metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(3,7-dichloroquinoline-8carboxylato)zinc(II) monohydrate

Li-Tao An,^a* Jian Zhou,^b Jian-Feng Zhou^a and Min Xia^a

^aJiangsu Key Laboratory for Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, Huaian 223300, Jiangsu Province, People's Republic of China, and ^bDepartment of Chemistry and Biology, Yulin Normal University, Yulin 537000, People's Republic of China Correspondence e-mail: annleet@126.com

Received 7 August 2008; accepted 8 August 2008

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.095; data-to-parameter ratio = 14.0.

In the title compound, $[Zn(C_{10}H_4Cl_2NO_2)_2(H_2O)_2]\cdot H_2O$, the Zn atom has a distorted square-pyramidal geometry comprising two O atoms and one N atom from two distinct 3,7-dichloroquinoline-8-carboxylate ligands, and two water molecules. The free water molecules are involved in intermolecular O-H···O hydrogen bonding with the coordinated water molecules and carboxylate O atoms, to give a one-dimensional helical chain along the [100] direction.

Related literature

For related literature, see: Adnan *et al.* (2003); Che *et al.* (2005); Chen *et al.* (2001); Li *et al.* (2008); Lumme *et al.* (1984); Yang *et al.* (2005); Zhang *et al.* (2007).

Experimental

Crystal data

 $[Zn(C_{10}H_4Cl_2NO_2)_2(H_2O)_2] \cdot H_2O$ $M_r = 601.50$ Triclinic, $P\overline{1}$ a = 6.8678 (3) Å b = 12.6996 (5) Å c = 12.9317 (5) Å $\alpha = 87.572$ (1)° $\beta = 82.893$ (1)° $\gamma = 82.255 (1)^{\circ}$ $V = 1108.63 (8) \text{ Å}^3$ Z = 2Mo K\alpha radiation $\mu = 1.64 \text{ mm}^{-1}$ T = 296 (2) K $0.21 \times 0.17 \times 0.15 \text{ mm}$

Data collection

Rigaku Mercury diffractometer14022 measured reflectionsAbsorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2001)3099 reflections with $I > 2\sigma(I)$
 $R_{int} = 0.080$ $T_{min} = 0.725, T_{max} = 0.791$ $R_{int} = 0.080$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 307 parameters $wR(F^2) = 0.094$ H-atom parameters constrainedS = 0.97 $\Delta \rho_{max} = 1.20 \text{ e } \text{ Å}^{-3}$ 4308 reflections $\Delta \rho_{min} = -0.80 \text{ e } \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O5-H5A\cdotsO1^{i}$	0.85	2.05	2.889 (4)	166
$O5 - H5B \cdot \cdot \cdot N2$	0.86	2.16	3.002 (4)	169
$O6-H6A\cdots O4^{ii}$	0.85	1.78	2.628 (4)	174
$O6-H6B\cdots O7^{iii}$	0.85	1.87	2.677 (4)	156
$O7 - H7B \cdots O2^{iv}$	0.85	2.04	2.827 (4)	153
$O7 - H7C \cdots O1^{v}$	0.85	2.25	3.029 (4)	153

Symmetry codes: (i) -x, -y + 2, -z + 1; (ii) x + 1, y, z; (iii) x, y + 1, z; (iv) -x + 1, -y + 1, -z + 1; (v) -x, -y + 1, -z + 1.

Data collection: *CrystalClear* (Rigaku/MSC, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Program for Excellent Talents in Huaiyin Teachers College (grant Nos. ETHYTC and 07QNZC010) and by the Natural Science Foundation of the Education Committee of Guangxi Province.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2255).

References

- Adnan, B., Hesham, F., Sherif, R. & Azza, B. (2003). Eur. J. Med. Chem. 38, 27–36.
- Che, G.-B., Liu, C.-B., Cui, Y.-C. & Li, C.-B. (2005). Acta Cryst. E61, m2207– m2208.
- Chen, Z. F., Zhang, P., Xiong, R. G., Liu, D. J. & You, X. Z. (2001). Inorg. Chem. Commun. 5, 35–37.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Li, Z., Wu, F., Gong, Y., Zhang, Y. & Bai, C. (2008). Acta Cryst. E64, m227.
- Lumme, P., Elo, H. & Janne, J. (1984). Inorg. Chim. Acta, 92, 241-251.
- Rigaku/MSC (2001). CrystalClear. Version 1.30. Rigaku/MSC, The Woodlands, Texas, USA.
- Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yang, G. W., Yuan, R. X. & Xie, Y. R. (2005). Chin. J. Inorg. Chem. 21, 120– 121.
- Zhang, Y.-H., Wu, F.-J., Li, X.-M., Zhu, M.-C. & Gong, Y. (2007). Acta Cryst. E63, m1557.

