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Abstract

Background: Preterm infants are at risk of developing intestinal dysbiosis with an increased proportion of

Gammaproteobacteria. In this study, we sought the clinical determinants of the relative abundance of feces-

associated Gammaproteobacteria in very low birth weight (VLBW) infants. Fecal microbiome was characterized

at ≤ 2 weeks and during the 3rd and 4th weeks after birth, by 16S rRNA amplicon sequencing. Maternal and

infant clinical characteristics were extracted from electronic medical records. Data were analyzed by linear

mixed modeling and linear regression.

Results: Clinical data and fecal microbiome profiles of 45 VLBW infants (gestational age 27.9 ± 2.2 weeks; birth

weight 1126 ± 208 g) were studied. Three stool samples were analyzed for each infant at mean postnatal ages of 9.9 ±

3, 20.7 ± 4.1, and 29.4 ± 4.9 days. The average relative abundance of Gammaproteobacteria was 42.5% (0–90%) at ≤

2 weeks, 69.7% (29.9–86.9%) in the 3rd, and 75.5% (54.5–86%) in the 4th week (p < 0.001). Hierarchical and K-means

clustering identified two distinct subgroups: cluster 1 started with comparatively low abundance that increased with

time, whereas cluster 2 began with a greater abundance at ≤ 2 weeks (p < 0.001) that decreased over time. Both groups

resembled each other by the 3rd week. Single variants of Klebsiella and Staphylococcus described variance in community

structure between clusters and were shared between all infants, suggesting a common, hospital-derived source. Fecal

Gammaproteobacteria was positively associated with vaginal delivery and antenatal steroids.

Conclusions: We detected a dichotomy in gut microbiome assembly in preterm infants: some preterm infants started

with low relative gammaproteobacterial abundance in stool that increased as a function of postnatal age, whereas others

began with and maintained high abundance. Vaginal birth and antenatal steroids were identified as predictors

of Gammaproteobacteria abundance in the early (≤ 2 weeks) and later (3rd and 4th weeks) stool samples, respectively.

These findings are important in understanding the development of the gut microbiome in premature infants.
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Background
In newborn infants, the enteric microbiome is an

important influence on mucosal immunity, nutrient ab-

sorption, and energy regulation in the developing intes-

tine [1]. Healthy full-term neonates acquire a “core”

enteric microbiome with the inocula received during

and after birth from the maternal microbiota in the

vaginal, fecal, and cutaneous compartments and from

maternal milk [1, 2]. The gut microbiome in these

infants shows dominance of Gram-positive Firmicutes

such as Staphylococcus, Propionibacterium, Bifidobac-

terium, and Lactobacillus [2, 3]. However, in marked

contrast to term infants, preterm infants are at risk of

delayed and altered assembly of their intestinal micro-

biome [4, 5]. These patients have several clinical and

physiological constraints, including absent or limited

exposure to maternal microbiota due to shortened

labor or cesarean birth, mucosal immaturity, and the

lack of physical and immune defenses such as gastric

acid, secretory IgA, and intestinal mucus, frequent
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multisystem organ dysfunction with consequent expos-

ure to broad-spectrum antibiotics and various indwell-

ing tubes and catheters, delays in enteral feeding, and

intestinal dysmotility [3, 5–8]. Many premature infants

show dysbiosis with a preponderance of Gram-negative

bacteria of the class Gammaproteobacteria and its

constituent families Enterobacteriaceae,Vibrionaceae, and

Pseudomonadaceae [9–14]. There are concerns that such

dysbiosis in preterm infants may be associated with

adverse outcomes, including necrotizing enterocolitis,

late-onset sepsis, and developmental delay [5, 10, 11, 15].

In this prospective observational study, we investigated

the clinical antecedents of increased relative abundance

of fecal Gammaproteobacteria in premature infants. Our

goal was to identify the clinical characteristics of pre-

term infants who developed enteral dysbiosis, which in

turn, could inform future efforts to direct microbiome

screening in a clinical setting. We hypothesized that

most premature infants begin with few Gammaproteo-

bacteria in their stool and acquire these bacteria from

the hospital microenvironment or from human inter-

action [16–19], as a function of postnatal age. We rea-

soned that once introduced into the relatively uninhabited

preterm intestine [20], the abundance of gammaproteo-

bacterial taxa would expand with time. Therefore, we

posited that (a) dysbiosis is a stable state wherein fecal

Gammaproteobacteria would either increase in relative

proportion or remain stable, but not decrease over time;

and (b) Gammaproteobacteria-enriched dysbiosis may be

seen in a majority of convalescing premature infants. To

investigate these hypotheses, we recorded the demo-

graphic and clinical information from a cohort of inborn,

very low birth weight (VLBW) infants and analyzed their

fecal microbiome at serial time-points during the first

month after birth.

