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Abstract

Background: The postnatal development of the epididymis is a complex process that results in a highly differentiated
epithelium, divided into several segments. Recent studies indicate a role for RNA interference (RNAi) in the development of
the epididymis, however, the actual requirement for RNAi has remained elusive. Here, we present the first evidence of a
direct need for RNAi in the differentiation of the epididymal epithelium.

Methodology/Principal Findings: By utilizing the Cre-LoxP system we have generated a conditional knock-out of Dicer1 in
the two most proximal segments of the mouse epididymis. Recombination of Dicer1, catalyzed by Defb41iCre/wt, took place
before puberty, starting from 12 days postpartum. Shortly thereafter, downregulation of the expression of two genes
specific for the most proximal epididymis (lipocalin 8 and cystatin 8) was observed. Following this, segment development
continued until week 5 at which age the epithelium started to regress back to an undifferentiated state. The
dedifferentiated epithelium also showed an increase in estrogen receptor 1 expression while the expression of androgen
receptor and its target genes; glutathione peroxidase 5, lipocalin 5 and cysteine-rich secretory protein 1 was
downregulated, indicating imbalanced sex steroid signaling.

Conclusions/Significance: At the time of the final epididymal development, Dicer1 acts as a regulator of signaling pathways
essential for maintaining epithelial cell differentiation.
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(http://www.sigridjuselius.fi/foundation). IB is supported by the Turku Doctoral Programme of Biomedical Sciences (http://www.tubs.utu.fi). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: petra.sipila@utu.fi

Introduction

After development in the testis, the spermatozoa travel through

the epididymis where they mature, gaining motility and the ability

to fertilize the oocyte. Despite consisting of a single long duct, the

epididymis is a complex organ, highly convoluted and divided into

several anatomical and functional segments, i.e. initial segment

(IS), caput (CAP), corpus (COR) and cauda (CAU). Each segment

synthesizes and secretes a specific set of proteins, thus creating the

unique luminal environment needed for the sperm maturation

process [1–3]. The most proximal segments (IS and CAP) have

been proven essential for sperm maturation as the disruption of

their development or function often leads to male infertility [4–7].

The epididymis develops from the mesonephric tubules and the

proximal Wolffian duct (WD) [8]. During the embryonic stage,

and before epithelial differentiation, mesenchymal androgen

receptor (AR), along with inhibin beta A (Inhba), facilitates the

elongation and convolution/coiling of the tubule [9–11]. Devel-

opment of the epididymis continues after birth with differentiation

of the epithelial cells into principal, basal and narrow/clear cells

[2,2,12,12,13]. At the onset of spermatogenesis, the epididymal

epithelium develops segment-specific gene expression [14]. From

studies with genetically modified mice, it has become evident that

leucine-rich repeat-containing G protein-coupled receptor 4

(LGR4, also known as GPR48) is needed for the postnatal

epididymal coiling and the differentiation of IS [15,16]. In

addition, the proto-oncogene Ros1 (ROS1, also known as c-ros)

is necessary for the formation of IS [5]. Recent studies with

epididymal AR knock-out mice have revealed that androgen

signaling is required for the formation of IS and differentiation of

principal and basal cells [6,7,10]. However, there are still many

unresolved issues regarding the regulatory pathways responsible

for differentiation of the epididymal segments and their specific

gene expression.

Many aspects of development are regulated by RNA interfer-

ence (RNAi). Small non-coding RNAs bind to complimentary

mRNA sequences and cause translational silencing and mRNA
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cleavage [17]. One class of small non-coding RNAs is the

microRNAs (miRNAs) which are initially produced as longer

precursors that need to be processed by the RNaseIII enzyme

Dicer1 to become fully functional [18]. The ,22 nt-long mature

miRNAs then control protein expression and modulate diverse

cellular events such as differentiation, proliferation, apoptosis and

cell metabolism [19,20]. Consequently, Dicer1 deficient mice die

already on embryonic day 7.5 owing to complete loss of

pluripotent stem cells [21]. To study the effect of RNAi in the

development and function of specific organs, Dicer1 conditional

knock-out (Dicer1 cKO) mice can be used. The need for Dicer1 in

the differentiation of several cell types, including sensory epithelial

cells, T cells and pancreatic b-cells, has been shown in Dicer1 cKO

mice by crossing Dicer1fl/fl mice with those expressing Cre in the

cells of interest [12,22–24]. Furthermore, a requirement for Dicer1

in the patterning of the liver and colon was also confirmed with

Dicer1 cKO mice. Hepatocyte specific Dicer1 ablation compro-

mises region-specific protein expression while Dicer1 depletion in

the developing colon leads to a disorganized epithelium [25,26].

Previous studies on human and rat epididymides have shown

that miRNAs are differentially expressed at juvenile and adult

stages [27,28], indicating a role for miRNAs in the postnatal

development of the epididymis. To study the function of RNAi in

the developing epididymis we generated epididymis-specific Dicer1

cKO mice by crossing Dicer1fl/fl mice with Defb41iCre mice. This

resulted in the elimination of Dicer1 expression from the pre-

pubertal epididymis. Our results demonstrate the importance of

Dicer1 in sex steroid signaling and in maintenance of the

differentiated state of the epididymal epithelium.

