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Abstract

The sugarcane borer moth, Diatraea saccharalis, is one of the most important pests of sug-

arcane and maize crops in theWestern Hemisphere. The pest is widespread throughout

South and Central America, the Caribbean region and the southern United States. One of

the most intriguing features of D. saccharalis population dynamics is the high rate of range

expansion reported in recent years. To shed light on the history of colonization of D. sac-

charalis, we investigated the genetic structure and diversity in American populations using

single nucleotide polymorphism (SNPs) markers throughout the genome and sequences of

the mitochondrial gene cytochrome oxidase (COI). Our primary goal was to propose possi-

ble dispersal routes from the putative center of origin that can explain the spatial pattern of

genetic diversity. Our findings showed a clear correspondence between genetic structure

and the geographical distributions of this pest insect on the American continents. The clus-

tering analyses indicated three distinct groups: one composed of Brazilian populations, a

second group composed of populations from El Salvador, Mexico, Texas and Louisiana

and a third group composed of the Florida population. The predicted time of divergence pre-

dates the agriculture expansion period, but the pattern of distribution of haplotype diversity

suggests that human-mediated movement was most likely the factor responsible for the

widespread distribution in the Americas. The study of the early history of D. saccharalis pro-

motes a better understanding of range expansion, the history of invasion, and demographic

patterns of pest populations in the Americas.
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Introduction

The ability to move from deteriorated environments to more resourceful ones is a fundamental

component of the insects’ life history and has a significant impact on agricultural ecosystems

[1]. As colonizing insects arrive at a new location, both neutral (i.e., bottleneck and founder

effect) and adaptive variations (i.e., natural selection) will cause genetic divergence to occur

between the newly founded population and the ancestral one. In the case of natural selection,

selection pressures imposed by host plants and by the environment promote adaptive evolution

upon the insects’ morphological, physiological, and behavioral attributes, resulting in diver-

gence of settlers. [2,3]. In other words, the alleles favored by natural selection gradually replace

those which are unfavored, changing populations from within [4–6]. The study of genome-

wide single nucleotide polymorphisms (SNPs) can be useful to detect traces of selection sweeps

and population divergence, and thus be used to address important ecological and evolutionary

issues [4–6]. For instance, the careful investigation of the patterns of genetic diversity can con-

tribute to studies on the early demographic history of the pest insects, including past movement

and adaptive changes. The mechanism of insect dispersion can be divided into two broad cate-

gories: (1) active movement (i.e., migratory and dispersal behavior) [7] and passive movement

[8]. Passive movement can be further divided into human-mediated [9–11] and non-human

mediated movement—passively transported by boats, trucks or trains in the former, or by wind

or water in the latter [12,13]. In both cases of passive movement, the direction of the displace-

ment is biased and correlates with features of the natural environment or human activities.

Substantial advancement has been made in recent years to understand patterns of insect

movement [14]. Such studies can be particularly useful in the context of pest insects [15–18],

where the information about the origin of infestations and the patterns of dispersal have a

direct impact on pest management strategies, including insecticide resistance management.

Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) is one of the most critical sugarcane

and maize pests in the Western Hemisphere [19]. This insect is responsible for considerable

crop damage and economic losses and is widely distributed throughout South and Central

America, the Caribbean region, and the southern United States [20–23]. Although studies

have addressed the distribution of this pest, the underlying details of the history of colonization

in the Americas remain mostly unknown. The putative center of origin of D. saccharalis seems

to be floating grasses (Paspalum spp. and Panicum spp.) along the delta of the Orinoco river in

Venezuela [19]. However, while this is plausible, this hypothesis is still mostly uncorroborated.