Methods
Demographic and clinical information

This prospective study was performed after approval by In-

stitutional Review Boards at University of South Florida

and Tampa General Hospital (TGH). We enrolled all eli-

gible VLBW infants admitted to the neonatal intensive care

unit (NICU) at TGH, an academic regional referral center

with a single-patient room floor plan, during the period

May 2012–December 2013. Inclusion criteria included

informed parental consent and the availability of a stool

sample ≤ 2 weeks after birth. Infants with major congenital

anomalies were excluded. The following maternal and neo-

natal information was obtained from medical records:

maternal Hispanic ethnicity, maternal race (Black, White,

Asian, and others), maternal age, duration of ruptured

membranes, clinical chorioamnionitis, maternal hyperten-

sion, diabetes, and her body mass index; antenatal treat-

ment with steroids and magnesium sulfate; mode of

delivery, gestational age, birth weight, postnatal age, post-

menstrual age (gestational age at birth + postnatal age, in

weeks), gender, small-for-gestational age (SGA), singleton/

multiple gestation, Apgar scores, admission temperature,

early-onset or any sepsis (positive blood culture), respira-

tory distress syndrome, surfactant use, need for supple-

mental oxygen and/or positive pressure, patency of the

ductus arteriosus, postnatal treatment with steroids or

indomethacin/ibuprofen, days of antibiotic treatment dur-

ing the first 2 weeks and the total number of days on anti-

biotics during the entire hospital stay, red blood cell

transfusions, feeding (exclusive maternal/donor breast

milk, exclusive formula, and mixed), NEC (Bell stages II

or III [21]), chronic lung disease (need for supplemental

oxygen at 36 weeks’ corrected gestational age), extra-uter-

ine growth restriction, and the length of hospital stay.

Fecal DNA amplification

Stool samples obtained at ≤ 2 weeks, the 3rd week, and

the 4th week after birth were stored at − 80°C under uni-

form conditions until analysis [22]. Total DNA from 100

to 250 mg stool (MoBio PowerFecal DNA kit, Qiagen,

Carlsbad, CA) was used to amplify the V4 region of 16S

rRNA gene using polymerase chain reaction with modi-

fied 515F and 806R primers [23, 24]. These DNA seg-

ments were sequenced using the MiSeq platform

(Illumina, San Diego, CA) to generate about 15,000,250

base-pair paired-end reads per sample [24].

Statistical analysis

Demultiplexed DNA sequences were analyzed for bac-

terial identification to genus level using the CLC Bio-

medical Workbench 3.5.3 (Qiagen) using the default

setting. Operational taxonomic units (OTUs) were

assigned based on 97% sequence identity to the Green-

genes v13.8 reference database, and their relative abun-

dance (percentage) was computed. Bacterial diversity

was measured within samples (alpha-diversity) as the

number of OTUs, phylodiversity, and the Chao 1, Simp-

son, and Shannon indices; between samples (beta-diver-

sity) by principal coordinate analysis and permutational

multivariate analysis of variance (PERMANOVA) of

weighted and unweighted UniFrac distance matrices,

Jaccard coefficient, and the Bray-Curtis dissimilarity

index. To improve upon the taxonomic resolution of the

microbial analysis, we characterized OTUs to single nu-

cleotide variants (SNVs) using Divisive Amplicon

De-noising Algorithm 2 (DADA2) [25]. The V4 region

16S rRNA gene amplicon data was analyzed using the

DADA2 pipeline. First, the demultiplexed fastq files were

filtered and trimmed. Each sample was dereplicated, a

portion of the data set was used to estimate the error pa-

rameters, and dada() was applied to the full pooled data

set using those inferred error parameters. Paired reads
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were then merged, and removeBimeraDenovo() was used

to remove chimeras. Taxonomy was assigned against the

Greengenes v13.8 database (see Additional file 1 for

Code for DADA2). Volatility analysis was performed by

comparing unweighted UniFrac distances on SNVs

between subgroups. To identify the predictive value of

subgroups on microbiome community composition, we

applied random forest machine learning (after rarefying

to 5000 sequences/sample, 1000 trees) and Analysis of

Composition of Microbiomes (ANCOM) [26]. Finally, to

determine whether the data on relative abundance/pro-

portions reflect a change in the absolute abundance of

specific taxa, we performed Balance Tree Analysis using

Gneiss [27].