Results

Generation of Dicer1fl/fl; Defb41iCre/wt Mice
Quantitative RT-PCR of the mouse epididymis showed a

continuous expression of Dicer1 from birth into adulthood

(Figure 1C). As the full knock-out of Dicer1 is embryonically lethal

[21], we generated a Dicer1 cKO mouse line by crossing Dicer1fl/fl

mice [29] with a mouse line expressing iCre under the Defensin

beta 41 (Defb41) promoter. The Dicer1fl allele consists of two loxP

sites flanking exon 24, which contains a major part of the second

RNaseIII domain (Figure 1A). The heterozygous Defb41iCre mouse

line did not show any phenotypic defects or fertility problems and

expressed iCre in the epithelium of the most proximal part of the

epididymis, IS and CAP. Recombination of Dicer1 was observed in

12 day-old Dicer1fl/fl; Defb41iCre/wt mouse IS and CAP by genomic

PCR (Figure 1B) and qRT-PCR studies revealed a significant

reduction in Dicer1 expression levels at the age of 2 months

(Figure 1D).

Morphology of the Epididymis and Fertility of Dicer1fl/fl;
Defb41iCre/wt Males
Macroscopic evaluation of 2 month-old Dicer1fl/fl; Defb41iCre/wt

mice epididymides revealed an underdeveloped IS and, in

addition, the mice frequently presented with enlarged efferent

ducts (Figure 2A, B). The IS of control mice can be clearly

visualized owing to the endogenous b-galactosidase activity in the

segment. The much smaller IS of Dicer1fl/fl; Defb41iCre/wt mice

could not be distinguished from CAP with X-gal staining

(Figure 2A). Furthermore, the intense vasculature typical of WT

IS was missing from the Dicer1 cKO IS. Histological evaluation

showed a division of the epididymis into different segments

(Figure 2B) but the epithelial cell layer of both IS and CAP was

disorganized (Figure 3H). Dicer1fl/fl mice have a similar phenotype

to WT mice epididymides and were used as controls throughout

the study. Dicer1 cKO epididymides were significantly smaller than

those of control mice (30.461.5 mg, control: 35.460.7 mg,

P#0.01). No significant difference in the weight of 6 month-old

Dicer1 cKO and control mice epididymides was observed.

However, the epithelial cell layer of the 6 month-old Dicer1fl/fl;

Defb41iCre/wt mouse was further disturbed, with neoplastic changes

in the efferent ducts causing their progressive obstruction (Figure

S1). Even though sperm were detected in the CAU, 2- to 3-month-

old Dicer1fl/fl; Defb41iCre/wt male mice failed to produce offspring

when mated with WT females (Table 1). The number of sperm

was reduced in Dicer1fl/fl; Defb41iCre/wt mouse epididymides as

histological staining showed some tubular cross sections with no

sperm. At 6 months of age the number of tubular cross sections

without sperm was further increased due to the obstruction of the

Dicer1fl/fl; Defb41iCre/wt mouse efferent ducts. The testis of the 6

month-old Dicer1fl/fl; Defb41iCre/wt mouse also displayed disruption

of the seminiferous epithelium owing to fluid back-pressure (data

not shown). Further morphological analyses revealed that the

number of sperm with angulated tails was not significantly

increased in 2 month-old Dicer1fl/fl; Defb41iCre/wt mouse CAU

(22.963.4% of all sperm, control: 16.361.2%).

Effects of Dicer1 cKO on Epididymal Cell Differentiation
At the age of one month, the IS of both control and Dicer1fl/fl;

Defb41iCre/wt mice was distinguishable from the CAP by its high,

columnar-shaped epithelial cells (Figure 3C, D). However, the

height of the epithelium of Dicer1 cKO IS was reduced below that

of control mouse IS. In the 45 day-old mouse, the epithelial cells of

the Dicer1 cKO IS had regressed to an undifferentiated state with a

disorganized epithelial cell pattern (Figure 3E, F), resembling those

of the epididymis of 14 day-old mice (Figure 3A, B). Furthermore,

the height of the epithelial cells of IS was significantly reduced

(average cell height in control IS: 45 mm, in Dicer1 cKO IS:

28 mm, P#0.0001) in 2 month-old Dicer1fl/fl; Defb41iCre/wt mice.

However, the phenotype of the Dicer1 cKO IS varied between

individuals from a severely disorganized epithelial cell layer to a

thin epithelial cell layer resembling that of COR (Figure S2) in

some individuals.

To study further the effect of Dicer1 ablation on epithelial cell

differentiation, the presence of different epithelial cell types of the

epididymal epithelium was analyzed by immunohistochemistry.

