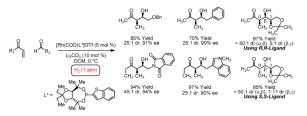


NIH Public Access

Author Manuscript

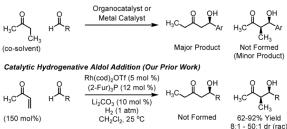

JAm Chem Soc. Author manuscript; available in PMC 2010 April 28.

Published in final edited form as: *J Am Chem Soc.* 2008 March 5; 130(9): 2746–2747. doi:10.1021/ja710862u.

Diastereo- and Enantioselective Hydrogenative Aldol Coupling of Vinyl Ketones: Design of an Effective Monodentate TADDOL-Based Phosphonite Ligand

Cisco Bee, **Hiroki Iida**, **Soo Bong Han Abbas Hassan**, and **Michael J. Krische** University of Texas at Austin, Department of Chemistry and Biochemistry, Austin, TX 78712

Abstract


We report the first enantioselective reductive aldol couplings of vinyl ketones, which required the design of a novel monodentate TADDOL-based phosphonite ligand. Specifically, hydrogenation of commercially available methyl vinyl ketone (MVK) or ethyl vinyl ketone (EVK) in the presence of aldehydes using chirally modified cationic rhodium catalysts produces aldol adducts **1b-7b** and **1c-7c** with excellent levels of diastereo- and enantiocontrol. Through the use of (*R*,*R*)-ligand or (*S*,*S*)-ligand good levels of catalyst-directed diastereofacial selectivity are achieved in hydrogenative aldol couplings of MVK and EVK to glyceraldehyde acetonide, as demonstrated by the formation of aldol adducts **6b**, **6c**, **7b**, and **7c**. The absolute stereochemical assignment of adducts **1b-5b** and **1c-5c** was made in analogy to that determined for the 5-bromophthalimido derivative of aldol adduct **2b**, which was established by single crystal x-ray diffraction analysis using the anomalous dispersion method. A structure of the catalyst ligand complex [Rh(COD) (Ligand-Q)₂]OTf has been established by single crystal x-ray crystal, as reported in the supporting information.

The reductive coupling of α,β -unsaturated carbonyl compounds to aldehydes and ketones, termed the "reductive aldol reaction" has become the topic of intensive investigation.¹ Following seminal studies by Revis (1987),^{2a} catalysts for reductive aldol coupling based on rhodium,2^{,3} cobalt,4 iridium,⁵ ruthenium,⁶ palladium,⁷ copper,^{8,9} nickel,¹⁰ and indium^{11,12} have been developed. Enantioselective variants of the reductive aldol coupling only have been achieved in connection with the use of α,β -unsaturated esters.2d,h,j-m⁵.9b,d,e,f,g Enantioselective reductive aldol couplings of vinyl ketones, such as methyl vinyl ketone (MVK), would enable access to branched aldol adducts, providing a regiochemical complement to direct organocatalytic and metal catalyzed aldol couplings of non-symmetric ketones, such as 2-butanone, which furnish linear aldol adducts.¹³ However, to date, enantioselective reductive aldol couplings of vinyl ketones have not been devised.

mkrische@mail.utexas.edu .

Supporting information available: Experimental procedures, spectral and HPLC data for new compounds, x-ray diffraction data for 5-bromophthalimido **2b** and [Rh(COD)(Ligand-Q)₂]OTf. This material is available free of charge *via* the internet at http://pubs.acs.org.

In 2002, we reported that rhodium catalyzed hydrogenation of vinyl ketones in the presence of aldehydes results in reductive aldol coupling to furnish branched aldol adducts as diastereomeric mixtures.^{3a} Later (2006), it was found that high levels of *syn*diastereoselectivity in hydrogen-mediated reductive aldol couplings of vinyl ketones are obtained through the use of tri-2-furylphosphine (Fur₃P) ligated rhodium catalysts.3e,f,g^{,14} Efforts toward enantioselective variants of such hydrogenative aldol couplings were especially challenging due to the fact that (a) only trace quantities of product are obtained using chelating phosphine ligands, (b) π -acidic ligands such as Fur₃P are required to enforce high levels of diastereoselection, yet (c) commercially available π -acidic chiral monodentate ligands, for example, BINOL-derived phosphites and phosphoramidites, are presumably too π -acidic, and provide only trace quantities of product. Hence, the design, preparation and assay of novel chiral monodentate *P*-based ligands was undertaken.