Clinical information was analyzed using SPSS (IBM,

Armonk, NY). Scalar variables were compared by the

Mann-Whitney U [28] or Student’s t test [29], and

categorical variables by Fisher’s exact test [30]. We used the

linear mixed-effects modeling procedure [31] to identify

determinants of fecal bacterial colonization. The linear

mixed-effects procedure was performed using the max-

imum likelihood method. The autoregressive covariance

matrix (with heterogeneous variances) was used as the

dependent variables were anticipated to diverge with time.

Best-fitting models were identified for lowest values of the

− 2 log likelihood, Akaike’s information criterion, and

Schwarz’s Bayesian criterion [32]. Important independent

variables were shortlisted using bootstrap bagging [33],

where a bootstrap dataset was constructed by not sampling

a third of all subjects and replacing these by an equal num-

ber of duplicated samples. The bootstrap sample was ana-

lyzed by logistic regression with entry criterion of p < 0.2.

The number of times a risk factor appeared in these 1000

analyses was taken as a reflection of the reliability. Because

of the limited number of subjects in the study cohort and

concern about model overfitting, multivariable analyses

were limited to biologically plausible associations, to main

effects for baseline measures, and time-dependent covari-

ates for longitudinal measures. Models were adjusted for

birth weight, gestation, and postmenstrual age. To ensure

stability/reliability of estimates, 95% confidence intervals

(CI) were re-estimated by bootstrapping (n = 1000). We

also performed linear regression to identify the determi-

nants of gammaproteobacterial abundance at each time-

point of stool collection. Variables identified for the

mixed-effects analysis were tested with entry at p < 0.2

and acceptance at p < 0.05, first using a one-step forced

entry and then “stepwise” in the sequence of appearance

during perinatal period [34]. To identify highly correlated

variables, multicollinearity diagnostics (tolerance values <

0.2, variance inflation factors > 10) were reviewed [35].

The independence of variables was confirmed by the

Durbin-Watson statistic (models accepted if between 1.5

and 2.5) [36]. Scatterplots of standardized residuals vs.

standardized predicted values were evaluated for homo-

scedasticity and nonlinearity. Normality of residuals was

confirmed by evaluation of histograms and normal prob-

ability plots. Statistical tests were two-tailed and consid-

ered significant at p < 0.05.

Results
Demographic and clinical information

We enrolled 45 eligible VLBW infants admitted to our

NICU between May 2012 and December 2013. These

infants were born at a gestation (mean ± standard deviation,

Table 1 Perinatal and neonatal clinical characteristics

Characteristic N = 45

Gestational age, weeks, (mean, SD) 28 (2)

Birth weight, grams, (mean, SD) 1126 (208)

Male 21 (46.7%)

Hispanic ethnicity 9 (20%)

Race

Black 19 (42.2%)

White 25 (55.6%)

Antenatal medications

Steroids 39 (86.7%)

Magnesium 34 (75.6%)

Vaginal birth 11 (24.4%)

Multiple birth 7 (15.6%)

Chorioamnionitis 26 (47.8%)

Maternal hypertension 13 (28.9%)

Small for gestational age 3 (6.7%)

Respiratory distress syndrome 26 (57.8%)

Oxygen on day 28 11 (24.4%)

Oxygen on day 36 2 (4.4%)

Patent ductus arteriosus 6 (13.3%)

Indomethacin 2 (4.4%)

Patent ductus arteriosus ligation 1 (2.2%)

Treated retinopathy of prematurity 0

Necrotizing enterocolitis 1 (2.2%)

Surgical necrotizing enterocolitis 1 (2.2%)

Days on antibiotics, (mean, SD) 4.5 (4.7)

Positive blood culture 5 (11.1%)

Packed red blood cell transfusion 16 (35.6%)

Feeding type

Maternal breast milk only 25 (55.6%)

Formula only 2 (4.4%)

Mixed feeding types 18 (40.0%)

Discharge weight < 10th percentile 11 (24.4%)

Length of stay, days, (mean, SD) 68 (29)
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SD) of 27.9 ± 2.2 weeks, with birth weight 1126 ± 208 g.

Their clinical characteristics are summarized in Table 1.

Fecal microbiome

Three stool samples were analyzed from all infants,

obtained at the postnatal age (mean ± SD) 9.9 ± 3, 20.7 ±

4.1, and 29.4 ± 4.9 days, respectively. The postmenstrual

age at these time-points was 29.8 ± 2.3, 31.2 ± 1.9, and

32.6 ± 1.9 weeks, respectively. A total of 2,017,727 reads

was obtained, with a mean 15,285 (± standard deviation

7139) sequences per sample. One of the stool samples at

the first time-point had inadequate biomass for DNA

sequencing and was excluded. The alpha-diversity metrics

(number of OTUs, phylodiversity, and Shannon, Chao1,

and Simpson indices) increased with postnatal age (see

Additional file 2: Table S1).