Phalloidin conjugated to TRITC was used to stain the F-actin of

principal cells, and antibodies against vacuolar H+-ATPase (V-

ATPase) and Keratin 5 (Krt5) were used to stain clear/narrow

cells and basal cells, respectively. The results indicated that all cell

types were present in the Dicer1 cKO epididymis (Figure 4). The

epithelial cell types were found in similar numbers and locations in

the Dicer1 cKO epithelium as in control animals. However, a-actin

staining revealed an increase in muscle cell layer thickness

(Figure 4G, H). The Dicer1fl/fl; Defb41iCre/wt mice displayed three

layers of muscle cells surrounding the epididymal duct, whereas

control mice typically had one.

Genes specifically expressed in the mature proximal epididymis,

IS and proximal CAP; lipocalin 8 (Lcn8), brain expressed

myelocytomatosis oncogene (Bmyc) and cystatin 8 (Cst8), showed

a marked downregulation in their expression in IS and CAP of 2

month-old Dicer1fl/fl; Defb41iCre/wt mice. The only exceptions were

Ros1 and G protein-coupled receptor 64 (Gpr64, also known as

HE6) that showed no significant difference in expression levels

compared with the control (Figure 4I). The expression of Cst8,

Lcn8 and Ros1 is initiated at postnatal days 20, 21 and 16,

respectively [5,30,31]. The qRT-PCR results from different time

points during epididymal development showed significantly

reduced expression of both Cst8 and Lcn8 in Dicer1fl/fl; Defb41iCre/wt

Dicer1 in the Epididymal Development
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mice, from 21 days postpartum onward (Figure S3A, B). However,

the expression levels of Ros1 did not differ significantly from that of

control mice (Figure S3C).

Cell Proliferation and Apoptosis
Immunohistochemical studies showed a marked increase in cell

proliferation throughout the proximal epididymis of 2 month-old

Dicer1fl/fl; Defb41iCre/wt mice (Figure 5B). The number of Ki-67

positive cells was on average 2 times higher in Dicer1 cKO IS

(15.263.0 cells/mm, control: 6.460.6 cells/mm, P#0.05) and

almost 6 times higher in Dicer1 cKO CAP (11.161.7 cells/mm,

control: 1.960.5 cells/mm, P#0.001) compared with those of

control mice epididymides (Figure 5C). Although the epithelium

was highly proliferative, it did not lead to a marked increase in the

size of the Dicer1fl/fl; Defb41iCre/wt mouse epididymides. On the

contrary, at the age of 2 months the Dicer1 cKO epididymis was

significantly smaller than that of the control mouse. Furthermore,

the number of apoptotic cells was increased in Dicer1 cKO IS and

CAP (Dicer1 cKO IS: 0.8960.39 cells/mm, control IS: 0.0760.07

cells/mm; Dicer1 cKO CAP: 1.1260.34 cells/mm, control CAP:

0.0760.07 cells/mm, P#0.05) (Figure 5D–F). The difference seen

in IS was not statistically significant owing to high variation

between the individual mice.

Expression of Sex Steroid and Fibroblast Growth Factor
Receptors in the Dicer1 cKO IS and CAP
To study whether the observed epididymal phenotype is caused

by changes in sex steroid signaling, the expression of Ar, estrogen

receptor 1 (Esr1, also known as ERa) and estrogen receptor 2 (Esr2,

also known as ERb) was analysed by qRT-PCR and immunohis-

tochemistry in 2 month-old Dicer1 cKO and control epididymides.

The qRT-PCR results showed a significantly weaker expression of

Ar in Dicer1 cKO IS and CAP (Figure 6E), and downregulation of

AR target gene expression, cysteine-rich secretory protein 1

(Crisp1), glutathione peroxidase 5 (Gpx5) and lipocalin 5 (Lcn5), was

also observed (Figure 6F). Esr2 showed a similar reduction in

mRNA expression levels as Ar, while the expression of Esr1 did not

significantly differ between Dicer1 cKO and control IS and CAP

(Figure 6E). However, immunohistological staining displayed an

altered ESR1 expression pattern in Dicer1 cKO IS. ESR1 was

foremost expressed in the narrow cells of control mouse IS,

whereas the Dicer1 cKO IS showed equal expression of the

receptor in almost all epithelial cells (Figure 6A, B). Furthermore,

immunohistochemical analyses clearly showed weaker AR staining

in a number of the Dicer1 cKO epididymides analysed (Figure 6D).

Nevertheless, the AR findings were variable and some Dicer1 cKO

epididymides had an AR staining equal to that of the controls.

Furthermore, the relative expression values of fibroblast growth

factor receptors 1–4 (Fgfr1–4) were not statistically different when

comparing qRT-PCR results from Dicer1fl/fl; Defb41iCre/wt mice

with control mouse IS and CAP (data not shown).

