
DiamondSpin: An Extensible Toolkit
for Around-the-Table Interaction

Chia Shen
1
 Frédéric D. Vernier

2
 Clifton Forlines

1
 Meredith Ringel

3

1Mitsubishi Electric Research Labs

201 Broadway

Cambridge, MA, 02139, USA

{shen,forlines}@merl.com

2University of Paris 11,

LIMSI-CNRS, BP 133, 91403

Orsay, France

Frederic.Vernier@limsi.fr

3Stanford University

353 Serra Mall

Stanford, CA, 94305, USA

merrie@cs.stanford.edu

Abstract
DiamondSpin is a toolkit for the efficient prototyping of

and experimentation with multi-person, concurrent

interfaces for interactive shared displays. In this paper, we

identify the fundamental functionality that tabletop user

interfaces should embody, then present the toolkit’s

architecture and API. DiamondSpin provides a novel real-

time polar to Cartesian transformation engine that has

enabled new, around-the-table interaction metaphors to be

implemented. DiamondSpin allows arbitrary document

positioning and orientation on a tabletop surface. Polygonal

tabletop layouts such as rectangular, octagonal, and circular

tabletops can easily be constructed. DiamondSpin also

supports multiple work areas within the same digital

tabletop. Multi-user operations are offered through multi-

threaded input event streams, multiple active objects, and

multiple concurrent menus. We also discuss insights on

tabletop interaction issues we have observed from a set of

applications built with DiamondSpin.

Categories & Subject Descriptors: H.5.2

[Information Interfaces and Presentation]: User

Interfaces - Graphical user interfaces (GUI).

General Terms: Design, Experimentation.

Keywords: Tabletop Toolkit.

INTRODUCTION
Even though the idea of computational artifacts for co-

located collaboration has been proposed before [15,16],

only recently have advances in multi-user touch input and

display technologies, such as DiamondTouch [3],

SmartSkin [9], and DViT [14], opened up the possibility of

new form factors that enable research into face-to-face and

shoulder-to-shoulder interactions on direct manipulation

surfaces.

Our own research has focused on user interface design and

interaction techniques for multi-person tabletop

environments [11,12,13]. Tables are a familiar piece of

furniture commonly found in homes, offices, cafés, show

rooms, airport and train station waiting areas, and

entertainment centers. Tables provide a convenient physical

setting for people to meet, chat, look over documents, and

carry out tasks that require face-to-face collaboration.

Digital documents, however, are commonly used only on

single user desktop computers and handheld portable

devices, due to a lack of support for face-to-face around-

the-table applications.

Making computation disappear into the architectural space

is only one of the challenges in the design of a digitally

augmented tabletop environment – making the interactions

with a digital user interface on the table disappear into and

become a part of the human-to-human interaction and

conversation is a bigger challenge. In this paper, we

describe the unique challenges of multi-user tabletop

interfaces, and present a novel toolkit we have constructed,

called DiamondSpin, for building tabletop applications.

Our goal in creating the DiamondSpin toolkit is twofold: it

is meant to allow us to further explore fundamental issues

regarding the design of tabletop interfaces, and it is also

intended as a toolkit to enable others to quickly build multi-

user tabletop applications. DiamondSpin is currently being

freely licensed to academic researchers. DiamondSpin

provides a real-time polar to Cartesian transformation

engine that enables around-the-table interactions. It is a

versatile toolkit that allows third parties to develop

interfaces for collaborative interactions in ways that are not

possible with interactive surfaces today; thus, it allows

researchers to address a range of issues, as illustrated by the

various projects using it (described in the DiamondSpin

Applications section).

MOTIVATIONS AND BACKGROUND
Digitally augmented desks [22] support one-person tasks

such as writing, editing, calculating, and drawing. User

interface design of a tabletop environment is not merely an

extension of desktop systems – people usually sit around a

table facing each other as in Figure 1. Simply projecting a

conventional user interface onto a horizontal surface would

not take into account the unique affordances of tables.

Tables predate computers; as such, tabletop user interfaces

should preserve many of the familiar and useful properties

a physical tabletop affords and allow the natural interaction

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

CHI 2004, April 24–29, 2004, Vienna, Austria.

