IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

1097

DIiCAS: An Efficient Distributed Caching
Mechanism for P2P Systems

Chen Wang, Student Member, IEEE, Li Xiao, Member, IEEE,
Yunhao Liu, Member, IEEE, and Pei Zheng, Member, IEEE

Abstract—Peer-to-peer networks are widely criticized for their inefficient flooding search mechanism. Distributed Hash Table (DHT)
algorithms have been proposed to improve the search efficiency by mapping the index of a file to a unique peer based on predefined
hash functions. However, the tight coupling between indices and hosting peers incurs high maintenance cost in a highly dynamic
network. To properly balance the tradeoff between the costs of indexing and searching, we propose the distributed caching and
adaptive search (DiCAS) algorithm, where indices are passively cached in a group of peers based on a predefined hash function.
Guided by the same function, adaptive search selectively forwards queries to “matched” peers with a high probability of caching the
desired indices. The search cost is reduced due to shrunk searching space. Different from the DHT solutions, distributed caching
loosely maps the index of a file to a group of peers in a passive fashion, which saves the cost of updating indices. Our simulation study
shows that the DICAS protocol can significantly reduce the network search traffic with the help of small cache space contributed by

each individual peer.

Index Terms—Peer-to-peer, query response, flooding, distributed caching and adaptive search, search efficiency.

1 INTRODUCTION

OMPARED with a structured P2P network [18], [23], [30],

[33], an unstructured P2P network is less efficient due
to its blind flooding search mechanism. However, unstruc-
tured P2P systems, such as Gnutella and KaZaA, still retain
high popularity in today’s Internet community because of
their simplicity. In a Gnutella-like P2P system, a query is
broadcast and rebroadcast until a certain criterion is
satisfied. If a peer receiving the query can provide the
requested object, a response message will be sent back to
the source peer along the inverse of the query path.

The Breadth First Search behavior in a Gnutella system
causes exponentially increased network traffic. Measure-
ments in [19] show that even given that 95 percent of any
two nodes are less than 7 hops away and the message time-
to-live (TTL =7) is preponderantly used, the flooding-based
routing algorithm generates 330 TB/month in a Gnutella
network with only 50,000 nodes, in which 91 percent of the
traffic were query messages and 8 percent were PING
messages. Studies in [27] and [25] show that P2P traffic
contributes the largest portion of the Internet traffic based
on their measurements on some popular P2P systems, such
as FastTrack (including KaZaA and Grokster), Gnutella,
and DirectConnect. The inefficient blind flooding search

o C. Wang and L. Xiao are with the Department of Computer Science and
Engineering, 3115 Engineering Building, Michigan State University, East
Lansing, MI 48824. E-mail: {wangchen, Ixiao}@cse.msu.edu.

o Y. Liu is with the Department of Computer Science, Hong Kong University
of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
E-mail: liu@Ccs.ust.hk.

e P. Zheng is with Microsoft, One Microsoft Way, Redmond, WA 98052.
E-mail: peizheng@microsoft.com.

Manuscript received 12 May 2004; revised 7 Mar. 2005; accepted 8 Sept.
2005; published online 24 Aug. 2006.

Recommended for acceptance by]. Fortes.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0122-0504.

1045-9219/06/$20.00 © 2006 IEEE

technique causes the unstructured P2P systems being far
from scalable [20].

Many efforts have been made to avoid the large volume
of unnecessary traffic incurred by the flooding-based search
in unstructured P2P systems. Distributed Hash Table (DHT)
algorithms try to improve the search efficiency by mapping
the index of a file to a unique peer based on predefined
hash functions. Following the routing table, a query can be
directly forwarded to the mapped peer instead of being
blindly flooded. However, the tight coupling between
indices and hosting peers incurs high maintenance cost in
a highly dynamic network. To balance the tradeoff between
the costs of indexing and searching, we propose the
distributed caching and adaptive search (DiCAS) algorithm,
where indices are passively cached in a group of peers
based on predefined hash functions. Guided by the same
hash mapping functions, adaptive search selectively for-
wards queries only to matched peers with a high prob-
ability to provide the desired cache indices. In the DiCAS
algorithm, each node randomly takes an initial value in a
certain range [0..M-1] as a group ID when it participates
into the P2P system. We define that a query matches a peer
if and only if the following equation is satisfied: Peer Group
ID = hash(query) Mod M.

Under the DiCAS protocol, a query response will only be
cached in matched peers. The query forwarding will also be
restricted to matched peers. The consequence is that the
entire search space is virtually divided into multiple layers.
Each layer consists of peers labeled with the same group ID.
A Query is restricted in the matched layer where the
targeted indices are cached. The query traffic is reduced
due to the shrunk searching space. Fig. 1 shows an example
when M equals 3. Different from the DHT solutions,
distributed caching loosely maps the index of a file to a
group of peers through passive caching. While a query still
needs to be flooded to a group of peers instead of being

Published by the IEEE Computer Society

1098

Query matches Group 0

Group

Group |

Group 2

Fig. 1. Flooding in a multilayer P2P network.

routed directly to a specific one, the cost of indices build-up
and maintenance can be reduced.

Our work can also be viewed as an enhancement to the
uniform index cache mechanism (UIC), which utilizes the
query locality to improve search efficiency in Gnutella-like
P2P networks. In UIC, each peer caches passing by query
responses with the hope that later queries can be answered
by its nearby cached query responses instead of being
forwarded further. The DiCAS algorithm outperforms UIC
in two aspects. First, the DiCAS demands less caching space
in each individual peer since it only caches matched query
response instead of all passing by responses. Second, the
DiCAS is more efficient in search traffic because a query is
intentionally directed to peers with high probability of
answering that query.

Our simulations have shown that the DiCAS protocol
can significantly reduce the network traffic incurred by
search in unstructured P2P systems with the help of small
cache space contributed by each individual peer. The
contributions of our study are as follows:

e An index cache-enabled peer was implemented and
deployed in the real Gnutella network. Detailed
behavior of the index caching in the Gnutella
network has been measured and characterized.

e A distributed caching mechanism was put forward
which is more storage efficient than the uniform
index caching scheme proposed before.

e A concrete and approachable method based on
modulus operation is proposed to divide the P2P
network into multiple layers, such that each query is
limited to a smaller searching space without degrad-
ing the search quality.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents our implementa-
tion of Index Cache-enabled Gnutella Clients, and experi-
mental results on the index cache-enabled clients connecting
to the Gnutella P2P network. Section 4 describes the
Distributed Caching and Adaptive Search scheme. Section 5
describes our simulation methodology. Performance evalua-
tion of the DiCAS is presented in Section 6. Our study is
concluded in Section 7.

2 RELATED WORK

Several caching mechanisms have been proposed to
improve search efficiency in decentralized unstructured

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

P2P systems. The DHT approaches [18], [23], [30], [33] were
proposed to avoid query flooding by building distributed
indices among participated peers based on predefined hash
functions. However, the cost of indices maintenance makes
it difficult to deploy DHT solutions to a highly dynamic P2P
network such as Gnutella.