Discussion

At birth, the epididymis consists of a long convoluted duct

lacking both cell type and segment specific markers. In the mouse

Figure 1. The epididymis specific Dicer1 knock-out. (A) Schematic diagram of the Dicer1 locus with loxP sites flanking exon 24 (e24). Arrows
indicate the location of genotyping primers used for analyzing the deletion of e24. (B) Genomic PCR of 12 day-old mice showing the intact locus
(Dicer1fl) and the recombinant locus with e24 deleted (Dicer1flD). Exon 24 is only deleted in the Dicer1fl/fl; Defb41iCre/wt mouse initial segment (IS) and
caput (CAP) while the iCre locus is detected in all segments of the epididymis. (C) Expression of Dicer1mRNA in the whole epididymis of 1–42 day-old
wild-type mice. (D) Dicer1 mRNA expression levels in the efferent ducts (ED), the different segments of the epididymis and testis (TE) of 2 month-old
control and Dicer1 conditional knock-out (cKO) mice. Expression levels are presented relative to Ppia (testis) and L19 (epididymis) expression. COR,
corpus; CAU, cauda. Statistical significance was calculated from the expression levels of 3 control and 4 Dicer1fl/fl; Defb41iCre/wt mouse samples using
the unpaired t-test. Statistical significance of changes is indicated as follows: **, P#0.01. Schematic picture modified from Harfe et al., 2005 [60].
doi:10.1371/journal.pone.0038457.g001

Dicer1 in the Epididymal Development
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epididymis, differentiation of the epithelial cell types takes place

between day 14 and day 21 [32] after which segment-specific gene

expression can be observed [14]. Nonetheless, very little is known

about the regulatory pathways responsible for the epididymal

segmentation and the differentiation of epithelial cell types. In this

study, we demonstrate that post-transcriptional regulation via

RNAi signaling is an important regulator in the development of

the proximal epididymal segments.

In our Dicer1fl/fl; Defb41iCre/wt mouse model the ablation of Dicer1

begins 12 days pp but, at the time of the final cell type

differentiation during puberty, the epididymal epithelium of

Dicer1fl/fl; Defb41iCre/wt mice still resembles that of control mice.

Studies revealed a significant reduction in the expression of IS

specific genes at 21 days pp, and about 2 weeks later, the

epithelium began to regress. At 45 days of age, the Dicer1 KO IS

morphologically resembled that of an undifferentiated pre-

pubertal epididymis. Despite the morphological changes, Dicer1

ablation did not affect cell type differentiation as all major

epithelial cell types were detected in the epididymides of 2 month-

old Dicer1fl/fl; Defb41iCre/wt mice. However, the function of the

principal cells was compromised as they displayed a significant

reduction in segment specific gene expression.

When studying the different epithelial cell types, we detected a

thicker layer of smooth muscle cells surrounding the duct of the

Dicer1fl/fl; Defb41iCre/wt mouse epididymis. As Dicer1 ablation is not

likely to occur in the stromal tissue, the observed increase in

smooth muscle cell number may indicate altered epithelial-

mesenchymal signaling. It has previously been shown that cross

talk between different cell types is essential for normal epididymal

functions, and for example the communication between clear cells

and other epithelial cell types is required to maintain luminal pH

[33]. Interestingly, there are species-specific differences in

thickness and distribution of the epididymal smooth muscle cell

layer [34–36]. Further investigations regarding smooth muscle cell

differentiation could thus benefit from comparative studies of

different species.

Previous studies have shown that ROS1 is one of the master

regulators of IS development, as the lack of both ROS1 and its

negative regulator, protein tyrosine phosphatase SHP-1, causes a

defect in IS differentiation [5,37]. This affects also the regulation

of sperm volume as the majority of sperm from the Ros1 KO CAU

present with angulated tails [38]. However, Dicer1 cKO IS still has

,70% of the Ros1 expression of the control IS and the

dedifferentiated IS does not cause a significant increase in sperm

tail angulation. Furthermore, males with one intact Ros1 allele

have normal epididymal development [5]. These data indicate

that the epididymal phenotype, observed in the present study, is

independent of ROS1 signaling. Other proteins that have a

regulative role in IS are the Fibroblast growth factors. They

control gene expression by binding to FGFRs in the epithelium of

IS [39,40]. Studies in other male reproductive organs also indicate

a role for FGFRs in regulating stromal-epithelial induction of cell

proliferation and tissue homeostasis [41]. To assess the effect of

FGF signaling on the observed epididymal phenotype, we studied

the expression of Fgfrs in the epididymis. However, no changes

were observed and it is therefore unlikely that FGF signaling

contributes to the dedifferentiation of the epithelium or to the

increased smooth muscle cell layer thickness of the Dicer1fl/fl;

Defb41iCre/wt mice.

Sex steroids are important regulators of epididymal develop-

ment and function. In the epididymis, epithelial expression of Ar

starts around E14.5–15.5 [10,42] and is required for IS

development [7] and for the differentiation of principal and basal

cells in the proximal epididymis [6,10]. A further role for androgen

signaling is observed after orchidectomy, where androgen

depletion leads to extensive apoptosis throughout the epididymal

Figure 2. Morphology of 2 month-old mice proximal epididy-
mides. (A) X-gal staining detecting endogenous b-galactosidase
activity in a control mouse initial segment (IS) and proximal corpus
(COR). Dicer1fl/fl; Defb41iCre/wt mice display no staining of initial segment
and have enlarged efferent ducts (ED). (B) HE staining of the efferent
ducts and the proximal epididymis of control and Dicer1fl/fl; Defb41iCre/wt

mice. Scale bars 1.5 mm.
doi:10.1371/journal.pone.0038457.g002

Table 1. Fertility of Dicer1fl/fl; Defb41iCre/wt male mice.

