the prior PDF.
The Bayesian evidence E – namely, the likelihood distribution
averaged over the parameter space set by the priors – plays no
role in the parameter estimation because it does not depend upon
the free parameters by definition, but it is nevertheless central for
solving model selection problems as we shall show in Sect. 6 for
the application of the peak bagging analysis.

To perform the model comparison one considers the so-
called odds ratio, that is the ratio of the posterior probabilities
of the different models, which is defined as

Oi j ≡
p (Mi | D)
p (M j | D)

=
Ei

E j

π (Mi)
π (M j)

= Bi j

π (Mi)
π (M j)

, (3)

which comprises both the Occam’s razor – consisting in a trade-
off between fit quality of the model to the observations and the
number of free parameters involved in the inference and repre-
sented by the Bayes factor Bi j – and our prior knowledge about
the models investigated, π (M), which is given as prior odds ratio
here. When Oi j > 1 the modelMi is favored over the modelM j,
and vice versa when Oi j < 1.

In most astrophysical applications, the model selection prob-
lem is addressed by setting π (M) = const. for all models (e.g.
see Corsaro et al. 2013), which means that we assign the same
chance of being eligible a priori to all models. This assumption
neutralizes the effect of the prior odds ratio and reduces Eq. (3)
to Oi j = Bi j only, i.e. the ratio of the Bayesian evidences of the
two models. Occasionally, the prior odds ratio may not be negli-
gible and requires further consideration, see also Scott & Berger
(2010). We also refer to the so-called Jeffreys’ scale of strength
(Jeffreys 1961) for comparing the Bayes’ factor and conclude on
whether a model ought to be preferred over its competitor.

3. Nested sampling

Since Eq. (2) is a multi-dimensional integral, as the number of
dimensions increases, its evaluation becomes quickly unsolvable
both analytically and by numerical approximations. The NSMC
algorithm was first developed by SK04, having not only the aim
of an efficient evaluation of the Bayesian evidence for any di-
mensions but also the sampling of the posterior probability dis-
tribution (PPD) for parameter estimation as a straightforward
by-product.

We follow SK04 by introducing the prior mass (or prior vol-
ume) dX = π (θ | M) dθ such that

X (L∗) =
∫

L(θ)>L∗
π (θ | M) dθ, (4)

with L∗ being some fixed value of the likelihood distribution.
Clearly, 0 ≤ X ≤ 1 because π (θ | M) is a PDF. Equation (4) is
therefore the fraction of volume under the prior PDF that is con-
tained within the hard constraint L (θ) > L∗, hence the higher
the constraining value and the smaller the prior mass considered.
In other words, for a given L∗, we are considering the parame-
ter space delimited by the iso-likelihood contour L (θ∗) = L∗,
which also includes the maximum value Lmax.

Considering the inverse function L(X), i.e. L(X(L∗)) = L∗,
Eq. (2) becomes

E =
∫ 1

0
L(X)dX, (5)

reducing it to a one-dimensional integral. Assuming one has a
set of Nnest pairs {L∗

i
, Xi}, where Xi = X(L∗

i
), with Xi+1 < Xi and

L∗
i+1 > L∗i , Eq. (5) can be evaluated as

E =
Nnest−1
∑

i=0

L∗iwi (6)

with either wi = (Xi − Xi+1) for a simple rectangular rule or
wi =

1
2 (Xi−1 − Xi+1) for a trapezoidal rule (see SK04 for some

simple examples). For the sake of clarity, due to numerical rea-
sons related to the implementation of the equations above, quan-
tities such as evidence, prior mass, likelihood and prior prob-
ability density values are more conveniently considered in a
logarithmic scale.
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3.1. Drawing from the prior

What happens in practice is that we set a new likelihood con-
straint that is higher than the previous one at each iteration, and
we peel off a thin shell of prior mass defined by the new iso-
likelihood contour. This allows us to collect the evidence from
that thin shell and cumulate it to the final value given by Eq. (6).
Still following SK04, the right-hand side of Eq. (6) is computed
as follows:

1. Nlive “live” points are drawn uniformly from the original
prior PDF π (θ | M) by setting the initial prior mass X0 = 1.

2. At the first iteration of the nested sampling, i = 0, the live
point having the lowest likelihood is removed from the sam-
ple, its coordinates and its likelihood stored, the latter as the
first likelihood constrain L∗0.

3. The missing point of the live sample is then replaced by a
new one uniformly drawn from the prior PDF, having likeli-
hood higher than the first constraint L∗0.

4. The prior mass is reduced by a factor exp (−1/Nlive) accord-
ing to the standard rule defined by SK04

Xi = exp (−i/Nlive) . (7)

The entire process from point 2 to point 4 is repeated in the sub-
sequent iterations until some stopping criterion is met. While the
computation of the evidence is simple, the NSMC has the chal-
lenging drawback of requiring drawings from the prior with the
hard constraint of the likelihood. This process becomes much
more computationally demanding in the case of multi-modal
PPDs, high-dimensional problems, and pronounced curving de-
generacies. For these reasons, the drawing problem has been
widely investigated and different solutions have been proposed,
such as single ellipsoidal sampling (M06); clustered and simulta-
neous ellipsoidal sampling and improved versions with either k-
means, X-means (S07, FH08), or an expectation-maximization
algorithm (MN code, by F09); Metropolis nested sam-
pling (Sivia & Skilling 2006, FH08), artificial neural networks
(Graff et al. 2012), and more recently Galilean Monte Carlo
(GMC, by FS13).

In Sect. 4.1, we describe the details of another version of the
simultaneous ellipsoidal sampling that adopts X-means, which
was adopted in this work.

4. The DIAMONDS code

The D (high-DImensional And multi-MOdal NesteD
Sampling) code presented in this work was developed in C++11
and structured in classes to be as much flexible and configurable
as possible. The working scheme from a main function is as
follows:

1. reading an input dataset;
2. setting up model, likelihood, and priors to be used in the

Bayesian inference;
3. setting up a drawing algorithm;
4. configuring and starting the nested sampling;
5. computation and printing of the results.

The code can be used for any application involving Bayesian pa-
rameter estimation and/or model selection in general. Users can
supply new models, likelihood functions, and prior PDFs when-
ever needed by taking advantage of C++ class polymorphism and
inheritance. Any new model, likelihood, and prior PDFs can be
defined and implemented upon a basic template.

In addition, it is possible to feed the basic nested sampler
with drawing methods based on different clustering algorithms
(see section below).

4.1. Simultaneous ellipsoidal sampling

Simultaneous ellipsoidal sampling (SES) is a drawing algorithm
based on a preliminary clustering of the set of live points at
a given iteration of the nested sampling. The clustering is ob-
tained in our case by using X-means (Pelleg & Moore 2000)
with a number of clusters Nclust ranging from a minimum to a
maximum value allowed. A good choice for most applications
is given by 1 ≤ Nclust ≤ 6. The SES was developed by S07
and FH08, based on the first idea by M06, for gaining efficiency
when dealing with multi-modal posteriors and pronounced curv-
ing degeneracies.

The SES algorithm proceeds as follows: once a number of
clusters has been identified – i.e. the set of live points has been
partitioned into subsets – ellipsoidal bounds for each of the clus-
ters are constructed, and a new point is drawn from the inside
of one of the ellipsoids exploiting a fast and exact method (see
S07 for more details). Ellipsoids are intended to approximate the
iso-likelihood contours, thus reducing the effective prior volume
where the drawing has to take place. This considerably improves
the speed of the NSMC because sampling from uninteresting re-
gions of the PPD is in general avoided. This algorithm is in prin-
ciple repeated at every iteration of the nested sampling (see also
FH08).

Below, we present the two main changes applied in the SES
algorithm from the version described in Method 1 of FH08, the
closest in spirit to the one adopted here. These changes were
done to improve speed and efficiency of the drawing process.

The first difference is that we introduced two additional con-
figuring parameters: (i) the number of nested iterations before
executing the first clustering of the live points, Minit and (ii) the
number of nested iterations with the same clustering, Msame,
which is the number of iterations that do not involve any cluster-
ing of the live points. It is not required and conversely much
more computationally expensive to perform the clustering at
each iteration of the nested sampling. Point (i) addresses the
problem of having X-means identifying one cluster during the
early stages of the nesting process, where we do not yet expect
any clustering of the live points to happen; and (ii) allows us to
speed up the computation by a factor Msame, which is able to
significantly reduce the run time of the NSMC, since X-means
represents the bottleneck of this approach.

While the two additional parameters Minit and Msame com-
plicate the configuration of the code to some extent, their tun-
ing is not tricky because they do not critically affect the effi-
ciency of the sampling. Intuitively, the more live points are being
used, the more iterations can be treated with the same clustering.
In general, adopting Minit ∼Nlive and Msame ∼ 0.02−0.05Minit
have provided a valuable choice for all the demos presented in
Sect. 4.6 and for the peak bagging analysis discussed in Sect. 6.
Ellipsoids are recomputed at each iteration because this process
is not significantly influencing the speed of the NSMC.

The second relevant change applied to the original SES al-
gorithm consists in another additional input parameter, Mattempts,
which represents the maximum number of attempts in drawing
from the prior with the hard constraint of the likelihood, and
it is typically set to 104. On one hand, this parameter allows
for a safer control of the drawing process, which can therefore
be stopped if the number of attempts exceeds the given limit
(meaning that the drawing is not efficient anymore). This avoids
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Fig. 1. Examples of 1000 points (red dots) drawn according to different prior distributions from a three-dimensional ellipsoid centered at coordinate
(2.0, 2.0, 2.0) in the parameter space defined by θ1, θ2, θ3 ∈ [0.5, 3.5]. Left panel: case of a uniform prior along each coordinate, U1(0.5, 3.5) ·
U2(0.5, 3.5) ·U3(0.5, 3.5). The points uniformly fill the entire volume of the ellipsoid. Middle panel: case of a normal prior along each coordinate,
N1(2.0, 0.3) · N2(2.0, 0.6) · N3(2.0, 0.3). The points are more concentrated toward the center of the ellipsoid while having a doubled spread along
the direction of θ2. Right panel: case of normal priors along the two coordinates θ1, θ3 and a uniform prior along the coordinate θ2, N1(2, 0.4) ·
U2(0.5, 3.5) ·N3(2, 0.4). The points are now more concentrated along the coordinate θ2 since the spread only occurs over the orthogonal directions.

situations in which the sampling gets stuck in a flat region of
the PPD, resulting in a prohibiting large number of drawing at-
tempts. On the other hand, increasing Mattempts up to values, such
as 105, can sometimes be useful to force more nested iterations
and achieve more precision on the final value of the evidence.
However, the larger the Mattempts, the slower the computation be-
comes toward the final iterations of the NSMC. It is important
to note that the parameter Mattempts directly impacts the number
of total likelihood computations done during the process. This
is because every attempt done involves the drawing of a new
point according to the prior PDF and the subsequent assessing
of the likelihood constraint. As a result, the final number of sam-
pling points only accounts for those attempts that were success-
ful (hence useful according to the NSMC working criterion) and
will always be smaller than the total number of likelihood eval-
uations that were practically done by the code.

Lastly, the SES implemented in D incorporates the
dynamical enlargement of the ellipsoids as introduced by FH08,
that is, for a given ith iteration and the kth ellipsoid

fi,k = f0Xαi

√

Nlive

nk

, (8)

where nk is the number of live points falling in the kth ellipsoid,
while f0 ≥ 0 and 0 ≤ α ≤ 1 are the two additional configuring
parameters, which represent the initial enlargement fraction and
the shrinking rate of the ellipsoids, respectively.

4.2. Likelihood and prior distributions

The code includes different likelihood functions, which are all
implemented as a log-likelihood, Λ (θ) ≡ lnL (θ). The applica-
tion exposed in this paper includes the exponential likelihood,
which is required for describing Fourier power spectra as intro-
duced by Duvall & Harvey (1986); Anderson et al. (1990) for
data distributed according to a χ2 with two degrees of freedom.
The log-likelihood reads

Λ (θ) = −
Ndata
∑

i=1

[

ln Ei (θ) +
Oi

Ei (θ)

]

, (9)

where the functional form for Ei (θ) is described in Sects. 6.2
and 6.3.