The authors in [28] analyze the characteristics of Gnutella
queries and their popularity distribution, and propose that
each peer caches query strings and results that flow through
it. Similar to [28], the authors in [14] observed that
submitted queries exhibit significant amounts of locality
based on one hour of Gnutella traffic, and proposed a
caching mechanism in which peers cache query responses
according to the timestamp the query is responded to. The
effectiveness of caching query results has been shown by
simulations in both [28] and [14]. All the work above
suggests a uniform index caching (UIC) mechanism. The
UIC causes a large amount of duplicated and redundant
cache results among neighboring peers, and the effect cache
space can be increased by eliminating the duplication
between neighbors, which is shown by our experiments.

Based on an observation of query locality in peers behind a
gateway of an organization, transparent query caching [17] is
proposed to cache query responses at the gateway. In contrast
to the work in [17], our approach can fully take advantage of
the internal nodes’ resources and avoid the bottleneck and
single point of failure in the centralized cache.

Caching file content has also been studied. An ideal
cache (infinite capacity and no expiration) simulator is built
[25] to investigate the performance of content caching for
KaZaA P2P network. It has been shown that caching would
have a great effect on a large-scale P2P system on reducing
wide-area bandwidth demands. Compared with the index
caching, the content caching is less storage efficient.

The K-walker [13] proposes a random walk search
mechanism and evaluates three different strategies to
replicate data (file content or query responses) on multiple
peers. Uniform strategy creates a fixed number of copies
when the item first enters the system. Proportional strategy
creates a fixed number of copies every time the item is
queried. In a square-root replication strategy, the ratio of
allocations is the square root of the ratio of query rates. Our
work is different from K-walker in that the query is more
tightly connected to the cache. In DiCAS, the query is
forwarded intentionally to the peers with a high probability
to provide the desired cache results.

The superiority of the cluster-based P2P network has
been mathematically proved in [7], while the mechanism of
how to break the P2P network into multiple clusters has not
been mentioned yet.

3 EXPERIMENTS OF INDEX CACHING IN
GNUTELLA NETWORK

3.1 Overview of Experimental Setup

To investigate the performance impact of index caching in a
real, large-scale peer-to-peer network, we modified the
LimeWire Gnutella servant [3] with support of Gnutella
protocol v0.6 [2], and developed an index Cache-enabled
Gnutella Client (CGC). Compared with the normal Gnutella
client, our CGC peer is able to create and maintain a local
index cache by overhearing traversing query response
results in an existing Gnutella network. As a result, other

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS

Keyword Distribution

10° 10' 10° 10° 10* 10
Query ID

Fig. 2. Keyword distribution of the CGC query trace. Query IDs are
ordered by the frequency.

peers neighboring to the CGC peer will have the opportu-
nity to utilize the index cache for future searches. We
conduct a number of experiments with the CGC peer in
Gnutella network to explore the performance improvement
by the index caching.

We have also built a traffic monitoring tool that works in
conjunction with the CGC peer to trace incoming and
outgoing queries and responses, as well as cache hits and
misses on the index cache. Two aspects of the dumped P2P
network traffic through the CGC peer could be used. First,
by analyzing the query patterns and locality in both space
and time we could gain more insight into some funda-
mental issues of index caching, such as how to determine
cache size and cache expiration time. Second, the trace data
can be used as a traffic source to flexibly test our CGC peer
implementation in a variety of scenarios with comparable
results. In this sense, we have actually built a cache-aware
P2P network testbed with the CGC experimental setup and
the traffic monitoring and trace-driven tool. In the following
section, we present four test scenarios that employ either
single or multiple CGC peers to examine the benefit and
overhead of index caching in a Gnutella network.

The CGC peer is a PC with a 2.4GHz Pentium IV
processor, 1 Gigabyte memory, and Ethernet connection to
the campus network. The CGC software is running on
Linux. We use LRU as the index cache replacement policy.

P \\
= Peer with t\he P

[

(a)

1099

Cache Hit Ratio
&

0 1 2 3 4 5 6 7 8
MNumber of Queries x10"

Fig. 3. Cache hit ratio on a single CGC peer with trace-driven query
generator. Cache size is 1,024 KB.

Other cache replacement policies can also be incorporated
into CGC. Clearly, different cache replacement policies will
have different effects on the hit ratio of the index cache. To
examine the impact of cache size on overall performance,
we vary the cache size from 2 Kbytes to 64 Kbytes.

3.2 Trace-Driven Single CGC Peer Experiment

Our Gnutella network query trace was collected on one
CGC peer on 11 March 2003. Some nonmeaningful words
such as articles and propositions were removed from the
trace to improve the accuracy of our analysis. The total
number of queries was 13,705,339, while 129,293 unique
keywords existed in the trace. As shown in Fig. 2, the
frequency of query keyword in the trace roughly follows a
Zipf distribution, which substantially suggests that the
index cache in a Gnutella network could make use of the
keyword and query response result locality to improve
searching performance. Fig. 3 shows the index cache hit
ratio on the single CGC peer in a trace-driven query
experiment. The cache size is 1,024 Kbytes in this case. It
shows that about 21 percent of total traversing queries will
be replied by the single CGC index cache.

3.3 Single CGC Experiment

As shown in Fig. 4a, the single CGC is connected to a
Gnutella network, which works as a regular Gnutella client

PEEr with cache % \
Peer with :sihe P
P

P

(b)

Fig. 4. CGC peers in Gnutella Network. In (a), a single CGC peer connected into Gnutella network, whereas in (b), two CGC neighboring peers

connected to Gnutella network.

1100

Cache Hit Ratio
(=1

0.08
- M\"_//
0.04 | — cache size = 2k
- cache size = Bk
0.02 -=—= gache size = 64k
0 i i
0 200 400 600 800 1000 1200 1400

Time (minutes)

Fig. 5. Cache hit ratio with different cache sizes in single CGC
experiment.

except that it maintains an index cache. Intuitively, the
benefit of index caching will be more evident if the CGC
peer could populate a large number of cached items. Hence,
the CGC has been configured to be an ultrapeer which has a
higher probability to establish connections with others than
regular peers, according to Gnutella protocol. We have
observed that the number of neighbors of the CGC peer
ranges from 10 to 120.

Fig. 5 illustrates the index cache hit ratio as a function of
time with different cache sizes in one day. Clearly, when the
cache size increases, the hit ratio will increase as well. We
identified that the major factors that limit the hit ratio of an
index cache are transit search locality of neighboring peers
to the CGC peer, and the number of neighboring connec-
tions the CGC peer could reach over the time we conducted
the experiment. We expect that with a longer warm-up time
and allowing more connections to the CGC peer, the cache
hit ratio will be further improved.