Representative ligands are depicted in Table 1. BINOL-derived phosphonites **A-D**, menthone-based ligands **E-H**, the *C*₂-symmetric cyclopentanol ligand **I**, and ligands **J** and **K**, which incorporate chiral ketals, enforce poor levels of asymmetric induction. In order to establish well-defined structure- selectivity trends, a versatile template amenable to systematic structural variation was sought. Toward this end, TADDOL-based phosphonites were examined. Tetramethyl- TADDOL acetonide was transformed to *P*-aryl phosphonites **L-Q**. The 2-benzothienyl moiety, as found in ligand **Q**, was identified as the optimum *P*-aryl substituent. Attempts to further optimize ligand architecture using *P*-(2-benzofuryl) derivatives reveals a substantial decrease in reactivity for the tetraethyl and tetraphenyl ligands **R** and **S**. The role of the ketal moiety was examined next. For *P*-(2-benzofuryl) phosphonites ligand **T**, which incorporates a diethyl ketal, an improvement in selectivity is observed. Using ligand **W**, which combines the optimal 2-benzothienyl and diethyl ketal substructures, aldehydes **1a** and **2a** are transformed to aldols **1b** and **2b** with exceptional relative and absolute stereocontrol.

The scope of ligand **W** was examined in reductive aldol couplings of MVK and EVK to diverse aldehydes. Optimal efficiencies and selectivities were observed using the preformed complex [Rh(COD)(Ligand-W)₂]OTf as precatalyst. Beyond aldehydes **1a** and **2a**, which possess heteroatom substitution at the α -position, α -aryl aldehydes **3b**, **4b**, and **5b** were found to engage in highly diastereo- and enantioselective hydrogenative aldol additions. Using chiral ligand **W**, aromatic aldehydes display good reactivity and diastereoselectivity, but are not subject to high levels of asymmetric induction. Additionally, unactivated aliphatic aldehydes provide diminished yields of product. The absolute stereochemical assignment of aldol adducts **1b-5b** and **1c-5c** was made in analogy to that determined for the 5-bromophthalimido derivative of aldol adduct **2b**, which was established by single crystal x-ray diffraction analysis using the anomalous dispersion method. Finally, catalyst-directed diastereofacial selectivity was investigated in the reductive aldol coupling of MVK and EVK to *R*-glyceraldehyde acetonide. As demonstrated by the formation of adducts **6b**, **6c**, **7b** and **7c**, through the use of (*R*,*R*)-ligand **W** or (*S*,*S*)-ligand **W**, one may invert the

diastereofacial preference in the aldol addition while maintaining exceptional levels of *syn*aldol selectivity (Table 2).

Supplementary Material

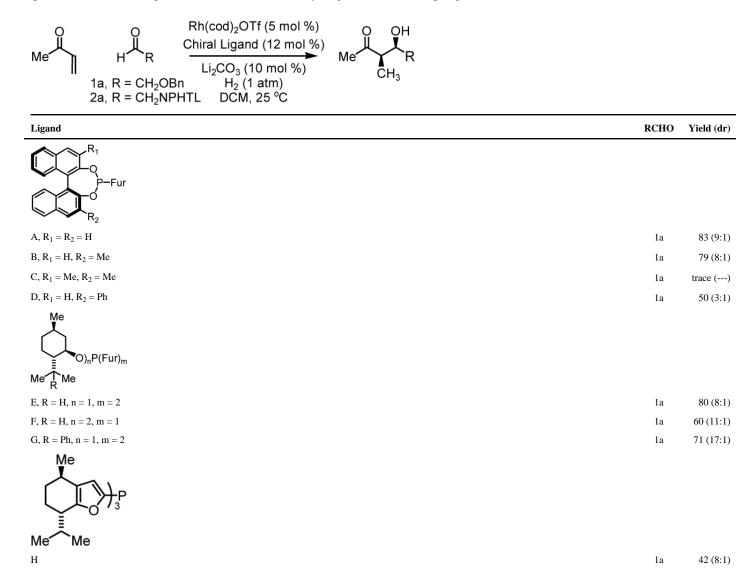
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Acknowledgment is made to the Robert A. Welch Foundation, Johnson & Johnson, Merck, the NIH-NIGMS (RO1-GM069445) and the Higher Education Commission, Pakistan for partial support of this research. Adam Berro and Quan Truong are acknowledged for assisting ligand preparation.