Copyright 2004 ACM 1-58113-702-8/04/0004...$5.00.

Figure 1. A meeting around a physical table (left) and

one around a digital tabletop application that was built

using the DimaondSpin toolkit (right).

that people usually carry out on physical tables, e.g., re-

orienting objects, passing documents around the table, and

spreading and piling documents. None of these

requirements are handled by conventional user interfaces.

Moreover, when the surface is horizontal, rather than

vertical, new interaction metaphors appropriate for

tabletops need to be created.

The real need for a toolkit to help push forward the

research and development of tabletop HCI became evident

through our experience in building the PDH tabletop user

interface [12], and from discussions with researchers in

various workshops [1,20]. Currently, it is very difficult for

a typical programmer or graduate student to create even the

most basic interface components that embody some of the

fundamental affordances of common tabletop interactions,

such as arbitrary positioning and orientation of documents

on the table, and multi-person concurrent operations. As a

result, many research pursuits are hindered by this lack of

support.

As a start, we examined the lessons from our experience in

implementing PDH, and the insights we gained from the

user study reported in [11]. During the course of designing

PDH, we also experimented with and developed

visualization and document layout techniques for a circular

tabletop [21]. Based on that previous research, we derived a

set of requirements for user interface and interaction

techniques that we believe are generic and fundamental to

many tabletop applications (Table 1).

One of the fundamental challenges we must address in

constructing a multi-user tabletop user interface is

providing real-time interactivity in the face of multiple

simultaneous input events and multiple concurrent object

manipulations. Conventional UI software is based on

rectangular displays for single-user usage scenarios. A

tabletop user interface is for multiple users interacting

concurrently and may not necessarily have rectangular

views. Thus, many of the display algorithms and image

composition algorithms [8] for optimized rendering must be

modified, and new architectural support must be designed.

The underlying architectural design of DiamondSpin

(presented in the next section) is one of the key

contributions in this respect.

Table 1. Fundamental tabletop UI functionality.

Requirement Examples

Visual document

management

Arbitrary directional orientation of

document placement.

Document layout.

Document control

and interaction

Visible controls allowing direct

document manipulation.

Direct passing of individual objects as

well as groups of objects among the

users around the table.

Manipulation Bare-hand, stylus and keyboard all

should be supported.

Rotational UI Managing user interface components

that are either rotatable or rotation-

sensitive (UI components that contain

text whose readability would be

affected if automatically rotated away

from the user, such as a menu bar).

Digital tabletop

layout

Creating and managing private and

public spaces.

Creating and managing multiple

virtual tabletops.

Multi-user support Multiple menu bars.

Concurrent multi-user interaction

techniques.

THE DIAMONDSPIN TOOLKIT
When designing DiamondSpin, we continuously strove to

separate application-related policy issues, which should be

left to the application builder, from mechanisms that are

basic facilities that DiamondSpin provides. The

DiamondSpin toolkit exposes UI functionality through a

well-defined API consisting of thirty Java classes and

interfaces. In this section, we first describe the architecture

that enables the fundamental functionality listed in Table 1.

We then present the API and sample application code to

illustrate the utility of DiamondSpin.

DiamondSpin Architecture
When multiple people gather around a table, there is no

single directional viewing angle or orientation that is ideal

for everyone present. At the heart of DiamondSpin is a

polar-coordinate system that enables continuous individual

document orientation among multiple people with arbitrary

viewing angles, as well as the rotation of the entire table

surface. Figure 2 shows the underlying architecture of

DiamondSpin. Input events are sent to a central tabletop

server that contains all the methods that are generic to a

tabletop system. These methods implement two engines for:

(1) real-time transformation of polar coordinates into a

standard transformation matrix for graphics context and

input events, (2) handling multi-layer multiple depth

display functions, and coordinating multiple threads and

tabletop views.

Transformation Engine
In a traditional GUI, it is very common to use a hierarchy

of components to subdivide the screen layout into smaller

sub-regions. This is possible because in a rectangular

interface, a rectangle can be divided into smaller rectangles

with each sub-region only operating on a local coordinate

system. There is only one common direction of orientation

for all displayed visual objects. Unlike an interface based

on a Cartesian coordinate system, a polar interface has no

predominant privileged direction for displayed documents.