Wealso expect if there are more CGC peers participating in
the P2P network, the overall searching performance can be
improved due to cooperation between the neighboring peers.
However, our following experiments show that a large
amount of duplicated items are cached among neighbors.
Here, we define the duplicated cache items as follows:
Suppose two neighboring peers A and B have the same
caching item. When peer A receives a query for this item, it
will respond to the query and not forward the query to peer B
any more. Therefore, the cache item in peer B is not utilized
and is regarded as redundant. We define the same content
cached in neighboring peers as duplicate cache.

3.4 Twin CGC Peer Experiment

For the purpose of investigating the performance of dis-
tributed index caching in a Gnutella network, we connected
our two CGC ultrapeers into the network (see Fig. 4b). The two
CGC ultrapeers should be neighbors in the overlay such that
we could measure their overall contributions to traversing
queries with two separated index caches. Due to the inherent
overlay nature of P2P systems and Gnutella’s topology
optimization scheme, the two CGC ultrapeers, even if they
are close to each other in the physical network, can hardly
maintain a persistentneighboring relation after some up time.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10,

OCTOBER 2006

0.3

----- peer 1 hit ratio
0.1 == peer 2 hit ratio
- gffective aggregated hit ratio
|
|
00% 900 200 300 400 500 600 700

of queries x 1000

Fig. 6. Aggregate cache hit ratio in the twin CGCs experiment. The
cache size on each CGC is 64K.

To enforce a fixed neighboring relation between the two CGC
ultrapeers (the Twin CGCs), a “dummy” regular Gnutella
Client was added to the test environment. The “dummy” GC
canonly have twoneighbors (the twin CGCs) in the overlay. It
is “dummy” because when forwarding queries between the
twin CGCs, it will not decrease TTL of the query such that the
two peers connected by the dummy Gnutella Client become
virtual neighbors. In order to estimate the cache redundancy
between neighboring peers, we intentionally modified the
Gnutella clients, such that a peer will continue to forward a
query to its neighbors even if it can answer that query. By
counting thenumber of cache hits answered by the same cache
items in neighboring peers, we can roughly estimate the
duplication between neighboring peers.

In the Twin CGCs experiment, all the cache hits in each
CGC were recorded in log files. The comparison between
the records of both peers shows a significant cache hit
overlap between the neighboring peers. Among the
8,500 cache hits recorded in each peer within two hours,
there were 2,741 duplicated cache hits. The overlapped
cache hits between two neighboring peers exceeded
32 percent of all the cache hits in one peer. The comparison
between the effective aggregated cache hit ratio and the
cache hit ratio in a single peer is shown in Fig. 6. We expect
more overlap among neighboring peers when multiple
peers are fully connected with each other. Those duplicated
cache hits are unnecessary since only one of the duplicated
cache hit is sufficient to satisfy the correspondent query.
The observation above suggests that it is possible to
improve the search efficiency by distributing index cache
among neighboring peers. Based on the distributed index
caching, the search efficiency can be further improved by
our adaptive search method which forwards the query only
to peers with the matched Group ID.

4 DISTRIBUTED CACHING AND ADAPTIVE SEARCH

4.1 Gnutella Protocol

We first briefly introduce a related part of the Gnutella
protocol before presenting our proposed DiCAS. Topology
maintenance and search operations of the Gnutella network
are specified in [2]. Each Gnutella peer connects to several
overlay neighbors using point-to-point connections. A peer

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS

sends ping messages periodically to check all connections
with its direct neighbors, and expects the pong messages
from them. Typical Gnutella peers will try to maintain a
prespecified number (three to five for a normal node, and
much more for an ultrapeer) of connections. Gnutella peers
overhear all the pong and Query Response messages
passing by and cache IP addresses of other peers currently
alive. If a peer detects that one of its neighbors is offline, it
will look up its host cache or connect to a well-known
Gnutella host cache server, then randomly create another
connection.

In order to locate a file, a source peer floods a query to all
its direct neighbors. When a peer receives a query, it checks
its local index to see whether it has the queried content. If
50, a query response will be returned along the reverse of
the query path to the source peer. Otherwise, the query will
continue to be broadcasted. In the current Gnutella
protocol, query responses are not cached by any peers in
the returning path.

4.2 Distributed Caching

In addition to a local index that keeps indices of local files,
each peer maintains a response index which caches the query
results that flow through the peer. Each item cached in the
response index includes the queried file name, and the IP
address of the responding peer where the file is located.
When a peer receives a query from its neighbor, it will look
up the response index as well as the local index. A query
match with either of them will generate a response. Instead
of caching query responses in all peers along the returning
path, distributed caching attempts to cache the responses in
some selected peers. The key of distributed caching is to
determine whether an incoming query response should be
cached or not so that the duplicated query responses among
neighboring peers can be minimized. In DiCAS, when a
peer joins the P2P system, it will randomly take an initial
value in a certain range [0..M-1] as its group ID so that all
the peers are separated into M groups. A uniform hash
algorithm is employed to translate the queried file name
string to a hash value. We define that a query matches a
peer if the following equation can be satisfied: Peer Group
ID = hash(filename) Mod M.

For a passing query response, each peer overhearing the
response independently performs a computation on the
response using the hash function, and caches this response
only when this hash value matches the peer’s group ID. For
example, when M = 2, all peers are separated into two
different groups. Suppose the modulus operation result of a
file name’s hash value equals 1. Only the peers in groupl
will cache this response, as illustrated in Fig. 7.

4.3 Adaptive Search

By exchanging data with neighboring peers, a peer can
learn group IDs and other information such as connectivity
of its neighbors. Based on this information, a query is
selectively forwarded to only neighbors with a group ID
that matches the hash value of the desired file name in the
query. For example, when a node receives a query which
matches the group ID of 1, the query will only be forwarded
to neighbors with the group ID of 1. We claim that the
group ID is uniformly distributed in the P2P network due to

1101

Response

@ Response Peer

= e Query Path

Query Peer

Caching Peer

———= Response Path

Fig. 7. Cache strategy of DiCAS.

its value being randomly chosen. Benefiting from the group
ID’s uniform distribution, a query can be forwarded to
matched neighbors in most cases. However, it is still
possible that query forwarding can be blocked if none of
a peer’s neighbors have a matched group ID. To avoid the
early death of the query, the peer will select a neighbor with
the highest connectivity degree to forward the query to in
this case. Based on the adaptive search algorithm above, the
query forwarding will be restricted to peers with the
matched group ID. Those peers form a virtual layer which
has much smaller searching space than the original P2P
network. Based on the modulus operation, the whole
network is logically divided into multiple layers and each
query will be forwarded within the correspondent layer
with matched group ID.

In Adaptive Search, it is possible a query may miss some
documents because those documents are shared by un-
matched peers. To avoid such a situation, we proposed two
solutions: push-DiCAS and select-DiCAS. In push-DiCAS,
each peer will push the indices of unmatched documents to
its neighbors whose peer ID is matched with those
document IDs. In Select-DiCAS, instead of only forwarding
queries to matched neighbors, one of unmatched neighbors
will be selected. These two solutions are discussed in more
detail in Section 6.3.

