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ABSTRACT Diabetes is one of the leading fatal diseases globally, putting a huge burden on the global

healthcare system. Early diagnosis of diabetes is hence, of utmost importance and could save many lives.

However, current techniques to determinewhether a person has diabetes or has the risk of developing diabetes

are primarily reliant upon clinical biomarkers. In this article, we propose a novel deep learning architecture

to predict if a person has diabetes or not from a photograph of his/her retina. Using a relatively small-sized

dataset, we develop a multi-stage convolutional neural network (CNN)-based model DiaNet that can reach

an accuracy level of over 84% on this task, and in doing so, successfully identifies the regions on the retina

images that contribute to its decision-making process, as corroborated by the medical experts in the field.

This is the first study that highlights the distinguishing capability of the retinal images for diabetes patients

in the Qatari population to the best of our knowledge. Comparing the performance of DiaNet against the

existing clinical data-based machine learning models, we conclude that the retinal images contain sufficient

information to distinguish the Qatari diabetes cohort from the control group. In addition, our study reveals

that retinal images may contain prognosis markers for diabetes and other comorbidities like hypertension

and ischemic heart disease. The results led us to believe that the inclusion of retinal images into the clinical

setup for the diagnosis of diabetes is warranted in the near future.

INDEX TERMS Convolutional neural network, deep learning, diabetes, machine learning, Qatar, Qatar

Biobank (QBB), retina.

I. INTRODUCTION

Diabetes mellitus or diabetes is considered as a collection

of metabolic conditions that can predominantly be described

by hyperglycemia rising from the deficiency in insulin dis-

charge [1]. The prolonged hyperglycemia of diabetes is

correlated with long-term impairment and collapse of heart,

kidneys, and microvascular circulation of the retina [2].

Among the diabetic individuals in the USA, almost 30%

of them have the tendency of growing diabetic retinopathy

(DR), a common complication for diabetic patients which

may lead to blindness [3], [4]. Diabetes may adversely affect

the vascular system of the retina causing structural change

of it [2]. As the changes in vascular structure in retina can
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provide visual cues for diabetes, most of the clinical guide-

lines recommended annual retinal screen for the diabetic

patients through retinal fundus images or dilated eye exam-

inations [5], [6]. Alternatively, these retinal images could

be used to detect diabetes as well, but it requires subjective

judgement from the ophthalmologist, and it might be time

consuming as well. The human oriented subjective judgement

could be avoided if we could implement the automation

of retinal image-based diabetes diagnosis in clinical setup.

Such automation could alleviate the workload of the oph-

thalmologist as well as screen a large number of patients

objectively within a short amount of time [7]. Though there

are multiple studies [8], [9] that aim at detecting diabetic

retinopathy from retinal images, none addressed the task of

detecting diabetes using retinal images from a holistic point

of view. In fact, a significant number of studies focused on
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the diagnosis of diabetes mainly based on clinical markers

e.g., HbA1c, Glucose [10]. Therefore, there is an emerging

need for novel, cost-effective, non-invasive and fast diabetes

screening solutions that could be implemented easily.

Diabetes in Qatar is the third leading cause of death in

its population [11] and one of the topmost five factors in

healthcare that affects its economy [12]. The estimated direct

and indirect cost for all noncommunicable diseases, including

diabetes, in Qatar were $36.2 billion in 2013 [12]. So, early

detection of diabetes is of key importance for Qatar to prevent

the spread of this disease. There exist many studies, based

on Qatar, for the diagnosis and the potential risk factors

of diabetes. Shi and Abou-Samra showed that magnesium

deficiency is a very common symptom in the Qatari dia-

betic cohort [13]. Nazeemudeen et al. showed that the Qatari

diabetic cohort is following the food and drink guidelines,

but they need to improve the level of physical activities in

their life [14]. Awad et al. also showed that physical activity

could be considered as an intervention to reduce the diabetes

incidence in Qatar [15]. Previously, we developed a machine

learning (ML) model which considered 237 clinical mea-

surements based on a Qatar Biobank (QBB) diabetic cohort

to predict diabetes groups with over 78% accuracy [10].