There is one and only one center that is meaningful. All the

sub-regions must know where this center is at all times.

In DiamondSpin, we have created a framework to describe

every element in the display in terms of a polar distance

and a polar orientation. Our framework is comprised of two

key concepts: (a) Translation of the origin of the

conventional Cartesian display (usually at the top left or

bottom left corner) to the center of the tabletop display, and

(b) Three degrees of freedom (3 DOF) d, α, and β for each

element on the tabletop.

d and α are, respectively, the distance to the table center

and the orientation angle with respect to this center, while β

is the rotation angle of the element with respect to its own

rotation point. This rotation point can be its own center, or

can be some other point such as the point under the user’s

finger when she is moving the document. In Figure 3, we

illustrate two rectangular elements labeled “Document A”

and “Document B” in a polar coordinate space. Since their

α angles are different, their labels have different

orientations. With the introduction of the 3rd degree of

freedom, β, we enable the rotation of every element around

its own rotation point, as shown by the darker copies.

To compute the relative position and orientation of each

element, the translation from a position (d, α) into a

transformation matrix is carried out. Given d, α, and β, our

transformation engine carries out the following affine

transformation for each document on the table (T =

translation, S = scale, and R = rotation, superscript t =

tabletop, and e = document element.):

Tt
(width/2, height/2)◦St

 (-1, +1)◦Rt
(0, 0, α+ϕ) ◦Te

 (d, 0)◦Re
(0, 0, π/2+β)

◦Te
 (ElemWidth/2, ElemHeight/2)◦S(-1, -1)

Note that for user input events, we employ the same matrix

to compute the inverse transformation that translates the

input points from the Cartesian screen space into the

tabletop polar coordinate element space, in order to

determine the target document for an input event.

The three degrees of freedom, (d, α, β), enable

DiamondSpin to support tabletop-specific document

handling interactions. For example, DiamondSpin offers a

document passing metaphor where, in one motion, the user

can both push and rotate a document to the other side of the

table.

Figure 2: DiamondSpin System Architecture.

Figure 3: Two documents at distances dA and dB to the

center O, and at angles αA and αB. The rotation points

(xA, yA) and (xB, yB) are used for per-document rotation

(displayed at 3 gray levels for β=0; β=±10; β=±20).

We also provide three user-controlled options in our

framework for document positioning and orientation: (1)

Constrained to face the outside borders of the polygonal

tabletop, (2) Facing one common direction, achieving a

rectilinear visual layout effect that we call “magnetization”,

and (3) Freely re-oriented to any arbitrary direction by the

user. The first two cases compute β automatically according

to d and α. For example, in case 2, the common direction

uses β=-α+ϕ (where ϕ is a global angle used to record the

rotation of the entire tabletop). It is also easy to use

intermediary values between β = -α+ϕ and β=0 to re-orient

documents in a continuum.

Multi-Layer Multi-Thread Display Management
Around-the-table applications put high demand on the

display management. As we allow a user to rotate the entire

tabletop surface with all of its contents, we must also

manage those UI components that should remain rotation

Layer 0:

Real-Time

Polar to Cartesian

Transformation

Engine

Multiple

layer

Layer 3:

Background

 Layer 2:

One view

Layer 1: One or more

selected elements

Multiple threads

Multiple views

Users

Input Events

Touch events
User info
Digital ink

Rotation sensitive

UI components

sensitive [4] (i.e., not to be rotated with the entire tabletop

surface), such as menu bars. When multiple users drag and

drop objects simultaneously, the tabletop interface needs to

efficiently manage the display as it refreshes large numbers

of pixels. Moreover, because DiamondSpin allows text and

image documents to be rotated at arbitrary angles, they

must be anti-aliased for quality and readability - a

computationally demanding task for an interactive system.

Given these tabletop application requirements, sequentially

servicing input events will not provide real-time response.

Toward this end, DiamondSpin implements a multi-layer

representation with a multi-depth multi-thread repaint

architecture as shown in Figure 2.