References

- (1). For reviews of the reductive aldol reaction, see: (a) Motherwell WB. Pure Appl. Chem 2002;74:135. (b) Huddleston RR, Krische MJ. Synlett 2003:12. (c) Jang H-Y, Huddleston RR, Krische MJ. Chemtracts 2003;16:554. (d) Jang H-Y, Krische MJ. Eur. J. Org. Chem 2004;19:3953. (e) Chiu P. Synthesis 2004:2210. (f) Ngai M-Y, Kong J-R, Krische MJ. J. Org. Chem 2007;72:1063. [PubMed: 17288361] (g) Nishiyama H, Shiomi T. Top. Curr. Chem 2007;279:105.
- (2). For rhodium catalyzed reductive aldol reaction mediated by silane, see: (a) Revis A, Hilty TK. Tetrahedron Lett 1987;28:4809. (b) Matsuda I, Takahashi K, Sato S. Tetrahedron Lett 1990;31:5331. (c) Taylor SJ, Morken JP. J. Am. Chem. Soc 1999;121:12202. (d) Taylor SJ, Duffey MO, Morken JP. J. Am. Chem. Soc 2000;122:4528. (e) Zhao C-X, Bass J, Morken JP. Org Lett 2001;3:2839. [PubMed: 11529770] (f) Emiabata-Smith D, McKillop A, Mills C, Motherwell WB, Whitehead AJ. Synlett 2001:1302. (g) Freiría M, Whitehead AJ, Tocher DA, Motherwell WB. Tetrahedron 2004;60:2673. (h) Nishiyama H, Shiomi T, Tsuchiya Y, Matsuda I. J. Am. Chem. Soc 2005;127:6972. [PubMed: 15884939] (i) Willis MC, Woodward RL. J. Am. Chem. Soc 2005;127:18012. [PubMed: 16366546] (j) Fuller NO, Morken JP. Synlett 2005:1459. (k) Ito JI, Shiomi T, Nishiyama H. Adv. Synth. Catal 2006;348:1235. (l) Shiomi T, Ito J-I, Yamamoto Y, Nishiyama H. Eur, J. Org. Chem 2006:5594. (m) Shiomi T, Nishiyama H. Org Lett 2007;9:1651. [PubMed: 17385871]
- (3). For rhodium catalyzed reductive aldol reaction mediated by hydrogen, see: (a) Jang HY, Huddleston RR, Krische MJ. J. Am. Chem. Soc 2002;124:15156. [PubMed: 12487574] (b) Huddleston RR, Krische MJ. Org. Lett 2003;5:1143. [PubMed: 12659594] (c) Koech PK, Krische MJ. Org. Lett 2004;6:691. [PubMed: 14986951] (d) Marriner GA, Garner SA, Jang HY, Krische MJ. J. Org. Chem 2004;69:1380. [PubMed: 14961698] (e) Jung CK, Garner SA, Krische MJ. Org. Lett 2006;8:519. [PubMed: 16435874] (f) Han SB, Krische MJ. Org. Lett 2006;8:5657. [PubMed: 17107096] (g) Jung CK, Krische M,J. J. Am. Chem. Soc 2006;128:17051. [PubMed: 17177457]
- (4). For cobalt catalyzed reductive aldol reaction, see: (a) Isayama S, Mukaiyama T. Chem. Lett 1989:2005. (b) Baik TG, Luis AL, Wang LC, Krische MJ. J. Am. Chem. Soc 2001;123:5112. [PubMed: 11457348] (c) Wang LC, Jang H-Y, Roh Y, Lynch V, Schultz AJ, Wang X, Krische MJ. J. Am. Chem. Soc 2002;124:9448. [PubMed: 12167039] (d) Lam HW, Joensuu PM, Murray GJ, Fordyce EAF, Prieto O, Luebbers T. Org. Lett 2006;8:3729. [PubMed: 16898803] (e) Lumby RJR, Joensuu PM, Lam HW. Org. Lett 2007;9:4367. [PubMed: 17867700]
- (5). For iridium catalyzed reductive aldol reaction, see: Zhao CX, Duffey MO, Taylor SJ, Morken JP. Org. Lett 2001;3:1829. [PubMed: 11405722]
- (6). For ruthenium catalyzed reductive aldol reaction, see: Doi T, Fukuyama T, Minamino S, Ryu I. Synlett 2006;18:3013.
- (7). For palladium catalyzed reductive aldol reaction, see: Kiyooka SI, Shimizu A, Torii S. Tetrahedron Lett 1998;39:5237.
- (8). For copper promoted reductive aldol reaction, see: (a) Chiu P, Chen B, Cheng KF. Tetrahedron Lett 1998;39:9229. (b) Chiu P. Synthesis 2004;13:2210. (c) For copper promoted reductive intramolecular Henry reaction, see: Chung WK, Chiu P. Synlett 2005;1:55. (d) For copper