Ullah et al. considered different clinical measurements and

biochemical markers from QBB to develop ML model which

discovered magnesium, chloride, insulin as potential risk

factors for diabetes in a Qatari diabetes cohort [16]. There

exist many studies ( [7], [17]–[25]), though not based on

Qatar, which focused on DR detection and grading (e.g.,

‘‘mild’’, ‘‘moderate’’, ‘‘severe’’, ‘‘proliferate’’) using deep

learning-based techniques. ThoughDR is the leading cause of

vision loss for the diabetic patients, visual impairment might

be caused by other retinal and non-retinal problems, like

cataract, glaucoma, macular degeneration, ischaemic optic

neuropathy etc. [26]. So, the inclusion of retinal images in

diabetes diagnosis will add more insights for better treatment

plan of the diabetic patients. But not a single study exists,

as per the best of our knowledge, on the diagnosis of diabetes

as a disease from a holistic view based on retinal images in

Qatar. To fill this gap, we propose DiaNet, a Convolutional

Neural Network (CNN)-based approach, to solve the problem

of estimating if a person has diabetes given only a photograph

of his/her retina—specifically, RGB fundus photography. It is

important to emphasize that our goal is more general, i.e., dif-

ferentiating between diabetic and non-diabetic retinal images,

the former of which may include both DR and non-DR cases.

While existing studies (mentioned above) mainly focused on

detecting DR grading, our study is unique in the sense that

it aims to predict diabetes from retinal images irrespective of

the existence of DR.

We formulate the problem as a supervised learning task,

specifically, a classification problem. This entailed estimat-

ing the conditional probability distribution P(D|I, w) of

the label D indicating whether a person has diabetes or

not given the input I, the retinal photography of the per-

son and w, the parameters of the probability distribution.

These parameters are estimated using a data-driven approach

by iteratively minimizing a loss function L(Y, Y’) param-

eterized on the actual label Y, and the estimated label Y’

computed using the current estimation of the parameters. The

proposed computational workflow consists of multi-stage

fine-tuning of a neural network using multiple retinal image

datasets which yields a superior performance compared to

that of a network trained only the target dataset, which can be

attributed to its smaller size. Our contributions in this paper

can be summarized as follows:

1) We proposed a novel method to predict whether a

person has diabetes or not from an image of his/her

retina and introduced a multi-stage CNN-based model,

DiaNet for the purpose.

2) We introduced a novel dataset for diabetes detection

containing retinal images from 492 control and diabetic

patients from Qatar.

3) We performed an extensive set of experiments to show

that a small dataset is sufficient for diabetes detection

from retinal images in order to reach a reasonably high

accuracy using the proposed approach.

II. MATERIALS AND METHODS

In this section, we discuss in detail the process involved in

the collection, curation, and pre-processing of the dataset as

it pertains to this work and the development of our proposed

solution for the problem at hand. Our proposed approach uses

two datasets to achieve state-of-the-art in detecting diabetes

from retinal images. The larger of these datasets contains

retinal images from patients with different stages of DR,

while the other, smaller dataset, contains retinal images from

diabetic patients and a control group. We describe the smaller

dataset first since it is more closely related to the goal of our

work and is also one of the contributions of this paper.

A. THE QBB RETINA-IMAGE DATASET

This studywas conducted under the regulation of theMinistry

of Public Health, Qatar. All procedures were approved by the

Institutional Review Board (IRB) of Hamad Medical Corpo-

ration, Qatar and only de-identified images were collected

from QBB.The dataset consists of retinal images from a

diabetes cohort of size 246 and a control group of size 246.

The medical practitioners interviewed all the participants at

QBB to collect their medical and family history, lifestyle,

and their habitual factors. Then both the diabetes and the

control groups were determined with the help of QBB med-

ical practitioners and nurses. The diabetes group was free

from self-reported diabetic status or HbA1c% >= 6.5. The

control group was free from diabetes, obesity, and cardiovas-

cular disease. All the subjects from the cohort were Qatari

nationals. The cohort was evenly distributed based on male

and female gender (i.e. 50% each) for both groups. Topcon

TRC-NW6S retinal camera was used at QBB to capture the

‘‘microscopic’’ features of the optic nerve and macula from

the participants. The details of the data collection protocol
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FIGURE 1. A set of retinal images from the QBB dataset is shown in (a), while (b) shows the number of participants with each of the four types of image
availability configuration: (left, right) × (macula-centered, disc-centered). Most participants had both macula-centered and disc-centered images from
both eyes.