The SES algorithm does not put any particular restriction on
the prior PDF that can be used when drawing a new point from
an ellipsoid. Prior PDFs, as introduced in Eq. (1), allow us to
draw a point more frequently from those regions inside the el-
lipsoid having higher prior probability density. This clearly en-
compasses our knowledge about the inferred parameters, and it
is one of the key points of the Bayesian approach.

Differently from the implementation adopted by F09 in
MN, when using D prior distributions can be
defined by the user by means of a separate module that imple-
ments a general template for any proper, or normalizable, prior.

The present code package comes with three different prior
PDFs with each of them requiring input hyper parameters – i.e.
the parameters defining the shape of the prior distribution – for
their set-up. In the following, we briefly introduce them as de-
fined for a single free parameter θ j (hence in one dimension of
the parameter space):

– the uniform prior U j (hl, hu), where hl and hu are the hyper
parameters defining lower and upper bounds, respectively,
for the free parameter for which the prior is defined;

– the normal prior N j (hµ, hσ) with hµ and hσ being the hyper
parameters mean and standard deviation of the normal dis-
tribution for the free parameter considered, respectively;

– the super-Gaussian prior S j (hc, hw, hσ), consisting a plateau
(flat prior) with symmetric Gaussian tails, as defined by the
three hyper parameters hc as the center of the plateau region,
hw the width of the plateau, and hσ the standard deviation of
the Gaussian tails.

Each type of prior PDF can also be defined for set of free pa-
rameters, requiring an input vector of hyper parameters in which
each element corresponds to one different dimension. The over-
all k-dimensional prior PDF is simply given as the product of the
k prior PDFs defined for each coordinate.

Three examples for demonstrating the drawing process from
a single ellipsoid in a three-dimensional parameter space accord-
ing to different combinations of the prior PDFs U j (hl, hu) and
N j (hµ, hσ) are shown in Fig. 1 with 1000 points drawn in each
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Fig. 2. Examples of 20 000 points drawn from the 3D ellipsoid used in Fig. 1 but now according to the super-Gaussian priors S1(2.0, 0.5, 0.2) ·
S2(2.0, 1.0, 0.2)·S3(2.0, 0.5, 0.1). Panels from left to right show the histogram densities of the number of drawn points per dimension. By definition,
the histogram corresponding to the coordinate θ2 has a plateau with twice the width of the plateau of the other two coordinates, while we see the
same spread in the tails of the histograms for θ1 and θ2 and a smaller one for that of θ3. All the distributions are also centered in the given input
center position.

demo. In the first plot, the drawn points are uniformly distributed
within the entire volume of the ellipsoid because a uniform prior
was adopted for each coordinate. In the second plot, the points
are concentrated around the center of the ellipsoid, occurring
in the position (2, 2, 2), and are spread over the three directions
since a normal prior was used for each coordinate. In the third
plot, the samples are more concentrated along the direction of θ2
because of a uniform prior, while they are spread over the other
two directions because two normal priors were used.

For demonstrating the super-Gaussian prior PDF
S j (hc, hw, hσ) instead, we show the histograms of the cu-
mulated counts in each of the three directions, as seen in Fig. 2.
For this demo, we used the same ellipsoid of Fig. 1 but drew
20 000 points from it to provide a more clear result in the
histogram density. More details are mentioned in the figure
caption.

The drawing from the ellipsoids is by default uniform, hence
uniform priors ensure the most efficient drawing process. When
using normal and/or super-Gaussian priors instead, it is recom-
mended to put reasonably large standard deviations if one is not
appreciably confident about the possible outcome of the free pa-
rameters involved in the inference. Moreover, drawing a new
point using super-Gaussian priors is more computationally ex-
pensive than with normal priors. Especially in higher dimen-
sions, it is often the slowest drawing among the three prior types
considered.

4.3. Stopping criterion and total evidence

For the stopping criterion implemented in D, we con-
sidered the so-called mean live evidence (Keeton 2011, hereafter
K11), defined at a given ith nested iteration as

Elive
i = L̄(i)

(

Nlive

Nlive + 1

)i

, (10)

where the product of the average likelihood estimated from the
existing set of live points, L̄(i), by the remaining prior mass is ex-
pressed here as a simple power law of the number of live points
because it is averaged over all possible realizations of prior mass
distribution (see K11 for more details).

Once the nested sampling is terminated, we compute the total
evidence as Etot = E + Elive, where Elive is the remaining mean
live evidence at the last iteration. This correction ensures that
we have a more accurate estimate of the real evidence even in
the case the algorithm is stopped prematurely. For achieving the
same level of accuracy on the final evidence, fewer iterations

might be required than if E only is considered, thus representing
an additional advantage for the computation.

The final uncertainty on lnEtot can still be taken as the clas-
sical σlnE =

√
H/Nlive, which is suggested by SK04, where H is

the final information gain (see Sivia & Skilling 2006, for more
details) since the difference with respect to the total statistical
uncertainty derived by K11 is negligible. In the remainder part
of the paper, we shall refer to Etot only and adopt the symbol E
for simplicity.

At this stage, it is important to introduce a change re-
lated to the stopping criterion of the NSMC implemented in
D with respect to other existing codes using NSMC.
As shown in the statistical work by K11, the evolving ratio
δi ≡ Elive

i
/Ei between the mean live evidence and the cumu-

lated evidence at the ith iteration can be used as a criterion for
terminating the NSMC. A ratio δfinal ≡ Elive/E < 1 is normally
enough for obtaining both an accurate estimate of the total evi-
dence and a good sampling of the PPD. This condition turns out
to correspond reasonably well to that provided by SK04 by us-
ing the information theory; the latter gives an optimal number
of iterations Nopt = HNlive +

√
kNlive, where k is once again the

number of dimensions in the problem and H the final informa-
tion gain. The optimal number of iterations suggested by SK04
is also computed at the end of the process so that it can be used
as a reference for the total number of iterations defined by the
new stopping condition.

When a dense sampling of the modes in the PPD ought to be
preferred, especially for multi-modal distributions, the stopping
threshold can be lowered to a value δfinal < 0.1. Conversely, the
threshold can also be set to higher values (>10) in case we have
no much knowledge about the inferred parameters and, there-
fore, intend to test the validity of the prior boundaries. For the
application of D presented in Sect. 6, we fix this pa-
rameter to δfinal = 0.01.

4.4. Reduction of the live points

As suggested by F09, reducing the number of live points as the
NSMC process evolves may help in speeding up the whole com-
putation, since fewer live points also imply fewer nested iter-
ations for the algorithm to converge. This reduction could be
needed especially in highly multi-modal problems, where a large
number of live points is required at the beginning to ensure all
the modes are properly detected. Nonetheless, the reduction of
the prior mass with an evolving number of live points cannot
be done with the standard rule given by Eq. (7), which assumes
Nlive to be constant throughout the process, and the new approach
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requires some thoughts. This case was neither treated by SK04
for the basic algorithm nor explicitly discussed by F09, who pro-
posed an empirical rule for reducing the live points based on the
largest evidence contribution estimable at each iteration.

We explain below how we obtained the reduction rule for the
prior mass with an evolving number of live points. We prove the
result for one step only, as the principle can easily be general-
ized to an arbitrary number of reductions. Suppose we start with
Nlive = N0 live points at the first nested iteration, i = 0. Applying
Eq. (7), the remaining prior mass at the first iteration is given by

X1,N0 = X0 exp (−1/N0) (11)

with the subscript N0 indicating that it is based on N0 live points
(X0 = 1 independently of the number of live points, hence no
subscript is used). At the second iteration, i = 1, we reduce the
number of live points to Nlive = N1 and once again reduce the
prior mass. According to the standard reduction rule adopted for
the case of N0 live points, we simply have for N1 that

X2,N1 = X1,N1 exp (−1/N1) , (12)

where X1,N1 is the remaining prior mass from the first iteration
given the number of live points is N1. Since we do not know X1,N1

a priori, we need to derive its relation to the old X1,N0 , the latter
being known already because it was computed at the previous
iteration, i = 0. Without losing in generality, we can write

X1,N1 = β
(N0,N1)
1 X1,N0 , (13)

where the factor β(N0,N1)
1 depends on both the previous and the

new number of live points. By replacing the reduction rule for
deriving X1 from X0, one obtains

β
(N0,N1)
1 = exp

(

1
N0
− 1

N1

)

, (14)

which clearly shows that if N1 < N0 then β(N0,N1)
1 < 1, thus result-

ing in a new remaining prior mass that is lower than the old one,
as one would expect intuitively by adopting fewer live points.
Iterating the result yields the generalized reduction rule; that is

Xi+1,Ni
= β

(Ni−1,Ni)
i

Xi,Ni−1 exp (−1/Ni) , (15)

where

β
(Ni−1,Ni)
i

= exp

(

i

Ni−1
− i

Ni

)

, (16)

i is the iteration in which the prior mass is updated and Ni is the
number of live points to be used for the next iteration. Clearly,
Eq. (15) reduces to the standard reduction rule expressed by
Eq. (7) for Ni = Ni−1 = Nlive.

Equations (15) and (16) are implemented in the code, and
two input parameters are therefore required: the initial number of
live points, N0, and the minimum number of live points allowed
in the computation, Nmin. In case the two values coincide, the
reduction of the live points is turned off automatically.

For D, in addition to the empirical rule proposed by
F09 we also implemented another one that allows for a different
behavior of the reduction process. As shown from our testing
phase the function adopted by F09 appears to reduce the num-
ber of live points only at the beginning of the computation. It
could be convenient instead to start reducing live points at a later
stage, especially if the modes in the PPD are difficult to detect.

This choice is also supported by the slowing down of the com-
putation when approaching the termination condition described
in Sect. 4.3. This happens because it becomes more difficult to
draw a new point that satisfies the likelihood constraint as we
further rise up to the top of the likelihood distribution. Hence,
the whole process would benefit more from removing live points
at a later stage than in an early one since it ensures all the modes
have been sampled efficiently in the previous steps.

Following the notation used above, our new relation for re-
ducing live points can be expressed as

Ni = Ni−1 −
(

tol
δi/δfinal

)γ

, (17)

where the final and evolving ratios of the live to the cumulated
evidence introduced in Sect. 4.3 are adopted. The configuring
parameter tol, which is the tolerance on the ratio δi/δfinal, deter-
mines the initiating nested iteration for the reduction process.
The lower the tolerance, the later the stage at which the live
points start to be reduced. The minimum value allowed is tol = 1,
meaning that the reduction is not taking place. The exponent γ
instead controls the speed of the reduction process. The default
value is γ = 1 for a linear reduction. For γ > 1 the reduction is
super-linear, hence faster, while it is sub-linear for 0 ≤ γ < 1,
hence slower. In the case of γ = 0, Eq. (17) reduces to the simple
form Ni = Ni−1 − 1, which implies that the sample of live points
is constantly reduced by one at each iteration.

Some caution when using the reduction process is neverthe-
less needed. In this case, properties such as prior mass, density of
the sampling, and evidence collection, change considerably dur-
ing the computation. Deviations from the standard method in-
troduced by SK04 may hamper the goodness of the final result.
This happens mostly when too many live points are removed
over very few iterations. This bad condition can generally be
caused by a strong reduction rate. In the testing phase, we could
note some side effects of a bad reduction process, which we list
below:

1. The final sampling of the PPD may not correctly resemble
the density of the probability function. This happens because
when live points are removed, ellipsoids undergo an addi-
tional enlargement according to Eq. (8), hence causing the
sampling to occur in a region of the parameter space that is
larger than expected.

2. The additional enlargement of the ellipsoids caused by hav-
ing fewer live points also implies a loss in efficiency for the
drawing algorithm.

3. The evidence collection is affected by additional (system-
atic) uncertainties, since reducing the live points decreases
Nnest, hence the number of contributing terms used in Eq. (6).
This effect produces a significant underestimation of the final
evidence.