4.4 Cache Update

Cached items may become expired for two possible reasons:
the files are not shared by the hosting peers any more; or the
hosting peers leave the network. There are two intuitive
solutions to address the expiration issue. In the first one, the
checking approach, a peer with cached items periodically
checks with the hosting peers on the freshness of the
corresponding contents, and clears obsolete indices. The
limitation of this approach is that the overhead incurred by
the periodic checking messages cannot be ignored. Mean-
while, it is not easy to determine the frequency of checking
messages to well balance the accuracy and the cost. The
second approach, notifying, is that the hosting peer notifies the
caching peers each time when it changes the sharing list.
However, this approach needs each peer to keep a list of its
caching peers. Otherwise, the flooding has be to used to send
out the notification message, which will incur tremendous
overhead. Besides, the status change of ungraceful leaving
peers cannot be sent out to the caching peers.

1102

["Tndices

Indices

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

[Indices Indices Indices

Fig. 8. One more step forwarding.

We propose one more step forwarding to address the
cached item expiration issue. In this approach, when a
query hits a cached item, instead of being responded back
directly, the query will be forwarded to the peer which
actually shares the file. If the file is not available or the
hosting peer is not reachable, the caching peer will clear the
expired cache item and continue the query forwarding.
Otherwise, the query reply will be sent back. For example,
in Fig. 8, whenever a cache hit occurs in a peer P1, the query
will be forwarded to the peer P7 who hosts the queried file
to verify the consistence between the cache index in P1 and
the pointed file in P7. The overhead of network traffic
incurred by the extra step forwarding is trivial because the
caching peer only forwards the query to the hosting peer
instead of all its neighbors.

However, the query response time will be increased by
one hop on average because each successful query response
generated from cached indices also spends the extra step to
verify the cache consistence, which is not necessary. To
reduce the unnecessary verification overhead, we attach a
timestamp 7. to each cached item c¢ to record the last
validation time of c. For example, if a cached item c is
created at time ¢y, the value of T, is set to ¢;. Next time, if cis
verified by one more step forwarding at time t;, T, will be
updated to t» accordingly. We define a time interval 7. For a
query hit of a cached item c at time ¢, if T, <t <T.+7, a
query response generated from the cached item will be sent
back directly. Otherwise, if ¢ > T, + 7, the query will be
forwarded to the hosting peer to verify the content of the
cached item c. If the shared file pointed by the cached item ¢
is still available, the query response will be sent back and

Query

Query Reply

the time stamp 7, will be updated to the latest validation
time. Otherwise, the cache item ¢ will be cleared. The
rationale behind the timestamp approach is that there is a
high probability that the cache items will not expire during
a short time interval. The timestamp solution can effectively
improve the response delay incurred by the one more step
forwarding, especially for popular cache items, which may
be hit frequently within time interval .

The second approach we propose to address cached item
expiration is backtrack clearing, in which the caching peer’s
IP address along with the reply, will be sent back to the
querying peer along the inverse path of querying. If the
querying peer fails to retrieve the file based on the reply
generated from the caching peer, it will send a clearing
message to the caching peer through a temporary connec-
tion. When the caching peer receives the clearing message, it
will clear the expired cache item and continue to forward
the originally terminated query. An example of the backtrack
clearing approach is shown in Fig. 9. In this approach, if the
cached item is valid, it will incur no overhead and achieve
the same performance as the caching algorithm without any
extra verification procedure. However, if the cached item is
invalid, the extra overhead involves message forwarding
between the querying peer P, caching peer P, and the
hosting peer P, i.e., 4 hops, which is worse than the one
more step forwarding, in which the verification messages are
only forwarded between caching peer P, and the hosting
peer Py, ie., 2 hops. Therefore, one more step forwarding
favors the false cache items, while backtrack clearing favors
the positive cache items. The natural choice is to combine
them together.

Pa =
PO P1 — == p3 == py L P& PT
e s e i el
(a) J T TS
O (q)
e Query

= =® Query Reply
Backirack

Fig. 9. Backtrack Clearing: (a) Node P sends out a query. (b) Node P4 responses back the query reply generated from cache index. (c) Based on the
query reply, node P requests file from node P7. (d) If the file is not available, a backtracking clearing message is sent back from node P to node P4.

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS

TABLE 1
Hash Value Distribution of Gnutella Queries
% M=2 M=3 M=4
Group ID 0 52% 36% 28%
Group ID 1 48% 32% 249
Group ID 2 0 32% 24%
Group ID 3 0 0 24%

In the combined approach, if the cache item is hit within
the time period of [T, T, + 7], which implies the cache item
is valid with high probability, backtrack clearing will be used
to verify the consistence; otherwise, one more step forwarding
is applied.

4.5 Further Discussion

We continue some further discussions below when DiCAS
is applied to the P2P network.

4.5.1 Uniform Distribution of Index Cache

It is possible that some peers with a certain group ID will
cache much more indices than others if the queries cannot
be uniformly mapped to each group ID. The hot spot
caused by the uneven mapping may seriously limit system
performance. The analysis of query trace shows that the
queries in the Gnutella network can be evenly mapped to
each Group ID based on different modulus operations. See
Table 1 for the detailed results.

4.5.2 Partial Match

The hash function is used in our DiCAS protocol. However,
its weak support for partial matches prevents it from being
widely applied in the P2P search. The partial match occurs if
only partial keywords instead of the whole filename are used
in a query, which is a prevalent search behavior in Gnutella-
like file sharing systems. For example, suppose a user is
looking for the file with the name F = key; +keys + ...
+key,. Typically, the user will only use the partial keyword
K = key, + key,, + key,, to search the file F' and hope the
system can return a list of filenames that contains the
combined searching keywords. In DiCAS algorithm, in order
to match a query reply with its caching peers, we use the
function Peer Group ID = hash(F) mod M to calculate its
peer group ID, where the file name F' is retrieved from the
query reply. However, in the query forwarding, the partial
keywords K is used to calculate the peer group ID by
Peer Group ID' = hash(K) mod M. Obviously Peer Group
ID' # Peer Group ID if K # F. Therefore, if partial key-
words K are used in a query, the DiCAS algorithm may
forward the query to unmatched peers which contains no
cache items pointed to the desired file F. To address the
partial match problem, we propose to calculate the peer
group ID in query reply based on query keywords K instead
of the filename F'. In order to do so, an extra field is appended
to the query reply message to record the query keywords K.
When the query reply is forwarded back to the initial peer, the

1103

keywords K instead of file name F' is retrieved to decide the
matched peers to cache the response. Due to the consistent
computation of peer group IDs between query and query
reply, the query can be forwarded to the matched peers with
desired cached items. It is possible that multiple cached items
K; are mapped to the same shared file F'. Although users
repeatsimilar query patterns to search the same file, there still
exist multiple combinations of partial keywords K; which are
mapped to the same file F. The multiple mapping between
cached item K and shared file F' requires more caching space
for each sharing object.