supporting information

Acta Cryst. (2008). E64, m1170 [doi:10.1107/S1600536808025671]

Diaquabis(3,7-dichloroquinoline-8-carboxylato)zinc(II) monohydrate

Li-Tao An, Jian Zhou, Jian-Feng Zhou and Min Xia

S1. Comment

Quinolinecarboxylate derivatives and their complexes have attracted considerable interest, because of their interesting high germicidal, antitumoral and pharmacological properties (Adnan *et al.*, 2003; Lumme *et al.*, 1984). Although some transition metal complexes of quinolinecarboxylate ligands have been reported (Che *et al.*, 2005; Chen *et al.*, 2001; Yang *et al.*, 2005), the crystal structures of the 3,7-Dichloro-8-quinolinecarboxylate and its complexes are limited in number, the only two examples are $[M(C_{10}H_4Cl_2NO_2)_2]_n(M = Ni, Co)$ (Li *et al.*, 2008; Zhang *et al.*, 2007). we report herein on the structure of $[Zn(C_{10}H_4Cl_2NO_2)_2]_n(M = Ni, Co)$ (Li *et al.*, 2008; Zhang *et al.*, 2007).

The title complex, (I) crystallizes in the triclinic space group $P\overline{1}$, with free water molecules in the crystal structure. The Zn(II) center exhibits a distorted square-pyramidal geometry defined by two O atoms and one N atom from two distinct 3,7-Dichloro-8-quinolinecarboxylate ligands, and two water molecules (Fig.1). The N1, O1, O3 and O5 atoms form the base plane, while the O6 atom occupies the axial position. The carboxylate group is bound in a monodentate fashion, with a weak intramolecular O—H…O H-bond between the carboxylate O atom and water molecules. The [Zn(C₁₀H₄Cl₂NO₂)₂(H₂O)₂] molecules are linked *via* these H-bond interactions into a 1-D helical chain along the [100] direction (Fig. 2).

S2. Experimental

The source materials of Zinc hydroxide (0.005 g) and Quinclorac (3,7-Dichloro-8-quinolinecarboxylic acid) (0.024 g) dissolved in 10 ml distilled water and were carefully mixed, and then loaded into a Teflon-lined stainless steel autoclave. The sealed autoclave was heated to 433 K and maintained at this temperature for 48 h. After cooling to room temperature, then some colorless column crystal was obtained.

S3. Refinement

All H atoms were positioned geometrically and were allowed to ride on their parent atoms.

Figure 1

The structure of (I), with the atomic numbering scheme and displacement ellipsoids at the 50% probability level. All H atoms have been omitted for clarity.

Figure 2

Part of the crystal structure of (I), showing the 1-D helical chain.H atoms bonded to C atoms have been omitted for clarity.

Diaquabis(3,7-dichloroquinoline-8-carboxylato)zinc(II) monohydrate

Crystal data	
$[Zn(C_{10}H_4Cl_2NO_2)_2(H_2O)_2]$ ·H ₂ O	$\gamma = 82.255 (1)^{\circ}$
$M_r = 601.50$	V = 1108.63 (8) Å ³
Triclinic, $P\overline{1}$	Z = 2
Hall symbol: -P 1	F(000) = 604
a = 6.8678 (3) Å	$D_{\rm x} = 1.802 {\rm Mg} {\rm m}^{-3}$
b = 12.6996 (5) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 12.9317 (5) Å	Cell parameters from 1973 reflections
$\alpha = 87.572 \ (1)^{\circ}$	$\theta = 1.6 - 26.0^{\circ}$
$\beta = 82.893 \ (1)^{\circ}$	$\mu = 1.64 \text{ mm}^{-1}$