Major bacterial communities in stool

Proteobacteria increased in abundance over time, com-

prising 46% (median; interquartile range/IQR = 0–90%) of

all reads at ≤ 2 weeks, 83.5% (54.8–93.3%) in the 3rd and

77% (57–88.3%) in the 4th week (p < 0.001). The class

Gammaproteobacteria dominated the Proteobacteria,

comprising 42.5% (0–90%) at ≤ 2 weeks, 69.7% (29.9–

86.9%) in the 3rd, and 75.5% (54.5–86%) in the 4th

week (p < 0.001) (Fig. 1, Additional file 2: Table S2).

Fig. 1 Relative abundance of major bacterial taxonomic units in stool over time. Line diagrams (means ± standard deviation) show the relative

abundances of major bacterial taxonomic units in stool, by cluster. Stool samples were collected during the first 2 weeks, and then during the 3rd

and the 4th weeks, respectively. Repeated measures analysis of variance; *p < 0.05, **p < 0.01, and ***p < 0.001

Ho et al. Microbiome  (2018) 6:157 Page 4 of 13



Gammaproteobacteria comprised > 50% reads in 20/44

(45.5%) infants at ≤ 2 weeks, 29/45 (64.4%) in the 3rd

week, and 36/45 (80%) in the 4th week. Klebsiella

were the predominant gammaproteobacterial genus,

dominating nearly all infants (median 44%, range 0–

100% at ≤ 2 weeks, 85% (0–99%) in the 3rd, and

78.5% (0–99%) in the 4th week (changes not signifi-

cant because of high inter-infant variability). A SNV

mapping to Klebsiella comprised 0.18% of all reads

(median, range 0–99.4%) at ≤ 2 weeks, 24.6% (0–

99.5%) in the 3rd (p = 0.034), and 26.2% (0–99.4%) in

the 4th week (not significant vs. ≤ 2 week samples).

Identified gammaproteobacterial genera are listed in

Additional file 2: Table S3.

Firmicutes were the second most abundant phylum at

≤ 2 weeks (median 41.5%, IQR 3.25–100%). The class

Bacilli accounted for nearly all Firmicutes at ≤ 2 weeks

(100%, IQR 60–100%), whereas Clostridia were dominant

during the 4th week (42%, IQR 8.5–85%; p < 0.001). At the

genus level, Staphylococcus were abundant at ≤ 2 weeks

and decreased with age, whereas Enterococcus increased

over time. Lactobacillus were scant. Other Firmicute genera

are presented in Additional file 2: Table S4. Actinobacteria

and Bacteroidetes were nearly absent from this cohort (see

Additional file 2: Table S2).

Cluster analysis for fecal abundance of Gammaproteobacteria

The relative abundance of Gammaproteobacteria in ≤

2 week samples varied widely (0–90%; see Additional file 2:

Table S2). Therefore, we looked for evidence of clustering

in our cohort. Hierarchical and K-means clustering [37] of

Gammaproteobacteria percentages in the 44 first time-point

stool samples showed 2 subgroups (Fig. 2a, b): cluster 1 (20

infants) started with low gammaproteobacterial abundance

(mean ± SD 2.09 ± 5.91%, median 0, range 0–25%), whereas

cluster 2 (24 infants) showed greater gammaproteobacterial

relative abundance (mean ± SD 79.18 ± 21.6%, median

84.5%, range 31.36–99%; p < 0.001). Cluster 1 infants had

lower birth weight (mean ± SD 1053 ± 227 g vs. 1176 ±

175 g in cluster 2; p = 0.049) and were less likely to have

had a vaginal birth (1/20 in cluster 1 vs. 10/24 in cluster 2,

p= 0.006). Their clinical characteristics are summarized in

Additional file 2: Table S5, and the OTUs in Additional file 2:

Table S6 a–c. Multiple birth participants sorted to the same

cluster as their siblings, indicating the validity of this group-

ing. Random forest analysis predicted cluster identity with a

prediction/error ratio of 2.2, but did not identify any SNVs

with a large feature importance score (see Additional file 2:

Table S7).