An intriguing aspect of the life history of D. saccharalis is its low dispersal capacity and site

fidelity that is suggestive of a more sedentary lifestyle in which matings are mostly restricted to

small groups of related insects. Mark-recapture studies recovered over 45% of adults at around

50 meters from the release point, demonstrating the limited dispersal ability of this moth

[24,25]. The dispersal distance was slightly increased to around 800 meters when the moths

dispersal was aided by the wind. Recent studies have also investigated population structure

and gene flow of D. saccharalis and detected significant genetic structure in samples from

North, Central and South America [21,23,26,27]. However, these studies relied on a limited

number of genetic markers (i.e., mitochondrial and SSR markers) and therefore could not

directly reveal the dispersion patterns of D. saccharalis across the Western Hemisphere

[26,28]. To summarize the problem in one question: how can an insect with such a limited dis-

persal ability have occupied large portions of the American continents?

Our primary goal in this study was to investigate the genetic structure and diversity in

populations of D. saccharalis in the Americas using SNPs identified through the genotyping-

by-sequencing (GBS) method [29]. This approach can be used to analyze differences in fre-

quencies of neutral and adaptive alleles among populations and to provide a powerful tool to
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investigate demographic history as well as to identify markers putatively under selection. Such

studies give a framework for understanding the evolutionary patterns of the introduced inva-

sive populations of D. saccharalis in the Americas.

Material andmethods

Insect collections

A total of 250 specimens of D. saccharalis were collected in maize and sugarcane production

regions in Brazil, Argentina, El Salvador, and the United States during the 2011/2012 and

2012/2013 crop seasons (S1 Table). Upon collection, the individual larvae were kept in Petri

dishes containing artificial diet and maintained in controlled condition until pupation (27

±1˚C; 70% of relative humidity, and a photoperiod of 12D:12L). Healthy pupae were then

transferred to cylindrical cages (40 x 30 cm) and kept in solitary conditions at 20±1˚C until the

adults emerged. Species identification was confirmed by the direct examination of the adults’

genitalia, and only D. saccharalis were used in this study [30,31]. Moths were then stored at

-80˚C until further sample processing.

DNA extraction

The DNA was extracted from the adult moth tissues following the CTAB protocol described

by Doyle and Doyle (1990) [32]. The integrity of DNA was evaluated in 0.8% (w/v) agarose

gels with 1X TAE buffer (Tris, acetic acid, EDTA, pH 8.0), by concentrations estimated by

comparison with known amounts of a DNA standard (λ phage). The gels were stained in an

ethidium bromide bath (0.5 mg/mL), and DNA bands were visualized and photographed

under UV light.

Genotyping-by-sequencing

GBS libraries were produced as described by Poland et al. (2012) [33]. DNA concentrations

were determined using Picogreen (Molecular Probes, Eugene, Oregon) and a Synergy HT

(BioTek, Winooski, Vermont) microplate reader, and adjusted to approximately 50 ng/μl. Five

microliters (~250 ng) were pipetted into 96-well plates containing 2.5 μl 0.1 μM specific DNA

barcoded PstI adaptors. The restriction enzymes PstI (New England Biolabs, Ipswich, MA,

USA) andMspI (New England Biolabs) were used to digest the DNA and to reduce genome

complexity. The barcoded PstI adapters and a common non-barcodedMspI adapter were

ligated to the digested DNA and amplified by PCR to create an enriched library. The resulting

library was single-end sequenced to 100 bases on a single lane using the Illumina HiSeq 4000

sequencing kit v1 (Illumina, Inc., San Diego, CA, USA). The fastq files obtained were demulti-

plexed with the bcl2fastq v2.17.1.14 (Illumina) by the Roy J. Carver Biotechnology Center at

the University of Illinois at Urbana-Champaign producing nearly 404 million raw reads. The

UNEAK pipeline, a multi-sample, SNP-calling approach developed for analyzing GBS data

from species without reference genomes [34], was used to analyze the first 64 bases (beginning

with the PstI restriction site) to identify SNPs.

TASSEL 5 [35] was used to filter SNP data such that each marker was present in at least

70% of the individuals within each population. Using this filtering, we identified 1,331 SNPs

for the 250 individuals included in our GBS library.