JAm Chem Soc. Author manuscript; available in PMC 2010 April 28.

promoted and catalyzed reductive cyclizations of α , β -acetylenic ketones tethered to ketones, see: Chiu P, Leung SK. Chem. Commun 2004:2308.

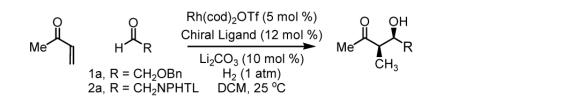
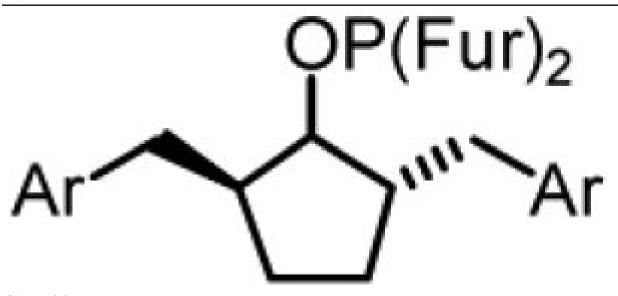

- (9). For copper catalyzed reductive aldol reaction, see: (a) Ooi T, Doda K, Sakai D, Maruoka K. Tetrahedron Lett 1999;40:2133. (b) Lam HW, Joensuu PMA. Org. Lett 2005;7:4225. [PubMed: 16146393] (c) Lam HW, Murray GJ, Firth JD. Org Lett 2005;7:5743. [PubMed: 16321037] (d) Deschamp J, Chuzel O, Hannedouche J, Riant O. Angew. Chem. Int. Ed 2006;45:1292. (e) Chuzel O, Deschamp J, Chauster C, Riant O. Org. Lett 2006;8:5943. [PubMed: 17165900] (f) Zhao D, Oisaki K, Kanai M, Shibasaki M. Tetrahedron Lett 2006;47:1403. (g) Zhao D, Oisaki K, Kanai M, Shibasaki M. J. Am. Chem. Soc 2006;128:14440. [PubMed: 17090010] (h) Welle A, Diez-Gonzalez S, Tinant B, Nolan SP, Riant O. Org. Lett 2006;8:6059. [PubMed: 17165929]
- (10). For nickel catalyzed reductive aldol reaction, see: Chrovian CC, Montgomery J. Org Lett 2007;9:537. [PubMed: 17249806]
- (11). For a reductive aldol coupling employing stoichiometric quantities of indium reagent, see: Inoue K, Ishida T, Shibata I, Baba A. Adv. Synth. Catal 2002;344:283.
- (12). For indium catalyzed reductive aldol reaction, see: (a) Shibata I, Kato H, Ishida T, Yasuda M, Baba A. Angew. Chem. Int. Ed 2004;43:711. (b) Miura K, Yamada Y, Tomita M, Hosomi A. Synlett 2004:1985.
- (13). (a) Yoshikawa N, Yamada YMA, Das J, Sasai H, Shibasaki M. J. Am. Chem. Soc 1999;121:4168. (b) Sakthivel K, Notz W, Bui T, Barbas CF III. J. Am. Chem. Soc 2001;123:5260. [PubMed: 11457388] (c) Other organocatalysts for direct aldol coupling of 2-butanone give mixtures of regioisomers: Tang Z, Yang Z-H, Chen X-H, Cun L-F, Mi A-Q, Jiang Y-Z, Gong L-Z. J. Am. Chem. Soc 2005;127:9285. [PubMed: 15969611] (d) Luo S, Xu H, Li J, Zhang L, Cheng J-P. J. Am. Chem. Soc 2007;129:3074. [PubMed: 17323952]
- (14). For Fur₃P effects in metal catalysis, see: (a) Farina V, Krishnan B. J. Am. Chem. Soc 1991;113:9585. (b) Farina V. Pure Appl. Chem 1996;68:73. (c) Anderson NG, Keay BA. Chem. Rev 2001;101:997. [PubMed: 11709863]