T = 296 KColumn, colourless

Data collection

Rigaku Mercury diffractometer	14022 measured reflections 4308 independent reflections
Radiation source: fine-focus sealed tube	3099 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.080$
Detector resolution: 7.31 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 1.6^{\circ}$
ω scans	$h = -8 \rightarrow 8$
Absorption correction: multi-scan	$k = -15 \rightarrow 15$
(CrystalClear; Rigaku/MSC, 2001)	$l = -15 \rightarrow 14$
$T_{\min} = 0.725, T_{\max} = 0.791$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.094$	neighbouring sites
S = 0.97	H-atom parameters constrained
4308 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2]$
307 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 1.20 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.80 \text{ e} \text{ Å}^{-3}$

 $0.21\times0.17\times0.15~mm$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$		
C1	0.2965 (5)	0.6256 (3)	0.2794 (3)	0.0197 (8)		
H1	0.3070	0.6713	0.2215	0.024*		
C2	0.3295 (5)	0.5161 (3)	0.2636 (3)	0.0194 (8)		
C3	0.3176 (5)	0.4475 (3)	0.3464 (3)	0.0209 (8)		
Н3	0.3380	0.3746	0.3366	0.025*		
C4	0.2565 (5)	0.4215 (3)	0.5377 (3)	0.0210 (8)		
H4	0.2778	0.3480	0.5315	0.025*		
C5	0.2088 (5)	0.4641 (3)	0.6336 (3)	0.0241 (9)		
Н5	0.1921	0.4201	0.6925	0.029*		
C6	0.1848 (5)	0.5751 (3)	0.6434 (3)	0.0186 (8)		
C7	0.2042 (5)	0.6439 (3)	0.5590 (3)	0.0176 (8)		
C8	0.2434 (5)	0.5998 (3)	0.4583 (3)	0.0173 (8)		
C9	0.2741 (5)	0.4879 (3)	0.4474 (3)	0.0188 (8)		
C10	0.2017 (6)	0.7613 (3)	0.5715 (3)	0.0220 (8)		

C11	-0.2472 (5)	1.1168 (3)	0.1346 (3)	0.0194 (8)
H11	-0.2486	1.1675	0.1846	0.023*
C12	-0.2620 (5)	1.1520 (3)	0.0307 (3)	0.0182 (8)
C13	-0.2648 (5)	1.0809 (3)	-0.0443 (3)	0.0179 (8)
H13	-0.2756	1.1034	-0.1129	0.022*
C14	-0.2534 (5)	0.8915 (3)	-0.0880(3)	0.0221 (8)
H14	-0.2643	0.9098	-0.1577	0.027*
C15	-0.2399 (5)	0.7872 (3)	-0.0559 (3)	0.0213 (8)
H15	-0.2427	0.7346	-0.1034	0.026*
C16	-0.2218 (5)	0.7597 (3)	0.0488 (3)	0.0196 (8)
C17	-0.2162 (5)	0.8341 (3)	0.1213 (3)	0.0167 (8)
C18	-0.2329 (5)	0.9426 (3)	0.0898 (3)	0.0170 (8)
C19	-0.2509 (5)	0.9721 (3)	-0.0157 (3)	0.0172 (8)
C20	-0.1707 (5)	0.8066 (3)	0.2315 (3)	0.0179 (8)
C11	0.37704 (15)	0.47230 (7)	0.13739 (7)	0.0300 (2)
C12	0.12831 (15)	0.62268 (8)	0.76860 (7)	0.0300(2)
C13	-0.28261 (14)	1.28675 (7)	0.00156 (7)	0.0247 (2)
Cl4	-0.19519 (15)	0.62565 (7)	0.08517 (8)	0.0295 (2)
N1	0.2514 (4)	0.6674 (2)	0.3722 (2)	0.0185 (7)
N2	-0.2316 (4)	1.0165 (2)	0.1644 (2)	0.0190 (7)
01	0.0705 (4)	0.82485 (19)	0.52664 (19)	0.0294 (7)
O2	0.3222 (4)	0.7909 (2)	0.6231 (2)	0.0325 (7)
O3	0.0098 (3)	0.80624 (19)	0.24133 (19)	0.0222 (6)
O4	-0.3021 (4)	0.78885 (19)	0.3020 (2)	0.0289 (6)
O5	-0.0852 (4)	0.9774 (2)	0.3738 (2)	0.0336 (7)
H5A	-0.0800	1.0295	0.4126	0.040*
H5B	-0.1398	0.9842	0.3175	0.040*
O6	0.3458 (4)	0.9015 (2)	0.3214 (2)	0.0350 (7)
H6A	0.4589	0.8647	0.3195	0.042*
H6B	0.3090	0.9657	0.3391	0.042*
O7	0.3413 (5)	0.1059 (3)	0.3655 (3)	0.0858 (14)
H7B	0.4519	0.1189	0.3815	0.103*
H7C	0.2491	0.1273	0.4129	0.103*
Zn1	0.10699 (6)	0.83389 (3)	0.37255 (3)	0.01835 (13)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.020 (2)	0.0198 (19)	0.019 (2)	0.0004 (15)	-0.0046 (16)	-0.0023 (16)
C2	0.0166 (19)	0.022 (2)	0.020 (2)	-0.0014 (15)	-0.0030 (15)	-0.0076 (15)
C3	0.020 (2)	0.0158 (19)	0.027 (2)	-0.0019 (15)	-0.0032 (16)	-0.0063 (16)
C4	0.019 (2)	0.0162 (18)	0.029 (2)	-0.0035 (15)	-0.0068 (17)	-0.0012 (16)
C5	0.024 (2)	0.023 (2)	0.026 (2)	-0.0050 (16)	-0.0072 (17)	0.0055 (17)
C6	0.0165 (19)	0.026 (2)	0.0133 (19)	-0.0017 (15)	-0.0024 (15)	-0.0039 (15)
C7	0.0130 (18)	0.0215 (19)	0.019 (2)	0.0014 (15)	-0.0071 (15)	-0.0027 (15)
C8	0.0145 (18)	0.0200 (19)	0.017 (2)	-0.0006 (15)	-0.0037 (15)	-0.0004 (15)
С9	0.0177 (19)	0.0184 (19)	0.019 (2)	0.0008 (15)	-0.0025 (15)	-0.0004 (15)
C10	0.032 (2)	0.0191 (19)	0.0123 (19)	0.0004 (17)	0.0038 (17)	-0.0019 (15)