Population genomics analyses

File conversion to other population genetics programs was made using PGDSpider v.2.1.0.3

[36]. To identify candidate loci that may have been under selection during the range expansion
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of D. saccharalis in the Americas, the LOSITAN program [37], which employs the FDIST2

algorithm [38], was used to detect SNPs that are FST outliers. This method evaluates the rela-

tionship between the expected distribution of FST and heterozygosity assuming an island

model of migration. In LOSITAN analysis, 100,000 simulations were run by using the stepwise

mutation model with the option of neutral mean FST. Markers that presented FST higher than

the 95% confidence interval were considered candidates for positive selection, and markers

that presented FST lower than the 95% confidence interval were considered candidates for bal-

ancing selection. Genetic diversity and F statistics were estimated under a randommodel, in

which the sampled populations were considered representative of the species and with a com-

mon evolutionary history. Allele frequencies, the number of alleles (A), allelic richness (AR)

the observed heterozygosity (HO) and expected heterozygosity (HE) and the inbreeding coeffi-

cient (FIS) were estimated using the R package diveRsity [39]. Cluster analysis was based on

the construction of dendrograms using Nei’s genetic distance [40], and the neighbor-joining

method was performed using the R package poppr [41]. The stability of the clusters was tested

through 1,000 bootstraps resamples. The genetic structure was investigated employing the

non-model-based approach DAPC using the R package adegenet [42]. The hierarchical distri-

bution of genomic diversity within and among groups of populations was investigated with

Analyses of Molecular Variance (AMOVA) also using the package poppr.

Phylogenetic analysis and divergence time estimation

A total of 167 sequences of a fragment of the cytochrome oxidase subunit I (COI) were

retrieved from the BOLD repository (http://www.boldsystems.org/) to offer additional support

for the study of the early demographic history of D. saccharalis in the Americas (S2 Table).

DNA sequences were trimmed (533nt) and aligned with MUSCLE in MEGA X [43]. Unique

haplotypes were identified in DnaSP software [44], and a phylogenetic analysis based on haplo-

types was performed using maximum likelihood (ML) under the HKY+Gmodel was con-

ducted in MEGA X. A total of 1000 bootstraps were used for node support.

Tests for substitution model and molecular clock were also performed in MEGA X (S3

Table). Divergence time estimation was inferred by a Bayesian method implemented in

BEAST 1.7.4 [45]. Divergence time calculation has been extensively used for the mitochondrial

gene COI; however, the selection of realistic divergence rates is one of the main challenges

of such studies. Lack of fossils or a species-specific diverge rate are factors responsible for

inconsistencies in the estimation [46]. To overcome those obstacles, we used three different

divergence rates frequently used for arthropods. The first rate is the standard rate of 2.3%

divergence/My generally used for mitochondria of insects [47]. However, the recent literature

suggests examples for slower [48] and faster raters [49,50]. Thus, a second rate of 3.54% [51]

and a third rate of 5.2% [52] pairwise divergence per Mya was also used. HKY+G was imple-

mented for the substitution model. The clock model was uncorrelated lognormal and constant

size coalescent model for the tree prior. The analysis was run for 50 million generations sam-

pled every 1000 generations in three independent repetitions. A burn-in of 20% was implanted

over the total number of trees generated.

Results and discussion

GBS sequencing and detection of outlier SNPs

GBS sequencing data returned over 403 million sequence reads, approximately 1.6 million

reads per sample. After cleaning and filtering the sequence data, aligning PCR fragments to

reveal SNPs, a total of 1331 SNPs were identified to be used in subsequent population genetic

Dispersal ofDiatraea saccharalis evaluated by genotyping-by-sequencing

PLOSONE | https://doi.org/10.1371/journal.pone.0220031 July 24, 2019 4 / 16

http://www.boldsystems.org/
https://doi.org/10.1371/journal.pone.0220031


analyses for 250 individuals. The FST-outlier analysis showed 125 putative loci under positive

selection and 270 under balancing selection (S1 Fig).

