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Analysis of the statistics of natural scene features at observers’ fixations can help us understand the mechanism of fixation
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complexity of disparity calculations and the metabolic needs of disparity processing.
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Introduction

The spatial acuity of the human eye is highest at the
foveola, falling off rapidly toward the periphery. The
overwhelming amount of information that is presented to
the human eye promotes the idea of selecting important
regions for detailed examination, by directing the gaze to
interesting locations. In this way, images collected from
the areas of higher interest are sampled more densely by
the fovea. Toward this end, the human visual system
(HVS) uses a combination of steady eye fixations linked
by rapid ballistic eye movements called saccades (Yabus,
1967). During fixations, high-resolution foveal image
features are processed by the HVS. It is important to
understand the nature of the information that is being
processed by the HVS, as this will better enable modeling
of visual function and may prove useful for applications
such as active artificial vision. Since visual fixations are
clearly not random, understanding the nature of the visual
input requires an understanding of what draws visual
attention. The statistics of the visual information that
enters the HVS from the region of gaze shapes the
internalization of the outside world in the brain. Yet, most
studies of natural scene statistics have operated by

measuring image features over ensembles of entire images,
without considering the fact not all scene information is
equally represented by the HVS.
There has been some work regarding the nature of

visual information at the point of fixation. A number of
researchers have studied image features at fixations using
eye tracking instruments. While visual fixations are
certainly task-driven (Hayhoe & Ballard, 2005), low-
level, precognitive features certainly play a role as well.
Starting from a bottom-up point of view, the fundamental
question is: what are the visual features that fixated
regions possess that make them different (more attractive)
than other places? Reinagel and Zador (1999) compared
the statistics of natural images at point of gaze to the
statistics of patches selected randomly from the same
image sets. They found that the regions around human
fixations tend to have higher spatial contrasts and spatial
entropies than random fixation regions, which suggests
that the human eye–brain system may try to select image
regions that help maximize the information content trans-
mitted to the visual cortex, by minimizing the redundancy
in the image representation. By varying the patch sizes
around fixations, Parkhurst and Niebur (2003) found that
the largest difference between the luminance contrast of
fixated regions and that of image shuffled (pseudo-
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random) regions is observed when the patch size is about
1 degree. Studies on eye movements of macaque monkeys
(Kayser, Nielsen, & Logothetis, 2006) also showed that
luminance contrast is a strong cue that affects fixations. In
a recent study (Rajashekar, van der Linde, Bovik, &
Cormack, 2007), fixated image patches were foveated
using an eccentricity-based model. Higher order statistics
than in prior studies were analyzed. They found that band-
pass contrast showed a notably larger difference between
fixations and random patches than other higher order
statistics. Other features found to attract fixations (in
decreasing order of attractiveness) included band-pass
luminance, RMS contrast, and luminance. These data
were subsequently used to develop an image processing
“fixation predictor”(Rajashekar, van der Linde, Bovik, &
Cormack, 2008). In a visual search experiment with
known targets masked by 1/f noise (Rajashekar, Bovik,
& Cormack, 2006), observers were reported to fixate on
regions with structures similar to the target’s shape. Along
similar lines, Najemnik and Geisler (2005) and also Raj,
Geisler, Frazor, and Bovik (2005) showed that low-level
visual fixations can be viewed as an information gathering
process.
There is now a body of literature on visual fixations on

2D luminance images that, while still incomplete, at least
appears to be largely consistent across the studies that
have been done. Yet, we live in a dynamic chromatic 3D
world, and these additional dimensional attributes are
likely to play a role in the way visual fixations are placed.
In particular, there has been very little work done on
analyzing the nature or statistics of images and scenes at
the point of gaze in three dimensions. In our recent study
(Liu, Bovik, & Cormack, 2008), we found that humans are
exposed to a rich amount of suprathreshold disparities
even in environments of large distances. Certainly, the
three-dimensional attributes of the world affect the way
we interact with it both visually and physically. One
reason for the lack of studies on fixations in 3D space has
been the dearth of 3D ground truth natural scene data. The
few databases of naturalistic stereo images do not
adequately fulfill this need, since what is needed are
dense disparity maps for each scene. One such small
database does exist containing a few stereo pairs with
manually measured and labeled ground truth (the Middle-
bury database, Scharstein & Szeliski, 2002), but all of the
scenes are indoor and are hardly naturalistic.
Motivated by our poor understanding of the nature of