Cluster 1 gained Gammaproteobacteria over time

(p < 0.001, 3rd and 4th weeks compared to ≤ 2 week

samples), whereas cluster 2 showed a transient drop

in Gammaproteobacteria in the 3rd week before a

4th week rebound (p = 0.042; Fig. 3; in Add-

itional file 2: Table S6 a–c). In cluster 2, Klebsiella

was the most abundant genus (median 96%, range

0–99%; detected in 19/24 infants), and one particular

SNV was dominant (60.8%, 0–99.4%). During the 3rd

and the 4th weeks, both clusters showed increasing

alpha-diversity and comparable Gammaproteobacteria

relative abundance (Additional file 2: Tables S6b, c

and S8a, b). Beta-diversity comparisons showed

greater between-sample diversity in cluster 2 at ≤

2 weeks, but these differences narrowed over time

(Additional file 2: Table S8c). Volatility analysis

confirmed a significant difference in variability in

A B

Fig. 2 Clustering of VLBW infants by the relative abundance of fecal Gammaproteobacteria. a Dendrogram shows the average linkage (between

the two groups) derived by hierarchical clustering. b. Scatter-plot shows that the VLBW infants included in our study were grouped into two distinct

clusters based on the relative abundance of Gammaproteobacteria (percentages) in stool samples obtained during the first two postnatal weeks
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unweighted UniFrac distances between the clusters

(p = 0.038; Fig. 4) (Additional file 3).

ANCOM was performed to identify single nucleotide

variant (SNV) sequences that described the variance in

the microbiome community differences between clusters

1 and 2. A single variant of Klebsiella and a variant of

Staphylococcus showed significantly different relative

abundance between the two clusters (p < 0.05; after false

discovery rate correction). This same Staphylococcus

SNV also had a significantly different relative abundance

between the three time-points (p < 0.001) and decreased

over time. No SNVs were significantly different between

individual infants. The heat map of the most abundant

SNVs in the cohort is shown in Fig. 5.

Data on relative abundance/proportions does not in-

form whether specific taxa have grown or decreased in

absolute abundance. We performed Balance Tree ana-

lysis, which uses the concept of balances to account for

the compositional nature of 16S rRNA data. We calcu-

lated a bifurcating tree relating the DADA2 sequence

variants to each other by time-point (stool number) to

determine if certain sequence variants appeared only in

early or late stages. We then performed linear regression

by cluster membership, which confirmed that cluster 2

showed increased Klebsiella (Fig. 6).

Clinical antecedents of fecal colonization with

Gammaproteobacteria

We performed mixed-effects modeling to identify the

clinical determinants of the relative abundance of fecal

Gammaproteobacteria. Small-for-gestational age (SGA),

ethnicity, vaginal birth, antenatal steroids, magnesium

Fig. 3 Relative abundance of major bacterial taxonomic units in stool, by cluster. Line diagrams (means ± standard deviation) show the relative

abundances of major bacterial taxonomic units in stool in clusters 1 and 2. Stool samples were collected during the first 2 weeks, and then during the

3rd and the 4th weeks, respectively. Repeated measures analysis of variance; *p < 0.05, **p < 0.01, and ***p < 0.001
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sulfate, chorioamnionitis, gender, multiple births, postna-

tal age, enteral feedings, RDS, PDA, sepsis, and transfu-

sions were defined as fixed effects. Maternal BMI, birth

weight, gestation, postmenstrual age at stool collection,

duration of ruptured membranes, antibiotic treatment, and

the total length of hospital stay were defined as random ef-

fects. The best-fitting, parsimonious model (Table 2)

showed positive associations of fecal Gammaproteobacteria

with vaginal birth (F = 9.55, p = 0.002) and antenatal ste-

roids (F = 4.23, p = 0.042). There was also a borderline,

negative effect of maternal magnesium sulfate therapy (F =

3.87, p = 0.051). There was no effect of gestational or post-

menstrual age. When we used Klebsiella as the dependent

variable, the associations with vaginal birth (F = 10.91, p =

0.001) and antenatal steroids (F = 7.29, p = 0.008)

remained consistent.

We next performed linear regression to identify the

determinants of Gammaproteobacteria relative abundance

at the three time-points of stool collection. At ≤ 2 weeks,

Gammaproteobacteria abundance was associated with

vaginal birth, Latino ethnicity, postnatal age, and the num-

ber of antibiotic days (r2 = 0.69, F = 5.66, p < 0.001; see

Additional file 2: Table S13). When individual antibiotics

were included, gentamicin (b = 15.03, SE 5.35, p = 0.009),

but not ampicillin, showed a significant effect. The

regression models were less robust during the 3rd week

(r2 = 0.34, F = 3.02, p = 0.026), but postnatal age and

antenatal steroids continued to show significant effects

Fig. 4 Volatility analysis of the two clusters: Histogram shows the distribution of unweighted UniFrac distances between successive time-points. A

distance of 1 means maximally different communities, while a distance of 0 implies identical communities, so a curve shifted toward 0 means lower

variability between successive time-points. The two clusters showed a significant difference in variability (p = 0.038)
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(see Additional file 2: Table S14). The 4th-week regres-

sion models were a better fit (r2 = 0.68, F = 4.26, p = 0.001)

and showed positive effects of postnatal age, antenatal

steroids, respiratory distress syndrome (RDS), and red cell

transfusions, and negative effects of magnesium sulfate,

admission temperature, and total antibiotic days. Individual

antibiotics did not show a significant effect. There

was a borderline, positive effect of human milk feed-

ings (p = 0.055; see Additional file 2: Table S15).