FIGURE 2. Few examples from the EyePACS dataset. Columns in montage (a) show three randomly selected retinal images from each of the five DR
gradings. The bar chart in (b) shows the distribution of image counts for the five different DR gradings in the dataset.

can be found in [27], [28]. It is important to emphasize

that in QBB, DR was not evaluated or graded at all for the

participants. So, the participants from QBB may or may not

have DR. The dataset is not publicly available in accordance

with the Qatar Biobank data-sharing policy.

The QBB dataset doesn’t contain the same number

of images for each participant – there were at most

two types of images from the left and right eyes:

(a) macula-centered images, and (b) disc-centered images.

There were 1852 images in total from 492 participants. The

mode of the original image sizes was 3696 × 2448 pixels.

Figure 1 shows some randomly selected images from the

QBB dataset, and the patient counts for each type of retinal

image count in the dataset.

B. THE EyePACS DR DATASET

We also used existing retinal images from the EyePACS

dataset [29] to train models. The EyePACS dataset con-

tained over 80,000 retinal images and the corresponding

labels indicating one of the five different gradings of diabetic

retinopathy: ‘‘none’’, ‘‘mild’’, ‘‘moderate’’, ‘‘severe’’, and

‘‘proliferative’’ based on the severity of diabetic retinopathy.

Figure 2 shows some samples from the dataset and the num-

ber of images in each category.

C. IMAGE PRE-PROCESSING AND AUGMENTATION

We applied multiple pre-processing and data augmenta-

tion techniques on our dataset to increase the robustness

of our approach. We adopted and slightly modified the

pre-processing steps used by the winning solution [30] of

the Kaggle Diabetic Retinopathy Detection competition for

DR staging considering the EyePACS dataset. Specifically,

the following steps were performed in the pre-processing

stage. We first extracted the circular region from each image,

then resized it so that the radius of the retina is 300 pixels.

In the next step, we cropped the outer 10% to eliminate the

border-noise followed by a subtraction of the local mean from

a 4 × 4 pixel neighborhood, and finally, placed the cropped

retina in dark background inside a square-shaped image with

tight borders. This sequence of pre-processing steps trans-

formed each image in our dataset from a varying sized image

to a 570× 570 image with a black background so that all the

pre-processed images are aligned with each other and have

a similar background. For data augmentation, we applied

random horizontal flip, and random brightness and contrast

perturbation. We performed the same pre-processing and

augmentation steps on retinal images from both the QBB

and the EyePACS dataset. Figure 3 shows a few example

preprocessed images from the QBB dataset.

15688 VOLUME 9, 2021



M. T. Islam et al.: DiaNet: A Deep Learning Based Architecture to Diagnose Diabetes Using Retinal Images Only

FIGURE 3. A few example images from the QBB dataset before and after pre-processing. The first and third columns show the raw images before
pre-processing, while the columns next to them (second and fourth) show the corresponding images after pre-processing.

FIGURE 4. A high-level view of the multi-stage fine-tuning approach for training DiaNet. The top left model (M0) is a randomly initialized DenseNet-121.
Training M0 on the ImageNet dataset yields M1, which is capable of image classification. Adding a few extra layers and fine-tuning it in on the EyePACS
retinal image dataset gives us M2; a model with retinal image understanding capability. Finally, fine-tuning M2 on the QBB dataset results in our
proposed model (M3) for diabetes detection from retinal images.

D. DEVELOPMENT OF DiaNet CONSIDERING EyePACS

AND QBB DATASET

1) PROPOSED APPROACH

To develop DiaNet, we start with a CNN model M1 that

has already been pre-trained on the ImageNet [31] dataset.