No. of Males Total No. of Copulatory Plugs Total No. of Litters Average No. of Pups per Litter

control 3 13 12 9.2

Dicer1fl/fl; Defb41iCre/wt 5 20 0 0

doi:10.1371/journal.pone.0038457.t001
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epithelium of both prepubertal and postpubertal animals [43]. In

male reproductive organs, estrogens are produced in the testis,

spermatozoa and epididymis [44,45]. Esr1 is highly expressed

throughout the efferent ducts, where it regulates fluid reabsorption

of non-ciliated epithelial cells [46,47]. Less is known about the

function of ESR1 in the epididymis, although high expression of

Esr1 is detected in the narrow cells of IS and throughout the

epithelium of CAP [46]. Recent studies have indicated a role for

ESR1 in luminal pH maintenance [48,49] as well as in smooth

muscle contractility [50]. Esr2 is transcribed in all cells of the

epithelium, however, its role in the epididymis is still unknown

since the full knock-out of Esr2 does not display any difference in

morphology or function of the epididymis compared with that of

WT mice [51].

Figure 3. Differentiation of the epididymal epithelium. Hematoxylin and eosin staining of control and Dicer1fl/fl; Defb41iCre/wt mouse
epididymides (A, B) The undifferentiated epithelium of the proximal epididymis of a 14 day-old control and a Dicer1fl/fl; Defb41iCre/wt mouse. (C, D) 33
day-old control and Dicer1fl/fl; Defb41iCre/wt mouse showing initiated differentiation of the initial segment (IS). (E) The fully developed IS of a 45 day-old
control mouse. (F) The epithelium of a Dicer1fl/fl; Defb41iCre/wt mouse IS resembling that of the 14 day-old mouse. (G, H) The epididymis of an adult, 2
month-old, control and Dicer1fl/fl; Defb41iCre/wt mouse. CAP, caput. Scale bars 100 mm.
doi:10.1371/journal.pone.0038457.g003
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The Dicer1fl/fl; Defb41iCre/wt mouse model presents with a

significant downregulation in Ar, known AR target genes and

Esr2 mRNA expression in the proximal epididymis. However, on

the basis of the current study, we cannot distinguish whether the

down-regulation of the target genes is due to a direct lack of AR

signaling or an effect of the observed epithelial cell dedifferenti-

ation. ESR1, on the other hand, displayed an altered expression

pattern in the Dicer1 KO IS, with expression not only in narrow

cells, as in IS of control mice, but throughout the epithelium. As

ESR1 is known to promote cell proliferation [52], high ESR1

levels in the Dicer1 cKO IS could explain the observed increase in

cell proliferation in that epididymal segment.

Studies on excessive estrogen signaling in males suggest that an

imbalance in the testosterone-estrogen ratio could be of more

importance than the actual increase in estrogen signaling [53].

Administration of a single high dose of diethylstilbestrol (DES), a

potent synthetic estrogen, to neonatal rats, caused a reduction in

the epithelial height of the epididymis. However, the increased

estrogen levels gave rise to an additional downregulation of AR in

the entire epididymis and thus an imbalance in sex steroid

signaling. When the estrogen-testosterone ratio was adjusted by

co-administration of testosterone, no phenotypic abnormalities

were observed [54]. The reduction in Ar expression observed in

Dicer1fl/fl; Defb41iCre/wt mice could therefore not only have

significant consequences for epididymal development but also be

directly caused by the increased ESR1 levels. However, a recent

study on a proximal epididymis-specific AR cKO, also showed

ESR1 expression in all cell types of the proximal epididymal

epithelium [7]. This would indicate a role for AR in the repression

of Esr1 expression. AR cKO epididymides also showed similar

features to those of the Dicer1fl/fl; Defb41iCre/wt mice with an altered

epididymal stroma showing a disrupted smooth muscle cell layer

or a thickened mesenchyme [7,55]. In light of these studies, AR

and ESR1 expression in the epididymis seem to be tightly linked

and although our current results show an imbalance in sex steroid

receptor ratio we cannot with certainty say if the imbalance was

initiated by a lowered AR expression or an increase in ESR1

expression.

Adams et al. were the first to show that Esr1 is a direct target of

miR-206 [56]. Since then, around 14 evolutionarily conserved

miRNAs have been found to target directly the 39-UTR of

mammalian Esr1 [57]. There is also evidence of a miRNA-induced

downregulation of Esr1 after testosterone treatment in the female

mouse liver [58]. In light of these previous studies the upregulation

of ESR1 in Dicer1 KO IS might be directly ascribable to the

ablation of mature miRNAs. Interestingly, previous studies have

shown induction of miRNA expression by AR in vivo [59].