C11	0.020 (2)	0.0167 (19)	0.021 (2)	0.0004 (15)	-0.0006 (16)	-0.0068 (15)
C12	0.0152 (18)	0.0160 (18)	0.022 (2)	0.0006 (15)	0.0008 (15)	0.0017 (15)
C13	0.0128 (18)	0.0232 (19)	0.018 (2)	-0.0009 (15)	-0.0041 (15)	0.0017 (16)
C14	0.023 (2)	0.029 (2)	0.014 (2)	-0.0046 (17)	0.0010 (16)	0.0006 (16)
C15	0.0192 (19)	0.022 (2)	0.023 (2)	-0.0018 (16)	-0.0013 (16)	-0.0082 (16)
C16	0.0161 (19)	0.0153 (18)	0.028 (2)	-0.0011 (15)	-0.0049 (16)	0.0000 (16)
C17	0.0068 (17)	0.0229 (19)	0.021 (2)	-0.0022 (14)	-0.0032 (14)	0.0007 (15)
C18	0.0106 (17)	0.0219 (19)	0.0188 (19)	-0.0006 (14)	-0.0037 (15)	-0.0023 (15)
C19	0.0087 (17)	0.0237 (19)	0.019 (2)	-0.0008 (15)	-0.0023 (14)	-0.0016 (15)
C20	0.022 (2)	0.0102 (17)	0.021 (2)	0.0001 (15)	-0.0038 (16)	-0.0012 (15)
Cl1	0.0431 (6)	0.0251 (5)	0.0207 (5)	-0.0030 (4)	0.0021 (4)	-0.0090 (4)
Cl2	0.0445 (6)	0.0278 (5)	0.0170 (5)	-0.0053 (4)	-0.0006 (4)	-0.0009 (4)
C13	0.0300 (5)	0.0170 (5)	0.0251 (5)	0.0009 (4)	-0.0006 (4)	0.0019 (4)
Cl4	0.0426 (6)	0.0176 (5)	0.0297 (6)	-0.0056 (4)	-0.0077 (5)	-0.0008 (4)
N1	0.0214 (16)	0.0166 (15)	0.0173 (17)	0.0003 (13)	-0.0044 (13)	-0.0005 (13)
N2	0.0186 (16)	0.0175 (16)	0.0202 (17)	-0.0007 (13)	-0.0011 (13)	-0.0023 (13)
01	0.0448 (18)	0.0228 (14)	0.0167 (14)	0.0110 (13)	-0.0039 (13)	-0.0015 (11)
O2	0.0441 (18)	0.0280 (15)	0.0284 (16)	-0.0120 (13)	-0.0078 (14)	-0.0041 (12)
O3	0.0171 (14)	0.0299 (14)	0.0196 (14)	0.0019 (11)	-0.0063 (11)	-0.0047 (11)
O4	0.0284 (15)	0.0272 (15)	0.0289 (16)	-0.0032 (12)	0.0019 (13)	0.0085 (12)
05	0.0471 (18)	0.0223 (14)	0.0319 (17)	0.0073 (13)	-0.0161 (14)	-0.0108 (12)
O6	0.0202 (15)	0.0234 (15)	0.060 (2)	-0.0003 (12)	-0.0006 (14)	-0.0041 (13)
O7	0.050 (2)	0.075 (3)	0.132 (4)	-0.030 (2)	0.031 (2)	-0.055 (3)
Zn1	0.0206 (2)	0.0172 (2)	0.0168 (2)	-0.00023 (17)	-0.00297 (17)	-0.00061 (17)