5 SIMULATION METHODOLOGY

5.1 Considerations of P2P Simulation

It is not realistic for us to make a considerable number of
peers in Gnutella network configured with the support of
DiCAS for the purpose of evaluating performance improve-
ment. We decided to develop a DiCAS simulator for a large-
scale cache-aware P2P network. We chose to simulate each
peer’s message-level behaviors as an effort to investigate
searching and index caching on all peers across the entire
network. Each simulated peer is able to send queries,
modify local and response index caches, and generate
responses based on both caches. Our previous experiences
on network simulations and experiments show that
simulation configurations and parameters strongly influ-
ence the validity of simulation results. In this section, we
summarize a list of network parameters used in the
simulations of previous studies.

The parameters that determine the simulation scenarios
fall into three categories: network and topology parameters,
workload parameters, and initial content/keyword distribu-
tions over the network. Content popularity at a publisher
follows a Zipf-like distribution (also known as Power Law)
[4], [5], where the relative probability of a request for the
ithmost popular page is proportional to 1/i*, with « typically
taking on some value less than unity. The observed value of
the exponent varies from trace to trace. The request distribu-
tion does not follow the strict Zipf’s law (for which o = 1), but
instead follows a more general Zipf-like distribution. The
query word frequency does not follow a Zipf distribution [10],
[31]. The user’s query lexicon size does not follow a Zipf
distribution [31]. Instead, it exhibits a heavy tail distribution.

Both the overall traffic and the traffic from the 10 percent
most popular nodes are heavy-tailed in terms of host
connectivity, traffic volume, and average bandwidth of the
hosts [27]. Schlosser and Kamvar [26] suggest a log-
quadratic distribution (10~*") for stored file locality and
transfer file locality. The length of time that nodes remain
available follows a log-quadratic curve [26], which could be
approximated by two Zipf distributions.

Research on content searching in P2P networks generally
uses simulation to illustrate the effectiveness of the under-
lying approach. Thus, the problem of choosing a decent
abstraction level becomes a critical issue, which in turn
determines what simulation configuration is needed for
such a scenario. For specific simulation, one should care-
fully choose related parameters and distributions such that
the simulation results and observations are reasonable.

1104

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

TABLE 2
Configuration Parameters for P2P Network Simulation

Parameter Description How to choose?

Example

Network and Topology Configuration

Number of Nodes in the

Depends the size of the network you want

8] chooses 60000 as double of the maximum Gnutella

network to simulation. Gnutella has a rough number | network size in 2000, 8000-40000 in [29].
of 16000 nodes that accept incoming con-
nections, 80000 nodes online, as of March
2003 [1].
Network Topology Can be tree with extra links, or power-law [8] uses both methods. Its outdegree exponent is —

with outdegree exponent. [16] has details
about generating power-law topology.

2.2088 adopted from [9].

Node Connectivity Randomly chosen.

Simulation based with average of 3.4 in [29], Regular
graph based of 4 in [15], randomly 3 in [11].

Network Dynamics
hour [24].

Median session duration for a node is one

Randomly chosen node failure [30].

TTL

Mostly 7 to match current Guntella network

[29] uses 3.

Workload Configuration

Query Generation
query interarrival distribution.

Determines which nodes to issue a query and

Poisson in [12, 30]. Randomly selected nodes in [11,
21]. Poisson/Pareto in [22]. Zipf for node distribution in
[21].

Traces Used by trace-driven simulation.

[29] uses one-day traces of KaZaA and Gnutella from
CMU, and two web request traces.

Collecting traces

For Gnutella network, use crawler. Web traf-
fic can be obtained from system administrator,

Gnutellasim has a open-source crawler.

Content Distribution

Number of documents

requested for each query enough number of hits are found

Determine when to terminate a query when

[8] uses 10

Distribution of documents
over all nodes in the net-
work

how many documents.

Determine which node has documents, and

80/20 in [8]. [29] assumes that in the web/Gnutella
traces, if a host requests a file/URL, the host will share
the content. Each node has 3 randomly chosen docu-
ments from a pool of 2000 in [11]. [32] states that aver-
age number of files shared by a peer is 34(.

Keyword in a document Could be meta-data.

Each document has a set randomly chosen keyword, but
the number of keywords chosen is a linear function with
the document number in [12], randomly chosen 3 key-
words from a pool of 1000, or follows a Zipf distribu-
tion in [11].

Keyword in a query How to choose keywords for a query?

Only 1 keyword, Zipf-like (c=1.2, 0.8, 2.4, similar re-
sults) in [12, 21].

Table 2 shows the list of network parameters that might be
used in P2P network simulation.

5.2 Our Simulation Configuration

In our simulation configuration, We use BRITE [6] to generate
the underlying network topology with 50,000 nodes. Above
this underlying network, we generate the Power-law [16]
overlay topology of a P2P network with 10,000 nodes and
average connectivity degree of 3. Node dynamic behavior is
an important factor to impact the search performance of P2P
networks. To simulate the behavior of frequent node joining
and leaving, we model the node joining process as a Poisson
distribution with the rate A = 8. The online time of a node is
modeled as a exponential distribution with the average
online time of 1/ = 1,000.

We examine the impact of index caching on searching
efficiency in terms of keyword matching. Hence, in our
simulation, we only look at single keyword matching rather
than document matching and semantic layer searching.
Blind flooding in the Gnutella network is simulated by
conducting a Breath First Search algorithm from a specific

node. A search operation, bounded by TTL of 7, is
simulated by randomly choosing a peer as the sender,
and a keyword according to Zipf distribution. In each
simulation session, a large number of search operations are
simulated sequentially. While receiving a query, a peer will
consult its local index and its query response index cache
using the searching keyword for possible matches. The
trace we collected (described in Section 3.2) is used in our
simulation.

6 PERFORMANCE EVALUATION

A well-designed search mechanism should seek to optimize
both efficiency and user satisfaction. Efficiency focuses on
better utilizing resources, such as bandwidth and proces-
sing power, while user satisfaction focuses on user-
perceived qualities, such as if they can find the desired
files and how long it will take to find the files. To evaluate
the effectiveness of DiCAS, we will use three performance
metrics defined below: query success rate, query response
time, and traffic overhead incurred by queries. Network

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS

IC

T

8|
4 'a..__t.'

it .8
e B B,
2 ‘9

20 25 50 75 100 125 150 175 200 225 250
Cache Size

Fig. 10. Traffic comparison for different cache size.

Traffic incurred by each query is defined as the total
number of forwarded hops in the underlying network.
Success Rate is the percentage of queries which can be
responded by at least one query reply. Response Time is
the minimum number of hops of the underlying network
for the query reply to be forwarded back to the source peer.