We then augment the network with a few additional layers

before the final layer to increase its ability of understanding

more complex patterns from the data. In order to imbue

this augmented network with retinal image understanding

capabilities, we first fine-tune it on a dataset for the DR

detection task, which is defined as the binary task of iden-

tifying whether a person has DR or not. At the end of this

fine-tuning stage, we have a model M2 that is capable of

distinguishing between DR and non-DR retinal images with a

reasonably high accuracy. However, our goal is more general,

i.e. differentiating between diabetic and non-diabetic retinal

images, the former of which includes both DR and non-DR

cases. To this end, we take themodelM2 and further fine-tune

it on the diabetes dataset related to our target task that con-

tains retinal images from non-diabetic subjects and diabetic

subjects with and without DR. This gives us M3, a model

that can identify diabetic and non-diabetic patients from their

retinal images. Our proposed model, DiaNet, used DenseNet-

121 [32] as the base CNN. Figure 4 shows an overview of this

multi-stage fine-tuning approach.

2) NETWORK ARCHITECTURE

Our proposed approach is based on the popular image-

classification CNN called Dense Convolutional Network,

known as DenseNet [32]. This architecture allows training
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FIGURE 5. The proposed architecture of DiaNet consists of a DenseNet-121 backbone and a few additional layers consisting of a pair of pooling layers
followed by three composite layers each consisting of primarily a sequence of batch normalization (BN), dropout (Dr), linear (Lin), and a ReLU activation
layer. The final layer contains a single neuron indicating the predicted label (diabetic/non-diabetic). Detailed configurations of these layers can be found
in Table 1.

models that are much deeper than AlexNet [33] or VGG [34],

and differs from ResNet [35] in the manner in which

the feature maps from the previous layers are combined.

In ResNets, feature maps are combined downstream using the

addition operation, which means feature maps are summed

element-by-element along the channel (feature map) dimen-

sion, while in DenseNet, they are concatenated, along the

same dimension. This allows a layer in DenseNets to have

access to the features from all the previous layers, which

aids in improving its performance as decisions can be made

based on features extracted from the input image at different

scales. We used the 121-layer variant of DenseNet which

consists of four dense blocks due to its superior performance.

In spite of the network being 121-layer deep, overfitting was

not an issue due to (i) the dense connections themselves acting

as regularizers [32] and (ii) counter-intuitively, the network

having less parameters compared to a non-dense CNN [32].

The vanilla DenseNet-121 network trained on ImageNet has

1,000 neurons in the final layer, corresponding to the number

of labels in the dataset. Since diabetes detection is a binary

task, we needed to change the final layer into a 2-neuron layer.

Additionally, we also found that adding a concatenation of

global average pooling layer and a global max pooling layer

followed by a series of batch normalization, dropout, linear,

and ReLU layers before the final linear layer boosted the

performance by over 2%. This additional layer configuration

is inspired by the approach used by fastai [36] for fine tuning

its models. Table 1 shows the output shape and number

of parameters for each added layer. We used the method

introduced in [37] to initialize these layers. Figure 5 shows

a detailed diagram of our proposed network architecture; we

call it DiaNet.

E. DiaNet AND ITS VARIANTS

To evaluate the performance of our proposed approach and

establish baselines we developed several other models, which

comprises of end-to-end CNNs and CNNs combined with

Gradient BoostingMachines (GBMs). Specifically, we devel-

oped two end-to-end models: DiaNet, and a variant of it,

DiaNet_Res50 by replacing its backbone (DenseNet-121)

with a ResNet50 instance pre-trained on ImageNet. For the

TABLE 1. Details of the layers added at the end of Densenet-121 in
DiaNet. The first two pooling layers were concatenated into a single input
of size 2048 for the next layer.

combined approach, we take the activations from the penul-

timate layer of a CNN and use it as the input to the GBM,

which acts as the classifier. We used XGBoost (XGB) as the

GBM implementation. This results in two more classifica-

tion models: DiaNet+XGB, and DiaNet_Res50+XGB. Hav-

ing established the four candidate models, namely: DiaNet,

DiaNet_Res50, DiaNet+XGB, and DiaNet_Res50+XGB,

we fine-tuned these in multiple stages. In the first stage,

we fine-tuned these four models using the EyePACS dataset

and in the second stage on the QBB dataset.