In cluster 1, mixed modeling showed increased Gam-

maproteobacteria with postnatal age (p = 0.002). Cluster

2 showed increased Gammaproteobacteria with vaginal

birth (p = 0.019) and antenatal steroids (p = 0.001), and

negative associations with small-for-gestational-age sta-

tus (SGA) (p < 0.001), Latino ethnicity (p = 0.009), and

chorioamnionitis (p = 0.016; Tables 3 and 4). Regression

analysis in cluster 1 at ≤ 2 weeks (r2 = 0.87, F = 8.88, p

= 0.004) showed increased Gammaproteobacteria with

human milk feedings. In cluster 2, patent ductus

arteriosus (PDA) had a negative effect (Additional file 2:

Table S9a, b).

Clinical determinants of the relative proportions of other

bacterial phyla

Fecal Firmicutes were positively associated with cesarean

birth (F = 21.49, p < 0.001) and negatively with postnatal

age (F = 5.08, p = 0.026). We attempted, but did not find

evidence of clear clustering of subjects based on the

relative abundance of Firmicutes, Bacilli, or Clostridia.

Comparison of clusters based on Gammaproteobacteria

abundance (as described in preceding sections) showed

interesting differences in the relative abundance of Fir-

micutes. Cluster 1 carried more Firmicutes and Bacilli

than cluster 2 in the earliest (≤ 2 weeks) and 3rd week

stool samples (Additional file 2: Table 6a–c and S10a).

In cluster 1, Firmicutes were associated positively with

Latino ethnicity and negatively with postnatal age

(Additional file 2: Table S10b). Bacilli decreased with

Fig. 5 Heat map of the most abundant single nucleotide variants (SNVs): Heat map shows the relative abundance of the 18 most abundant SNVs

at each sample. The bar at the top is color coded according to time-point. Blue = most abundant, yellow = least abundant (minimum abundance

displayed = 0.165% mean abundance across samples)
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postnatal age in cluster 2 (Fig. 5 and Additional file 2:

Table S11a–c). Staphylococcus was dominant in cluster

1 at ≤ 2 weeks (median 100%, range 2–100%; detected

in all infants). Most mapped to one particular SNV

(median abundance 98% of all Staphylococcus, range

1.8–100%), which was confirmed in Balance Tree

analysis (Fig. 6). Clostridia increased with postnatal

age (F = 8.81, p = 0.004), particularly in cluster 2

(Additional file 2: Table S12a–c).

Discussion
We present a detailed analysis of the clinical determi-

nants of the proportion of Gammaproteobacteria in the

stool of preterm infants. Consistent with our hypoth-

esis, the overall proportion of Gammaproteobacteria

increased in stool with postnatal age. However, we

noted two distinct patterns: one group started with a

low relative abundance of Gammaproteobacteria in

early stool samples (≤ 2 weeks) that increased with

time, whereas a second group of infants started with

a high relative abundance of Gammaproteobacteria

that dipped transiently during the 3rd week. By the

4th week, the two groups had similar levels of Gam-

maproteobacteria. To our knowledge, this is the first

study to describe this dichotomy in gut microbiome

assembly in premature infants.

Fig. 6 Balance tree analysis for major bacterial taxa. Bifurcating tree relating the DADA2 sequence variants to each other by the time-point for

stool collection highlights specific sequence variants that appeared only in early or late stages. Linear regression by cluster membership confirmed

increased Klebsiella in cluster 2. Cluster 1 showed a true increase in Staphylococcus sequence variant

Table 2 Linear mixed-effects model for the relative fecal abundance of Gammaproteobacteria

Parameter Estimate Std. error p value 95% CI Bootstrapping 95% CI

Lower Upper Lower Upper

Intercept 24.06 22.35 0.284 − 20.19 68.32 − 21.98 345.46

Absence of SGA status 1.90 13.28 0.887 − 24.40 28.19 − 72.52 23.13

Cesarean birth − 23.63 7.65 0.002 − 38.77 − 8.49 − 40.33 − 4.88

Absence of Latino ethnicity 6.86 7.67 0.373 − 8.32 22.04 − 7.73 32.45

Absence of antenatal steroids − 23.57 11.47 0.042 − 46.28 − 0.87 − 46.27 14.82

Absence of antenatal magnesium
sulfate therapy

15.38 7.81 0.051 − 0.09 30.85 − 12.83 33.13

Absence of chorioamnionitis 8.41 6.70 0.212 − 4.85 21.67 − 7.79 25.40

Time 2.71 1.70 0.115 − 0.67 6.08 − 7.67 6.17

* Significant p-values (<0.05) are shown in italics
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The development of the preterm gut microbiome is an