Therefore, we recommend using the reduction of the live points
with care and possibly only when it is really needed to speed
up the inference analysis. We also advise not to use the reduc-
tion for computing evidences. Some examples on how to apply
Eq. (17) for speeding up the computation are shown in Fig. 3
(see Sect. 4.6 for more discussion). We refer to Sect. 4.7 for a
more suitable way of decreasing the computational time without
directly affecting the number of live points during the process
for both the models investigated.

A71, page 6 of 22



E. Corsaro and J. De Ridder: D: a new Bayesian nested sampling tool

Fig. 3. Shaded surfaces show Himmelblau’s function in the range θ1, θ2 ∈ [−5, 5] (left), Rosenbrock’s function in the range θ1 ∈ [−3, 4] and
θ2 ∈ [−2, 10] (middle left), Eggbox function in the range θ1, θ2 ∈ [0, 10π] (middle right) and Rastrigin’s function in the range θ1, θ2 ∈ [−5.12, 5.12]
(right). Uniform priors over each coordinate were used for all the demos with stopping thresholds δfinal = 0.05, 0.05, 0.5, and 0.05, respectively.
Upper panels: yellow dots represent (from left to right) the resulting Nnest = 8485, 8558, 8207, 10648 samples obtained with the code presented
in Sect. 4 by using Nlive = 1000 points for each demo, as presented by FS13. Lower panels: green dots represent (from left to right) the resulting
Nnest = 5286, 5151, 5874, 6174 samples derived by additionally applying the reduction law given by Eq. (17) with tol = 100, γ = 0.4, N0 = 1000
and Nmin = 400 live points.

4.5. Parameter estimation

Parameter estimation is addressed by a separate module of
D. The module uses the sample of nested points, which
are the points found to have the lowest likelihood at each itera-
tion and collected during the computation. The sample includes
the k coordinates of each nested point, and the corresponding
likelihood value L∗

i
and weight wi, as defined in Sect. 3 for the

case of the trapezoidal rule.
Posterior probability values (not densities) for each sampled

point are calculated by Pi = L∗iwi/E, as described by SK04.
Since each free parameter θ j of the k-dimensional parameter
space ΣM has Nnest sampled values, one can marginalize the pos-
terior probability – i.e. integrate the posterior probability over
the remainder (k − 1) coordinates – by simply sorting the Nnest
sampled probabilities according to the ascending order of sam-
pled values of the free parameter we want to estimate. Mean,
median, and modal values of each free parameter θ j, and the
second moment (variance) of the marginalized distribution are
then computed.

Upper and lower credible limits for the shortest Bayesian
credible intervals (CI, e.g. see Sivia & Skilling 2006 for a defi-
nition) are also calculated and provided as an output with all the
parameter estimation values discussed above. For the computa-
tion of the CI, a refined marginal probability distribution (MPD)
is obtained for each free parameter θ j by rebinning its Nnest sam-
pled values according to the Scott’s normal rule and by adopting
the averaged shifted histogram (ASH, Härdle 2004). The ASH
is then interpolated by a grid that is ten times finer by means of
a cubic spline interpolation. An example of this result is shown
in Fig. 6 for the analysis presented in Sect. 6.2. The final inter-
polated ASH of the marginal distribution can also be stored in
output ASCII files for possible usage after the computation.

4.6. Demos and comparison with MultiNest

For demonstrating the capability of D to sample
challenging likelihood surfaces, we tested it with the four

two-dimensional examples used by FS13 with the GMC algo-
rithm applied to MN. These two-dimensional surfaces
prove to be difficult to explore with standard Markov chain
Monte Carlo (MCMC) methods and they are:

– the Himmelblau’s function

f (θ1, θ2) =
(

θ21 + θ2 − 11
)2
+

(

θ1 + θ
2
2 − 7

)2
, (18)

which has four local minima at (3.0, 2.0), (−2.81, 3.13),
(−3.78,−3.28), and (3.58,−1.85);

– the Rosenbrock’s function

f (θ1, θ2) = (1 − θ1)2 + 100
(

θ2 − θ21
)2
, (19)

having a global minimum at (1, 1) hidden in a pronounced
thin curving degeneracy;

– the Eggbox function

f (θ1, θ2) = −
[

2 + cos
(

θ1

2

)

cos
(

θ2

2

)]5

, (20)

which presents identical local minima all equally spaced
along each coordinate;

– the Rastrigin’s function

f (θ1, θ2) = 20 + θ21 + θ
2
2 − 10 [cos (2πθ1) − cos (2πθ2)] , (21)

having a global minimum at (0, 0) hidden among a large
number of local minima.

Following FS13, we adopted a log-likelihood lnL (θ1, θ2) =
− f (θ1, θ2) with θ1 and θ2 the coordinates identifying the two-
dimensional parameter space. The results of the tests are shown
in Fig. 3, where a fixed number of Nlive = 1000 points and uni-
form priors over each coordinate were adopted for all the demos
for a more reliable comparison. We used uniform priors in the
ranges specified in the caption of the figure. The code required
Nnest < 104 samples for each demo to identify all the global max-
ima of the distributions. The number of iterations was about ten
times fewer than in the case presented by FS13 for all the demos.

A71, page 7 of 22

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201424181&pdf_id=3


A&A 571, A71 (2014)

As already announced in Sect. 4.4, we also tested the same
distributions by additionally applying a reduction of the live
points according to Eq. (17). The samples, as visible in the green
dots of Fig. 3, lower panels, resemble well the shape of the distri-
butions and also allow for a correct identification of all the global
maxima. In this case, the configuration adopted (see the caption
of the figure for more details) yielded a final number of nested it-
erations reduced by up to 40%, resulting in a significant increase
of speed in the computation. The evidence collected led to fi-
nal values reduced by about 48% with respect to that obtained
without the reduction process for all the demos considered.

4.7. Parallelization

Based on the suggestion by K11 and references therein, one
could improve the goodness of the results by unifying differ-
ent and independent runs having N1,N2, etc. live points with
each, hence obtaining a joint run equivalent to a single one hav-
ing Ntot = N1 + N2+, etc. live points. The computation can be
made parallel by running the split processes in several CPUs,
hence merging the results in the end. The merging for the like-
lihood can be done by simply sorting the likelihood values from
each independent run into a global ascending order. The merg-
ing of the parameters is done according to the sorting order of
the corresponding likelihood values. For the prior mass, an easy
re-computation based on Eq. (7) with a number of live points
given by Ntot is required instead. The final evidence of the joint
process can therefore be recomputed according to Eq. (6).

This simple parallelization allows us in principle to gain the
same level of accuracy on the final result of that obtained by a
single run with Ntot live points, while significantly reducing the
run tine of the process at the same time. Another advantage of
this parallelization is that the sampling of the PPD can be ren-
dered much finer than that of a single process, even in a shorter
computational time. As a side note, one should keep in mind
that there the number of live points that can be used in each of
the split processes has a lower limit, which is directly related to
the complexity of the PPD and the number of dimensions for the
given problem.

5. Observations and data

The Kepler satellite has monitored thousands of pulsating stars
among the 150 000 observed in its field of view, exploiting a
very high duty cycle and sampling time in two different modes,
short cadence (SC, Gilliland et al. 2010), and long cadence (LC,
Jenkins et al. 2010).

Among the initial ∼550 stars showing solar-like oscillations
and observed in SC during the first year of operation with Kepler,
61 of them were then selected for an extended observing time be-
cause they are bright and have higher signal-to-noise ratio (S/N)
than other stars. The 61 final targets comprise G-type and F-type
main-sequence (MS) and sub-giant stars, which were investi-
gated by Appourchaux et al. (2012, hereafter A12), who mea-
sured their single p-mode frequencies.

For the purpose of our paper, we chose KIC 9139163
(HIP 92962), known also as Punto, one F-type MS star of the
final sample. The selected star was studied in further detail
in a subsequent analysis concerning oscillation linewidths and
heights of a sub-sample of 23 targets, done by (Appourchaux
et al. 2014, hereafter A14). In addition, Campante et al. (2014)
also investigated the star concerning the effect of stellar ac-
tivity on the amplitudes of solar-like oscillations. The object

KIC 9139163 shows the largest number of individual oscilla-
tions (>50) among all the stars of the final sample. This pecu-
liarity makes the star even more suitable for a high-dimensional
and multi-modal problem.

A revised H parallax for KIC 9139163, π = 9.49±
0.83 mas is provided by van Leeuwen (2007) and can be use-
ful for accurately derive the stellar luminosity. We refer to
Bruntt et al. (2012) for an estimate of the temperature from
spectroscopy, Teff = 6375 ± 70 K, which is largely compat-
ible within the error bars to the value Teff = 6405 ± 44 K
derived by Pinsonneault et al. (2012) from SDSS photometry.
Furthermore, the rotation and activity level of the star have been
studied by Karoff et al. (2013b), who found a rotation period
Prot = 6.5 ± 0.2 days by means of a periodogram analysis of the
Kepler light curve, combined to asteroseismic and spectroscopic
measurements.

Referring to the studies by A12 and A14, oscillation frequen-
cies, linewidths, and heights already derived for several oscilla-
tions of the given star allow for a more fruitful comparison of the
results presented in Sect. 6.6. We now exploit a more recent and
larger dataset available for this star, which includes the Kepler
observing quarters (Q) from 5 to 17, namely 1147.5 days of ob-
servations. These data were stitched together and corrected from
instrumental instabilities and drifts following the procedures ex-
plained in García et al. (2011). Moreover, we have high-pass
filtered the final light curve with triangular smoothing with a
cut-off frequency at ∼ 4 days. For minimizing the impact of the
quasi-regular gaps due to the angular momentum desaturation
of the Kepler spacecraft, we have interpolated the gaps of less
than 1 h using a third order polynomial interpolation algorithm
(García et al. 2014).

The new light curve used in this work is about 14 months
longer than the one adopted by A14, who used Q5-Q12 light
curves, hence ensuring higher accuracy and precision that al-
lows for further constraint of the free parameters of the mod-
els investigated. For the inference problem presented in Sect. 6,
we use a power spectral density (PSD) computed by means of
a Lomb-Scargle algorithm (Scargle 1982) applied to the Kepler
light curve. The new PSD has a frequency resolution of 0.01 µHz
and contains a total of more than 840 000 bins. This remark-
able amount of data points makes the peak bagging analysis even
more challenging in terms of computational effort.

6. Application to peak bagging analysis

6.1. Introduction to solar-like oscillations

Before describing the details of the peak bagging analysis, it is
useful to briefly introduce the physical quantities that we inves-
tigate. For a detailed description of the theory of solar-like os-
cillations, we refer the reader to Christensen-Dalsgaard (2004)
for more insightful discussions. To avoid any ambiguity in ter-
minology from now on, we shall refer to the individual oscilla-
tion mode as “peak”, while using the term “mode” to indicate the
modal value of the outcome coming from the Bayesian inference
analysis.