The lowest layer, i.e., layer 3, is composed of non-

interactive components (e.g., a background image such as a

grid, a map, or a tablecloth texture). Layer 2 is a list of

components that can potentially become active. Layer 1

consists of one or more active components. These are the

documents or the graphical components that are currently

receiving the users’ input events, e.g., the documents being

passed on to someone else at the other side of the table, or a

modal dialog box from which a user is selecting options. To

reflect a display change in these components, it is sufficient

to merge a refreshed version of them with the other two

layers. Finally, rotation-sensitive components, such as

menu bars, reside in Layer 0. Each component in a layer is

a displayable graphical object with attributes describing its

properties.

Together with the multi-layer representation, we also

separate the treatment of input event handling and the

repaint actions using two independent asynchronous

threads. One thread only modifies the parameters of the

tabletop element that the current input event is operating

on. These parameters are the position of an element (in

polar coordinates, of course), the rotation angle of the table,

the active view in a multi-view environment, and the size of

an element. In parallel another thread repaints the UI at a

certain depth according to the input events.

This architecture allows DiamondSpin to selectively refresh

part of a tabletop display, thus implementing efficient user

interaction schemes and allows an application to use only

the layers needed. During most screen updates, only a few

actively manipulated components in layer 1 need to be

repainted. When a user rotates the entire tabletop surface,

we temporarily merge the components in Layers 1 and 2

(but not Layer 0) into one composite texture image to allow

the rotation of the entire tabletop in real time.

Discussion of Implementation
DiamondSpin is implemented in pure Java 2D with JAI

(Java Advanced Imaging) and JMF. Java is platform-

independent, which is crucial for providing a portable and

extensible toolkit. DiamondSpin offers mouse input events

for conventional input devices. However, the more

interesting collaborative activities can only be realized with

Figure 4: The DiamondSpin framework can display

Java Swing components at an arbitrary orientation.

the availability of multi-user input devices. DiamondSpin

provides explicit support to run on DiamondTouch [3], a

multi-user, multi-touch input surface with unique user

identification capabilities.

We have designed a mechanism to transform Java Factory

Components into DiamondSpin’s polar coordinate system.

For example, we have a version of the JComboBox that can

be displayed at any orientation, as shown in Figure 4.

Rotation of GUI elements in DiamondSpin is achieved

through replacement of location functions with polar

coordinate computation as well as subclassing of existing

Swing Java classes that require graphical popup

(DSComboBox, DSMenubar). In addition we provide a

useful method to analyze a tree of UI components and

replace unwanted non-rotatable elements by our subclassed

components. We leverage off the efficient affine

transformation functions that Java provides.

Concurrent user input events are handled by multiple

threads, one per user with a unique thread name.

DiamondSpin input events are subclasses of Java mouse

events with additional fields such as user ID. These

extended events are delivered by the toolkit. The toolkit

provides the first level of event handling by carrying out

the Cartesian to polar coordinate transformation with the

inverse matrix described in the Transformation Engine

section. This transformation identifies the correct target

object on the table for the input event (e.g., a menubar, a

frame, or the background.). If the object is a DiamondSpin

extended Java element, the MouseEvent is cast into a more

generic DiamondSpin event type (e.g., TouchEvent) in

order to access those tabletop specific fields such as the

user ID. Otherwise, the receiver of the event is a standard

Java Swing element (or a Java bean), and it can simply

generate component specific callbacks (i.e.

actionPerformed() for a JButton).

DiamondSpin API
In this section, we describe a few of the most important

classes and then present a sample code segment using the

DiamondSpin API to produce a rotated frame.

DSContainer is the main class that embodies most of the

functions in the central server described in the last section.

It provides methods for input event handling and

repaint/refresh of the display, methods to handle document

orientation by allowing programmers to specify the angle at

which an element should be rotated, and methods to handle

“magnetization” which allows the developer to specify a

global angle to which all documents should align

themselves. The DSContainer also provides the ability to

rotate the entire display using the following method:

DSContainer.startRotateTable(angle,userID);

DSView is the class that is used to create and manage

multiple views within the same application. It is also used

to create multiple personal and shared work areas within

the same virtual tabletop display. A view is an object

instantiated by DSContainer. Multiple views allow an

application to layout, present, and visualize the same

content with a different background. A view receives input

events and executes repaint orders from the DSContainer. It

provides methods to set a different background image, pan,

scroll or rotate the view, and open a contextually

appropriate popup menu on an element or on the

background.