F. DEVELOPMENT OF QBBNet AND ITS VARIANTS

CONSIDERING ONLY THE QBB DATASET

Unlike DiaNet, we considered only the QBB dataset to

develop QBBNet. Similar to DiaNet, QBBNet consid-

ered DenseNet-121 and ResNet50 for configuring end-

to-end CNNs and their variants with an XGB as the

classifier. We then fine-tuned the models on the QBB

dataset only. This results in a total of four additional

experimental configurations for QBBNet: QBBNet (with a

DiaNet-like architecture), QBBNet_Res50 (ResNet50 back-

bone instead of a DenseNet121), QBBNet+XGB (XGB

classifier on extracted features from QBBNet), and
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QBBNet_Res50+XGB (ResNet-50 backbone and XGB as

the classifier on extracted features from QBBNet).

G. EXPERIMENT SETUP

Model selection, generalization, and performance estimation

in the fine-tuning stage on the QBB dataset were carried

out using nested cross-validation [38] to prevent data leak-

age. We used a 5-fold setup in both inner and outer folds.

To obtain even more consistent results, we conducted each

such experiment n times (n=5) and computed the arithmetic

mean of the representative metrics for reporting. Due to

the enormous size of the EyePACS dataset, only a single

train-validation-test split in the fine-tuning stage using this

dataset was sufficient to ensure that these sets have similar

distributions.

The data was pre-processed and augmented using the same

approach in multi-stage tuning for DiaNet and single-stage

tuning for QBBNet. The Dropout layers we added in our

networks used 0.4 as the dropout probability. For minimizing

the loss, we used the AdamW optimizer with a One-Cycle

Learning Rate Schedular [39].

For multi-stage fine-tuning using the EyePACS and the

QBB dataset, models were first trained on the former. To this

end, we binarized the labels so that non-DR cases and the

DR cases (‘‘mild’’, ‘‘moderate’’, ‘‘severe’’, and ‘‘prolifer-

ative’’) are the negative and positive classes, respectively.

Since the dataset remained severely imbalanced even after

this re-labeling, we used class weights inversely proportional

to the number of examples in each class. Using a batch size

64 and a maximum one-cycle learning rate of 3e-2, we fine-

tuned the models for 20 epochs, which led to convergence

of the training and validation loss curves. We found using

L2 regularization was not necessary in this stage to pre-

vent overfitting. After this fine-tuning stage, which com-

pleted in approximately 8 hours for DiaNet and 5 hours for

DiaNet_Res50, we fine-tuned themodels on theQBB dataset.

Unlike the previous stage, we found that L2 regularization

(with the regularization constant set to 0.02) was needed to

prevent overfitting, which is expected given the small size

of the dataset. We fine-tuned each model with a batch size

of 32 for: (a) 30 epochs keeping everything but the added

layers frozen, using amaximum one-cycle learning rate of 1e-

4, then (b) 2o epochs unfreezing the entire network and

training using discriminative learning rates with the following

range: (1e-5 and 1e-7). DiaNet and DiaNet_Res50 took 3 and

1.5 hours to complete training over these 50 epochs, respec-

tively. Since QBB dataset is balanced, there was no need to

employ any technique to compensate for any imbalance, such

as class weights that were used in the earlier stage.

For the single-stage fine-tuning experiments conducted

solely on the QBB dataset, we found that using L2 regular-

ization (with the regularization constant set to 0.01) prevented

overfitting. The rest of the parameter values were identical to

those used in the latter stage of our multi-stage fine-tuning

experiment.

H. HARDWARE AND SOFTWARE SETUP

We conducted the experiments on a workstation with the

following compute configuration: CPU: Core i7 8700K, main

memory: 64 GB DDR4, GPU: Nvidia Titan X (Pascal).

Python 3.7.4 was used as the base language, and fastai [36]

v1.4 was used along with Pytorch [40] as the deep learning

frameworks. We also used Pandas, Numpy, Scikit-learn, and

Matplotlib python packages in our experiments for data pre-

processing, manipulation, cross-validation, etc.