area of intense scientific scrutiny. Currently, there are two

conceptual models: in the first [38], the microbiome is be-

lieved to develop in a non-random, patterned progression

where host maturation is important and environmental

factors have only a minimal, non-enduring influence on

the gut microbiome. In the 2nd model, the environment is

key: factors such as the hospital microflora, diet, and anti-

biotics are believed to fundamentally alter gut microbiome

assembly [2, 39–42]. Our findings suggest that both

models have merit. Cluster 1 showed the sequential dom-

inance of Bacilli, Gammaproteobacteria, and Clostridia in

stool samples collected during the first 2, the 3rd, and the

4th weeks, respectively. These findings were consistent with

those of La Rosa et al. [38], except that we did not find

effects of gestational or postmenstrual age. These infants

began life with a low relative abundance of Gammaproteo-

bacteria but showed greater variability between time-

points in our volatility analysis. The low alpha-diversity

and high beta-diversity in cluster 1 may be interpreted

as a gammaproteobacterial bloom during their NICU

stay that transiently crowded out other members of a

microbial community. These findings differ from those

in cluster 2, who showed high relative abundance of

fecal Gammaproteobacteria from the earliest stool sam-

ple. The identification of vaginal birth as the leading

determinant of stool-associated Gammaproteobacteria

in this group suggests that vertical, mother-to-infant trans-

mission of Gammaproteobacteria may contribute to intes-

tinal dysbiosis in some preterm infants. This information is

important for clinical practice improvement and infection

control measures. In preterm infants, early colonization

with Gammaproteobacteria has been generally associated

with horizontal transmission of these bacteria in the NICU

and selection pressures from antibiotics and diet. How-

ever, the possibility of vertical transmission in some

infants is novel and indicates a need for additional pre-

ventive strategies starting before and during birth.

The dominance of a single variant of Klebsiella in

cluster 2 infants indicates a common, possibly hospital-

derived, source. Women with high-risk pregnancies are

often exposed repeatedly to the hospital environment

while being monitored/treated for pregnancy complica-

tions and are at risk of becoming colonized with hospital

microflora. In our cohort, 25/43 (58%) mothers had

received inpatient care for ≥ 3 hospital days and 22/43

(51%) had ≥ 2 hospital visits before delivery, mostly for

actual or imminent preterm labor. We speculate that

Table 3 Linear mixed-effects model for the relative fecal abundance of Gammaproteobacteria in cluster 1

Parameter Estimate Std. error p value 95% CI

Lower Upper

Intercept − 71.41 44.94 0.118 − 161.47 18.65

Absence of SGA status − 14.95 30.96 0.631 − 76.99 47.08

Cesarean birth 3.24 21.84 0.883 − 40.53 47.00

Absence of Latino ethnicity 34.19 10.82 0.003 12.50 55.89

Absence of antenatal steroids − 20.38 17.39 0.246 − 55.24 14.47

Absence of antenatal magnesium
sulfate therapy

4.56 16.41 0.782 − 28.34 37.45

Absence of chorioamnionitis 5.18 8.50 0.545 − 11.85 22.20

Postnatal age 7.25 2.23 0.002 2.78 11.72

* Significant p-values (<0.05) are shown in italics

Table 4 Linear mixed-effects model for the relative fecal abundance of Gammaproteobacteria in cluster 2

Parameter Estimate Std. error p value 95% CI

Lower Upper

Intercept 885.64 111.30 0.000 667.49 1103.78

Absence of SGA status − 123.76 20.12 0.000 − 163.21 − 84.31

Cesarean birth − 18.48 7.89 0.019 − 33.95 − 3.02

Absence of Latino ethnicity 29.33 11.18 0.009 7.36 51.29

Absence of antenatal steroids − 51.94 14.89 0.001 − 81.17 − 22.71

Absence of antenatal magnesium
sulfate therapy

− 1.12 8.05 0.889 − 17.09 14.84

Absence of chorioamnionitis 22.26 9.26 0.016 4.09 40.43

Postnatal age − 7.76 1.74 0.000 − 11.17 − 4.35

* Significant p-values (<0.05) are shown in italics

Ho et al. Microbiome  (2018) 6:157 Page 10 of 13



cluster 2 infants, who were more likely to have had a vagi-

nal birth, may have received a larger inoculum of Gamma-

proteobacteria/Klebsiella than cluster 1 because of the

exposure to maternal microflora in the vaginal, fecal, and

cutaneous compartments. We are unable to investigate

these possibilities further as we did not collect maternal

and hospital environmental samples in the present study.