According to the asymptotic theory of solar-like oscillations
(e.g. Tassoul 1980), acoustic standing waves (also known as
pressure modes or simply p modes) with a low angular degree ℓ,
the number of nodal lines on the stellar surface, and high radial
order n, the number of nodes along the radial direction of the star,
show a characteristic regular pattern in frequency, expressed by
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Fig. 4. Échelle power spectrum of KIC 9139163 on a colored scale for
∆ν = 81.4 µHz and smoothed by 1 µHz. On the left, we find the ℓ =
1 ridge of oscillation, while we have those corresponding to ℓ = 2, 0
on the right. The plot makes the presence of a curvature of the ridges
clear along the entire frequency range and the strong blending between
quadrupole and radial peaks.

the asymptotic relation approximated at the first order,

νℓ,n ≃ ∆ν
(

n +
ℓ

2
+ ǫ

)

− δν0ℓ, (22)

where ∆ν is the main characteristic frequency spacing of p
modes having different radial order, known as the large fre-
quency separation, which scales roughly as the square root of
the mean stellar density (Ulrich 1986). The phase shift ǫ is in-
stead sensitive to the physics of the near-surface layers of the star
(Christensen-Dalsgaard & Perez Hernandez 1992). The small
frequency spacing δ0ℓ is related to the sound speed gradient in
the stellar core, and it is defined for ℓ = 1, 2 as

δν01 ≡
1
2

(

νn,0 + νn+1,0
) − νn,1, (23)

δν02 ≡ νn,0 − νn−1,2, (24)

respectively.
By plotting Eq. (22) as a function of the frequency mod-

ulo ∆ν, we obtain an échelle diagram where the oscillations
having different angular degree align vertically to form separate
ridges. In practice, it often happens that the ridges are curved,
since the observed frequencies may depart from the first order
approximation given by Eq. (22). Figure 4 shows an example
of such a curvature effect with the échelle power spectrum of
KIC 9139163 in a color-coded scale, computed in the same way
as by Corsaro et al. (2012). For this plot, the PSD was nor-
malized by the background level derived in Sect. 6.2, hence
smoothed by a boxcar filter having width 1 µHz. Oscillation
ridges for dipole peaks (ℓ = 1, left), quadrupole, and radial peaks
(ℓ = 2, 0, right) are visible over a frequency range of more than
1500 µHz. A large frequency separation ∆ν = 81.4 µHz, as de-
rived by A12, was adopted.

6.2. Background modeling

A preliminary step for performing the peak bagging analysis
consists in estimating the background level in the star’s PSD.
Although fitting a background is a relatively low-dimensional

problem, there is no universal model that can be used for all the
stars as it closely depends on how many physical phenomena are
involved, namely granulation (Harvey 1985; Aigrain et al. 2004;
Michel et al. 2009), and the more recently investigated bright
spots activity (faculae) (Chaplin et al. 2010; Karoff et al. 2010;
Karoff 2012; Karoff et al. 2013a). As a consequence (since the
asteroseismic analysis of the oscillations is sensitive to the stellar
background components) assuming different models may sensi-
bly change the final results (see the discussion by A14 concern-
ing the impact of the background on the oscillation characteristic
parameters).

For these reasons, it is essential to properly address this part
of the analysis. With Bayesian statistics, this is achieved by
exploiting the Bayesian evidence computed by D for
testing different hypotheses through Eq. (3), as discussed in
Sect. 2 already.

We therefore considered a general model based on those pre-
sented by Mathur et al. (2011) and by Karoff et al. (2013a),
which can be expressed as

P (ν) = W + R (ν) [B (ν) +G (ν)] , (25)

where W is a constant noise (mainly photon noise), R (ν) is
the response function that considers the sampling rate of the
observations,

R (ν) = sinc2

(

πν

2νNyq

)

, (26)

where νNyq = 8496.36 µHz is the Nyquist frequency for Kepler
SC data in our case. The background components are given by

B (ν) = aν−b +

h
∑

i=1

4τiσ
2
i

1 + (2πντi)
ci
, (27)

and the power excess is described with

G (ν) = Hosc exp

[

− (ν − νmax)2

2σ2
env

]

· (28)

The first term on the right-hand side of Eq. (27) is a power law
that models slow variations caused by stellar activity, while the
second term is a summation of h (either 1 or 2) as the Harvey-
like profiles (Harvey 1985), τi being the characteristic timescale,
σi the amplitude of the signature, and ci the corresponding ex-
ponent related to the decay time of the physical process involved
(Harvey et al. 1993; Karoff 2012; Karoff et al. 2013a). We note
that, in this formulation of the Harvey-like profiles the ampli-
tudes ∗∗σi are not the intrinsic amplitudes of the signatures,
which can in turn be derived by multiplying each ∗∗σi for a nor-
malization factor as described by Karoff et al. (2013a), Sect. 3.2.
The Gaussian component given by Eq. (28) models the power
excess caused by solar-like oscillations with Hosc as the height
of the oscillation envelope, and νmax and σenv as the correspond-
ing frequency of maximum power and width, respectively. The
component modeling the oscillation envelope is replaced after-
wards by the global peak bagging model, as seen in Sect. 6.3, to
fit the individual oscillation peaks.

As already introduced in Sect. 4.2, the log-likelihood to be
adopted for the inference analysis that involves a PSD is the ex-
ponential log-likelihood given by Eq. (9). In the context of the
peak bagging analysis, the data point is now the observed PSD at
a single frequency bin νi, namely Oi ≡ Pobs (νi), while the corre-
sponding prediction is given as Ei (θ) ≡ P (νi; θ) for the specific
case of the background fitting, as expressed by Eq. (25). We used
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Fig. 5. PSD of KIC 9139163 (gray) with overall background from
Eq. (25) and median values reported in Table 1 (thick green line)
with the additional Gaussian envelope included (dotted green line). The
solid black line represents the smoothed PSD by 81.4 µHz. The sin-
gle background components of constant photon noise (dotted), power
law (dashed), granulation and faculae (dot-dashed), and Gaussian enve-
lope (double-dot-dashed) are shown in blue. Upper panel: model M1

accounting for one Harvey-like profile. The arrow indicates the pres-
ence of a kink that is not reproduced by the model. Lower panel: model
M2 accounting for two Harvey-like profiles. The winning modelM2 is
strongly favored as it yields a Bayes’ factor lnB21 = 58.2 ± 0.2 over its
competitor.

uniform priors for all the parameters of the model except for the
parameter a, the amplitude of the slow variation in stellar activ-
ity. The indeterminacy on a is larger than that of the other param-
eters because a is mostly constrained by the PSD at very low fre-
quencies. For this reason, we set up a Jeffreys’ prior π (a) ∝ a−1

(Kass & Wasserman 1996), giving equal weight to different or-
ders of magnitude. This was done in practice by adopting the
new parameter ln a, since the Jeffreys’ prior becomes uniform in
logarithmic scale.

Figure 5 shows the final results of the Bayesian inference
for the background modeling of KIC 9139163 done by means
of D (background without and with Gaussian envelope
shown in figure and overlaid to the observed PSD and its smooth-
ing by ∆ν). The figure presents both the case of the model in-
cluding only one Harvey-like profile, which is the granulation
signal component (h = 1), and the most likely model accounting
for two Harvey-like profiles (h = 2), which represent the gran-
ulation signal and faculae activity of the star (see the caption of
the figure for more details and Table 1 for a list of all the values
derived from the Bayesian parameter estimation). By comparing
the Bayesian evidence from the two competing models (M1 for
h = 1 and M2 for h = 2), the resulting natural logarithm of
the Bayes’ factor lnB21 = lnE2 − lnE1 = 58.2 ± 0.2 in favor
of modelM2 suggests that an additional source of background
signal coming from the faculae activity is strongly decisive for
the model comparison. The model with two Harvey-like pro-
files thus ought to be preferred (strong evidence for lnB21 ≃ 5
in the Jeffreys’ scale of strength). More reliability is added to
this conclusion since an error bar on the Bayes’ factor is also
included, which is computed through error propagation of the

Table 1. Median values with corresponding 68.3% shortest credible
intervals of the background parameters for KIC 9139163, given by
Eq. (25) with h = 2, as derived by D.

Parameter Median Units

W 0.3705+0.0009
−0.0007 ppm2 µHz−1

a 428 ± 25 ppm2 µHz−1+b

b −1.13 ± 0.01
σgran 37.2 ± 0.5 ppm
τgran 271+3

−2 s
cgran 4.3 ± 0.2
σfac 38.4+0.8

−0.6 ppm
τfac 69.0 ± 0.4 s
cfac 12.5+0.5

−0.3

Hosc 0.294+0.010
−0.011 ppm2 µHz−1

νmax 1655+5
−4 µHz

σenv 193+13
−12 µHz

statistical uncertainty on the final evidence given by the NSMC
algorithm. The result of the model selection also agrees with the
presence of a kink in the smoothed PSD (indicated by an arrow
in the upper panel of Fig. 5) at the high-frequency side of the os-
cillation envelope. In Fig. 6, we plot an example of three corre-
lation maps with likelihood values in a color-coded scale for the
background parameters W and σgran and b of the winning model
with the corresponding MPDs computed by D. We fur-
ther provide three interesting cases of correlation maps for the
background parameters characterizing the Harvey-like profile of
the faculae activity, which are its amplitude σfac, timescale τfac,
and height at zero frequency σ2

facτfac in PSD units, relative to
the height of the oscillation envelope Hosc. As clearly visible,
amplitude, timescale, and height of the faculae background are
anti-correlated to Hosc, as one would expect, since the faculae
component rises inside the oscillation region, while no signifi-
cant correlation is found for the exponent cfac of the correspond-
ing Harvey-like profile.

For the configuration of the code, the following set of param-
eters was used: f0 = 1.5, α = 0.02, Nlive = 1000, 1 ≤ Nclust ≤ 6,
Mattempts = 104, Minit = Nlive, and Msame = 50. This has allowed
us to maintain a good efficiency throughout the sampling process
for both the models investigated.

6.3. Characterization of p modes

It can be shown (e.g. see Kumar et al. 1988; Anderson et al.
1990) that the limit PSD for a series of Npeaks independent os-
cillations can be expressed by means of a Lorentzian mixture

Posc (ν) =
Npeaks
∑

i=1

A2
i
/ (πΓi)

1 + 4
(

ν−ν0,i
Γi

)2
, (29)

where Ai is the amplitude of the ith oscillation peak in the
PSD (expressed in ppm), ν0,i its central frequency, and Γi the
linewidth, which is related to the oscillation lifetime τi by Γi =

(πτi)−1. The quantities Ai, ν0,i, and Γi thus represent the free pa-
rameters characterizing one oscillation peak profile. We can eas-
ily assign uniform priors for each of these quantities by a quick
look at the PSD.

For the Bayesian inference, we adopt once again the expo-
nential log-likelihood, but we now restrict the frequency range
of the PSD to the interval 900−2800 µHz; namely, the region
containing the oscillation peaks we intend to analyze, follow-
ing the results by A12. Moreover, similar to the work done by
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Fig. 6. Upper panels: examples of correlation maps of the three free parameters W, σgran, and b used in Eq. (27) using two Harvey-like profiles
with color-coded likelihood values. Each point in the diagram is a sampling point that stems from the NSMC process. The plotted realization
consists of ∼27 000 samples. Lower panels: corresponding MPDs of the free parameters as computed by means of D. The shaded region
indicates the portion of the distribution containing 68.3% of the total probability, defining the shortest credible intervals listed in Table 1. The
dashed line indicates the mode of the distribution.

Fig. 7. Correlation maps for the parameters describing the Harvey-like profile related to the faculae activity – namely σfac, and τfac, their combina-
tion σ2

facτfac in PSD units, and the height of the oscillation envelope Hosc with color-coded likelihood values plotted similarly to Fig. 6 – using the
same sample of points.

A12 and by A14, we set a fixed background B (ν) = B (ν) and
W by using the mean values of the corresponding parameters
listed in Table 1. This choice is motivated by the fact that the
background fitting is performed over the full-length PSD, thus
providing the most precise and accurate result we can stem for
the background from the given dataset. In addition, we adopt
mean values since they are the optimal estimators post-data in
the context of Bayesian statistics (Bolstad 2013), hence the most
reliable outcomes of our fit.

Therefore, for the fitting and characterization of the individ-
ual oscillation peaks, the Lorentzian mixture model for solar-
like oscillations described by Eq. (29) replaces the previous ap-
proximation of the power excess given by the Gaussian envelope
G (ν) defined by Eq. (28), which yields the overall peak bagging
model,

P (ν) = W + R (ν)
[

B (ν) + Posc (ν)
]

(30)

with R (ν) once again as the response function given by Eq. (26).