3D visual features at fixations, we conducted a series of
binocular eye tracking experiments using naturalistic
stereo images. We presented preliminary results (Liu,
Cormack, & Bovik, 2007) at the VSS meeting 2 years
ago, where we showed that disparity variations at
fixations are generally lower than those at other places.
The disparity maps were computed using a local correla-
tion method.
One very recent study (Jansen, Onat, & König, 2009)

used natural scenes with ground truth disparity map

acquired from laser scanning. They found that disparity
appears to be a salient feature that affects eye movements.
In particular, they found that the presence of disparity
information may affect saccade length but not duration,
that disparity appears not to affect the saliency of
luminance features, and that subjects tend to fixate at
nearer objects earlier than distant objects. Each of these
results is reasonably intuitive. The authors also found that
in 3D noise images subjects weakly tend to fixate depth
discontinuities more frequently than smooth depth
regions. One might view this result as intuitive also; as
with luminance images, such locations might be deemed
interesting.
However, in our study, we obtain a different result that

is counterintuitive to this notion. In brief, we find that
when viewing naturalistic 3D scenes, humans tend to
fixate away from large disparity gradients, preferring
instead smooth depth regions. While the tendency of
fixating on low disparity variation regions runs counter to
the notions arrive at in luminance studies, we nevertheless
suggest a logical explanation for this result: since
disparity computations are difficult enough already, with
heightened complexity near large gradients or disconti-
nuities, the HVS chooses to steer away from these difficult
points, settling on smooth, easy to compute 3D surfaces
instead. The necessary 3D surface representations are
probably adequately computed in this way for most visual
tasks. Girshick, Burge, Erlikhman, and Banks (2008)
reported that humans have a heavily biased prior toward
zero slant, which is not observed in the half-cosine
distribution of surface slant in natural scenes. This may
suggest that a frontal parallel surface bias exists at
fixations.
We used a database of naturalistic stereo images on

which we performed eye tracking experiments. We studied
2D (luminance) and 3D image features at the measured
fixations. Our results on luminance fixation statistics are
concordant with what previous studies have found:
luminance contrast and gradient at fixated patches is
generally somewhat higher than at randomly selected
patches. However, we found that the disparity contrast
and gradient at fixated patches is generally significantly
lower than that at random patches on natural images.
There are a number of immediate implications to this

result. First, luminance and depth discontinuities often
coincide. Our results show that while large-magnitude
luminance gradients are attractors, large-magnitude depth
gradients appear not to be (and may even be repellors).
The frequent co-occurrence of luminance and depth
discontinuities implies that the HVS must use additional
criteria in deciding whether to fixate a discontinuous
region. Second, the result has implications regarding the
information that is used in stereopsis; it implies that active
stereoscopic systems may operate more efficiently by
building smooth surface representations of scenes without
expending much effort to compute sharp delineations of
3D surface boundaries.
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Methods

Observers

Three male observers participated in this study. All
observers had normal or corrected-to-normal vision. Their
stereo ability was tested to be normal by presenting them
random dot stereograms. Subject LKC had extensive
experience in psychophysical studies and knew the
purpose of the experiment. Subjects JSL and CHY were
naive observers.

Stimulus

We manually selected 48 grayscale stereoscopic out-
door scenes (Hoyer & Hyvärinen, 2000) that contained
mountains, trees, water, rocks, bushes, etc., but avoided
manmade objects (examples of these images are shown in
Figure 1). We did not have the ground truth disparity data
from these scenes. Instead, we relied on a simple yet
biological inspired method to approximate ground truth
disparities. Models of binocular complex neurons (Anzai,
Ohzawa, & Freeman, 1999; Fleet, Wagner, & Heeger,
1996; Ohzawa, DeAngelis, & Freeman, 1990; Qian, 1994)
commonly contain a cross-correlation term. For example,
a binocular complex cell’s response can be expressed as
the sum of the squares of two quadrature simple cell
responses, while the simple cell responses sum the dot

products of the receptive field and the image from both
eyes:

