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Abstract

Enantio- and diastereoselective conjunctive cross-coupling of β-substituted alkenylboron “ate” 

complexes is studied. While β substitution shifts the chemoselectivity of the catalytic reaction in 

favor of the Suzuki-Miyaura product, use of a boronic ester ligand derived from 

acenaphthoquinone allows the process to favor the conjunctive product, even with substituted 

substrates.

Graphical Abstract

Configurationally-defined benzhydryl stereocenters are important structural motifs that 

appear in a broad array of natural products and therapeutic agents.1 Accordingly, a variety of 

catalytic methods have been developed to target their construction.2 While recent advances 

in benzylic cross-coupling have provided important tools to target these features, an added 

synthetic challenge arises when benzylic stereocenters are sited adjacent to additional 

stereogenic centers. In these situations, multistep organic synthesis is often required for 

construction of the stereochemical dyad of interest.3 Our group has been developing a 

catalytic conjunctive cross-coupling reaction that converts vinylboron “ate” complexes and 

electrophiles to enantiomerically-enriched secondary or tertiary alkylboronic esters bearing a 

single stereocenter (eq. 1, Scheme 1).4 To address the problem of benzhydryl construction as 

outlined above, we questioned whether β-substituted alkenylboronic esters might engage in 

conjunctive cross-coupling and deliver compounds that bear vicinal stereogenic centers (eq. 

2). In this report, we describe the development of this process and provide insight about how 
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the structure of boron ligands can tip the reaction outcome in favor of the conjunctive 

coupling product or the classic Suzuki-Miyaura product.

Preliminary efforts to employ β-substituted alkenyl boronates in conjunctive cross-coupling 

reactions revealed a process that is dominated by direct Suzuki-Miyaura cross-coupling. For 

instance, in contrast to the conjunctive cross-coupling with the unsubstituted vinylB(neo)-

derived “ate” complex 1a which occurs in 84% yield and 97:3 er (Scheme 1, eq. 3), when 

styrenylB(neo) was converted to the derived “ate” complex 1b and subjected to coupling 

with p-anisyltriflate, 1 mol% Pd(OAc)2 and 1.2 mol% Mandyphos (L), only 13% of the 

conjunctive coupling product 2b was obtained, with stilbene derivative 3b being the 

predominant product. The disparate reaction outcomes with 1a and 1b as substrate may be 

understood by consideration of competing catalytic reaction pathways. Mechanistic studies 

intimate that the metal-induced metallate rearrangement which underlies the conjunctive 

coupling occurs by metal-alkene binding (A, equation 1, box),4ffollowed by simultaneous 

RM migration and C-Pd bond formation at Cβ. In contrast, recent studies of transmetallation 

from organoboronic acid derivatives to bis(phosphine)Pd complexes suggests that the direct 

Suzuki-Miyaura reaction could arise by either (a) an open transition state originating from a 

palladium alkene complex where C-Pd bond formation occurs at Cα with concomitant 

rupture of the C-B bond (B, shaded box, Scheme 1)5, or (b) association of Pd with a boronic 

ester oxygen (C), which is then followed by transmetallation reaction through a closed four-

centered transition state involving a five-coordinate Pd complex.6 For the reaction of 

substrate 1b, the added substitution at the β carbon of the alkene (R=H→Ph) would serve to 

inhibit conjunctive coupling as it requires Pd-C bond formation at a more hindered site. 

However, transmetallation through either B or C, ultimately leading to C-Pd bond formation 

at Cα, would be relatively unaltered by the addition of β-substituents on the alkenyl group. 

Thus, the net effect of alkene β-substitution is to disfavor the metallate shift relative to the 

direct transmetalation reaction and thereby alter the course of the reaction. Following this 

analysis, it was considered that alternate ligand sets on the boron atom that selectively 

interfere with either Pd(II)-oxygen binding or that hinder access to Cα might reestablish the 

metallate shift as a major reaction pathway.