6.4. Rotation from ℓ = 1 peaks

The presence of rotation in a PSD lifts the (2ℓ+1)-fold degener-
acy of the frequency of non-radial peaks, hence directly measur-
ing a mean angular velocity, Ω, of the star (Ledoux 1951) if the
rotationally split peaks are properly resolved. For KIC 9139163,
we exclude a priori the possibility of detecting rotation from
the dipole (and therefore quadrupole) peaks since its surface
rotation rate Prot

−1 ≃ 1.78 µHz (Karoff et al. 2013b), as com-
pared to the typical linewidth of the highest S/N ℓ = 1 peaks,
where Γℓ=1 ∼ 4 µHz (this work, see Appendix A), satisfies the
condition Prot

−1 < 2Γℓ=1, hence this does not allows us to re-
solve multiplets coming from rotation (e.g. see Gizon & Solanki
2003). This is essentially related to the short oscillation life-
time of p modes occurring in the shallow convective regions
of F-type stars. The result is even more enhanced if one con-
siders the projection effect of the estimated inclination angle
of the rotation axis of the star. By combining the spectroscopic
v sin i ≃ 4 km s−1 (Bruntt et al. 2012) and deriving the radius of
the star through asteroseismology R ≃ 1.52 R⊙ (this work agrees
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within 2% with that stemmed by Karoff et al. 2013b) through the
relation

sin i =
v sin i Prot

2πR
, (31)

one obtains i ≃ 20◦. This low inclination angle implies a rela-
tive height of the central (non-split) component to that of the two
split for the dipole oscillations (Gizon & Solanki 2003) of ∼15.4,
meaning that the split frequency peaks are almost undistinguish-
able from the background level. For all these reasons from now
on, we assume there is no rotational effect observable in any of
the dipole (and quadrupole) peaks of KIC 9139163.

6.5. Peak significance and detection criterion

One of the main problems arising in the context of a peak
bagging analysis consists in assessing the number of significa-
tive peaks to be fitted and/or accepted for the final result. In a
frequentist-based approach, one would generally adopt a detec-
tion threshold based on either the estimated noise-level of the
star or the maximum likelihood value of the fitted oscillation
peak (e.g. see Appourchaux et al. 1998). In a Bayesian context,
one computes instead a probability stating how reliable the given
peak is, which may rely on either the null-hypothesis test or a di-
rect estimate of the odds ratio given by Eq. (3) (e.g. see A12), as
explained in Sect. 2. In this work, we exploit the Bayesian odds
ratio, hence the Bayes’ factor, since its computation is straight-
forward within the NSMC process, as already shown earlier in
the text. This allows us to statistically weight the peak detection
in terms of both goodness-of-fit and model complexity, hence
penalizing those peaks that have lower S/N. We apply this crite-
rion in three different scenarios:

– A single low-S/N peak arising from a background level. This
detection process involves the model comparison between
two competing models, which we indicate asMA when we
exclude the peak in the fitting process andMB when we in-
clude the peak instead. This case is typically that of dipole
peaks occurring in the wings of the oscillation envelope.
The corresponding natural logarithm of the Bayes’ factor
lnBBA = lnEB − lnEA in favor of the model with a fitted
peak, is therefore included in the final list of the results for all
the ambiguous peak detections, to provide prompt confirma-
tion of the outcome of the model comparison process. In ad-
dition, since assigning a quantitative probability value for the
detection of an individual peak could be useful for weight-
ing the reliability of the different detections, the Bayesian
evidences EA and EB can be used to compute the detection
probability as

pB ≡
EB

EA + EB
, (32)

or equivalently, the non-detection probability,

pA ≡ 1 − pB =
EA

EA + EB
· (33)

– Two high-S/N peaks appearing in a blended structure. This
situation makes it ambiguous to distinguish between one or
two different oscillation peaks. The issue is well represented
by the duplet ℓ = 2, 0 of F-type stars because their large
oscillation linewidths can produce very strong blending, as
shown in Fig. 8 for two oscillation peaks of KIC 9139163.
For this case, we can once again assume two competing

Fig. 8. Example of an ambiguous detection of a high S/N duplet ℓ = 2, 0
from the PSD of KIC 9139163. The solid line shows the resulting best-
fit as computed by D, while the dashed line represents the
mean background model as obtained in Sect. 6.2, according to Eq. (30).
Upper panel: case of modelMB where only ℓ = 0 is fitted. Lower panel:
case of modelMC where both ℓ = 2, 0 are fitted. The resulting lnBCB =

16.5 ± 0.1 strongly favors modelMC , hence the presence of two peaks
in the observed structure.

models, MB when only one peak (ℓ = 0) is fitted and
MC when two peaks (both ℓ = 2 and 0) are fitted. We
can thus compute the natural logarithm of the Bayes’ fac-
tor, lnBCB = lnEC − lnEB in favor of the model with two
peaks. Following Eqs. (32) and (33), we also define the prob-
ability of detecting two peaks, pC (or equivalently only one,
pB ≡ 1 − pC).

– Two low-S/N peaks appearing in a blended structure. The
typical example is given by the duplets ℓ = 2, 0, which
fall in the wings of the oscillation envelope. To properly ad-
dress this event, one has to consider three possible competing
models, namely MA, MB, and MC, as previously defined.
We therefore compute the natural logarithm of the Bayes’
factors lnBBA for checking whether a single peak (ℓ = 0) is
detected or not, and lnBCB for assessing the presence of two
peaks (ℓ = 2, 0) from the blended structure. The correspond-
ing detection probabilities can be defined as

pC ≡
EC

EA + EB + EC
(34)

for detecting two peaks;

pB ≡
EB

EA + EB + EC
, (35)

for detecting one peak; and

pA ≡ 1 − pB − pC, (36)

for the case of just the background level.

To apply the peak significance method and perform the Bayesian
parameter estimation at the same time, we fit the PSD of
KIC 9139163 as follows:

1. When assessing and fitting a dipole oscillation, we consider
a chunk of PSD that contains a series of five consecutive
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Fig. 9. Upper panel: resulting peak bagging best-fit for KIC 9139163 as derived by means of D by using Approach 1 based on the
background that is estimated in Sect. 6.2 (red thick line) overlaid on the PSD smoothed by 0.25 µHz (gray). The mean background level is shown
as a dashed blue line. Dotted vertical lines mark the oscillation peaks for which the detection probability is below 99% with labels indicating the
corresponding peak identification, as reported in Table A.1 and as explained in Appendix A. Lower panel: ratio between the smoothed PSD and
the resulting red line fit that is shown in the upper panel.

oscillation peaks having an angular degree ℓ = 2, 0, 1, 2, 0
in the order from left to right (hence with the dipole peak
in the center of the selected PSD window). This allows the
fit in the PSD to be stable for the central peak, hence com-
paring the models (casesMA andMB) accurately, and stem-
ming parameter estimates more conveniently, since we adopt
a maximum of k = 15 dimensions in the fit.

2. When assessing and fitting a duplet of blended quadrupole
and radial oscillations, we consider a chunk of PSD contain-
ing a series of four consecutive oscillation peaks having an
angular degree ℓ = 1, 2, 0, 1 in the order from left to right
(hence with the duplet falling in the center of the selected
PSD window). The reasoning is equivalent to that of the first
case, allowing us to set the number of dimensions in the in-
ference problem not beyond k = 12.

The choice of fitting windows in the PSD does not practically af-
fect the parameter estimation process, since the oscillation peaks
of the angular degrees ℓ = 2, 0 are separated by those of angular
degree ℓ = 1 by ∼40 µHz, a value about ten times larger than the
typical linewidth of the oscillations. For the blended ℓ = 2, 0 os-
cillations, we instead always fit a duplet of Lorentzian profiles,
since the two peaks cannot be separated from each other.

We note that in this work linewidths and amplitudes are fit in-
dependently for each individual oscillation peak, as expressed by
Eq. (29), in contrast to a classical fitting method to peak bagging
(e.g. see A12, A14). This implies that we drop both the assump-
tion of the height ratios for oscillation peaks having a different
angular degree (therefore using a single height per radial order)
and the use of a common linewidth within a single radial order.
A direct consequence of this approach is that the resulting PPD
presents a uni-modal solution for any number of fit oscillation
peaks, as we discuss in more detail in Sect. 6.7.

6.6. Results

All the results performed according to the approach based on
the model as given by Eq. (29) and the peak significance as
explained in Sect. 6.5 (hereafter Approach 1 for shortness)
are listed in Table A.1 and documented in Appendix A.

From a computational point of view, the configuration of
D required the tuning of the parameters for the dynam-
ical enlargement of the ellipsoids, as introduced in Sect. 4.1, and
used values in the ranges 2.0 ≤ f0 ≤ 3.2 and 0.01 ≤ α ≤ 0.04.
We adopted a fixed number of live points Nlive = 2000, as it en-
sured enough sampling points for the given problem. We allowed
a number of clusters 1 ≤ Nclust ≤ 4, which proved to be enough
to sample possible degeneracies in the PPD. Moreover, we set
Mattempts = 104, Minit = Nlive, and Msame = 50, which is similar to
the case of the background fitting presented in Sect. 6.2. The typ-
ical amount of final sampling points when analyzing each chunk
of PSD settles to ∼40 000.

The best-fit model based on Approach 1 is plotted in the up-
per panel of Fig. 9, which is overlaid to the PSD of KIC 9139163
and smoothed by 0.25 µHz for a visual comparison. The ratio
between the smoothed PSD and the resulting fit is shown in
the lower panel of the same figure. For clarity, the oscillation
peaks that have a detection probability lower than 99% are in-
dicated with mode identification (Peak #, ℓ) (see Appendix A).
The background level shown corresponds to the mean back-
ground, as given in Eq. (30). Single dipole, and quadrupole os-
cillation parameters are shown in Fig. 10 for both amplitudes
and linewidths. As it appears clear from the plot, the linewidths
of the dipole peaks increase with the frequency position, while
those of the quadrupole peaks are higher toward the center of
the oscillation envelope, although they have a much larger scat-
ter. Conversely, amplitudes visibly resemble the Gaussian enve-
lope of the oscillation pattern for both angular degrees with a
maximum occurring around νmax. The ℓ = 1 and 2 frequencies
derived by means of Approach 1 agree within 0.1% and 0.3%,
respectively, with those given by A12 for the full set of peaks.

For the case of the radial peaks derived with Approach 1,
which is based on the background derived in Sect. 6.2,
we instead refer to Fig. 11, where their amplitudes A0 and
linewidths Γ0 as a function of their frequency position ν0 are
directly confronted to those obtained by A14. The comparison
underlines the presence of a significant difference in amplitude
(on average ∼24%) and in linewidth (on average ∼42%), es-
pecially in the high-frequency side of the oscillation envelope
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Fig. 10. Oscillation parameters for the dipole (red triangles) and
quadrupole (orange squares) peaks of KIC 9139163 as derived by
means of D by using Approach 1 based on the background
derived in Sect. 6.2, for both amplitudes A (upper panel) and linewidths
Γ (lower panel), as a function of the frequency position ν. All the re-
sults shown are the mean estimates from the Bayesian inference with
corresponding 68.3% credible intervals overlaid.

(ν > 1900 µHz, see Sect. 7 for more discussion), which is caused
by the different background adopted in this work with respect to
that used by A14. The frequencies of the radial peaks estimated
in this work and marked in Fig. 11 instead agree within 0.2%
with those by A14 and within 0.7% with the previous set by
A12 throughout all the frequency range.

To test the effect of a different background and compare our
results to existing ones in a more favorable way, we have addi-
tionally performed the peak bagging of KIC 9139163 by adopt-
ing the background used in A14, thus applying Approach 1 to
the same oscillation peaks as those presented in Table A.1. The
results are presented in Appendix B and listed in Table B.1. As
shown in Fig. 11, amplitudes and linewidths are now in good
agreement with the previous results by A14 (up to 0.5%), which
is well within the reported error bars for most of the cases.

6.7. Exploiting the multi-modality of peak bagging

In the method termed Approach 1, described in Sect. 6.3 and
Sect. 6.5, the number of dimensions of the parameter space
scales linearly with the number of peaks in the PSD of the star.
For example, fitting one peak in a narrow part of the PSD implies
searching for one maximum of the PPD in a 3D parameter space
(Γ, ν0, A). Fitting two peaks simultaneously implies searching
for one maximum of the PPD in a 6D parameter space (Γ1, ν0,1,
A1, Γ2, ν0,2, A2) and so on. In principle, one could try fitting one
Lorentzian peak using a large part of the PSD and hope that the
individual oscillation peaks pop up as several local maxima in
the PPD. The advantage would clearly be a strongly reduced di-
mensionality of the parameter space to only 3D, irrespective of
the number of oscillation peaks in the PSD. In practice, such an
approach hardly works, because of a number of problems:

1. The fitting algorithm can have the tendency to consider the
entire spectrum as one peak with an extremely large width.