r1 ¼ SLE þ SRE; ð1Þ

r2 ¼ SLO þ SRO; ð2Þ

rc ¼ r21 þ r22 ¼ S2LE þ S2LO þ S2RE þ S2RO þ 2SLESRE

þ 2SLOSRO: ð3Þ

Here SAB denotes inner products between left/right eye
images and even/odd responses of simple cell receptive
fields, where A Z {L, R} indicates left or right eye and
B Z {E, O} indicates even or odd symmetry. The
responses of even symmetric and odd symmetric simple
binocular cells (quadrature pairs) are denoted by r1 and r2,
respectively. In Equation 3, the last two terms SLESRE and
SLOSRO are the cross-correlation between band-pass left
image and right image. In the model, the outputs of a
binocular complex neuron largely depend on this term.
Aside from neurophysiological evidence, psychophysical
studies (Cormack, Stevenson, & Schor, 1991) also showed
that interocular correlation is a decisive factor in stereo-
psis. Furthermore, local correlations have been exten-
sively used to resolve correspondences in numerous
computational stereo algorithms too (for a good review,
see Brown, Burschka, & Hager, 2003; Scharstein &
Szeliski, 2002). Inspired by this neurobiological basis of
stereopsis, Filippini and Banks (2009) built a local

Figure 1. Examples of naturalistic stereo images for eye tracking.
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correlation stereopsis model. They conducted psychophys-
ical experiments with human observers and compared
human results with the results of their model under the
same experiment setup. Using this model, they explained
two well-known constraints of human stereopsis: the
disparity-gradient limit, which is the inability to perceive
depth when the change in disparity within a region is too
large, and the limit of stereoresolution, which is the
inability to perceive spatial variations in disparity that
occur at too fine a spatial scale.
Our stereo correspondence algorithm is very similar to

the method of Filippini and Banks (2009). Given a pixel
(xr, yr) in the right image, we defined a search window
centered on the same pixel location (preferring zero
disparity) in the left image (Figure 2). The width of the
search window in the left image was 161 pixels (3.2-), and
the height of the window was 5 pixels (0.1-). Given a 1- �
1- patch in the right image centered on the pixel (xr, yr), the
algorithm computes the normalized cross-correlation
between the right patch and a candidate 1- � 1- left
patch centered on each pixel in the 161 � 5 search
window, centered at (xr, yr) in the left image using the
following equation:

C d; sð Þ ¼

P

ðIlðx; yÞj 2lÞðIrðxþ d; yþ sÞj 2rÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðIlðx; yÞj 2lÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

ðIrðxþ d; yþ sÞj 2rÞ
2

q :

ð4Þ

Here, Il and Ir are the left and right images, while 2l and 2r
are the mean luminance values of the left and right
patches. The normalized interocular correlation C(d, s)
always takes a value between j1 and 1, where 1 means
the two patches are almost identical up to multiplicative
scaling, and j1 means the two patches have reversed

luminance profiles (bright locations in the left are dark in
the right).
The left patch yielding the largest cross-correlation was

deemed to be the matched patch. The location (xl, yl) that
it centered on was then the matched pixel for the right
pixel (xr, yr), and the horizontal disparity at pixel (xr, yr)
was taken to be D(xr, yr) = xr j xl. While this disparity is
not the conventional angular disparity defined in unit of
degrees, it represents an angular difference given an
assumed viewing geometry. The algorithm computed a
disparity for every pixel in the right image, yielding a
dense disparity map D. Naturally, we do not claim that
this simple algorithm duplicates the disparity processing
of the large population of neurons dedicated to the task.
Nevertheless, it is an effective method and appears to be
compatible with significant aspects of human stereopsis
(Filippini & Banks, 2009).
It could be argued that since we are only interested in

local scene statistics, why not record the movements of
both eyes and use the disparity between the recorded left
and right fixations to find the correct match? There are
several reasons why this is not a practical solution. First,
there are fixation disparities that occur between the right
eye and the left eye. Most people have a fixation disparity
that is less than 6 arcmin but can be as large as 20 arcmin
with peripheral visual targets (Wick, 1985). When fixation
disparity occurs, the image of an object point that a person
is trying to fixate on does not fall on exactly correspond-
ing points. Second, each Purkinje eye tracker has an
accuracy of about 7 arcmin (the median offset from real
fixations); hence the median error between two eye
trackers is about 14 arcmin, which corresponds to about
12 pixels. This is quite a large error, considering that the
stereo images are only 800 � 600. Third, the fixation
detection algorithm (associated with eye tracking) of the
two eye paths can also introduce unwanted noise into the

Figure 2. Given a pixel in the right image, a search window is defined in the left image. The best matched pixel is found by exhaustive

search within the window.
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corresponding fixation locations. Registered binocular eye
tracking with a precision approximating that of stereo-
scopic processing is difficult to accomplish in practice.
Lastly, since we are interested in disparity features within
neighborhoods (not just points) of fixations, a dense
disparity map is required for all points in the neighbor-
hood. Hence, local processing of the type that our
disparity algorithm accomplishes would be required
anyway.