The analysis based on outlier SNPs was designed to detect genetic variation putatively

driven by natural selection. Populations with shared demographic history should result in sim-

ilar FST/HE values for all loci, but those that deviate from the null model are therefore candi-

dates for loci under selection [53]. Here, we present evidence that natural selection is acting

upon population differentiation; it is not clear, however, which selection pressure prevails,

whether it may be environmental, crop management or host related adaptions.

Genomic diversity

Overall diversity indexes [i.e., number of alleles (A), allelic richness (AR), and observed hetero-

zygosity (HO)] showed a similar trend; that is, the highest values of genetic diversity were

found in Brazil and Argentina whereas the lowest values were found in the U.S. and El Salva-

dor (Table 1). The average values of observed (HO) and expected heterozygosity (HE) across all

populations were 0.12 and 0.16, respectively. The Brazilian population of Jaboticabal-Sugar-

cane showed the highest observed and expected values (HO = HE = 0.24) (Table 1). The lowest

value for the observed and expected heterozygosity was found in the U.S. population of Belle

Glade-Sugarcane (HO = 0.03 and HE = 0.08).

Table 1. Diatraea saccharalis genomic diversity estimates based on 1,331 SNP loci by sampling locations.

Location N A AR HO HE FIS

LaCocha_Co 10 1859 1.13 0.1 0.13 0.244

LaCruz_Su 5 1721 1.1 0.1 0.12 0.159

Jujuy_Su 7 1866 1.13 0.11 0.14 0.222

Perga_Co 2 1519 1.05 0.12 0.14 0.183

Qui_Co 4 1552 0.98 0.07 0.13 0.475

Araras_Su 2 1723 1.14 0.16 0.16 0.02

Goias_TBD 4 1856 1.1 0.12 0.17 0.324

Jabo_Su 52 2333 1.41 0.24 0.24 0.006

Morr_Co 4 1910 1.16 0.13 0.17 0.243

MS_TBD 9 2129 1.23 0.14 0.2 0.306

MT_TBD 5 1818 1.12 0.11 0.15 0.225

PAf_Su 3 1751 1.12 0.11 0.15 0.253

Parana_TBD 3 1847 1.16 0.14 0.16 0.175

Pira_Co 25 2118 1.32 0.19 0.19 -0.009

Pira_Su 22 2296 1.38 0.22 0.23 0.046

Rib_Su 4 1916 1.11 0.14 0.18 0.246

Rondo_Co 3 1634 1.03 0.11 0.16 0.347

SHG_Su 4 1916 1.15 0.15 0.19 0.236

SP_TBD 18 2264 1.21 0.13 0.23 0.423

ElNilo_Su 4 1438 1.01 0.05 0.07 0.326

ElPais_Su 2 1277 0.89 0.04 0.13 0.727

BGlade_Su 9 1384 0.95 0.03 0.08 0.629

Louis_Su 15 1526 1.03 0.06 0.09 0.33

Beaum_Su 13 1556 1.07 0.08 0.09 0.149

Wesl_Su 7 1472 1 0.06 0.09 0.361

N = Number of individuals, A = Number of alleles, AR = Allelic Richness, HO = Observed heterozygosity, HE = Expected heterozygosity, FIS = Inbreeding coefficient

https://doi.org/10.1371/journal.pone.0220031.t001
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The observed values for heterozygosity were less than the expected values in all but the

three Brazilian locations (Jaboticabal-Sugarcane, Araras-Sugarcane, and Piracicaba-Maize).

Particularly large differences between observed and expected heterozygosity were observed

in populations from Argentina and El Salvador (i.e., Quilmes-Maize and El Pais-Sugarcane).