III. RESULTS

In this section, we present the outcomes of our experiments

and analyze the findings. We compare the performance of

our proposed approach quantitatively against other candidate

methods and show its superiority in predicting the onset of

diabetes among the test subjects. For quantitative perfor-

mance reporting, we used mean accuracy, sensitivity, speci-

ficity, precision, F1 score and AUC ROC. Since QBB dataset

is balanced, using the mean accuracy as the measure of model

assessment suffices.

As an overview of the performances of the methods exper-

imented on, Table 2 shows the corresponding accuracies and

other evaluation metrics. DiaNet fine-tuned on the EyePACS

and the QBB dataset performed best with an 84.47% mean

accuracy. In comparison, QBBNet, which was trained only

on the smaller, QBB dataset, yields 79.02% accuracy. It

could be mentioned that the base architecture of DiaNet

(Densenet-121) achieved only 80% accuracy on the EyePACS

test dataset. This shows that, even though the EyePACS

dataset is targeted to a task (DR staging) different from

ours (Diabetes detection), the network benefitted from the

first-stage fine-tuning as it helped the network understand

from a larger dataset what retina images look like and transfer

that knowledge to our task. This essentially proves that our

proposed approach is utilizing the immensely effective trans-

fer learning technique, which entails first training a neural

network on a large dataset to train it with domain knowledge,

then fine-tuning it on a dataset aimed at a slightly different,

but related task.

From Table 2, we also observed the highest F1 score

of 84.71 and 79.47 from DiaNet and QBBNet, respectively.

We achieved the highest accuracy of 84.47 and 80.65 from

DiaNet and QBBNet, respectively. Figure 6 highlights the

ROC curves for both QBBNet and DiaNet. The highest AUC

for the DiaNet and QBBNet was 84.4 and 83.10, respectively.

Figure 6 highlights the ROC curve for the proposed models

(DiaNet and QBBNet).

IV. DISCUSSIONS

A. WHY DID DiaNet INCORPORATE IMAGES

FROM EyePACS

In this article, we proposed DiaNet, a deep learning-based

approach for estimating the presence of diabetes in a test

subject from his/her retinal images. Specifically, we used a

CNN based architecture that takes a retinal image as input,
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TABLE 2. Performance of different candidate model variants for DiaNet and QBBNet. DiaNet and its variants were trained on both EyePACS and QBB,
whereas QBBNet and its variants were trained on only the QBB dataset.

FIGURE 6. ROC plots for the classifiers. Figure 6 (a) shows the model performances of DiaNet, while Figure 6 (b) shows the model performances of
QBBNet.

and outputs a probability distribution over the possible labels;

i.e. control and diabetes. We applied transfer learning in mul-

tiple stages to achieve state-of-the-art performance in the task.

The primary motivation behind this multi-stage fine-tuning

approach was limited size of the available dataset (from

QBB) for the target task. Since many deep learning-based

models are data-bound and result in suboptimal performance

when trained on a smaller dataset, we augmented the model’s

understanding of retinal images by incorporating a larger

dataset of retinal images, but labeled for a different, but

related task – DR detection. Our experiments showed that the

proposed multi-stage fine-tuning approach which integrated

retinal image from EyePACS and QBB results in an improve-

ment of the model’s performance compared to the same when

trained on only the QBB retinal image dataset (Table 2).

B. CLASS ACTIVATION MAPS (CAM) HIGHLIGHTING THE

REGION OF INTEREST FOR DiaNet

Figure 7 shows some retinal images and the overlaid

heatmaps from the diabetes and the control group. The

color-coded regions on the input images represent the influ-

ence on the predictions across the image at various degrees.

Only the images with high-confidence predictions (probabil-

ity larger than 0.80) from DiaNet were selected for Figure 7.

The bottom row in Figure 7 highlights some retinal images

from the diabetes group. Interestingly, in all the images the

overlaid heatmap was mainly focusing on the central retinal

area (located between the optic disc area and the macular

region) where characteristics of DRmay develop. The images

(d), (e), and (f) shows a widespread microaneurysm, which

are tiny bulges protruding from the walls of the smaller

vessels and are the earliest clinically visible changes of DR.