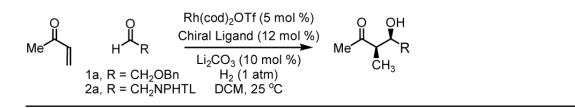
Table 1

Optimization of chiral ligand in the enantioselective hydrogenative aldol coupling of MVK^a

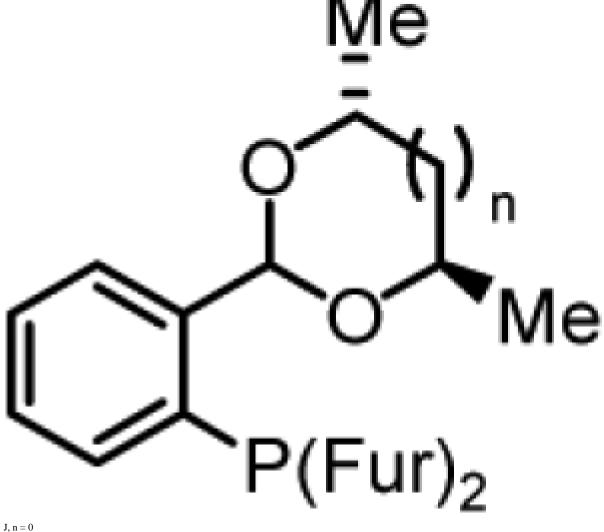
NIH-PA Author Manuscript



Ligand


1a

48 (5:1)


I, Ar = mesityl

J Am Chem Soc. Author manuscript; available in PMC 2010 April 28.

Ligand

RCHO Yield (dr)

K, n = 1

 $R_2 R_2$ L, $R_1 = R_2 = Me$, Ar = 2-Fur

R₁ R

1a 52 (9:1) 40 (4:1) 1a

76 (12:1)