Similar values for H0 and HEmight indicate that most loci are in Hardy-Weinberg equilib-

rium, which means that the frequency of the alleles tended to remain unchanged over the

generations. On the other hand, differences in observed and expected heterozygosity might

indicate critical demographic changes.

Overall fewer heterozygotes than expected were found in populations of D. saccharalis,

which was also reflected in the inbreeding coefficient (FIS). The average inbreeding coefficient

across populations was 0.27, ranging from -0.009 (Piracicaba-Maize) to 0.727 (El Pais-Sugar-

cane). Departure from the Hardy-Weinberg equilibrium (HWE), as shown previously, and

heterozygote deficiency (FIS), can be related to different causes. Limited dispersal, well-struc-

tured populations, and the evidence for strong positive selection are all factors that point to a

more locally confined population dynamic.

Genetic structure and substructure ofD. saccharalis populations

The values of pairwise FST revealed strong genetic structure between the northern (i.e., U.S.

and El Salvador) and the southern (i.e., Brazil and Argentina) parts of the American continents

(Fig 1, S4 Table). The highest FST values were found between the U.S. and the Argentinian

populations (Louisiana vs. Buenos Aires, FST = 0.418). In contrast, an overall low degree of dif-

ferentiation was found among the Brazilian populations (São Paulo vs. Paraná, FST = 0.003;

São Paulo vs. Minas Gerais, FST = 0.004), which can be explained by the short geographical dis-

tance and therefore higher gene flow among sampled sites. Alternatively, the differences in

genetic structure found in Brazil and the U.S. may be the result of a different pattern of coloni-

zation of the two geographical regions. This hypothesis will be developed further in the follow-

ing paragraphs.

Similarly, the neighbor-joining dendrogram analysis revealed distinct geographically sep-

arated groups distinguishing samples from Brazil, Argentina, the U.S. and El Salvador (Fig

2). Interestingly, moths from the north and central-west of Brazil were the most related to

the Argentina samples indicating similar founding sources or a connecting route for gene

flow. Showing a slightly more significant number of groups, the discriminant analysis of

principal components (DAPC) also separates D. saccharalis samples into four clusters

according to the country of origin (Fig 3). The analysis of molecular variance (AMOVAs)

supports the structure by geographical regions in which most of the genetic variation was

assigned to differences among countries (φst = 0.525, Table 2). The individuals from Argen-

tina and Brazil were more related to each other compared to other locations, confirming that

the founding of the two populations is, at least in part, due to related events (i.e., stepping-

stone or range expansion from similar source populations) (Fig 2). On the other hand, indi-

viduals from Florida were more distant from other samples collected in the United States

(i.e., Louisiana and Texas), which could be attributed to different sources of the ancestral

founding population (Figs 2 and 3). Our finding supports the hypothesis of the colonization

of North America by multiple events from different sources, which agrees with Joyce et al.

(2014) [26].

Host plants such as maize and sugarcane seem to be a less critical factor structuring D. sac-

charalis populations (Fig 3, Table 2). This result agrees with the work of Joyce et al. (2016)

[23], which did not find significant genetic divergence among populations of D. saccharalis

collected on maize and sugarcane in El Salvador. Our data indicate that D. saccharalis
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Fig 1. Heatmap of pairwise FST values betweenDiatraea saccharalis populations, based on 1,331 SNP loci.
Dendrograms were plotted using the unweighted-pair-group method with arithmetic mean (UPGMA). Colors
indicate the degree of divergence from red (low FST values, little genetic divergence) to light yellow (high FST values,
strong genetic divergence).

https://doi.org/10.1371/journal.pone.0220031.g001

Fig 2. SuggestedD. saccharalis dispersion routes from its center of origin in the Orinoco Basin, Venezuela, based
on historical information about maize dispersal and sugarcane introduction, and the genetic relationships
observed in this study. The neighbor-joining dendogram showing the relationships amongD. saccharalis populations
based on Nei’s genetic distance. A total of 1,331 SNP loci were used, and confidence of nodes was based on 1,000
bootstraps. On the map, numbers indicate major differentiation events and arrows represent putative routes for
dispersal.

https://doi.org/10.1371/journal.pone.0220031.g002
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populations are undifferentiated in exploiting different hosts, suggesting some level of pheno-

typic plasticity and can also explain the high number of markers under balancing selection

[54].