Equipment

Stereo images were displayed on two 17-inch gamma-
calibrated monitors (Figure 3). The distance between the
monitors and the observer was 124 cm. Each monitor’s
screen resolution was set at 800 � 600 pixels, correspond-
ing to about 50 pixels per degree of visual angle. The total
spatial extent of each display was thus about 16- � 12- of
visual angle.
A mirror stereoscope was place between the two

monitors and the observers to completely separate the
displays from the left and right monitors. The left (right)
eye could only access the view from the left (right)

monitor. Eye movements were recorded by an SRI
Generation V Dual Purkinje eye tracker. This eye tracker
has an accuracy of G10Vof arc, a response time of under
1 ms, and bandwidth of DC to 9400 Hz. The output of the
eye tracker (horizontal and vertical eye position signals)
was first low pass filtered by the hardware, then sampled
at 200 Hz by a National Instruments data acquisition
board in a Pentium IV host computer, where the data were
stored for offline data analysis. The observers used a bite
bar and a forehead rest to restrict their head movements.

Eye tracking

For each observer’s visual comfort and stereoscopic
viewing quality, we carefully adjusted the position and
angle of the mirrors on the haploscope before every
viewing session. A viewing session was composed of
48 stereo image pairs. At the beginning of each session, a
0.3- � 0.3- crosshair was displayed on the centers of both
monitors to help the observers to fuse by fixating on it.
When the correct fuse (the crosshair was perceived single)
was achieved, the observer pressed a button to start the
calibration. Two 3 � 3 calibration grids were displayed
on the monitors, respectively. After the observers visited
all 9 dots, a linear interpolation was then done to establish
the transformation between the output voltages of the eye
tracker and the position of the subject’s gaze on each
computer display. The calibration also accounted for cross
talk between the horizontal and vertical voltage measure-
ments. After correct calibration, a 0.3- � 0.3- crosshair
was displayed on the centers to force all observers to start
from the same center position. The stereo images were
displayed on two monitors for 10 s during which the eye
movements were recorded. Between two consecutive
image pairs, two identical Gaussian noise images were
displayed for 3 s on both monitors to help suppress
afterimages corresponding to the previous stereo pairs that
may otherwise have attracted fixations. Then, a 0.3-� 0.3-
crosshair was displayed on the centers of both monitors to
help the observers to fuse before the presentation of the
next stereo pair.
The calibration routine was repeated compulsorily

every 10 images; moreover, a calibration test was done
every 5 images. This required that the observer fixate for
500 ms within a 5-s time limit on a central square region
(0.3- � 0.3-) prior to progressing to the next image in the
stimulus collection. If the calibration had drifted, the
observer would be unable to satisfy this test, and the full
calibration procedure was rerun.
Observers who became uncomfortable during the

experiment were allowed to take a break of any duration
they desired.
The ambient illumination in the experiment room was

kept constant for all observers, with a minimum of 5-min
luminance adaptation provided while the eye tracker was
calibrated.Figure 3. The experimental setup.
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Results

The movements of the right eye were recorded and
analyzed. Figure 4 shows an example of the eye path and
fixations of one observer during the 10-s viewing time.
The scan path is displayed using a red line, while the
fixations are represented by green dots. Usually, the first
fixation is the center of the image since all observers are
forced to start from the center. We removed the first
fixations from the analysis to cancel this bias.
Denote the right image as I, and the dense disparity map

as D. We compute the luminance gradient map

Gl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

¯I2

¯x
þ
¯I2

¯y

s

; ð5Þ

and the disparity gradient map

Gd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

¯D2

¯x
þ
¯D2

¯y

s

; ð6Þ

using the MATLAB function gradient (X). Here we define
luminance contrast as the RMS contrast of a luminance
patch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nj 1

X

N

i¼1

Ii j I
�

I
�

� �2

v

u

u

t ; ð7Þ

and likewise, disparity contrast as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Nj 1

X

N

i¼1

ðDi jD
�
Þ2

v

u

u

t ; ð8Þ

which is the standard deviation of a disparity patch. All of
the following analyses are based on these four scene
features: luminance contrast, disparity contrast, luminance
gradient, and disparity gradient.
Figure 5 depicts these scene features for one example

stereo pair. Figure 5a shows the right luminance image.
Figures 5c and 5e display the dense maps of luminance
gradient and luminance contrast with a patch size of 0.5-
(note that different patch sizes yield different luminance
contrast maps).