DSFrame, DSPanel, and DSWindow are subclassed

equivalents of JFrame, JPanel, and JWindow (with or

without a titlebar). It replaces location functions with polar

coordinate ones and adds angle of orientation and zoom

factor functionalities. We also provide optional attributes to

be incorporated into each component such as colored

shadow generation and finger-size corner handles (as

shown in Figure 4 and 5) for resizing or re-orientation.

Application developers may use these corner handles plus a

shadow as the visual feedback to indicate that a particular

document is actively being selected and used.

DiamondSpin provides two types of menus - menu bars and

popup menus; they can be used in parallel.

DSMenuBar contains any number of user-defined menu

items (icons or text). A menu item can itself be another

pull-down menu. As users slide menus around the borders

of the tabletop, a pull-down menu often becomes a pull-up

menu!

DSPopupMenu, the context-sensitive menu, depends on

the location from which it is invoked. For example, a popup

menu on a particular document may contain menu items

directly related to that document such as a hyperlink

selection. A popup menu on the background may contain

actions that would affect the layout on the table. A popup

menu can be repositioned and reoriented and displays an

alpha-blended visual cue connected to the root of its

invocation location, as shown in Figure 5d.

Finally, DiamondSpin also offers digital ink with the

DSStroke class, and a popup keyboard with the

DSKeyboardPanel class.

 DSFrame dsf = new DSFrame("Sample DSFrame", dsc);
 dsf.setVisible(true);
 dsf.setSize(new Dimension(300, 300));
 dsf.setCorners(true);
 dsf.setLocation(.4f, (float)-Math.PI/2);
 dsf.setBeta((float)Math.PI/4);
 dsc.setDragObject(dsf, ID);
 dsc.repaint();

Figure 5. Sample code (top) using the DiamondSpin API

to create a rotated frame (bottom).

The sample application code in Figure 5 assumes an

instance of DSContainer, dsc, has been created. We first

create an instance of DSFrame. The method setCorners()

tells the frame to display DiamondSpin's interactive handles

to afford rotation and resizing. Next, we choose an initial

location for this frame in our polar coordinate system by

setting d and α with setLocation() and β with setBeta().The

setDragObject() method makes this frame the current,

active object for user ID. Finally, we flag that the

DSContainer to repaint. The result of this program is

depicted in Figure 5. Now, the DSFrame can be

manipulated (moved, rotated, resized, etc.) freely within

this view.

In the next section, we illustrate how some of the

applications built with DiamondSpin have extended the

toolkit’s capabilities.

DIAMONDSPIN APPLICATIONS
We briefly discuss five applications constructed using the

DiamondSpin toolkit. These applications demonstrate the

variety of tabletop user interfaces that the DiamondSpin

toolkit can facilitate. Two of the five applications, the

Collage & Webpage Builder and the PoetryTable, use

surface features of DiamondSpin, and thus were rapidly

prototyped within one or two days’ time. The other three

applications involve more elaborate extensions of the

DiamondSpin core classes.

e f g h
Figure 6. Table for N with (a) rectangular tabletop, (b) a tabletop with 1 shared center, 4 personal work areas, and 2

popup menus, (c) a rotatable circular tabletop, and (d) a rectangular tabletop with continuous document orientation.

Other applications include: (e) Opportunisitc Browsing Table, (f) UbiTable with laptops associated with personal

sides of the table, (g) Tabletop Collage and Webpage Builder, and (h) the PoetryTable.

Table for N
This first application (Figure 6(a)-(d)) is used for a small

number of people (two to four) sitting around a table

collaboratively creating, sketching, annotating,

manipulating, and browsing various types of documents,

including text, html, images and video clips. The

application extends DSView and provides online dynamic

choice among five polygonal views of the tabletop: a

rectangular tabletop as “Table for 2” and “Table for 4”

allowing 180 or 90 degree re-orientation of contents

respectively, an octagonal tabletop allowing a 45 degree re-

orientation angle, a rectangular but continuous tabletop

allowing 360 degree continuous orientation of contents, a

circular rotatable tabletop, and a tabletop partitioned into

several distinct work areas.