During pregnancy, the vaginal microbiome is dominated by

Firmicutes [43, 44]. In women with vaginal dysbiosis,

pathobionts such as Prevotella, Sneathia, Atopobium,

Mycoplasma, and Gardnerella can be identified [43, 44],

but Gammaproteobacteria are infrequent [45]. The putative

microbiome of the placenta and the amniotic fluid includes

Gammaproteobacteria [46] and could be a plausible source,

but this should affect all infants, regardless of delivery

mode. Other potential sources may include exposure to

maternal enteric flora during vaginal birth and then to the

microbiome of human milk, both of which contain Gam-

maproteobacteria and often Klebsiella in particular [47, 48].

The identification of postnatal age as a determinant of

Gammaproteobacteria abundance was consistent with

the acquisition of these bacteria from care providers and

the hospital environment. However, the transient drop

in fecal Gammaproteobacteria we observed in cluster 2

infants during the 3rd postnatal week was contrary to

our hypothesis that once established in the relatively

uninhabited preterm intestine [49], Gammaproteobac-

teria would either increase or remain stable, but not

decrease, over time. These findings need to be con-

firmed with quantitative measurements of Gammapro-

teobacteria abundance, but if validated, would have

important implications for evaluating dysbiosis as a pre-

dictor of adverse outcomes in VLBW infants [11] as the

best timing for measuring Gammaproteobacteria abun-

dance will need to be ascertained.

The association of Latino ethnicity with fecal Gamma-

proteobacteria may be rooted in genetic factors [50],

although there may have been a confounding influence of

the type of feedings: 8/9 (88.8%) Latino infants received

only human milk vs. 17/36 (47.2%) infants of other ethnic

groups (p = 0.03). The association of fecal Gammaproteo-

bacteria with antenatal steroids, magnesium sulfate, and

the admission temperature is also not easily explained.

Interestingly, the effect of antenatal steroids was delayed,

seen only in the later stool samples (from the 3rd and 4th

weeks). Steroids could alter the host-microbial cross-talk

by dampening leukocyte activation and cytokine expres-

sion [51–54] or via epigenetic changes in the mucosa [55].

Perinatal exposure to magnesium sulfate alters gut motil-

ity and some immune responses [56, 57], but the effects

on fecal microbiome need further study. Human milk

feedings increased fecal Gammaproteobacteria at ≤ 2 weeks,

but had a negative effect later. The early effects may

be related to milk-borne Gammaproteobacteria [47],

possibly selected under the influence of other factors

such as antibiotics. Later, negative effects may reflect

the benefits of milk prebiotics [58], but the high

prevalence of dysbiosis in our cohort indicates that

such protection, at least in hospitalized infants, may

be modest. Antibiotics, and gentamicin in particular,

were associated with increased Gammaproteobacteria

during the early neonatal period, but in the 4th week,

antibiotic days had a negative effect. Antibiotics do

create an environment that promotes the abundance

of Gammaproteobacteria [59], but it is unclear why

these effects should change with postnatal age.

The strengths of our study are its prospective design,

availability of clinical and laboratory data, and repeated

measurements of the gut microbiome. The dataset comes

from a NICU with a single-patient room floor plan, which

is now the favored NICU design and should be represen-

tative of most centers in the USA. Emerging data indicate

that the floor plan (patient pods vs. single-patient rooms)

may be an important determinant of horizontal microbial

spread in the NICU [60]. Our study is constrained by its

limited sample size and single study site. In addition, the

low incidence of NEC in our cohort is a limitation that

prevented us from using NEC as a measured outcome.

Our findings of high Gammaproteobacteria abundance in

some infants within the first 2 weeks also indicate an op-

portunity to confirm these findings in meconium, which

should contain the original, “at birth” microbiome. Finally,

the detection of dysbiosis with predominance of a few bac-

terial communities does not imply pathogenicity, but

needs further evaluation at higher levels of resolution.

Conclusions

We noted a dichotomous pattern of fecal colonization

with Gammaproteobacteria in our cohort of preterm in-

fants; some started with low relative abundance of Gam-

maproteobacteria and acquired those as a function of

postnatal age, whereas others carried these bacteria in

high abundance since the early postnatal period. The

predominance of a single variant of Klebsiella indicated

a common, possibly hospital-derived, source. Vaginal

birth and antenatal steroids were identified as major

determinants of stool-associated Gammaproteobacteria,

indicating that vertical, mother-to-infant transmission of

Gammaproteobacteria may contribute to intestinal dys-

biosis in some infants.
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