Geometric parameters (Å, °)

C1—N1	1.316 (4)	C13—H13	0.9300
C1—C2	1.399 (5)	C14—C15	1.365 (5)
C1—H1	0.9300	C14—C19	1.419 (5)
C2—C3	1.352 (5)	C14—H14	0.9300
C2-C11	1.725 (4)	C15—C16	1.400 (5)
С3—С9	1.407 (5)	C15—H15	0.9300
С3—Н3	0.9300	C16—C17	1.366 (5)
C4—C5	1.359 (5)	C16—Cl4	1.739 (3)
C4—C9	1.414 (5)	C17—C18	1.414 (5)
C4—H4	0.9300	C17—C20	1.514 (5)
C5—C6	1.406 (5)	C18—N2	1.376 (4)
С5—Н5	0.9300	C18—C19	1.415 (5)
C6—C7	1.374 (5)	C20—O4	1.237 (4)
C6—Cl2	1.732 (4)	C20—O3	1.261 (4)
С7—С8	1.421 (5)	N1—Zn1	2.211 (3)
C7—C10	1.504 (5)	O1—Zn1	1.978 (2)
C8—N1	1.377 (4)	O3—Zn1	1.960 (2)
С8—С9	1.419 (5)	O5—Zn1	2.101 (2)
C10—O2	1.231 (4)	O5—H5A	0.85
C10-01	1.301 (4)	O5—H5B	0.86
C11—N2	1.310 (4)	O6—Zn1	1.982 (2)