An Opportunistic Browsing Coffee Table
This is part of an ongoing joint research project with

psychologists and HCI researchers on information

opportunistic browsing [2] using ambient computing at the

Department of Computation of the University of

Manchester Institute of Science and Technology,

Manchester, UK and Department of E&EE at Imperial

College. The environment for opportunistic browsing is a

coffee table (Figure 6e) constructed with DiamondTouch

[3] hardware and DiamondSpin software. A continuous

stream of information items moves slowly along a circular

path across the table surface. If an information item (e.g.,

general news items, local information and announcements)

is interesting to a user, he can move it into the center

whereupon more detail becomes available for closer

examination. A software agent associated with the table

senses the nature of the items selected and appropriately

modifies the content of the continuous stream of displayed

items. The implementation of the coffee table only uses one

DSView. The view handles a list of elements in the circular

path. The DiamondSpin application only has to rotate the

view through the DSContainer’s setAngle method and add

new elements in the view when the table has rotated for a

specified angle.

UbiTable
“UbiTable” [13] is a multi-device application built using

the DiamondSpin toolkit (See Figure 6f). People can walk

up to a UbiTable with their laptops and/or USB devices

such as cameras. Users can collaboratively layout, annotate,

and mark up content from their own devices on the

UbiTable. They can also easily exchange content among

laptops and USB devices with others sitting around the

table. UbiTable extends both DSContainer and DSView.

On UbiTable, each user is provided with a private work

area, while the center of the table is a shared area. Thus

UbiTable extends DSView to include sub-views. Each sub-

view has different types of behavior with respect to

document handling and facilities offered. For example,

some sub-views have a copier facility, while others contain

portals to transfer data to and from laptops.

A Tabletop Collage and Webpage Builder
Collage Builder (Figure 6g) is a direct-manipulation

tabletop design and layout application, allowing users to

combine images and text at arbitrary sizes and orientations,

and to export this work as a web page that uses the collage

as an image map linking from each of the collage

components to a full-sized version of the corresponding

source documents.

The Collage Builder application was created by a graduate

student in one day using the libraries of DiamondSpin. The

collage is derived from the DSElementGroup class in

DiamondSpin, which provides facilities for piling several

objects into a single unit. The Collage Builder extends this

a b dc

class to provide facilities for independent positioning and

orientation of the items within the group, and to allow the

collage to be saved as a web page.

PoetryTable
PoetryTable (Figure 6h) is an educational game, inspired by

the popularity of “magnetic poetry”

(http://www.magneticpoetry.com). The game allows up to

four simultaneous users to combine a set of English or

Japanese word tiles to create poetry. The word tiles are

automatically rotated to face each side of a rectangular

tabletop. Popup menus supported by DiamondSpin give

users the option to make duplicates of popular word tiles, to

add a suffix or prefix to a particular word, and to save a

screenshot of the game in order to preserve their poems. A

graduate student created the game over a period of two

days using the DiamondSpin toolkit.

One of the most important classes in the PoetryTable game

is PoetryGenericView, a subclass of the DiamondSpin

toolkit’s DSView, which was extended to include the code

for the PoetryTable popup menus (e.g., add suffix, add

prefix, etc.). The other major class is PoetryMagnet, a

subclass of the DSPanel, which represents the word tiles

that are the core of the game.

DISCUSSION OF USER EXPERIENCE
The applications described in the last section illustrate the

basic capabilities and extensibility of DiamondSpin.

Through the experience of using DiamondSpin to develop

applications for touch sensitive, multi-user shared tabletops,

many interesting interface design and interaction technique

issues have become apparent. The following are a few of

them that are part of our current investigation.

Conflicts, even though often unintentional ones, among

users are an issue that DiamondSpin has exposed – it is not

obvious what should happen if, for instance, one user is

interacting with a document while another user chooses to

“magnetize” all the documents towards her side of the

table.