6.1 Effectiveness of Uniform Index Caching

In the first simulation, we examine the effectiveness of
uniform index caching (UIC) scheme in which all peers in a
query response path will cache the query response. Blind
flooding is still used in UIC to forward queries. Fig. 10 and
Fig. 11 show the average traffic and the average query
response times for different cache sizes. The results show
that the UIC approach with a moderate cache size of 50 can
significantly reduce network traffic by 59 percent, and
reduce query response time by 32 percent. However,
further increasing cache size in each peer would not
improve performance proportionally. One reason we have
mentioned is that there exists a large amount of overlapped
query responses among neighboring peers in UIC, which
can limit the performance improvement of caching query
responses.

6.2 Effectiveness of DiCAS

Aiming at further improving search efficiency, we propose
DiCAS to cache query responses in selected peers and
forward the query to peers with matched group ID. DiCAS
is evaluated in this section using M = 3, which logically
divides the search space into three layers.

8 B

ki
(o]

Response Time
3
L

14 Y
[.
4ol SO, @ gy
%) 25 50 75 100 125 150 175 200 225 250
Cache Size

Fig. 11. Response time comparison for different cache size.

1105

UIC, Size =25
——UIC, Size=250
— DiCAS Size=25 |

number of hops

0 1 2 3 4 5
number of queries x10*

Fig. 12. Traffic comparison of UIC versus DiCAS.

Fig. 12 compares the average traffic of UIC and DiCAS.
We can see that DiCAS outperforms UIC by 80 percent in
terms of average traffic reduction. When we measure the
query success rate of UIC and DiCAS, we find that UIC can
keep the same query success rate as original flooding
without caching (see Fig. 13). However, Fig. 13 also shows
that query success rate of DiCAS is decreased by 80 percent
compared with UIC. Because the DiCAS protocol only
forwards a query to some selected neighboring peers
instead of all neighboring peers, it is likely that the query
will miss some peers who have queried results. There are
two reasons for a query to miss matched peers.

First, some matched peers may be missed. In DiCAS, a
source peer forwards its query to those neighboring peers
whose group ID matches the query. Some other neighbors are
nonmatched neighbors. However, the nonmatched neigh-
bors’ neighbors may have matched group ID with this query,
but may be never reached by the query. See Fig. 7 again for an
example, Peer A has twoneighbors Bl and B0.Peer COis B1’s
neighbor, but two hops away from A. Assume that peer B0
and C0 have the same group ID (e.g., GID = 0), and peer B1
has another group ID (e.g.,, GID = 1). If peer A initiates a
query that matches GID =0, the query will only be
forwarded to peer B0. Peer B1 will not receive the query, so
the query may not reach CO, but C0 is indeed a matched peer
that should be queried.

Second, some matched objects may be missed. When a
peer joins, it selects a group ID, but this cannot guarantee
that all its local objects will match the group ID. In this case,
there are some objects that do not match the owner’s group

0.9

0.7
0.6
0.5
0.4
0.3

0.2
i
0

flooding uic uic DIiCAS
size=25 size=250 size=25

sucess rate

Fig. 13. Success rate comparison: UIC versus DiCAS.

1106

70000
60000
o 50000
£ 40000
& 30000
= 20000
10000
0 D — / =5 —
uic Push & Push& Select Push DiCAS
Select Select
with TTL
kept

(a)
Fig. 14. Solutions to improve success rate of DiCAS.

ID and will never be queried, forming some dead corners.
Thus, some of the objects, even though they are available,
may not be found by many queries.

Motivated by the above two reasons, we proposed two
solutions to address the problem of query success rate
degradation in DiCAS, which are described and evaluated
next.

6.3 Solutions to Improve the Query Success Rate

The analysis above shows that the DiCAS approach reduces
the search traffic at the price of degrading the success rate.
To reconcile the contradiction, we propose several solutions
to improve the search success rate of DiCAS algorithm. In
the following performance comparison, we use the cache
size of 50 units in each individual peer.

The first solution is called push-DiCAS that attempts to
avoid missing matched objects. When a peer is joining a P2P
network and randomly taking a group ID, it computes hash
values of the file names for all its sharing objects. If some
objects do not match this peer’s group ID, the peer will push
the indices of these objects to one of its neighboring peers
with matched group ID. These neighboring peers will cache
the indices of pushed objects with a similar format of a
query response indicating whereabouts of the objects. If
none of the neighboring peers with matched group ID
exists, a peer with the highest connectivity degree will be
selected. The whole process is repeated until a certain
number of peers with matched group ID are found.

We called the second solution select-DiCAS that attempts
to avoid missing matched peers. When a query cannot be
forwarded any more because all the neighbors of current
peer cannot match with the query, instead of ignoring all
nonmatched neighboring peers, the peer forwards its query
to some nonmatched neighboring peers with high degrees.
As a result, matched peers will be reached to continue the
search. An improvement to select operation is that the TTL
value of a query will not be decreased when forwarded by
nonmatched peers because those nonmatched peers are
temporarily used as forwarding nodes that will not actually
match the query. We call this improvement TTL-Kept select
operation.

Since the push operation and select operation are
orthogonal to each other, we can combine them together
to further improve the success rate of DiCAS algorithm.
Fig. 14 shows the performance comparison of different
solutions, including base DiCAS, push, select, push & select,
push & select with TTL-Kept, and UIC. The hollow bar shows
the comparison of network traffic incurred by the query
message. The traffic is normalized by the traffic of UIC. The
comparison shows that the push and select operations are

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

0.8
207
© 92
@ 04
8 03
g a
[]
8] O
uic Push & Push& Select Push DICAS
Select Select
with TTL
kept
(b)

effective solutions to improve the success rate of DiCAS
algorithm. With the combination of push & select with TTL-
Kept, the DiCAS approach can achieve almost the same
success rate as UIC, while reduce the traffic by about
83 percent compared with UIC.

6.4 The Number of Layers

Another question is: What is the proper value for the
number of layers that the search space should be divided
into by DiCAS? To investigate the relationship between the
search performance and the number of layers, we repeat the
simulation of DiCAS approach enhanced by the push &
select with TTL-Kept, varying the number of layers from 2 to
10. The results are shown in Fig. 15, where the number of
layers equals to 1 corresponds to UIC approach. We have
two observations from Fig. 15.

The success rate will be proportionally decreased when
the number of layers increases. The success rate is inverse
proportional to the number of layers because with the
number of layers increases, the peers with the same group
IDs will scatter far away from each other. The sparse
distribution lowers the probability for the query of DiCAS
algorithm to find the peers within the same group.