Figure 4. The gaze path and fixations of subject CHY on the right image are shown on the top left panel (for cross fusing). The best

matched locations in the left image of these fixations are displayed on the top right panel. The bottom left and right panels show random

selected locations and their matches for comparison.
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Figure 5b shows the disparity map derived from the
maximum correlation method. Disparity gradient and
disparity contrast maps are shown in Figures 5d and 5f.
Note that the borders around the disparity map are caused
by an inability of the correlation method: pixels outside
the borders do not have a complete 1- � 1- patch that
centers on them, so they are not included in the stereo
matching. In all of the following analyses, we excluded
fixations falling outside the borders. We also manually
eliminated fixations that fell on small regions where
correspondences could not be resolved, viz., areas of very
smooth luminance where stereo algorithms generally fail
unless other information is used (e.g., the top right corner
of Figure 5b).

Two methods to evaluate fixations

We adopt two different methods to compare scene
statistics at fixations with those at other locations. The first

method selects random fixations that are uniformly
distributed on the image plane. We compared several
scene statistics at true fixations with these randomly
picked locations. Because the stereo image database
contains a wide variety of scene content and distance
scales across images, this method has the advantage of
minimizing interimage variability between two different
scenes by only comparing fixations and random locations
within the same image.
However, many researchers have noticed that there is a

bias toward image center under different experimental
conditions (Judd, Ehinger, Durand, & Torralba, 2009;
Mannan, Ruddock, & Wooding, 1997; Parkhurst &
Niebur, 2003, 2004; Tatler, 2007; Tatler, Baddeley, &
Gilchrist, 2005). Given the current experimental setup, if
the center bias is true, and if the image features have a
non-homogenous distribution (for example, image fea-
tures at the center are statistically different from all other
locations), we cannot conclude that the differences
between low-level scene features are relevant in fixation
selection. This is why we use the second method: instead
of randomly selecting locations, we randomly select
images. We refer to this as the image shuffling method.
In this method, we overlap the fixations on image A onto a
randomly selected image B from the image database and
compare the scene statistics of the real fixations on image
A with those of “random” (overlapped) locations on
image B.
The image-shuffled database therefore simulates a

human observer who is not driven by the image features
of that particular image, but otherwise satisfies all criteria
of human eye movement statistics. Further, this method-
ology of simulating random fixations accounts for both
known potential biases of human eye movements (such as
the tendency of observers to fixate at the image center,
and the log-normal distribution of saccade magnitudes)
and unknown biases (such as possible correlations
between the magnitude and the angle of the saccades).
Tatler et al. (2005) provide a discussion of how such
biases might influence the statistics of image features.

Method 1: Uniformly distributed random
locations within an image

Suppose that an observer made fi fixations on the ith
image. Then, the total number of fixations that the
observer made during a session is @i

48fi. We assume that
a random observer also made the same number of fixations
as the subject did. That is, for the ith image, the random
observer also selected fi fixations uniformly distributed on
the image plane. For each human observer, we assume
that there are 100 random observers, each making the
same number of fixations on each image as does the
human observer. For example, if the overall number of
fixations that subject LKC made was 486 fixations on 48
images, then each random observer selected 486 random

Figure 5. (a) Luminance image. (b) Disparity map. (c) Luminance

gradient. (d) Disparity gradient. (e) Luminance contrast (patch

size 0.5-). (f) Disparity contrast (patch size 0.5-). The borders in

the disparity map and the luminance image were excluded from

the analysis.
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locations as well. The total number of random locations is
48,600. We want to know whether or not there is a
statistically significant difference between image features
at fixations and those at randomly selected locations by
comparing the human observer data and the 100 random
observers’ data.
We computed disparity gradient, disparity contrast,

luminance gradient, and luminance contrast at fixations
and random locations as defined previously. The results
are shown in Figure 6.

The first three rows of Figure 6 show the mean disparity
gradient, mean disparity contrast, mean luminance gra-
dient, and mean luminance contrast of fixations (red) and
random locations (blue) as a function of patch sizes (from
0.5 to 1.5 deg) for subjects LKC, JSL, and CHY. The
bottom (fourth) row of Figure 6 displays the same plots
for all subjects combined. The error bars show the 95%
confidence intervals (CIs).
The most conspicuous difference between fixations

and random locations are disparity features. The mean

Figure 6. We plotted the mean disparity gradient, mean disparity contrast, mean image gradient, and mean image contrast of fixations

(red) and random locations (blue) of several patch sizes in each row for each subject, and all subjects combined (the last row). The error

bar shows the 95% confidence interval. We found that all subjects behave similarly. The mean disparity gradient and mean disparity

contrast at fixations are smaller than those at random locations. Interestingly, the mean luminance gradients at fixations are larger than

those at random locations, though they are not clearly separable (the blue plots are within the confidence interval of the red). However, the

mean luminance contrasts at fixations are smaller than those at random locations.