In a traditional single-user interface, a document is selected

when its title bar and frame are highlighted. This metaphor

may not translate directly into a tabletop UI – we have

observed that users of Table for N need a metaphor that

allows them to “drop” (i.e., put down) a document onto the

table, while the “selection” metaphor requires them to

actively de-select their current object in order to drop it.

DiamondSpin’s primitives for indicating which documents

are currently active provide a good mechanism enabling

further exploration of this issue.

When building applications that use DSPopupMenus to

present contextually relevant choices, it is not clear what

the best way is to invoke these menus. So far we have

experimented with both dwell time and double-tap. This

has implications for designing command invocation

methods in general on a touch-sensitive surface.

DiamondSpin offers a document passing metaphor where,

in one motion, the user can both push and rotate a

document across the table. More than one method exists to

implement the underlying constraint function of the passing

function, resulting in different user experience when a user

slides a document around the table. We are conducting user

studies to examine this interaction issue.

RELATED WORK
In the past few years, there has been a proliferation of

beyond-the-desktop research projects looking at how to

integrate the design of computation into architectural

spaces and furniture, including tabletops.

DiamondSpin provides support for the class of shared

interactive surfaces called Single Display Groupware

(SDG), which was first described in [16]. Many previous

research projects have examined the design, interaction

issues and user experience for various forms of SDG,

mostly in the form of shared desktops or whiteboards

[5,10,15,17]. DiamondSpin explores interaction techniques

for SDG on a new form factor that allows simultaneous

multi-person direct touch-based manipulation of

information.

The coffee table design in the Living Memory (LiMe)

project [7] employs two semi-circle tabletop displays on

each coffee table. Each semi-circle displays all the

information in a fixed direction. LiMe also explores

tangible artifacts. Unlike DiamondSpin, LiME does not

explore tabletop interaction techniques for document

manipulation.

The InteracTable [17] and the ConnecTable [18] in the i-

Land project supply a rectangular surface to be shared

among multiple users in office environments, as well as

other office furniture including large interactive

whiteboards. The issue of orientation and shuffling of

documents is considered very briefly. There does not

appear to be support for arbitrary viewing angles, multiple

virtual tabletops or subdivided work areas.

DigitalDesk [22] was a physical desk augmented with

camera-based vision and projector capabilities so that the

physical and electronic desktops are merged into one.

DigitalDesk was designed for use by a single person, while

our work explores facilitating simultaneous, multi-user

interfaces.

MID (Multiple Input Devices) Java Package [6] and

SDGToolkit [19] are toolkits created to help building

Single Display Groupware. They both offer multiple input

devices such as multiple mice or keyboards for a single

display. However, in order to facilitate face-to-face

interaction where documents can be handled anywhere, at

any orientation and in any direction around the table, we

must go beyond merely projecting a traditional interface

onto a horizontal display, and rotating only the mouse

cursors towards the user sitting at a particular side of a

table. In this regard, DiamondSpin is the first vehicle

enabling true face-to-face interaction research exploration.

CONCLUSION
We have presented the DiamondSpin Toolkit, including the

toolkit’s architecture and API. DiamondSpin provides a

novel real-time polar to Cartesian transformation engine

that enables around-the-table interactions with arbitrary

document positioning and orientation on a tabletop surface.

Our goal is to preserve the simplicity and informality of

around-the-table interaction while supporting tabletop

applications for small groups engaged in face-to-face

collaborative activities. The approach taken in

DiamondSpin has enabled us to design new tabletop

interaction metaphors, such as rotating the entire tabletop,

thus rotating all the documents within it, the passing

metaphor that integrates push and rotate into one motion,

and laying out documents around the perimeter of the

tabletop.

DiamondSpin has proven to be a versatile toolkit to study,

build, and experiment with interactive tabletop applications,

and to explore open research questions. As we pursue the

study of multi-user face-to-face collaboration around the

table with DiamondSpin, we will, together with the other

users of DiamondSpin, further develop conceptual models

and UI components that can be incorporated into the

toolkit. The affordances of a digital tabletop are a new

territory; we have much exploration ahead of us.

ACKNOWLEDGMENTS
We would like to thank Kathy Ryall, Mike Wu for the

many wonderful discussion sessions, Yvonne Rogers for

her helpful comments on an earlier version of this paper.