Androgen Responsive Elements (AREs) are also found in the

promoter region of several miRNAs [60,61]. Although AR would

not induce expression of all epididymal miRNAs, the observed

phenotype of Dicer1fl/fl; Defb41iCre/wt mice could be partially AR

dependent. To understand better the role of the RNAi pathway

during epididymal development, miRNA expression data from

different developmental time points is needed. These results could

be further compared to already available array data from the

human and rat epididymis [27,28] to demonstrate evolutionarily

conserved RNAi regulation.

In conclusion, the present study shows the importance of the

RNAi pathway in the postnatal development of the proximal

epididymis. Ablation of Dicer1 in the epididymal epithelium causes

a regression in cell differentiation. The epithelium maintains cell

type identity but lacks a segment-specific gene expression pattern.

Furthermore, the epididymal phenotype of Dicer1fl/fl; Defb41iCre/wt

mice resembles that of mice with an imbalanced ratio of sex steroid

receptors, AR cKO mice and mice with excess estrogen signaling.

Figure 4. Immunohistochemical staining of the different epithelial cell types. Staining of initial segment (A, B) and initial segment and
caput (C–H) of two-month-old control and Dicer1fl/fl; Defb41iCre/wt mouse epididymides. (A, B) Staining of principal cell F-actin by phalloidin-TRITC.
(C, D) Expression of vacuolar H+-ATPase (V-ATPase) in narrow and clear cells (marked with arrows). (E, F) Expression of keratin 5 (Krt5) in basal cells. (G,
H) Smooth muscle cells. Dicer1fl/fl; Defb41iCre/wt mice display a thicker smooth muscle cell layer than that of control mice. Inserts are 36
enlargements of the stained cells. (I) qRT-PCR for proximal epididymis-specific gene expression. Expression of lipocalin 8 (Lcn8), brain expressed
myelocytomatosis oncogene (Bmyc), cystatin 8 (Cst8), Ros1 proto-oncogene (Ros1) and G protein-coupled receptor 64 (Gpr64) in the initial segment
and caput of 2 month-old control and Dicer1 conditional knock-out (cKO) mouse epididymides. Values relative to L19 expression. Statistical
significance was calculated from the expression levels of 3 control and 3 Dicer1fl/fl;Defb41iCre/wt mouse (Ros1:8 control and 9 Dicer1fl/fl;Defb41iCre/
wt mouse) samples using the unpaired t-test. Statistical significance of changes is indicated as follows: ns, not significant; *, P#0.05; **, P#0.01. Scale
bars 100 mm.
doi:10.1371/journal.pone.0038457.g004

Figure 5. Cell proliferation and apoptosis. Ki67 immunostaining;
(A) Control; (B) Dicer1fl/fl; Defb41iCre/wt mouse. TUNEL labeling; (D)
Control; (E) Dicer1fl/fl; Defb41iCre/wt mouse. Arrows mark apoptotic cells.
(C, F) Comparison of number of proliferating cells and apoptotic cells in
the initial segment (IS) and caput (CAP) of control (white bars) and
Dicer1fl/fl; Defb41iCre/wt mice (grey bars). The number of proliferating and
apoptotic cells were calculated from ten tubular cross sections of 5
control and 5 (Ki67 stained) and 8 (TUNEL labeled) Dicer1fl/fl; Defb41iCre/
wt mice epididymides and the total cell number was divided by the
circumference of the tubular cross sections (mm). Statistical significance
of changes, calculated using the unpaired t-test, is indicated as follows:
ns, not significant; *, P#0.05; ***, P#0.001. Scale bars 100 mm.
doi:10.1371/journal.pone.0038457.g005
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This suggests that Dicer1-dependent pathways are important

regulators of balanced estrogen-androgen action in the mouse

epididymis.

Materials and Methods

Ethics Statement
All mice were handled in accordance with the institutional

animal care policies of the University of Turku (Turku, Finland),

and every effort was made to minimize suffering of the animals.

Mice were specific pathogen-free, fed with complete pelleted chow

and tap water ad libitum in a room with controlled light (12 hours

light, 12 hours darkness) and temperature (2161uC). Animal

experiments were approved by the Finnish Animal Ethics

Committee (license number: 20072-Sipilä and 2010-05926-

Poutanen), and the institutional policies on animal experimenta-

tion fully met the requirements as defined in the NIH Guide on

animal experimentation.

Experimental Animals
To inactivate Dicer1 conditionally from the epithelial cells of the

proximal epididymis, Dicer1fl/fl mice [29] were crossed with a

heterozygous Defb41iCre knock-in (KI) mouse line. The KI was

Figure 6. Expression of Sex steroid receptors. (A) Immunostaining of two-month-old control mouse initial segment (IS) shows expression of
Estrogen receptor 1 (ESR1) only in the narrow cells (indicated by arrows) while (B) the Dicer1fl/fl; Defb41iCre/wt mouse has ESR1 expression in most cells
of the epithelium. (C, D) Staining for Androgen receptor. (D) Androgen receptor expression varied between Dicer1fl/fl; Defb41iCre/wt mice epididymides.
Some samples had similar expression levels as the control while others showed areas of more weakly stained tissue. CAP, caput. Scale bars 100 mm.
(E) Expression of androgen receptor (Ar) and estrogen receptor 1 and 2 (Esr1 and Esr2) as well as (F) AR target gene: glutathione peroxidase 5 (Gpx5),
lipocalin 5 (Lcn5), cysteine-rich secretory protein 1 (Crisp1) mRNA in IS and CAP of 2 month-old control and Dicer1 conditional knock-out (cKO) mice
epididymides. Expression values relative to L19 expression. Statistical significance was calculated from the expression levels of 3 control and 4 Dicer1fl/
fl; Defb41iCre/wt mouse samples using the unpaired t-test. Statistical significance of changes is indicated as follows: ns, not significant; *, P#0.05; ***,
P#0.001.
doi:10.1371/journal.pone.0038457.g006
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generated by inserting the iCre cDNA allelle into the translation