1a

$Me \xrightarrow{O}_{H} R \xrightarrow{Rh(cod)_2OTf (5 mol \%)}_{Li_2CO_3 (10 mol \%)} Me \xrightarrow{O}_{CH_3} He \xrightarrow{O}_{CH_3} He$		
Ligand	RCHO	Yield (dr
$L, R_1 = R_2 = Me, Ar = 2-Fur$	2a	90 (>30:1
$\mathbf{M}, \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{M}\mathbf{e}, \mathbf{A}\mathbf{r} = \mathbf{P}\mathbf{h}$	2a	20 (>30:1
N, $R_1 = R_2 = Me$, $Ar = 1-[3,5-(CF_3)_2Ph]$	2a	30 (>30:1
O, $R_1 = R_2 = Me$, $Ar = 2-[5-Me-Fur]$	2a	52 (>30:1
P, $R_1 = R_2 = Me$, $Ar = 2$ -Benzofuryl	2a	64 (>30:1)
Q, $\mathbf{R}_1 = \mathbf{R}_2 = \mathbf{M}\mathbf{e}$, $\mathbf{A}\mathbf{r} = 2$ -Benzothienyl	2a	65 (>30:1)
R, $R_1 = Me$, $R_2 = Et$, $Ar = 2$ -Benzofuryl	2a	32 (>30:1
S, $R_1 = Me$, $R_2 = Ph$, $Ar = 2$ -Benzofuryl	2a	15 (>30:1)
T, $\mathbf{R}_1 = \mathbf{Et}$, $\mathbf{R}_2 = \mathbf{Me}$, $\mathbf{Ar} = 2$ -Benzofuryl	2a	75 (>30:1)
U, $R_1 = (CH_2)_5$, $R_2 = Me$, $Ar = 2$ -Benzofuryl	2a	90 (>30:1
V, $R_1 = i$ -Pr, $R_2 = Me$, Ar = 2-Benzofuryl	2a	76 (>30:1)
$\int W_1 R_1 = Et_1 R_2 = Me_1 Ar = 2$ -Benzothienyl	2a	90 (>30:1)
W, $R_1 = Et$, $R_2 = Me$, $Ar = 2$ -Benzothienyl W, $R_1 = Et$, $R_2 = Me$, $Ar = 2$ -Benzothienyl	2a	94 (>30:1)
W, $R_1 = Et$, $R_2 = Me$, $Ar = 2$ -Benzothienyl	1a	91 (11:1)
$W, R_1 = Et, R_2 = Me, Ar = 2$ -Benzothienyl	1a	85 (25:1)

^{*a*}Cited yields are of isolated material. Enantioselectivities were determined by chiral stationary phase HPLC analyses made in comparison to racemic diastereomeric mixtures prepared *via* hydrogenation of the corresponding Morita-Baylis-Hillman adducts. See Supporting Information for detailed experimental procedures.

^bReaction was conducted at 0 °C.

Table 2

Diastereo- and enantioselective reductive aldol coupling of MVK and EVK to assorted aldehydes using ligand- \mathbf{W}^a

H ₃ C OH CH ₃ OBn	H ₃ C H ₃ C H ₃ C	H ₃ C CH ₃	H ₃ C CH ₃	H ₃ C CH ₃ H ₃ C	$H_3C \xrightarrow{Q} CH_3 O \xrightarrow{H_3} CH_3$	$H_{3C} \xrightarrow{QH} (H_{3}C) \xrightarrow{QH} (H_{3}$
1b, 85% Yield 25:1 dr, 91% ee	2b, 88% Yield 50:1 dr, 96% ee	3b, 70% Yield 25:1 dr, 90% ee	4b, 79% Yield 11:1 dr, 87% ee	5b, 92% Yield 15:1 dr, 87% ee	6b, 87% Yield > 50:1 dr (α,β), 5:1 dr (β,γ) Using R,R-Ligand	7b, 85% Yield > 50:1 dr (α,β), 1:11 dr (β,γ) Using S,S-Ligand
CH ₃ CH ₃	CH ₃ CH ₃ CH ₃	CH3 CH3	CH3 CH3	CH ₃ CH ₃		$CH_3 \xrightarrow{QH} CH_3 \xrightarrow{QH} CH_3 \xrightarrow{P} CH$
1c, 96% Yield 21:1 dr, 88% ee	2c, 94% Yield 45:1 dr, 94% ee	3c, 76% Yield 22:1 dr, 90% ee	4c, 83% Yield 25:1 dr, 88% ee	5c, 97% Yield 25:1 dr, 90% ee	6c, 88% Yield > 50:1 dr (α,β), 5:1 dr (β,γ) <i>Using R,R-Ligand</i>	7c, 86% Yield > 50:1 dr (α,β), 1:5 dr (β,γ) <i>Using S,S-Ligand</i>

^{*a*}Cited yields are of isolated material. Diastereo- and enantioselectivities were determined by chiral stationary phase HPLC analyses made in comparison to racemic diastereomeric mixtures prepared *via* hydrogenation of the corresponding Morita-Baylis-Hillman adducts. All reactions were performed at 0 °C using the preformed complex [Rh(COD)(Ligand-W)₂]OTf. See Supporting Information for detailed experimental procedures.