Divergence time estimation

Tree topology generated using the ML approach based on D. saccharalis COI sequences was

strongly supported by nuclear markers (S2 Fig). The ML tree divided the data into three dis-

tinct groups according to geographic regions. The first split within D. saccharalis separated

Florida from all other populations. A second split separated populations from El Salvador,

Mexico, Texas, and Louisiana from those in South America (Brazil and Argentina) indicating

a second event of differentiation (S2 Fig). The topology generated from the divergence time

analysis based on Bayesian approach revealed a similar pattern of population differentiation.

The three different divergence rates used to calibrate the molecular clock rendered different

time estimations; however, because there is no specific COI clock rate or fossils records avail-

able for D. saccharalis, all three values were presented (Table 3, S3 Fig). All estimated diver-

gence times place the separation of the three major groups in the period between 427 thousand

Fig 3. Scatterplots from discriminant analysis of principal components (DAPC) based on 1,331 SNP loci showing
the dispersion of 250Diatraea saccharalis individuals across the first two principal components. Individuals (dots)
are colored according to (A) their country of origin; and (B) the host crop in which they were collected. Variation
represented in x = 44.4% and in y = 15%.

https://doi.org/10.1371/journal.pone.0220031.g003

Table 2. Analyses of Molecular Variance (AMOVA) ofDiatraea saccharalis populations based on the 1,331 SNPmarkers. The analysis considered different host-
plant species and geographic regions. φ statistics are indices of the amount of differentiation among populations, similar to Wright’s F statistics. d.f. = degrees of freedom.

Source of Variation D.f S.S. M.S. Sigma % of variation φ

Among countries 3 39716.87 13238.96 329.12 52.59 φst = 0.525��

Within countries 192 56972.76 296.73 296.73 47.41

Total 195 96689.62 495.84 625.86

Between hosts 1 5052.01 5052.01 66.05 12.27 φst = 0.122��

Within hosts 194 91637.61 472.36 472.36 87.73

Total 195 96689.63 495.84 538.41

Among countries 3 39716.87 13238.96 290.58 46.51 φst = 0.549��

Between host within countries 2 3518.63 1759.32 52.79 8.45 φsc = 0.157��

Within hosts 190 53454.13 281.34 281.34 45.04 φct = 0.465�

Total 195 96689.62 495.84 624.71

https://doi.org/10.1371/journal.pone.0220031.t002
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and 923 thousand years ago. This period precedes the agriculture expansion period in the

Americas, which means that the lineages were formed before maize domestication. However,

the period is also posterior to great geological transformation in the regions and might be

related to climatic oscillation during the Pleistocene [55–57]. The most recent haplotypes were

formed within the period of maize domestication and expansion in the Americas.

Hypotheses for the early history ofD. saccharalis colonization

Early dispersal strategy—Floating on the Amazon basin rivers. The likely center of ori-

gin of D. saccharalis is the delta region of the Orinoco River, Venezuela, extending to the lower

Amazon River [19,58]. Both basins, Orinoco and Amazon, cover an area of approximately

8,380,000 square kilometers (Fig 2, Amazon Basin), an area already large enough to be consid-

ered a remarkable dispersal achievement for insects with limited capacity to disperse. The first

reports of the movement of D. saccharalis on infested aquatic grasses floating in the Amazon

river are from eyewitness accounts [58]. The movement along the Amazon basin rivers would

allow an incremental range expansion out of Venezuela throughout northern Brazil. However,

this passive dispersal strategy using the rivers was probably more critical before the association

of D. saccharalis with maize plants which occurred much later for this species.