initiation site of the Defb41 gene. A detailed characterization of the

Defb41iCre KI mouse line will be described elsewhere. Defb41iCre/wt

mice were genotyped with the primers Defb41 Fw:

TCCATTGCCTTTTCTTGTCC and Defb41 Re:

TTGTCTTACCAGGTTTCCTCCT, Tm 56uC, for the wild-

type (WT) allele and iCre Fw: TCTCCAACCTGCTGACTGTG

and iCre Re: AGGGACACAGCATTGGAGTC, Tm 59uC, for

the iCre allele. Dicerfl/fl mice were genotyped as previously

described [29]. For detection of the floxed allele, IS together with

CAP, COR together with CAU and testes from 12 day-old mice

were collected. After DNA extraction, the recombined allele was

detected by genomic PCR as previously described [29]. Dicer1fl/fl;

Defb41iCre/wt mice and the controls, Dicer1fl/fl mice, were obtained

from the same litters. The genetic background of these mice was

mixed C57Bl/6N and SV129.

Sperm Morphology and Fertility of Dicerfl/fl; Defb41iCre/wt

Mice
To study male fertility, 2–3 month-old male Dicer1fl/fl;

Defb41iCre/wt mice and control mice were mated with FVB/N

female mice. The female mice were superovulated by intraperi-

toneal injections of 5 IU pregnant mare serum gonadotropin

(PMSG, NHPP, Dr. Parlow) and 5 IU human chorionic

gonadotrophin (hCG, Pregnyl, Schering-Plough) 26 and 2 hours

before mating, respectively. Females were checked for copulatory

plugs the following morning. The mated females were followed for

3–4 weeks to determine the number of litters and offspring

produced by each male. For sperm analyses, CAU of two-month-

old control and Dicer1fl/fl; Defb41iCre/wt mice were dissected and

incubated in 300 ml of HTF medium (William A. Cook Australia

Pty. Ltd, Brisbane, Australia) at 37uC, 5% CO2 for 30 min, to

allow the sperm to swim out. The sperm were spread on

microscope slides and stained using the Papanicolaou technique

(Haematoxylin, OG-6 and EA-50). The morphology of 100

sperm/sample from 4 control and 5 Dicer1fl/fl; Defb41iCre/wt mice

samples was analyzed.

Histology, Immunohistochemistry and b-galactosidase
Staining
Epididymides from 19 day - 6 month-old control and Dicer1fl/fl;

Defb41iCre/wt mice were fixed overnight in 4% paraformaldehyde

(PFA), embedded in paraffin and prepared for histological analyses

by standard procedures. Haematoxylin and eosin (HE) staining

was performed by standard procedures. Epithelial cell height was

measured by using the Leica IM500 imaging software. To detect

the different epithelial cell types of the epididymis, the slides were

incubated with the following antibodies overnight at 4uC: rabbit

monoclonal anti-Keratin 5 1:100 (RM-2106, Thermo Scientific),

rabbit polyclonal anti-V-ATPase 1:100 (a gift from S. Breton,

Program in Membrane Biology, MGH Simches Research Center,

Boston, MA) and mouse monoclonal anti-a-actin 1:500 (sc-32251,

Santa Cruz Biotechnology). All the primary antibodies were

diluted in PBS supplemented with 1% bovine serum albumin. The

antibody-antigen complexes were visualized by incubation for

30 min at room temperature with 1:200 Alexa Fluor 488- and

594-conjugated goat anti-mouse and goat anti-rabbit antibodies

(Invitrogen). For detection of F-actin, the epididymides of 2

month-old mice were fixed for 15 min in 4% paraformaldehyde

and rapidly frozen. The frozen sections (8 mm) were immuno-

stained with Phalloidin-TRITC 1:400 (P1951, Sigma-Aldrich). All

slides used for the above mentioned stainings were counterstained

with 49,6-diamino-2-phenylindole dihydrochloride (DAPI, Sigma)

and mounted in Mowiol 4–88 (Sigma). For sex steroid receptor

detection the following antibodies were used: rabbit polyclonal

anti-AR (N-20) 1:1000 (sc-816, Santa Cruz Biotechnology), mouse

monoclonal anti-estrogen receptor a 1:200 (M7040, Dako) and

mouse monoclonal anti-estrogen receptor b1 1:100 (M7292,

Dako). The antibody-antigen complexes were visualized by using

anti-rabbit and anti-mouse HRP labeled polymer (EnVision,

Dako) combined with DAB+ chromogen system (Dako).