Journal of Vision (2010) 10(12):23, 1–17 Liu, Cormack, & Bovik 8



disparity contrast and mean disparity gradient at fix-
ations are clearly lower than those at random locations.
The 95% CIs have no overlap. All subjects behaved
consistently.
For luminance features, the results are generally smaller

relative to the measurement error. The mean luminance
gradient at fixations appears to be generally higher than
that at random locations for all subjects. However, the
95% CIs of random locations are completely covered by
the 95% CIs of fixations. While there might be a small
statistical mean effect for observer type (random vs.
human), it is very small relative to the luminance
fluctuations across image locations. The mean luminance
contrasts at fixations are lower than those at random
locations for all subjects. However, the difference is not as
strong as for the disparity features. For example, the 95%
CIs of mean luminance contrast at random locations are
completely overlapped by the CIs at fixations for subject
LKC. In addition, the separation between the 95% CIs of
random and fixation points seems to be less conspicuous
than that of disparity features, as shown in column 1 and
column 2 of Figure 6.
It is also interesting that the results for luminance

gradient and luminance contrast measurements are dis-
similar, given the expectation that both represent similar
variations within the patch. We suspect that the mean of
these scene features may obscure the rather large scene
differences across images. The absolute values of lumi-
nance features and disparity features are definitely
dependent on the image database and also vary across
images. Since we are mostly interested in the relative
difference between scene features at fixations and random
locations, we computed the ratios of scene statistics at
fixations to the same statistics at random locations on each
image (Rajashekar et al., 2007).

Ratios of luminance gradient and luminance contrast

For the ith image, we compute the mean luminance
contrast at the fi fixations as

Ci
l ¼

Pfi
1 Clðxj; yjÞ

fi
; ð9Þ

where (xj, yj) is the location of the jth fixation, and Cl is
the luminance contrast map.
We also compute the mean luminance contrast at the fi

random locations as

Ci
rl ¼

Pfi
1 Clðuj; vjÞ

fi
; ð10Þ

where (uj, vj) is the location of the jth random location.

We define patch luminance gradient as the mean
gradient of the patch:

G
�

l ¼

PN
1 Glðx; yÞ

N
; ð11Þ

where Gl is the luminance gradient map.
Similarly, we compute the mean patch luminance

gradient of the fi fixations for the ith image as

Gi
l ¼

Pfi
1 G
�

lðxj; yjÞ

fi
; ð12Þ

where (xj, yj) is the location of the jth fixation.
We also compute the mean patch gradient of the fi

random locations for the ith image as

Gi
rl ¼

Pfi
1 G
�

lðuj; vjÞ

fi
; ð13Þ

where (uj, vj) is the location of the jth random location.
For each image, we then define the fixation-to-random

luminance contrast ratio RCl = Cl
i/Crl

i and the fixation-to-
random luminance gradient ratio RGl = Gl

i/Grl
i . If RCl 9 1,

it means that the fixated patches generally have a larger
luminance contrast than randomly selected patches on the
image being considered. If RCl G 1, then the meaning is
reversed. The same meaning applies to the luminance
gradient ratio.
The distribution of the ratios can be visualized using

boxplots (Figure 7). The bottom and top edges represent
the first quartile and the third quartile of the distribution.
The red line at the center of the box shows the median. The
length of the whisker is set to be 1.5 times the interquartile
range (the length between the third quartile and the first
quartile, that is, the height of the box). Those outliers that
fell outside of the whiskers are plotted as red crosses.
For observer LKC, we show the boxplots of the

luminance contrast ratio and the luminance gradient ratio
at different patch sizes (0.5-–1.5-) in Figure 7a. In order to
make comparison with the unit level easier, we plot 1 as a
blue circle overlapped on each boxplot. From the plots, it
is easily seen that the medians (the red bar) fall well above
unity for both the luminance contrast ratio and the
luminance gradient ratio. The ratios of the luminance
gradient and luminance contrast for subjects CHY and JSL
display the same behavior, as shown in Figures 7b and 7c.