A retinal bleeding in a form of dot and blot shaped intraretinal

hemorrhages that is a sign of diabetic retinopathy. All three

images also show intraretinal hemorrhages and exudation (a

distinct yellow-white intra retinal deposits of lipids and pro-

tein in the extracellular space due to leaky abnormal retinal

capillaries) that can be found in the eyes of people affected

withDR. In addition, the image in Fig 7(f) is showing tortuous

retinal blood vessels with arteriovenous nicking and venous

dilation which is associated with systemic diseases such as

hypertension, diabetes and ischemic heart disease, thus bol-

stering our claim that our model is capable of identifying

retinal characteristics of diabetes in general. In the control

group images (Figure 7.a-c ), the absence of the said charac-

teristics in the focused regions (as indicated by the heatmaps)

indicates that these retinas are free from the symptoms of

diabetes.

C. COMPARISON AGAINST EXISTING ML BASED MODELS

USING QBB CLINICAL DATASET

It is important to emphasize that we could not compare

the performance of the proposed model against any model

due to the lack of existence of any study which considered
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FIGURE 7. A few Retinal images overlaid with heatmaps. (top: the Control group, bottom: the Diabetes group) The composite retinal heatmap was
generated by combining images from the test set with corresponding class activation map (CAM). Purple regions indicate greater influence on the
prediction decision while the yellow-greenish regions correspond to relatively lesser impact on the same.

QBB retinal images to distinguish diabetes group from con-

trol group. But, previously, we considered 237 clinical mea-

surements, covering bioimpedance, spirometry, biomarkers,

anthropometric measurements and lifestyle related variables

from QBB diabetes cohort to detect diabetes patients from

the control group with nearly 78% accuracy [10]. And in

this study, we achieved an even higher level of accuracy

(over 84% and 79% accuracy for DiaNet and QBBNet,

respectively) to predict the diabetes group considering retinal

images only. This indicates that the proposed model DiaNet

as well as QBBNet outperformed the previous model for

distinguishing the diabetes group from the control group. This

also entails that retinal images contain sufficient information,

like other clinical measurements, to distinguish the diabetes

group and this could be considered in clinical setup for the

diagnosis of diabetes as well.

D. PRACTICAL APPLICATIONS OF THE PROPOSED MODEL

Recently, the International Diabetes Federation (IDF) and the

World Health Organization (WHO) have prioritized low-cost

screening of digital retinal photography by non-physicians

and remote grading using mobile healthcare services

[41], [42]. DiaNet, the solution we propose, if implemented

in a clinical setup, will revolutionize the eye care system con-

sidering the cost-effectiveness for low- and middle-income

countries. For high-income countries our solution will reduce

the workload of the physicians as well as help to implement

mass level diabetes screening within a shorter period of time.

V. LIMITATIONS

DiaNet was able to distinguish diabetic patients from the con-

trol group at over 84% accuracy, which means the proposed

model was able to work correctly for four persons out of five

persons. Ideally, we would expect near-perfect accuracy, but

considering the limited number of retinal images we had,

our model can be further improved by incorporating more

images. Though the achieved accuracy seems low compared

to the other existing deep learning-based model to predict

different grading of DR, we would like to emphasize that the

goal of this study was not to predict DR, rather distinguish

diabetes from the control group. And to date, there exists no
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study which focused on the diagnosis of diabetes considering

retinal images; therefore, our study stands out as unique as

well.

VI. CONCLUSION

In this work, we proposed DiaNet, a novel deep

learning-based model to distinguish diabetes from the control

group using QBB retinal photography. Our model, based on

retinal images, achieved over 84% accuracy to classify the

diabetes group from the control group achieving a higher

level of accuracy than what we achieved using clinical dataset

only, for the same purpose. As per our best knowledge, our

study is the first, which predicts diabetes considering only

retinal images. So, we believe the retinal images can be used

in clinical setup to diagnose diabetes and incorporate more

images the model could perform at a higher level than what

we achieved.
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