Fig. 11. Comparison of the oscillation parameters for the radial peaks
of KIC 9139163 between the results derived in this work by means
of D (filled red circles, Approach 1 based on the background
derived in Sect. 6.2 and, open red circles, Approach 1 based on A14
background) and those provided by A14 (gray squares) for both ampli-
tudes A0 (upper panel), and linewidths Γ0 (lower panel), as a function of
the frequency position ν0. The red circles represent the mean estimates
coming from the Bayesian inference with their corresponding 68.3%
credible intervals, while gray squares are the mean estimates from the
MLE fit done by A14 and plotted with their error bars. The A0 values
from Approach 1 shown in the plot are obtained by scaling down by a
factor

√
2 those reported in Tables A.1 and B.1 to be consistent with the

definition of amplitude indicated by A14. Dotted vertical lines mark the
frequency position of the red circles for a better visual comparison with
that of the gray squares.

2. The approach is prone to false maxima as it may consider
local noise peaks also as an oscillation peak.

3. Sampling a multi-modal parameter space and not missing
local maxima is hard, especially with MCMC algorithms.

4. Even if we do sample all the local maxima in the parameter
space, it is still unclear how to extract the fit parameters for
each oscillation peak individually.

In this section, we show how each of these problems can be
solved, and we refer to the resulting method as Approach 2.
This approach can be very useful in the process of automating
the peak bagging analysis, thus providing a possible solution for
performing the analysis on a large number of targets.

The first problem is easily solved by imposing a physically
reasonable prior on the linewidth, so that the algorithm never di-
verges. Although the third problem, is hard to handle with stan-
dard MCMC algorithms, it is a lot easier with D, as
shown in the demos presented in Sect. 4.6. We solved the sec-
ond and fourth problems by letting the algorithm search for (i.e.
fit) a pattern of three Lorentzian profiles, instead of fitting a sin-
gle Lorentzian profile. Concretely, the model now becomes

Posc (ν) = M1 (ν) + M2 (ν) + M0 (ν) (37)

where Mi corresponds to a Lorentzian profile of an oscillation
peak with degree ℓ = i. This corresponds to nine fit param-
eters: (Γ1, ν1, A1, Γ2, ν2, A2, Γ0, ν0, A0). We replace, how-
ever, the parameters ν0 and ν2 with the frequency spacings
δ10 ≡ νn,0 − νn−1,1, which is analogous to the definition given in
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Eq. (23), and δ02 ≡ νn,0 − νn,2, as introduced in Eq. (24), hence
having ν0 = ν1 + δν10 and ν2 = ν0 − δν02. The reason is that it
is much easier to physically specify constraining priors for these
frequency spacings within one radial order than it is for the in-
dividual frequencies ν0 and ν2. In summary, the frequency of the
dipole peak, ν1, is the fit parameter used to locate the 3-peak
pattern in the power spectrum, and the spacings δν10 and δν02
are used as fit parameters to determine the distances between the
peaks inside the pattern. Each oscillation peak inside the 3-peak
pattern has a separate fit parameter for the amplitude and the
width, resulting in still nine fit parameters. The 9D posterior dis-
tribution shows local maxima, one for each 3-peak pattern iden-
tified in the PSD, which is one for each radial order. We found
that fitting such a pattern is much less susceptible to noise than
fitting a single Lorentzian profile.

We note what we did not impose: we did not specify the
number of radial orders in the PSD. This is an output of the al-
gorithm: each local maximum detected in the PPD corresponds
to an observed radial order in the PSD. We also did not impose
the condition that the radial (or dipole) peaks in the PSD should
be equidistant nor that they may show an oscillatory behavior
due to acoustic glitches. This also will be an output of the algo-
rithm: the different maxima found in the 9D PPD will show up
as equidistant along the ν1 axis, hence disentangling the different
radial orders without ambiguity.

To highlight two substantial differences between Approach 1
and Approach 2, as discussed in this section, we refer to an il-
lustrative comparison shown in Fig. 12. In the top panel, we can
observe the linear increasing trend of the number of fit parame-
ters when using Approach 1 over an increasing number of radial
orders of the star (nine new free parameters added for each new
radial order included), as opposed to the constant number of nine
free parameters used by Approach 2. In the bottom panel, we see
that the number of local maxima obtained in the PPD increases
linearly with Approach 2 when used over an increasing number
of radial orders (one local maximum more for every additional
radial order), leading to a multi-modal distribution when at least
two radial orders are considered. The PPD remains instead uni-
modal when using Approach 1, irrespective of the number of
radial orders included in the fit. It is then clear that the two ap-
proaches have a reversed balance in terms of the number of free
parameters and number of local maxima in the PPD, while they
become essentially identical for the limiting case of one radial
order.

We tested Approach 2 by applying it to the PSD of
KIC 9139163 in a frequency range containing nine radial or-
ders (27 peaks), spanning ∼800 µHz and centered around νmax.
For configuring the code, we adopted the parameters f0 = 0.6,
α = 0.04, Nlive = 2000, 1 ≤ Nclust ≤ 10, Mattempts = 104,
Minit = 500, and Msame = 50. Figure 13 shows a sampling re-
sult of this multi-modal application, where we plot the fitted
amplitude for dipole peaks, A1, against ν1, with an histogram
density along the coordinate ν1. As it appears evident from the
plot, the different islands sampled by D are regularly
spaced in frequency, which clearly corresponds to the regular
Tassoul comb-pattern of the solar-like oscillations observed in
KIC 9139163. In particular, we identify two types of islands,
those corresponding to the true position of the dipole peaks and
those that occur where the duplets ℓ = 2, 0 arise, in which the lat-
ter case is to be discarded, since it does not match the definition
of the free parameter ν1. The result that the algorithm confuses
ℓ = 1 peaks with ℓ = 0 peaks is particular for KIC 9139163,
or for F-type solar-like oscillators in general, where the ℓ = 2
and ℓ = 0 peaks are blended, which makes it more difficult to

Fig. 12. Illustrative comparison between Approach 1 (red circles) and
Approach 2 (blue squares) in terms of the number of free parameters
used in the fit (top panel) and the number of local maxima identified
in the final PPD (bottom panel), as a function of the number of radial
orders considered.

recognize the typical Tassoul pattern. The position of the light
blue islands along the direction of A1 decreases when moving
from the center of the plot – i.e. the maximum power region –
towards the wings, which agrees with the typical Gaussian mod-
ulation for the amplitudes of solar-like oscillations. We also no-
tice that the left- and right-side light blue islands do not show
an estimated Bayesian mean, though the position of the corre-
sponding oscillation peaks can still be obtained by considering
the sampling average position of the associated islands. This oc-
curs because the side MPDs have a probability that is zero, as
compared to that of the central MPDs, therefore, no Bayesian
estimates could be computed for this case. As one can observe
from the bottom panel of Fig. 13, the central peaks having higher
amplitudes tend to be sampled about 100 times more than those
falling in the wings of the range and having a lower amplitude.
Since higher amplitude peaks produce higher likelihood regions
in the parameter space, the NSMC algorithm tends to sample
them more densely than the remainder regions that have lower
likelihood values and, consequently for this case, lower poste-
rior probabilities.

Figure 14 shows the resulting estimates, obtained by using
Approach 2, for all the peaks compared to those derived by
means of Approach 1, with sample average positions for each
light blue island overlaid for completeness. The frequencies es-
timated by means of Approach 2 agree within 0.1% (for radial
and dipole peaks) and within 0.2% (for quadrupole peaks) to
those obtained by using Approach 1. Concerning amplitudes and
linewidths instead, the agreement is more evident for the dipole
peaks (where amplitudes match up to 0.5% and linewidths up
to 0.8%), while it tends to be worse for radial and quadrupole
peaks, especially in the wings, which produces discrepancies
that can be up to 12% and 40% in amplitude and 18% and 75% in
linewidths, respectively. These differences mainly rely on the re-
sult that Approach 2 is supposed to recognize the 3-peak pattern
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Fig. 13. Resulting 43374 samples obtained by D by using Approach 2 applied to the PSD of KIC 9139163 in the frequency range
1280−2090 µHz, covering nine radial orders. Upper panel: distribution of the sampling points for the amplitude of dipole peaks, A1 and the
corresponding frequency position, ν1. The islands marked in light blue represent the true positions of the dipole peaks, while those in gray are
relative to the positions of the blended quadrupole-radial peaks, which are ignored. The red circles represent the mean Bayesian estimates derived
from the MPDs of the light blue islands, while yellow triangles show the corresponding sampling average positions in both coordinates and are
not related to the MPDs. Lower panel: corresponding histogram density along the direction of ν1, showing the number of counts occurring in each
island.

ℓ = 1, 2, 0, which for KIC 9139163 is often ambiguous, as al-
ready pointed out before. In addition, the total number of sam-
ples obtained for the lowest-amplitude modes in the multi-modal
PPD might be too low to ensure accurate Bayesian estimates.

7. Discussion

The fitting of the background models for KIC 9139163 is a chal-
lenging problem in terms of both computational speed and sam-
pling efficiency of the resulting PPD. The estimated set of free
parameters for the favored model that incorporates both gran-
ulation and faculae activity signal corresponds to a non-trivial
combination of the different background components. This is
mainly caused by the rising of the faculae component inside the
region that contains the solar-like oscillations, which itself has
not a prominent height if compared to the background level of
the star. This leads to a S/N ∼ 1.3 as measured from the PSD
around νmax. The oscillation signal in the observed PSD is nois-
ier due to the higher temperature of this target if compared to the
solar value. The rising of the faculae signal beyond 1000 µHz
agrees with the interpretation of the stellar background proposed
by Harvey et al. (1993) and by Karoff (2012). In addition, the re-
sulting Harvey-like profiles of both granulation and faculae ac-
tivity are consistent with the findings by Karoff et al. (2013a) for
other pulsating MS stars, for which we expect the faculae com-
ponent to decay more rapidly with respect to that of the granu-
lation. The decaying coefficients cgran and cfac estimated in this
work, however, exceed by about 23% and 200%, respectively,
from those measured for the Sun by Karoff et al. (2013a). The
detection of a faculae signal in KIC 9139163 is even consistent
with the presence of a stellar activity, as detected by Karoff et al.
(2013b), while the estimated νmax from the global background
fitting remains compatible within 0.5% with the value indicated
by A12.

The selection of a proper background model plays a crucial
role in estimating the asteroseismic parameters that character-
ize the individual oscillation peaks of the star. As outlined by
A14, oscillation amplitudes and linewidths heavily depend on
the background model adopted. A clear example of this behav-
ior is depicted in Fig. 11 for the effect produced on the radial
peaks (see Sect. 6.6 and below for more discussion). The model
comparison of the different background models, as performed by
means of the Bayesian evidence computed by D (see
Sect. 6.2) has led to an unambiguous interpretation of the back-
ground. This addressed the problem of the choice of the back-
ground model and proved that the method could be applied very
straightforwardly with an immediate result.