Ratios of disparity gradient and disparity contrast

The same analysis method that was used on the
luminance contrast and luminance gradient was also
applied for the analysis of disparity.
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We calculate the mean disparity contrast Cd
i on the

fixated patches, and the same quantity Crd
i on the randomly

selected patches. The ratio of disparity contrast between
the fixated patches and the randomly selected patches is
defined as RCd = Cd

i /Crd
i .

The mean patch disparity gradient at the fixated patches
(Gd

i ) and the randomly selected patches (Grd
i ) is also

calculated. The ratio of the disparity gradient between the
fixated patches and the random patches is defined as
RGd = Gd

i /Grd
i . As before, if the ratios are significantly

greater than 1, then fixated patches tend to have a larger
disparity contrast and gradient than randomly picked
locations.
In Figure 8a, we show boxplots of the disparity contrast

ratio and the disparity gradient ratio at different patch
sizes for subject LKC. Quite surprisingly, the medians and
the third quartiles are well below one for all patch sizes.
This means that the fixated patches generally had a
smaller disparity contrast and gradient than the random
locations. The results of other observers all proved to be
similar to that for LKC, as shown in Figures 8b (CHY)
and 8c (JSL).
We ran 100 simulations for each image and plotted the

mean luminance gradient ratio RG
�

l with 95% CIs and the
mean disparity gradient ratio RG

�
d with 95% CIs, for all

subjects as shown in Figure 9a. For better comparison, we
plot 1 as a straight horizontal line across all patch sizes.
The red curves show the ratios of luminance gradient, and
the blue curves showed the ratios of disparity gradients.
Different markers are used to represent the observers:
LKC (*), CHY ()), JSL ($). We made a similar ensemble
comparison plot for the mean luminance contrast ratio and
mean disparity contrast ratio, as displayed in Figure 9b.
From these figures, it is clear that all the mean ratios of

luminance gradient/contrast and their 95% CIs fell well
above 1, while the mean ratios of disparity gradient/
contrast fell well below 1. All of the results we obtained
lead to the conclusion that humans tend to fixate at regions
of higher luminance variation and lower disparity variation.

Method 2: Random image shuffling

For one set of fixations in image i, we randomly select
one image from the whole database. Overlapping the
fixations onto the randomly picked image, we computed
luminance contrast, luminance gradient, disparity contrast,
and disparity gradient of the fixations and those of the

Figure 7. Boxplots of luminance contrast ratio and luminance

gradient ratio for three observers: (a) LKC, (b) CHY, and (c) JSL.

The bottom and top edges of each box represent the first quartile

and the third quartile of the ratio distribution at each patch size.

The red bars in the box show the medians of the ratio

distributions. The whiskers extended from the top and bottom

edges to the most extreme values within 1.5 times the interquartile

range from the ends of the box. All other boxplots in Figures 8, 11,

and 12 follow the same definition. All outliers outside of the

whiskers are labeled as red crosses. The blue circles show 1 for

reference. All of the luminance-related ratios have medians larger

than 1.
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“fixations” on the random image. We ran the random
picking from the image-shuffled database 100 times.
Using the previously defined scene features, we

obtained four features from image i: Cl
i , Gl

i , Cd
i , and

Gd
i . We denote the four features from a randomly picked

image j as Crl
J , Grl

J , Crd
J , and Grd

J , where all the four scene
features were computed by selecting image patches at the
overlapped fixations on image j.
We show the mean luminance features and mean

disparity features at fixated images and random images
in Figure 10, organized identically as in Figure 6. The
results are very similar to what we already observed in
Figure 6. The fixations have higher mean values of
luminance features but lower mean values of disparity
features.

Figure 9. The red curves show (a) the mean luminance gradient

ratios, (b) the mean luminance contrast ratios, and their 95%

confidence intervals (CIs) of all patch sizes and all subjects. The

blue curves show (a) the mean disparity gradient ratios, (b) the

mean disparity contrast ratios, and their 95% CIs of all patch sizes

and all subjects. Different markers represent different subjects:

LKC (“*”), CHY (“)”), JSL ($). The black lines at 1 are plotted for

reference. All luminance-related ratios are significantly larger than

1, while all disparity-related ratios are less than 1.