For b-galactosidase staining two-month-old mice epididymides

were fixed in 0.2% glutaraldehyde, 2 mM MgCl2, 5 mM EGTA

in PBS for 30 minutes. The tissues were washed overnight and

stained for 2 hours at 37uC in 2 mM MgCl2, 0.01% NaDeox-

ycholate, 0.02% Tergitol-type NP-40, 5 mM K4Fe(CN)6, 5 mM

K3Fe(CN)6, 1 mg/ml X-gal in PBS.

RNA Isolation and qRT-PCR
For analyzes of gene expression, 1 day – 42 day-old WT mice

(mixed background, C57Bl/6N and SV129) and 21 day - 2

month-old control and Dicer1fl/fl; Defb41iCre/wt mice were used. The

epididymides, efferent ducts and testes were dissected out and

weighed. The epididymis of control and Dicer1fl/fl; Defb41iCre/wt

mice was cut into three segments; IS and CAP, COR and CAU.

All tissues were frozen in liquid nitrogen and stored at 280uC.

Total RNA was isolated from the tissues using Tri Reagent

according to the manufacturer’s instructions (Molecular Research

Center, Inc.). For RT-PCR, 1 mg of total RNA was treated with

deoxyribonuclease I (DNaseI, Amplification Grade, Invitrogen)

and reverse-transcribed by using the DyNAmo cDNA synthesis kit

(Thermo Scientific). The cDNA was diluted 1:50–1:100 for

quantitative PCR. Quantitative PCR was performed using the

DyNAmo Flash SYBR Green qPCR Kit (Thermo Scientific). All

samples were run in triplicate reactions and standards in duplicate

reactions. L19 and Ppia were used as endogenous controls to

equalize for the amounts of RNA in the epididymis and testis,

respectively. Primer sequences and qRT-PCR conditions for

analyzing the expression of Dicer1, Ros1, Bmyc, Lcn8, Cst8, Gpr64,

Ar, Esr1, Esr2, Gpx5, Lcn5, Crisp1 and Fgfr 1–4 are described in

Table S1.

Cell Proliferation and Apoptosis
To detect cell proliferation, epididymis sections were stained

with rat monoclonal anti-Ki67 1:500 (M7249, Dako). The

antibody-antigen complexes were visualized by using 1:200 rabbit

polyclonal anti-rat (Dako) combined with anti-rabbit HRP-labeled

polymer and DAB+ chromogen system. Terminal Uridine

Deoxynucleotidyl Nick End Labeling (TUNEL) was used to detect

apoptotic cells. Labeling was performed by using 0.8 U/ml TdT

(Terminal transferase, recombinant, Roche) and Biotin-16-dUTP

(Roche), 1 h at 37uC. The reaction was visualized with Biotin

coupled with ExtrAvidine-Peroxidase, 1:200 (Sigma-Aldrich)

combined with DAB+ chromogen system. Proliferating and

apoptotic cells were counted from ten tubular cross sections of 5

control and 5–8 Dicer1fl/fl; Defb41iCre/wt mouse IS and CAP,

respectively. The number of proliferative and apoptotic cells was

then divided by the circumference (mm) of the tubular cross

sections.

Statistical Analyses
For statistical analyses of organ weights, epithelial cell heights,

animal fertility, sperm morphology, cell proliferation/apoptosis

and qRT-PCR, the GraphPad Prism 5 software (GraphPad

Software, Inc., La Jolla, CA) was used. Unpaired t-test was used to

determine statistical significances, assigning P#0.05 as the limit of

statistical significance.
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Supporting Information

Figure S1 Changes in the epithelium of the efferent

ducts. Hematoxylin and eosin staining of efferent ducts of six-

month-old (A) control and (B) Dicer1fl/fl; Defb41iCre/wt mice. Arrow

marks neoplastic changes. Scale bar 100 mm.

(TIF)

Figure S2 Varied phenotype of the Dicer1 cKO initial

segment. Haematoxylin and eosin staining of (A) initial segment

(IS) and (D) corpus (COR) of a 2 month-old control mouse and (B,

C) IS of two individual 2 month-old Dicer1fl/fl; Defb41iCre/wt

mice. Scale bar 100 mm.

(TIF)

Figure S3 Segment-specific gene expression during

epididymal development. Expression of proximal epididymis

specific genes in the initial segment and caput of 21 days – two-

month-old control and Dicer1 conditional knock-out (cKO) mice.

Expression of (A) cystatin 8 (Cst8), (B) lipocalin 8 (Lcn8) and (C)

Ros1 proto-oncogene (Ros1) relative to L19 expression. Statistical

significance was calculated from the expression levels of 3 control

and 3 Dicer1fl/fl;Defb41iCre/wt mouse samples from each time

point, using the unpaired t-test. Statistical significance of changes

is indicated as follows: *, P#0.05; **, P#0.01; ***, P#0.001.

(TIF)

Table S1.

(DOC)
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