The early dispersal and the considerable low rate of gene flow possibly created favorable

conditions for population isolation and lineage formation as early as ~400–600 thousand years

ago. The isolation might have been further enforced by climate oscillation during the late Pleis-

tocene period and prior to the population expansion to more distant parts of the continent.

However, the divergence time may vary depending on the clock rate used but consistently

points to a period later than any significant geological event (i.e., isthmus of Panama formation

~2.5–3.5 Mya) in the region [59]. An interesting observationis the presence of two distinct lin-

eages of D. saccharalis in the U.S., which opens questions about two possible colonization

events.

Pre-Columbian era—The hypothesis for human-aided dispersal by terrestrial routes

associated with maize. The dispersal history of D. saccharalismay have been influenced by

human-mediated movements of maize (Fig 2, terrestrial). The ‘D. saccharalis-maize associa-

tion’ hypothesis is based on the early occupation of humans in America followed by the estab-

lishment of Pre-Columbian civilizations [60,61]. Approximately 14,000 years ago, or possibly

earlier, humans began to domesticate plants and animals in the Americas [62–64]. These new

cultivation systems associated with the exchange of goods between early American societies

may have been responsible for maize dispersal fromMesoamerica to North and South Amer-

ica and the Caribbean following different routes [65–67]. D. saccharalismay have similarly

dispersed to areas beyond its center of origin following maize dispersal in Pre-Columbian

America. In North America, a lack of haplotype substructure within the second northern

genetic group that includes Texas, Louisiana, Mexico, and El Salvador is a reliable indicator of

a great movement by land, which mixed haplotypes in all locations. Populations from Louisi-

ana and Texas were in the same cluster, share most haplotypes, and were strictly related to

Table 3. Divergence time based on three arthropod mitochondrial divergence rates. Trees are presented in supple-
mental material S3 Fig.

2.5%/my 3.54%/my 5.25%/my

Group 1
(Florida/All other populations)

0.923 0.613 0.427

Group 2
(US, El Salvador, Mex/ Brazil, Argentina)

0.685 0.455 0.316

https://doi.org/10.1371/journal.pone.0220031.t003
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populations from Central America (El Salvador) indicating a shared route of colonization and

gene flow.

Archaeological evidence demonstrates that maize dispersal occurred through the South

American lowlands and the Andean region, suggesting two major routes for D. saccharalis dis-

persal [65–70]. Analyzing South American lowlands populations (i.e., Brazilian populations),

the closer relationships among the populations from the states of Mato Grosso do Sul, Mato

Grosso and Tocantins may be associated with early human migrations(Fig 2). This route of

human migration was most likely highly dependent on transportation along rivers, probably

following the Xingu, Araguaia or/and the Tocantins rivers. These rivers are connected to the

Amazon and Orinoco Basins. Alternatively, those haplotypes could have expanded inland

from the coast (i.e., São Paulo) coming from the Caribbean. The hypothesis of maritime

expansion will be discussed in the next section.

Regarding the D. saccharalis Argentinian populations, a pattern of sub-structure was found

as well. While samples from the Pampa region (i.e., Buenos Aires) and the Dry Pampas (i.e.,

Tucumán and San Luis) grouped together and showed resemblance to the Brazilian popula-

tions, populations from remote parts of the northwest Chaco Serrano (i.e., Jujuy) were geneti-

cally differentiated. Together, this suggests that populations from the Pampas and the Dry

Pampas might be associated with D. saccharalis dispersal routes through lowlands, while Jujuy

might have a more ancient origin associated with maize dispersal through the Andean region.

However, future studies are necessary to confirm this hypothesis.