To investigate the effect of boron ligands on the chemoselectivity of the coupling reaction in 

equation 2, we converted a series of styrenyl boronic esters to the derived “ate” complexes 

and subjected them to coupling with Pd(OAc)2 and MandyPhos ligand (Sp,Sp-L). As 

depicted in Table 1, with relatively unencumbered ligands on boron such as L1 (neopentyl 

glycol) or L2 (cis-1,2-cyclopentane diol) the Sukuzi-Miyaura product remains the 

predominant reaction product. However, when the boron center is more encumbered such as 

with L3 (pinacol) and L4, the proportion of conjunctive cross-coupling (C3) product was 

increased, consistent with the notion that hindered access to either the oxygen atom or Cα 
may retard the rate of the direct transmetalation reaction relative to metallate shift. It can 

also be noted that chemoselectivity with boron centers bearing even more highly 

encumbered ligands (L5, L6) begins to suffer, an outcome we consider might be due to 

hindered olefin binding. Lastly, support for the notion that the oxygen atom may be involved 

in the direct transmetalation process is provided by the reaction with hydrocarbon-based 
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ligand L7 (9-BBN) wherein the metallate shift-based path operates to the near exclusion of 

the Suzuki-Miyaura reaction.

Considering the observations in entries 1–6 of Table 1, we sought ligands that are both 

readily accessible and also effectively shield the oxygen atom and/or Cα without blocking 

access to the alkene Cβ. As shown in entry 8, ligand L8 (termed “mac”), readily prepared by 

methylation of acenaphthoquinone (vide infra), appears to satisfy these requirements, 

delivering the conjunctive product in good yield and enantioselectivity. Of note, the reaction 

chemoselectivity could be enhanced by conducting the reaction at 40 °C and in the presence 

of CsF; under these conditions the conjunctive coupling product is formed in 76% isolated 

yield, >20:1 dr, and with 99:1 enantioselectivity.

Diol 4 is readily available from acenaphthoquinone by a single-step diastereoselective (4.3:1 

dr) carbonyl addition reaction employing trimethylaluminum in toluene,7 followed by 

crystallization of the diol from ethyl acetate solvent. Conversion of boronic acids to derived 

B(mac) esters is readily accomplished by esterification in the presence of catalytic FeCl3.8 

In contrast to common boronic ester ligands (i.e. pinacol, neopentylglycol), when the 

B(mac) derivatives are converted to the four coordinate “ate” complexes, the issue of 

stereoisomerism arises and it was considered that this feature might pose a complication for 

selective and efficient catalytic coupling reactions. To study the properties of B(mac) “ate” 

complexes, the addition of phenyllithium to n-butylB(mac) in THF-d8 at room temperature 

was analyzed by 1H NMR analysis. As shown in Scheme 2b, the kinetic addition product 

appeared to arise from addition of the nucleophile cis relative to the vicinal methyl groups 

forming trans-6 in a 5:1 ratio.9 Of note, stirring the reaction for 30 minutes at 60 °C resulted 

in a 2:1 diastereomer ratio, and after 12 hours an equilibrium 1:1 ratio of the isomers was 

observed. Importantly, when reaction partners are reversed such that of n-BuLi was added to 

PhB(mac), an inverted initial kinetic ratio (ca. 1:12.5) results, but the same thermodynamic 

ratio is achieved upon heating (see Supporting Information for details). These experiments 

suggest that diastereomeric “ate” complexes should be interconverting during the course of 

reaction and that the configuration of these species will likely be inconsequential to 

conjunctive couplings.

With ready access to B(mac)-derived substrates and an understanding of their properties, 

these compounds were examined in conjunctive coupling reactions. As depicted in Table 2, 

the reaction can operate with both electron-rich and electron-poor electrophiles and, after 

oxidative work-up, provides the derived secondary alcohols with high diastereoselectivity 

(>20:1 dr) and enantioselectivity (generally above 98:2 er.). While substrates with 

heteroatom-containing functional groups do not pose an inherent problem, diminished yield 

was observed with electron-deficient electrophiles, an outcome that arises from competitive 

Suzuki-Miyaura coupling reactions (in general for Table 2, the remaining mass balance is 

comprised of Suzuki-Miyaura products). Fortunately, even with these substrates the 

stereoinduction remains high. It should also be noted that a substrate with a hindered 

migrating alkenyl group, reacted with anomalously low enantioselectivity, an observation 

that has been made in other systems.4a,c Examination of both aryl triflate and aryl bromide 

electrophiles showed that both electrophiles could be employed to furnish to conjunctive 

product; however, bromide electrophiles required the addition of KOTf to ameliorate the 
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inhibitory activity of bromide salts4b and provided diminished product yields relative to their 

triflate counterparts. The reaction was also found to operate with several different migrating 

groups, with electron-rich migrating groups giving higher yields than those that are electron-

poor. Surprisingly, under the current conditions, “ate” complexes containing alkyl migrating 

groups did not engage in the conjunctive coupling pathway and provided direct Suzuki-