The network traffic drops fast at the beginning, then the
increasing layer gradually converges to a certain value. The
concave curve indicates that it will not reduce the network
traffic effectively by further increasing the number layers
after some extent. The network traffic converges because
there is a trade-off between the searching traffic within

%10 08
01‘\‘ \\ ‘\ |-¢- trafic, comectiity=3 ||
CRE LY I-— connectiily=4
(A} - \. i-l- connectiily=5s
1 “ \‘ e ;_+ connectity=6
1
RS L -
[L @ success mtio
N "\ - i
Q4 ! VoY N 07 @
W %, . .
ot [\ pY .,
| LY Sy A Y
v] N\ \‘ \\ - w0
— 1 b £ LY e 0
[\ N w
1 ,, . ¥ Q
&, ,, ® O
.\\ A N . b4 =
Z e b ™ ‘g‘ 23 06w
o % ‘\\ b T —— Y
\'\‘ \\ T e e e e e
. W
o, B T —
‘\
b Y
0 L e e 5
i+ 2 3 4 s 6 7 8 8 10
Number of Layers

Fig. 15. Comparison for different number of layers.

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS

0.84
0.82

0.8
0.78
0.76
0.74
0.72

0.7
0.68
0.66
0.64

success rate

no-update forwarding backtrack hybrid

Fig. 16. Success rate comparison of cache update.

layers and the traffic between layers. Increasing the number
of layers will divide the whole search space into smaller
groups so that the search traffic in each group can be
reduced. However, it will increase the probability of
partition, i.e., peers within the same group have more
chance to be separated far away from each other, such that
the search traffic to locate match peers is increased.

We repeated the simulations under different network
configurations with various average connectivity degree.
We can see from Fig. 15 that for all the connectivity degrees
dividing searching space into multiple layers can help to
reduce the network traffic at the beginning, but further
increasing the number of layers will not reduce the traffic
obviously. Since the P2P network is highly dynamic, the
network connectivity degree may change from time to time.
The optimal value of the number of layers is different for
different connectivities, but we do not suggest to adaptively
changing the number of layers dynamically and prefer to
keep a relatively small value for three reasons. First, a
relatively small value is preferred in order to balance the
trade-off between the query traffic and success rate. Second,
it is costly and time consuming to measure the connectivity
change in a large-scale and dynamic P2P network. Third, it
incurs large overhead to frequently update peers with the
latest optimal number of layers and cached contents.

6.5 Cache Update

We evaluate the performance of cache update schemes: one
more step forwarding and backtrack clearing described in
Section 4.4. We compare these two proposed cache update
schemes with the original DiCAS which has no cache update.
We also compare them with a hybrid scheme of one more step

1107

16000
14000
12000
10000
8000
6000
4000
2000
0

traffic

no-update forwarding backtrack hybrid

Fig. 17. Traffic comparison of cache update.

forwarding and backtrack clearing. As shown in Fig. 16, the
cache update can improve success rate by about 10 percent,
while the overhead of network traffic incurred by extra
operations is trivial, shown in Fig. 17. Fig. 17 also shows that
the hybrid scheme outperforms the two aforementioned
schemes in terms of the costs of network traffic.

6.6 The Final Comparison

The final performance comparison between the flooding (No
Cache), UIC, and Enhanced DiCAS (with push & select with
TTL-Kept) is shown in Fig. 18. We repeat the queries starting
from random chosen peers for 50,000 times, and calculate the
average of each metric every 1,000 queries. Compared with
the flooding approach, the enhanced DiCAS algorithm can
reduce the network traffic by an order of magnitude, decrease
the response time by 25 percent, while keeping almost the
same success rate (slightly lower than flooding). The
comparison also shows that the success rate and response
time of the enhanced DiCAS gradually approach to those of
UIC as the number of queries increases. The noticeable
warming up period of the enhanced DiCAS algorithm results
from the partition of peers belonging to the same group.
When the peers are kept being queried, the cache results will
be carried across peers by the query responses, such that the
popular cached indices will be uniformly distributed among
peers.

7 CONCLUSIONS

In this paper, we propose the DiCAS algorithm in the
Gnutella-like peer-to-peer network, which can significantly

% 10" Traffic Comparison 5 Success Rate Comparison Response Time Comparison
14 9 - 30, - - - -
MWMM ‘ T
421 . . 0.85/ 21 uic
il —+— No Cache 08 1 f A o6l | —— DiCAS Enhanced |
! uic P & s al
o WY, V\N Ay M‘ |2
o 8 ~~DICASEnhanced| | § et S -l ' B PP _
% J KT A AT 2) W .
- 6! 0.7} ;"r.."/ |
i 20 L\ kRt
4 o / YUIN
oes A/ —4— No Cache L ATRY " x
¥ uic 18! ¥ I'. At A hao T I'. \
| | f —— DNCAS Enhanced LYY T IV e A N R,
2 B e S e 0.6 { 16+ ' \ I.' | f-.l.' ¥ “'.Ill \ I.' \ \f '-\,r"-{_
U ¥ ¥ ¥
o A | Wy
0 1 2 3 4 5 055 14 -
; 0 1 2 3 4 5 0 1 2 3 4 5
4 . .
number of queries %10 number of queries < 10" number of queries 1ot

Fig. 18. Comparison between Flooding and DiCAS.

1108

reduce the searching traffic by distributing the index cache
among neighboring peers and dividing the searching space
into multiple layers. Compared with previously uniform
cache mechanism, Distributed Cache can reduce the cache
redundancy between neighboring peers and improve the
utilization of cache space. Therefore, the performance
improvement can be achieved even in the case where each
individual peer contributes a small size cache space. This is
common in the P2P network community since it is formed
by spontaneous users who are not willing to share large size
memory as public cache space. Based on the Distributed
Cache, the Adaptive Search only forwards a query to a
group of peers such that the query traffic is reduced due to
shrunk searching space.

It is notable that all the performance improvements
above can be achieved at low cost, which contrasts to the
high maintenance cost of DHT-based solutions. In a DHT
P2P network, the index of a file is stored in a peer whose ID
is mapped to the file ID by a predefined Hash function.
Therefore, the query for that file can be directly forwarded
to the desired peer based on the same Hash function.
However, in a highly dynamic P2P network, the cost of
frequently index updates may compromise the performance
improvement brought by DHT approaches. Different from
DHT approaches, DiCAS builds the indices of a file to a
group of peers through passive caching, which does not
require massive communication between peers hosting
indices and peers hosting files to maintain the correct
mapping in dynamic cases. The extra cost of the DiCAS
algorithm is the memory caching space contributed by each
individual peer. As a conclusion, the DiCAS algorithm is a
feasible solution to improve P2P network search efficiency
at low cost.

Our simulation results demonstrate its strong effective-
ness under different conditions. We have also shown that
deploying such a caching scheme in an existing P2P
network, such as Gnutella, is feasible with an immediate
favorable impact on P2P search performance, thus making
unstructured P2P systems more scalable. We are refining a
prototype version of the Gnutella-based DiCAS for public
release in the P2P community.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grants CCF-0325760, CCF-0514078, and
CNS-0549006, and by Hong Kong RGC Grant HKUST 6152/
06E. Some preliminary results of this work were presented
in the Proceedings of ICDCS 2004.

REFERENCES
[1] Gnutella Network Size, http://www limewire.com/index.jsp/
size, 2003.

[2] The Gnutella Protocol Specification 0.6, 2002, http:/ /rfc-gnutella.
sourceforge.net.