Concerning the outcomes of the peak bagging analysis based
on Approach 1, as described in Sects. 6.3 and 6.5, we stress
that all the frequencies derived in this work (see Tab. A.1)
match remarkably well with those obtained in previous works by
A12 and A14, showing an agreement level well below 1% (see
Sect. 6.6 for more details). Significant discrepancies in the fitted
amplitudes and linewidths of the radial oscillation peaks with
respect to those measured by A14 are observed, especially for
the region of the oscillation envelope beyond νmax (see Fig. 11).
These new measurements from Approach 1 are on average ∼1.36
and ∼1.54 times smaller for amplitudes and linewidths respec-
tively, as compared to the values provided by A14. As pointed
out already, this relies on the different background adopted for
this star, which is that of the granulation signal in the case of
A14. The Harvey-like profile related to the faculae activity fit-
ted in this work arises around 2000 µHz, as also clearly visi-
ble from Fig. 5. This is confirmed by the results presented in
Table B.1, for which Approach 1 was adopted using a similar
background fit to that considered in A14. The approach pro-
vided amplitude and linewidth estimates that are in good agree-
ment with those reported by A14 (see Fig. 11 and Sect. 6.6 for
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Fig. 14. Comparison of the results for KIC 9139163 relative to the nine radial orders in the frequency range 1280−2090 µHz, obtained by
D according to Approach 1 (red circles) and Approach 2 (blue squares). Panels from left to right show the amplitudes (upper panels)
and linewidths (lower panels) against the frequency position of the full set of radial, ν0, dipole, ν1, and quadrupole oscillations, ν2, respectively.
The red circles are the mean values as derived from the MPDs with their corresponding 68.3% shortest credible intervals, while the blue squares
are the mean values from the MPDs of each blue island (see Fig. 13). The open triangles are the sample average positions (see Fig. 13) used for
providing a frequency estimate for the two side peaks of each panel. Dotted vertical lines represent the frequency position of the red circles, as
shown as a reference for the blue squares.

more details). Moreover, as observed in Fig. 11, the increas-
ing trend of the linewidths of the radial peaks with their fre-
quency position tends to flatten in the region around νmax. This
so-called linewidth depression, expected for radial peaks (e.g.
see Belkacem et al. 2011, for a theoretical explanation) agrees
with what observed by A14 for the same star (Fig. 11, lower
panel). Finally, Approach 1 has led to a final set of 14 radial,
18 dipole, and 13 quadrupole peaks – as shown in Table A.1 from
(3, 0) to (16, 0), from (1, 1) to (17, 1) and from (3, 2) to (16, 2) –
whose detection probability is p ≥ 99%. The remainder peaks,
except for (2, 19), which was not detected, are marked in Fig. 9
and can still be considered valid, though keeping in mind that
their detection probabilities are lower than 99% and even below
50% in some cases. Besides, the error bars on the frequencies ap-
pear to be about five times smaller than those provided by A12
and from 1.5 to 4 times smaller than those reported by A14 for
amplitudes and linewidths. This is caused by the use of a longer
dataset and also by their smaller values obtained in this work
as compared to those reported by A14 in the particular case of
the linewidths (see Toutain & Appourchaux 1994, for more de-
tails on the behavior of the error bar of the linewidth for a single
oscillation).

We described a novel peak bagging method (Approach 2)
in Sect. 6.7 (see Figs. 12 and 13, upper panel) based on multi-
modality. The capability of the code to sample multi-modal
PPDs has proven to be of great help for reducing the dimen-
sionality of the peak bagging analysis, which succeeds in sam-
pling 27 different oscillation peaks by means of only k = 9
free parameters. In particular, Approach 2 has allowed us to re-
trieve Bayesian estimates of the frequency position of 21 out
of 27 peaks in the frequency range 1280−2090 µHz, which re-
sult in good agreement (well within 1%) with those derived by
means of Approach 1 for all the three different angular degrees.
The concordance weakens for the amplitudes and linewidths of
radial and quadrupole peaks (see Fig. 14, left and right panels
respectively), as detailed in Sect. 6.7, while still ensuring ac-
curate estimates for the dipole modes (Fig. 14, central panels).
Nevertheless, the method is sensitive to the configuration of the

code parameters related to both the clustering and the ellipsoidal
sampling algorithms. The process of identifying clusters in the
PPD is much more tapped for Approach 2 (multi-modal) than
for Approach 1 (uni-modal). In addition, as already described in
Sect. 6.7, the NSMC algorithm samples more frequently those
regions in the PPD having a higher likelihood value, which
causes the final sampling to be sparser for those peaks that have a
lower amplitude and fall in the wings of the oscillation envelope
(see Fig. 13, lower panel). One feasible choice to overcome this
problem is to avoid sampling peaks having too different ampli-
tudes from one another, hence subdividing the process in chunks
of PSD where the different oscillations are similar in terms of as-
teroseismic properties. In general, however, the merging of sev-
eral runs, as explained in Sect. 4.7, tends to increase the total
number of samples for all the islands, hence giving the possibil-
ity to improve the results also for the side peaks.

Importantly, Approach 2 can be further improved, optimized,
and used for the automatization of the peak bagging analysis in
MS stars exhibiting solar-like oscillations by adopting a two-step
approach: (i) quickly estimating the asteroseismic parameters of
several oscillation peaks by means of Approach 2, since it re-
quires a low number of free parameters with a low constraint
level of their corresponding prior PDFs, which can in turn be de-
rived through simple asteroseismic scaling relations; (ii) fitting
the PSD by using Approach 1, or another similar to it, where the
prior PDFs are now set by the outcomes of Approach 2, to end
up with more accurate results.

8. Conclusions

Based on the descriptions given in Sect. 4, we can summarize
the new features implemented in D as follows:

– A revised SES algorithm based on the clustering of the live
points that allows more control and speed in the drawing pro-
cess of the NSMC;

– The possibility to use different types of prior PDFs (either
uniform, normal and super-Gaussian, or new user-defined
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types) for any free parameter of the inference problem and
in any possible combination;

– The inclusion of a flexible stopping criterion for the NSMC
based on the amount of evidence coming from the remaining
set of live points;

– An improved computation of the final evidence based on the
statistical work by K11;

– A new relation for the reduction of the live points that allows
better control of the reduction process.

As proven with the demos presented in Sect. 4.6 and especially
with the application given in Sect. 6, the D code de-
veloped for this work shows great potential for fast and effi-
cient Bayesian inferences of challenging high-dimensional and
multi-modal problems, such as the peak bagging analysis of an
F-type star, hence allowing for a direct model comparison aimed
at measuring the reliability of the peak detection. In addition, we
demonstrated that D is capable of making a valuable
alternative to Approach 1 by sampling multiple peaks simulta-
neously and in terms of only a few free parameters (Approach
2), thus reducing the number of dimensions involved in the fit-
ting process (Fig. 12) with a considerable gain in both computa-
tional power and speed. The automatization of the peak bagging
analysis for the measurement of detailed asteroseismic parame-
ters in thousands of observed pulsating low-mass MS stars will
be crucial for testing theoretical models of stellar evolution and
of asteroseismic inversion that is aimed at probing stellar struc-
ture. Therefore, D gives us the possibility to progress
in the analysis of a large ensemble of asteroseismic datasets for
the first time.
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Appendix A: Results for peak bagging

of KIC 9139163

All oscillation frequencies, amplitudes and linewidths, with the
peak significance probabilities are listed in Table A.1. The peaks
are labeled with increasing integer numbers, moving from low
to high frequency, for each different angular degree, and use the
same labels in both Tables. This, therefore, allows the reader to
easily identify the single oscillation and all the corresponding in-
formation by using the notation (Peak #, ℓ). The results presented
in Table A.1 refer to the use of Approach 1 based on the back-
ground derived in Sect. 6.2, thus it includes the faculae activity
component.

We note that we do not list any detection probability pA
(which can possibly be assumed zero) for some peaks ℓ = 2, 0
for which we performed the model comparison between models
MC and MB. This is because they have a high S/N, and,
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therefore, assessing their significance over the background level
was not needed. In addition, all the peaks labeled with the
same number and having angular degrees ℓ = 0 and 2 have the
same peak significance analysis. This happens since the model
comparison is performed for the duplet 2-0 and not for the single
peaks, separately. Whereas the model comparison favored the
detection of one peak only (modelMB), namely the ℓ = 0 peak,
or alternatively just the background component (model MA),
which has no peaks, it is also important to stress that we decided
to show the resulting fit for the model fitting the duplet 2-0
(model MC), since the two peaks cannot be disentangled from
one another and their characteristic parameters obtained from
the fit might still be useful for subsequent investigations. When
modelMC is favored overMB, this results in detection proba-
bilities pC > 0.5 and pB < 0.5. Conversely, when the modelMB
ought to be preferred, the corresponding detection probabilities

become pC < 0.5 and pB > 0.5. The same rule applies to the
detection probabilities pA and pB. The reader can decide whether
to consider the quadrupole peak (or even the radial one) or not
if the corresponding detection probability pC (or even pB) is too
low (e.g. below 50%).

Lastly, for most of the dipole peaks, we did not perform any
peak significance analysis thanks to their high amplitude (rang-
ing from ∼3.5 to ∼1.5 times that of the lowest amplitude peaks),
which makes their detection unambiguous. For the dipole peaks
falling in the wings of the oscillation envelope, we instead com-
puted the model comparison between models MB and MA,
hence listing the detection probabilities pA and pB. With sim-
ilar arguments to those adopted for the duplets 2-0, we show the
result of the model having the dipole peak included,MB, even
when it is disfavored over its competitor when just the back-
ground level is considered.
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Table A.1. Median values with corresponding 68.3% shortest credible intervals for the oscillation frequencies, amplitudes, and linewidths of
KIC 9139163, as stemmed by D for the case of the background model derived in Sect. 6.2.

Peak # Angular degree Frequency Amplitude Linewidth pA pB pC

(µHz) (ppm) (µHz)