Miyaura coupling products instead. With respect to the substituent at the β-carbon of the 

alkenyl boronate, substrates containing electron-rich and electron-deficient arenes, as well as 

those containing alkyl groups were found to participate in the reaction. While an electron-

rich β-substituent appeared to increase the conversion of the reaction, it also resulted in more 

competition from the Suzuki-Miyuara pathway (23; 1:1 conjunctive:Suzuki). Substrates with 

electron-deficient β-substituents furnished less Suzuki-Miyaura reaction, but required higher 

temperatures for the conjunctive process to proceed (24, 4:1 conjunctive:Suzuki). Lastly, 

while substrates with β-alkyl substitution (16-22) gave only modest yields, they reacted with 

outstanding selectivity and furnished products that would be otherwise difficult to access 

with single-step catalytic processes.

Although B(mac)-derived products are stable to column chromatography, they are poorly 

soluble in many organic solvents such that for the purposes of Table 2, it was most 

convenient to oxidize the coupling products and isolate the corresponding alcohols. To learn 

about other transformations of the B(mac) derivatives, a larger scale coupling reaction was 

undertaken and the reaction product examined. As shown in Scheme 3, a gram-scale 

coupling provided secondary boronic ester 26 with reaction efficiency and selectivity 

comparable to smaller scale reactions in Table 2. Consistent with the observations in Table 2, 

purified intermediate 26 underwent oxidation efficiently, providing alcohol 2b in 

outstanding yield and selectivity. Also noteworthy, is that direct amination10/Boc protection 

of 26 furnished carbamate 27 in excellent yield and as a single diastereomer. Lastly, it was 

found that B(mac)-derivate 26 underwent efficient modified Matteson homologation11 to 

furnish primary B(mac) derivative 28 as a single diastereomer.

The diastereoselective conjunctive coupling establishes strategically-useful functional group 

arrays in ways that are not straightforward to access by contemporary asymmetric synthesis. 

This feature is illustrated by the application of the conjunctive coupling to the synthesis of 

obtusafuran12 (Scheme 4). While this target was previously prepared by a convenient 

enantioselective ketone reduction and cyclization, construction of the requisite ketone 

starting material required five steps of chemical synthesis.13 Employing trans-2-

propenylB(mac) in a conjunctive coupling with PhLi and aryl bromide 29, furnished 30 in 

excellent yield and stereoselection. Subsequent oxidative cyclization14 and deprotection 

provided the target in just three synthesis steps (two reaction vessels) from simple starting 

materials.

In summary, we have established a catalytic, diastereo-, and enantioselective conjunctive 

coupling of β-substituted alkenylboronic esters. This process employs an encumbered 

diolato ligand to control the reaction of alkenylboron “ate” complexes, tipping the reaction 

in favor of a metallate shift-based pathway rather than direct transmetalation. Further studies 

on the mechanistic origin of chemoselectivity with B(mac) derived “ate” complexes will be 

reported in due course.
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Scheme 1. 
Conjunctive Cross-Coupling of β-Substituted Alkenylboronates
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Scheme 2. 
Methylated Acenaphthoquinone (mac) as a Ligand for Boronic Esters.
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Scheme 3. 
Synthetic Transformations of AlkylB(mac) Derivatives.
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Scheme 4. 
Construction of (+)-Obtusafuran by Conjunctive Cross-Coupling.
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Table 1.

Effect of Boron Ligand on Chemoselectivity in Conjunctive Coupling Reactions.
a

entry BL2 C3:SM C3 yield dr er

1 L1 (neo) 1:5.8 13 (10) >20:1 99:1

2 L2 1:>20 <5 nd nd

3 L3 (pin) 1:2 35(30) >20:1 98:2

4 L4 1.7:1 56(46) >20:1 99:1

5 L5 1:2 30 >20:1 nd

6 L6 1:3 20 >20:1 nd

7 L7 (9-BBN) >20:1 92(75) >20:1 67:33

8 L8 (mac) 2.5:1 75(70) >20:1 99:1

9
b L8 (mac) 4.2:1 83(76) >20:1 99:1

(a)
Yields are by 1H NMR versus an internal standard, yield in parentheses is after isolation. For entry 7, yield is of the derived alcohol; for the 

others, yield is of the boronic ester. Enantiomer ratio of derived alcohol was determined by SFC analysis on a chiral stationary phase and in 

comparison to authentic enantiomer mixture. Diastereomer ratio determined by analysis of the 1H NMR spectrum.

(b)
Reaction at 40 °C and with 1 equiv CsF.
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