Post-Columbian era—The hypothesis for the human-aided dispersal by maritime

routes in association with sugarcane. In recent years, the long-distance movement of goods

including sugarcane by maritime routes were of great importance and may explain some of

the genetic structure found within the region (Fig 2, maritime routes). One hypothesis to

explain the pattern of genetic divergence found in the Florida population could be the com-

mercial movement of plants during the Columbian Exchange period in the 15th and 16th cen-

turies. The Caribbean region was a crossing point at the beginning of European colonization

of America, and served to exchange people and food between the Old and the NewWorld

[68]. This new commercial center was a favorable environment for the introduction of new

diseases and pests that affected the native human population and their native (maize) and

introduced (sugarcane) crops. We speculate that the exchange of infested plant material from

the center of origin in Venezuela to the Caribbean islands promoted the spread of D. sacchara-

lis by sea routes, northwards to the United States of America, specifically Florida, as well as

southwards to Brazil, specifically to the São Paulo state region. The support for this hypothesis

comes from the strong genetic structure within the U.S. that could indicate that the Florida

population was colonized by an ancestral population probably from the Caribbean region.

Alternatively, gradual range expansion of D. saccharalis through the Caribbean region could

have reached Florida, where the founding population remained relatively isolated throughout

the years. More studies including samples from the Caribbean region would be necessary to

corroborate this hypothesis.

Recent routes of expansion—Agricultural development and routes of colonization of the

Brazilian Cerrado. In Brazil, two genetic clusters were derived from the nuclear markers (Fig

3), which could indicate different introduction routes or a gradual process of colonization. The

first and largest genetic cluster included the states of São Paulo and Paraná (southeast and south

regions), places on the Brazilian coast that could be linked to the first sugarcane plants that

arrived in São Paulo state from Caribbean routes. Moreover, when we consider the mitochon-

drial marker, haplotypes found in São Paulo (Hap3 and Hap7) and Paraná (Hap3, Hap5, and

Hap7) were strongly shared with other locations and have a more recent genealogy. Mitochon-

drial information (COI analysis) supports the hypothesis of a recent process of expansion
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originating from east to west within Brazil. Also part of this cluster, populations from Goiás and

Minas Gerais states (southeast/center-west) were likely colonized by insects present in infested

material from São Paulo. It is very likely that the demographic event that allowed the colonization

of southeast areas belongs to the same putative route for the colonization of areas further south

through the lowlands to Argentina (i.e., the FST between São Paulo and Buenos Aires was 0.02).

The transportation of plants across states seems to be the most critical pathway for D. sac-

charalis dispersion in Brazil countryside, which has been a recent development. This relatively

recent introduction of D. saccharalis in the Brazilian Cerrado, followed by its population

expansion may explain the lower allelic richness observed in populations from central Brazil

compared to populations collected in the states of São Paulo, where the gene pool was more

diverse. Due to its high commercial value during the last decade, sugarcane had a considerable

agricultural expansion in areas of the Cerrado. Interesting, however, is that the oldest mito-

chondrial haplotype was present only in MT (Hap8) and was not shared with any other loca-

tions indicating a second route of colonization, and is probably associated with the earlier

lowland colonization from the Amazon region. In summary, the combination of haplotypes

present in the Cerrado is likely the result of the sugarcane expansion from the east (i.e., São

Paulo) and perhaps an earlier pre-sugarcane expansion associated with the movement of

maize along the rivers by native populations. More efforts should be made to characterize D.

saccharalis populations from northern parts of Brazil to test this hypothesis.

Conclusions

Diatraea saccharalis is a successful invasive species that colonized habitats with very distinct

environmental conditions across the Americas. Likely, multiple introductions of populations

over a long time period explain the complex process of colonization of new areas. After an ini-

tial period of differentiation that separates different lineages, human migration and trade was

likely a major factor in explaining the spread of D. saccharalis populations throughout the

Americas. Diatraea saccharalis used maize as the early vehicle for dispersal whereas sugarcane

was used in a second historical moment. More information about the genetic background of

the Caribbean and South America populations, mainly from Venezuela and Argentina, is

needed to support our hypotheses and investigate the lowland and Andean routes of dispersal.
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