[3] Limewire, http://www.limewire.com, 2003.

[4] V. Almeida, A. Bestavros, M. Crovella, and A.d. Olivera,
“Characterizing Reference Locality in the WWW,” Proc. IEEE
Conf. Parallel and Distributed Information Systems (PDIS), 1996.

[5] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. INFOCOM, 1999.

[6] BRITE, http://www.cs.bu.edu/brite/, 2003.

(7]
(8]

]

(10]

(1]

[12]

[13]

(14]

(15]

[16]

(171

(18]

[19]
(20]

(21]

[22]

(23]

(24]

(23]

(26]

(27]

(28]

[29]

(30]

(31]

[32]

(33]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 10, OCTOBER 2006

B.F. Cooper and H. Garcia-Molina, “Studying Search Networks
with SIL,” Proc. Int’l Workshop Peer-to-Peer Systems (IPTPS), 2003.
A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-
Peer Systems,” Proc. 28th Conf. Distributed Computing Systems,
2002.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law
Relationships of the Internet Topology,” Proc. SIGCOMM, 1999.
BJ. Jansen, A. Spink, J. Bateman, and T. Saracevic, “Real Life
Information Retrieval: A Study of User Queries on the Web,” Proc.
SIGIR Forum, vol. 32, no. 1, pp. 5-17, 1998.

S. Joseph, “NeuroGrid: Semantically Routing Queries in Peer-to-
Peer Networks,” Proc. Int’l Workshop Peer-to-Peer Computing
(colocated with Networking 2002), 2002.

C. Lindemann and O.P. Waldhorst, “A Distributed Search Service
for Peer-to-Peer File Sharing in Mobile Applications,” Proc. Int’l
Workshop Peer-to-Peer Computing, 2002.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
ACM Int’l Conf. Supercomputing, 2002.

E.P. Markatos, “Tracing a Large-Scale Peer to Peer System: An
Hour in the Life of Gnutella,” Proc. Second IEEE/ACM Int’l Symp.
Cluster Computing and the Grid, 2002.

D.A. Menasce and L. Kanchanapalli, “Probabilistic Scalable P2P
Resource Location Services,” Proc. ACM SIGMETRICS Performance
Ewvaluation Rev., vol. 30, no. 2, pp. 48-58, 2002.

C.R. Palmer and].G. Steffan, “Generating Network Topologies
that Obey Power Laws,” Proc. IEEE Globecom, 2000.

S. Patro and Y.C. Hu, “Transparent Query Caching in Peer-to-Peer
Overlay Networks,” Proc. 17th Int’l Parallel and Distributed
Processing Symp. (IPDPS), 2003.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content-Addressable Network,” Proc. ACM SIGCOMM,
2001.

M. Ripeanu, A. lamnitchi, and I. Foster, “Mapping the Gnutella
Network,” IEEE Internet Computing, 2002.

J. Ritter, “Why Gnutella Can’t Scale, No, Really,”
www.tch.org/gnutella.html, 2001.

“Controlled Update Propagation in Peer-to-Peer Networks,” Proc.
2003 USENIX Ann. Technical Conf., M. Roussopoulos and M.
Baker, eds., 2003.

M. Roussopoulos and M. Baker, “Practical Load Balancing for
Content Requests in Peer-to-Peer Networks,” Technical Report
¢s.N1/0209023, Stanford Univ., 2003.

A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object
Location and Routing for Large-Scale Peer-to-Peer Systems,” Proc.
Int’l Conf. Distributed Systems Platforms, 2001.

S. Saroiu, P. Gummadi, and S. Gribble, “A Measurement Study of
Peer-to-Peer File Sharing Systems,” Proc. Multimedia Computing
and Networking (MMCN), 2002.

S. Saroiu, K.P. Gummadi, R.J. Dunn, S.D. Gribble, and H.M. Levy,
“An Analysis of Internet Content Delivery Systems,” Proc. Fifth
Symp. Operating Systems Design and Implementation, 2002.

M.T. Schlosser and S.D. Kamvar, “Availability and Locality
Measurements of Peer-to-Peer File Systems,” Proc. ITCom Conf.:
Scalability and Traffic Control in IP Networks, 2002.

S. Sen and J. Wang, “Analyzing Peer-to-Peer Traffic across Large
Networks,” Proc. ACM SIGCOMM Internet Measurement Workshop,
2002.

K. Sripanidkulchai, “The Popularity of Gnutella Queries and
Its Implications on Scalability,” http://www2.cs.cmu.edu/
kunwadee/research/p2p/gnutella.html, 2001.

K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems,”
Proc. INFOCOM, 2003.

RM. Stoica, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM, 2001.

Y. Xie and D. O’Hallaron, “Locality in Search Engine Queries and
Its Implications for Caching,” Proc. INFOCOM, 2002.

B. Yang and H. Garcia-Molina, “Efficient Search in Peer-to-Peer
Networks,” Proc. Int’l Conf. Distributed Computing Systems
(ICDCS), 2002.

Y.B. Zhao,].D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Resilient Wide-Area Location and Rout-
ing,” Technical Report UCB//CSD-01-1141, Univ. of Calif.
Berkeley, 2001.

http://

Chen Wang received the BS and MS degrees
from Northeastern University, China, in 1996 and
1999, respectively. He is currently a PhD student
in computer science and engineering at Michigan
State University. His research interests are in the
areas of distributed systems and computer
networking, including peer-to-peer systems and
sensor networks. He is a student member of the
IEEE and the IEEE Computer Society.

Li Xiao received the BS and MS degrees in
computer science from Northwestern Polytech-
nic University, China, and the PhD degree in
computer science from the College of William
and Mary in 2002. She is an assistant professor
of computer science and engineering at Michi-
gan State University. Her research interests are
in the areas of distributed and Internet systems,
overlay systems and applications, and sensor
networks. She is a member of the ACM, the

IEEE, the IEEE Computer Society, and IEEE Women in Engineering.

WANG ET AL.: DICAS: AN EFFICIENT DISTRIBUTED CACHING MECHANISM FOR P2P SYSTEMS 1109

Yunhao Liu received the BS degree in automa-
tion from Tsinghua University, China, in 1995,
the MA degree from the Beijing Foreign Studies
University, China, in 1997, and the PhD degree
in computer science from Michigan State Uni-
versity in 2004. He is now an assistant professor
of computer science at the Hong Kong Uni-
versity of Science and Technology. His research
interests are in the areas of peer-to-peer
computing, pervasive computing, distributed
systems, network security, grid computing, and high-speed networking.
He is a member of the IEEE and the IEEE Computer Society.

Pei Zheng received the PhD degree in compu-
ter science from Michigan State University.
Before joining Microsoft, he was an assistant
professor of computer science at Arcadia Uni-
versity from 2003 to 2005. His research interests
include distributed systems, network simulation/
emulation, and mobile computing. He is a
member of the ACM, the IEEE, and the IEEE
Computer Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