C11—C12	1.410 (5)	O6—H6A	0.85
C11—H11	0.9300	O6—H6B	0.85
C12—C13	1.356 (5)	O7—H7B	0.85
C12—Cl3	1.727 (3)	O7—H7C	0.85
C13—C19	1.409 (5)		
N1 C1 C2	123 4 (3)	C14 C15 C16	110 8 (3)
N1-C1-H1	118.3	C14 - C15 - C10	119.8 (5)
$C_2 C_1 H_1$	118.3	$C_{14} = C_{15} = H_{15}$	120.1
$C_2 - C_1 - C_1$	110.5 119.8(3)	C17 - C16 - C15	120.1 122.2(3)
C_{3} C_{2} C_{1}	117.0(3)	C17 - C16 - C14	122.2(3) 1195(3)
$C_1 - C_2 - C_{11}$	121.7(3) 118 5 (3)	C_{15} C_{16} C_{14}	119.3(3) 118.2(3)
$C_2 = C_3 = C_9$	110.3(3) 119.2(3)	C16-C17-C18	110.2(3) 118.8(3)
$C_2 = C_3 = H_3$	119.2 (5)	C16-C17-C18	110.6(3)
$C_2 - C_3 - H_3$	120.4	C18 - C17 - C20	123.0(3) 117.3(3)
$C_{5} - C_{4} - C_{9}$	120.4 120.5(3)	N_{2} C18 C17	117.3(3)
$C_5 = C_4 = C_7$	120.5 (5)	$N_2 = C_{18} = C_{17}$	110.0(3) 122.2(3)
C_{3} C_{4} H_{4}	119.7	112 - 113 - 119	122.2(3) 110 0(3)
C_{4} C_{5} C_{6}	119.7 110.7(3)	C_{13} C_{19} C_{18}	119.9(3) 118.2(3)
C4 = C5 = U5	119.7 (5)	$C_{13} = C_{19} = C_{18}$	110.2(3) 122.8(3)
C4-C5-H5	120.1	C13 - C19 - C14	122.0(3) 119.0(3)
C_{0} C_{0} C_{0} C_{0}	120.1	04 C20 O3	115.0(3) 125.9(3)
C7 C6 C12	122.0(3) 120.7(3)	04 C20 C17	123.5(3) 121.5(3)
$C_{1} = C_{0} = C_{12}$	120.7(3) 116.7(3)	$O_{4} = C_{20} = C_{17}$	121.5(3) 1126(3)
$C_{0} = C_{0} = C_{12}$	110.7(3) 117.8(3)	C1 - N1 - C8	112.0(3) 118.3(3)
$C_{0} - C_{7} - C_{8}$	117.0(3)	C1 = N1 = 7n1	110.5(3)
$C_{0} - C_{1} - C_{10}$	121.9(3) 120.1(3)	C_{1} N_{1} Z_{n1}	113.1(2) 123.8(2)
$N_1 = C_8 = C_9$	120.1(3) 121.0(3)	$\begin{array}{ccc} C_{0} & \hline \\ C_{11} & N_{2} & C_{18} \end{array}$	123.0(2) 117.6(3)
NI-C8-C7	121.0(3) 118.0(3)	$C_{11} = N_2 = C_{10}$	117.0(3) 117.0(2)
R1 = C0 = C7	110.9(3) 1201(3)	$C_{10} = 01 = 2111$	117.0(2) 123.7(2)
$C_3 = C_0 = C_1$	120.1(3) 122.6(3)	7n1 05 H5A	123.7 (2)
$C_{3} - C_{9} - C_{4}$	122.0(3) 1183(3)	Zn1_05_H5B	109.3
$C_{1} = C_{2} = C_{3}$	110.3(3)	H5A O5 H5B	109.5
$C_{1} = C_{2} = C_{3}$	119.1(3) 124.4(3)	7n1 06 H6A	123.2
02 - C10 - C1	124.4(3)	$Z_{n1} = 06 = H6R$	101.5
02-010-07	110.4(3) 117.2(3)	200-100 H6A O6 H6B	101.5
$N_{2} = C_{11} = C_{12}$	117.2(3) 123 $A(3)$	H7B O7 H7C	129.9
N2-C11-C12	123.4 (3)	11/D = 0/-11/C	110.1 147.02(11)
$C_{12} C_{11} H_{11}$	118.3	03 - 2n1 - 01	147.92(11) 101.43(11)
C12— $C11$ — $I111C13$ $C12$ $C11$	120.2 (3)	01 - 7n1 - 06	101.45(11) 110.65(12)
C13 C12 C13	120.2(3) 120.9(3)	$O_1 = Z_{n1} = O_0$	86 43 (10)
C13-C12-C13	120.9(3) 118.0(3)	01 - 7n1 - 05	90.82(10)
C12-C13-C19	118.9(3) 118.4(3)	06-7n1-05	90.82 (10)
C12-C13-H13	120.8	$O_3 Z_n I N_1$	87.67 (10)
С12—С13—Н13	120.0	01 - 7n1 N1	88.61 (10)
C15 C14 C10	120.0	$O_1 - 2n_1 - N_1$ $O_2 - 2n_1 - N_1$	00.01(10) 07.27(11)
C15 - C14 - H14	110.8	05-2n1-N1	167 04 (11)
C19 - C14 - H14	110.8	05-211-111	107.24 (11)
	117.0		

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.85	2.05	2.889 (4)	166
0.86	2.16	3.002 (4)	169
0.85	1.78	2.628 (4)	174
0.85	1.87	2.677 (4)	156
0.85	2.04	2.827 (4)	153
0.85	2.25	3.029 (4)	153
	<i>D</i> —H 0.85 0.86 0.85 0.85 0.85 0.85 0.85	D—H H···A 0.85 2.05 0.86 2.16 0.85 1.78 0.85 2.04 0.85 2.25	DHH…AD…A0.852.052.889 (4)0.862.163.002 (4)0.851.782.628 (4)0.851.872.677 (4)0.852.042.827 (4)0.852.253.029 (4)

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, -*y*+2, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) *x*, *y*+1, *z*; (iv) -*x*+1, -*y*+1, -*z*+1; (v) -*x*, -*y*+1, -*z*+1.