0 0 985.10+0.41
−0.37 1.35 ± 0.12 2.13+0.32

−0.36 0.244 0.618 0.138

1 0 1064.94+0.15
−0.14 2.06+0.11

−0.12 2.00+0.30
−0.29 0.000 0.982 0.018

2 0 1143.03+0.09
−0.10 1.95+0.07

−0.09 1.88 ± 0.22 0.000 0.291 0.709

3 0 1221.10 ± 0.15 2.40 ± 0.14 2.24+0.30
−0.38 − 0.000 1.000

4 0 1301.54 ± 0.09 2.95+0.07
−0.08 2.38+0.14

−0.15 − 0.002 0.998

5 0 1383.01+0.20
−0.19 3.43+0.17

−0.18 2.74+0.35
−0.38 − 0.000 1.000

6 0 1464.36 ± 0.11 4.02 ± 0.10 3.21 ± 0.19 − 0.000 1.000

7 0 1544.25 ± 0.10 4.76+0.09
−0.08 3.80+0.14

−0.15 − 0.000 1.000

8 0 1623.98 ± 0.24 4.82 ± 0.29 3.57+0.32
−0.42 − 0.000 1.000

9 0 1704.16 ± 0.07 4.83 ± 0.05 4.41+0.11
−0.10 − 0.000 1.000

10 0 1785.21+0.23
−0.24 5.23+0.04

−0.03 4.03+0.05
−0.06 − 0.000 1.000

11 0 1866.91+0.13
−0.14 4.14+0.10

−0.11 3.88+0.23
−0.20 − 0.001 0.999

12 0 1949.44+0.18
−0.16 3.26+0.13

−0.14 3.18+0.26
−0.34 − 0.000 1.000

13 0 2032.55+0.37
−0.30 2.56+0.18

−0.20 3.71+0.43
−0.52 − 0.010 0.990

14 0 2114.28+0.36
−0.40 2.54+0.17

−0.16 3.81+0.51
−0.57 − 0.000 1.000

15 0 2194.96+0.22
−0.18 1.92+0.09

−0.07 3.61+0.29
−0.31 − 0.000 1.000

16 0 2277.69+0.21
−0.22 1.70+0.08

−0.06 4.25+0.27
−0.30 − 0.525 0.475

17 0 2360.29+0.49
−0.52 0.98+0.10

−0.09 4.47+0.32
−0.35 0.056 0.387 0.557

18 0 2445.03+0.43
−0.44 1.30+0.11

−0.09 4.27+0.53
−0.62 0.000 0.040 0.960

19 0 2525.94+0.35
−0.29 0.98 ± 0.08 4.35+0.28

−0.25 0.704 0.296 0.000

0 1 1023.36+0.13
−0.14 1.99 ± 0.07 2.58+0.14

−0.15 0.056 0.944 −
1 1 1101.90 ± 0.09 2.22 ± 0.05 2.43+0.09

−0.11 0.000 1.000 −
2 1 1179.80 ± 0.06 2.64 ± 0.06 1.94+0.11

−0.12 − − −
3 1 1258.80+0.09

−0.07 3.06 ± 0.06 2.77+0.15
−0.14 − − −

4 1 1339.86+0.08
−0.06 3.23+0.06

−0.04 3.36+0.10
−0.12 − − −

5 1 1421.64 ± 0.06 4.24+0.04
−0.06 3.63+0.10

−0.11 − − −
6 1 1502.23 ± 0.12 5.26+0.10

−0.11 3.96+0.27
−0.32 − − −

7 1 1582.21+0.06
−0.05 5.40 ± 0.05 4.41+0.09

−0.10 − − −
8 1 1662.08+0.06

−0.07 5.47+0.05
0.06 4.89 ± 0.11 − − −

9 1 1742.77+0.05
−0.06 5.41 ± 0.05 4.16 ± 0.08 − − −

10 1 1824.61+0.09
−0.10 5.11 ± 0.09 3.96+0.17

−0.21 − − −
11 1 1906.90 ± 0.12 4.36 ± 0.07 4.28+0.16

−0.15 − − −
12 1 1989.21+0.14

−0.15 3.94+0.10
−0.11 3.82 ± 0.29 − − −

13 1 2072.11+0.17
−0.18 3.44 ± 0.08 4.19+0.19

−0.20 − − −
14 1 2153.61+0.19

−0.17 2.75+0.06
−0.07 4.41+0.27

−0.29 − − −
15 1 2235.66+0.21

−0.22 2.38+0.08
−0.09 4.28+0.39

−0.38 − − −
16 1 2318.78+0.26

−0.28 2.00 ± 0.08 4.59+0.29
−0.33 − − −

17 1 2399.13+0.26
−0.24 1.65−0.05

−0.07 4.74+0.23
−0.25 0.000 1.000 −

18 1 2485.88+0.47
−0.48 1.37+0.08

−0.07 5.07+0.29
−0.32 0.991 0.009 −

0 2 979.42+0.49
−0.48 0.93 ± 0.12 2.13+0.43

−0.42 0.244 0.618 0.138

1 2 1055.96+0.91
−0.67 1.12 ± 0.15 2.10+0.41

−0.43 0.000 0.982 0.018

2 2 1137.73+0.31
−0.29 1.14 ± 0.11 2.21+0.33

−0.38 0.000 0.291 0.709

3 2 1216.34+0.34
−0.33 1.59+0.18

−0.17 2.40+0.59
−0.46 − 0.000 1.000

Notes. The first column represents the peak number in increasing frequency order and is shown for each angular degree (second column). The
three last columns correspond to detection probabilities referred to the modelsMA (only background),MB (one peak), andMC (two peaks), as
defined in Sect. 6.5.
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Table A.1. continued.

Peak # Angular degree Frequency Amplitude Linewidth pA pB pC

(µHz) (ppm) (µHz)

4 2 1294.75 ± 0.29 1.52+0.11
−0.10 2.34+0.25

−0.21 − 0.002 0.998

5 2 1376.80+0.32
−0.36 1.77+0.25

−0.23 2.10+0.72
−0.85 − 0.000 1.000

6 2 1457.70+0.31
−0.32 2.07 ± 0.12 3.00+0.17

−0.34 − 0.000 1.000

7 2 1537.22+0.40
−0.31 2.41 ± 0.12 3.61 ± 0.22 − 0.000 1.000

8 2 1619.18+0.89
−0.90 2.72 ± 0.46 3.93+0.97

−0.89 − 0.000 1.000

9 2 1698.12 ± 0.11 2.97 ± 0.07 3.27+0.16
−0.15 − 0.000 1.000

10 2 1779.42+0.48
−0.62 2.72+0.05

−0.04 3.25+0.09
−0.10 − 0.000 1.000

11 2 1860.52+0.44
−0.59 2.03+0.14

−0.15 3.39+0.40
−0.39 − 0.001 0.999

12 2 1944.32+0.35
−0.28 2.18+0.20

−0.18 3.11+0.59
−0.65 − 0.000 1.000

13 2 2027.51+0.74
−0.57 1.80+0.28

−0.22 3.64+0.69
−0.87 − 0.010 0.990

14 2 2108.03+0.28
−0.29 1.55+0.21

−0.20 1.99+0.63
−0.74 − 0.000 1.000

15 2 2189.96+0.19
−0.18 1.17+0.10

−0.09 1.73+0.35
−0.35 − 0.000 1.000

16 2 2264.08+0.40
−0.36 0.79 ± 0.06 2.78+0.31

−0.35 − 0.525 0.475

17 2 2353.04+0.75
−0.57 0.90+0.09

−0.09 3.19+0.34
−0.33 0.056 0.387 0.557

18 2 2438.00+0.28
−0.25 0.99+0.11

−0.10 2.45+0.69
−0.71 0.000 0.040 0.960

19 2 2519.84+1.00
−2.14 0.96+0.10

−0.09 3.00+0.36
−0.27 0.704 0.296 0.000
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Appendix B: Results for peak bagging

of KIC 9139163 based on A14 background

In this Appendix, we report the same oscillation peaks as in
Table A.1 but with frequencies, amplitudes, and linewidths, as
obtained by means of Approach 1 that is based on a differ-
ent fit of the background, following the formulation given by
A14, which consists of a flat noise component and a granulation
Harvey-like profile.

Table B.1. Median values with corresponding 68.3% shortest credible
intervals for the oscillation frequencies, amplitudes and linewidths of
KIC 9139163, as stemmed by D for the case of the back-
ground model adopted by A14.

Peak # Angular degree Frequency Amplitude Linewidth
(µHz) (ppm) (µHz)

0 0 985.39+0.46
−0.37 1.76+0.22

−0.21 3.46+1.01
−0.98

1 0 1065.03+0.13
−0.14 2.70 ± 0.11 3.51+0.43

−0.44

2 0 1143.07+0.09
−0.10 2.59+0.08

−0.10 2.96+0.28
−0.34

3 0 1221.19+0.19
−0.18 3.26+0.17

−0.16 4.17+0.55
−0.54

4 0 1301.61+0.14
−0.13 3.63+0.13

−0.15 3.32+0.38
−0.41

5 0 1383.06+0.18
−0.17 4.31+0.19

−0.18 4.45+0.49
−0.51

6 0 1464.35 ± 0.14 5.05 ± 0.12 5.13+0.32
−0.34

7 0 1544.31 ± 0.16 5.79+0.17
−0.16 5.26+0.33

−0.32

8 0 1623.75+0.20
−0.22 6.19+0.24

−0.20 6.10 ± 0.45

9 0 1704.31 ± 0.23 5.27+0.32
−0.29 4.62+0.49

−0.58

10 0 1785.36 ± 0.19 5.48+0.20
−0.17 5.38+0.38

−0.41

11 0 1867.01+0.17
−0.16 5.26+0.14

−0.13 5.46+0.32
−0.33

12 0 1949.54+0.29
−0.28 4.40+0.26

−0.28 5.38+0.59
−0.64

13 0 2032.80+0.42
−0.44 4.27+0.25

−0.22 7.08+0.50
−0.46

14 0 2114.83+0.25
−0.24 3.76 ± 0.13 6.57+0.41

−0.53

15 0 2196.36+0.70
−0.81 3.28 ± 0.27 7.67+0.74

−0.83

16 0 2277.70+0.25
−0.22 3.08 ± 0.08 8.41+0.50

−0.45

17 0 2360.73+0.76
−0.84 1.95+0.23

−0.21 9.03+0.95
−0.96

18 0 2445.08+0.56
−0.53 2.22+0.17

−0.16 8.64+1.07
−1.02

19 0 2526.11+0.65
−0.60 1.34+0.20

−0.19 9.37+1.24
−1.01

0 1 1023.09 ± 0.18 2.34+0.10
−0.11 4.14+0.44

−0.43

1 1 1101.80 ± 0.13 2.76+0.09
−0.08 4.15+0.41

−0.37

2 1 1179.78 ± 0.08 3.44+0.08
−0.07 3.52+0.25

−0.27

3 1 1258.71 ± 0.10 4.10 ± 0.07 4.89+0.24
−0.22

4 1 1339.77+0.08
−0.07 4.25+0.06

−0.05 4.93+0.19
−0.18

5 1 1421.65 ± 0.10 5.20+0.09
−0.08 4.87+0.26

−0.25

6 1 1502.22+0.12
−0.11 6.32+0.10

−0.11 5.62+0.27
−0.29

7 1 1582.13 ± 0.06 6.45 ± 0.06 5.60+0.13
−0.12

8 1 1661.92+0.13
−0.12 6.72+0.09

−0.10 6.94+0.28
−0.31

9 1 1742.66+0.13
−0.12 6.79 ± 0.10 6.37+0.28

−0.30

10 1 1824.54 ± 0.10 6.42 ± 0.09 5.85+0.24
−0.25

11 1 1906.80+0.15
−0.13 5.75 ± 0.09 7.31 ± 0.31

12 1 1988.93+0.11
−0.10 5.37 ± 0.06 6.51+0.23

−0.22

13 1 2071.61+0.16
−0.15 5.21+0.07

−0.08 8.44+0.32
−0.43

14 1 2153.60 ± 0.13 4.52 ± 0.06 8.68+0.25
−0.24

15 1 2235.50+0.14
−0.15 3.75+0.05

−0.06 7.60+0.21
−0.26

16 1 2318.00+0.25
−0.26 3.58 ± 0.07 9.48+0.39

−0.38

17 1 2399.78 ± 0.25 2.81 ± 0.06 9.32+0.51
−0.53

18 1 2486.69+0.39
−0.40 1.97+0.08

−0.09 7.86+0.80
−0.84

Table B.1. continued.

Peak # Angular degree Frequency Amplitude Linewidth
(µHz) (ppm) (µHz)

0 2 979.72+0.86
−0.78 0.96+0.25

−0.24 2.95+0.93
−0.94

1 2 1056.57+0.63
−0.58 1.37+0.17

−0.15 3.37+0.52
−0.50

2 2 1137.57 ± 0.24 1.65+0.12
−0.11 3.25+0.32

−0.31

3 2 1215.90+0.31
−0.33 2.26+0.20

−0.19 3.69+0.48
−0.49

4 2 1294.71+0.47
−0.42 2.42+0.22

−0.18 4.92+0.76
−0.70

5 2 1376.62+0.30
−0.32 2.65+0.28

−0.27 4.23 ± 0.91

6 2 1457.08+0.29
−0.30 2.65+0.17

−0.19 4.22+0.46
−0.40

7 2 1536.95+0.52
−0.55 3.02+0.23

−0.28 4.76+0.47
−0.46

8 2 1616.92+0.79
−0.77 3.01+0.39

−0.41 5.08+0.77
−0.84

9 2 1698.11+0.48
−0.59 4.27+0.41

−0.39 6.79+1.17
−1.07

10 2 1778.87+0.36
−0.34 3.35+0.27

−0.28 5.13+0.66
−0.76

11 2 1859.79+0.47
−0.44 2.79+0.22

−0.23 5.37+0.50
−0.49

12 2 1943.64+0.56
−0.50 3.16+0.38

−0.30 5.87+0.79
−0.56

13 2 2024.59+0.79
−0.98 2.72+0.31

−0.30 5.91+0.70
−0.82

14 2 2106.98+0.34
−0.35 2.79+0.16

−0.15 6.37+0.52
−0.64

15 2 2188.53+1.01
−0.81 2.40+0.34

−0.32 6.64+0.97
−0.98

16 2 2264.53+0.43
−0.42 1.68+0.11

−0.12 6.60+0.57
−0.55

17 2 2353.13+0.88
−0.79 1.86+0.22

−0.24 7.27+1.11
−1.10

18 2 2436.78+0.71
−0.81 1.68 ± 0.20 7.51+1.29

−1.13

19 2 2519.35+1.18
−1.10 1.20+0.18

−0.19 7.97+1.21
−1.19
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