We are grateful for all the reviewers’ critical comments

which have strengthened the paper.

REFERENCES
1. ACM CSCW 2002 Workshop on Co-located Tabletop

Collaboration: Technologies and Directions. 2002.

2. de Bruijn, O. and Spence, R., “Serendipity within a

Ubiquitous Computing Environment: A Case for

Opportunistic Browsing”, Proc. UbiComp 2001, 362-

369.

3. Dietz, P. and Leigh, D., “ DiamondTouch: A Multi-User

Touch Technology”, Proc. UIST 2001, 219-226.

4. Fitzmaurice, G.W., Balakrishnan, R., Kurtenbach, G.,

Buxton, B., “An Exploration into Supporting Artwork

Orientation in the User Interface”, Proc. CHI 1999,

167-174.

5. Guimbretiere, F., Stone, M., Winograd, T., “Fluid

Interaction with High-Resolution Wall-Size Displays”,

Proc. UIST 2001, 21-30.

6. Hourcade, H.P., Bederson, B.B., “Architecture and

Implementation of a Java Package for Multiple Input

Devices (MID)”, HCIL Tech Report No. 99-08, 1999.

7. Kyffin, S. The LiME Project. Phillips brochure.

http://www.design.philips.com/lime/download/brochure

.pdf.

8. T. Porter and T. Duff, "Compositing Digital Images",

Computer Graphics (Proc. SIGGRAPH), Vol 18, No 3,

July 1984, p. 253-259.

9. Rekimoto, J. “SmartSkin: An Infrastructure for

Freehand Manipulation on Interactive Surfaces”, Proc.

CHI 2002, 113-120.

10. Russell, D.M, Drew, C., Sue, A., “Social Aspects of

Using Large Public Interactive Displays for

Collaboration”, UbiComp 2002. LNCS 2498. 229-236.

11. Shen, C., Lesh N., Forlines C., Vernier F., “Sharing and

Building Digital Group Histories”, Proc. CSCW 2002,

324-333.

12. Shen, C., Lesh, N.B.; Moghaddam, B.; Beardsley, P.A.;

Bardsley, R.S., “Personal Digital Historian: Use

Interface Design”, Proc. CHI 2001 Extended Abstracts,

29-30.

13. Shen, C., Everitt, K.M.; Ryall, K., “UbiTable:

Impromptu Face-to-Face Collaboration on Horizontal

Interactive Surfaces”, UbiComp 2003. LNCS 2864.

281-288.

14. SMARTTech, “Digital Vision Touch Technology”,

White Paper, http://www.smarttech.com/dvit/. 2003.

15. Stefik, M., Foster, G., Bobrow, D.G., Kahn, K.,

Lanning, S., Suchman, L. “Beyond the Chalkboard:

Computer Support for Collaboration and Problem

Solving in Meetings”, ACM Comm, 30(1), 32-47.

16. Stewart, J. Bederson, B., Druin, A., “Single Display

Groupware: A Model for Co-present Collaboration”,

Proc. CHI 1999, 286-293.

17. Streitz, N.A., Tandler, P., Muller-Tomfelde, C.,

Konomi, S. “i-LAND: An Interactive Landscape for

Creativity and Innovation”, Proc. CHI 1999, 120-127.

18. Tandler, P. Prante., T., Muller-Tomfelde, C., Streitz, N.,

Steinmetz, R. “ConnecTables: Dynamic Coupling of

Displays for Flexible Creation of Shared Workspaces”,

Proc. UIST 2001, 11-19.

19. Tse, E., Greenberg, S., “SDGToolkit: A Toolkit for

Rapidly Prototyping Single Display Groupware”, Poster

in ACM CSCW 2002.

20. UbiComp 2002 Workshop on Collaboration with

Interactive Walls and Tables. 2002.

21. Vernier, F, Lesh, N., Shen, C., “Visualization

Techniques for Circular Tabletop Interfaces”, Proc. AVI

2002, 257-263.

22. Wellner, P., “Interacting with Paper on the Digital

Desk”, ACM Comm, 36(7), 1993, 86-96.