Figure 8. Boxplots of disparity contrast ratio and disparity gradient

ratio for three observers: (a) LKC, (b) CHY, and (c) JSL. The blue

circles show 1 for reference. All of the disparity-related ratios have

medians smaller than 1.
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Ratios of luminance gradient and luminance contrast

We computed the ratio of luminance gradient as

RGl ¼ Gi
l=G

j
rl; ð14Þ

and the ratio of luminance contrast as

RCl ¼ Ci
l=C

j
rl: ð15Þ

We show the boxplots of the fixation-to-random lumi-
nance contrast ratio and luminance gradient ratio for

different patch sizes in Figure 11. The medians of
luminance contrast ratios and luminance gradient ratios
of JSL and CHY are above one in all cases. LKC’s
luminance gradient ratio also has a higher (91) median.
However, the median of luminance contrast ratio of LKC
is very close to 1, which is the only exception.

Ratios of disparity gradient and disparity contrast

We compute the ratio of mean disparity gradient as

RGd ¼ Gi
d=G

j
rd; ð16Þ

Figure 10. We plotted the mean disparity gradient, mean disparity contrast, mean image gradient, and mean image contrast of fixations

(red) and random images (blue). The panel organization is the same as in Figure 6. The error bar shows the 95% confidence interval. We

found that all subjects behave similarly. The mean disparity gradient and mean disparity contrast at fixations are less than those at

random images, while the mean luminance gradients and mean luminance contrasts are also greater than those at random images.
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and the ratio of mean disparity contrast as

RCd ¼ Ci
d=C

j
rd: ð17Þ

Figure 11. Boxplots of luminance contrast ratio and luminance

gradient ratio for three observers: (a) LKC, (b) CHY, and (c) JSL.

The blue circles show 1 for reference. Most of the luminance-

related ratios have medians larger than 1. The only special case

is where LKC has lower luminance contrast ratios, which are

close to 1. However, these results largely agree with Figure 7.

Figure 12. Boxplots of disparity contrast ratio and disparity

gradient ratio for three observers: (a) LKC, (b) CHY, and (c) JSL.

Again, these results agree with Figure 8.
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The distributions of these ratios over different patch sizes
are plotted in Figure 12. The medians of ratios are
consistently below one for JSL and CHY. LKC also has
most of the medians below one except for patch sizes of
0.5 deg and 0.75 deg.
We selected 100 random images for each fixated image

and plotted the mean values of the fixation-to-random
ratios and the 95% CIs of all these features in Figure 13,
where the blue plots show the mean ratios of disparity
features and the red plots show the mean ratios of luminance
features. We observe very similar behavior as in Method 1.
The mean ratios of disparity features were generally less
than 1, while the mean ratios of luminance features were
larger than 1, except for LKC at a few patch sizes.

Regardless of whether we compared human fixations
with randomized locations within the same image, or with
the same locations of a randomized image, the results
obtained suggest that the fixated locations generally have
higher luminance variation and lower disparity variation.
The results of image shuffling rules out the possibility of
the fixation-to-random difference being caused by the
center bias of fixations. Given the consistent results of the
two different methods, we believe that luminance features
and disparity features may indeed play different and
perhaps unexpected roles under binocular conditions.

Discussion

Our findings on luminance statistics are consistent with
the generally agreed-upon observation, repeated in several
previous studies, that higher luminance variations may
attract fixations. However, our finding that disparity
gradient and contrast in fixated patches is generally
smaller than in random patches has not been observed
before and, we think, has not been mentioned.
The most immediate explanation for this behavioral

phenomenon is that the binocular vision system actively
seeks to fixate at scene points that will simplify or
enhance stereoscopic perception. The nature of this
enhancement is less clear. We suggest that the binocular
visual system, unless directed otherwise by a higher level
mediator, seeks fixations that simplify the computational
process of disparity and depth calculation. In particular,
we propose that the binocular vision system seeks to
avoid, when possible, regions where the disparity compu-
tations are complicated by missing information, such as
occlusions, or rapid changes in disparity, which may be
harder to resolve.
When a binocular fixation is achieved, those physical

points having zero disparity compose the horopter.
Theoretically, the horopter consists of the VM circle
passing through the two nodal points and the fixation point
and a vertical line that passes through the fixation point.
The empirical horopter can be measured by psychophys-
ical methods. It turns out that the empirical horizontal
horopter lies between the circle and the frontal parallel
plane, while the empirical vertical horopter has a back-
ward inclination (Helmholtz shear), with its top away
from the subject. Panum’s fusion area, the region wherein
fusion occurs correctly, is a volume surrounding the
empirical horopter. The shape of Panum’s fusion area
depends greatly on eccentricity, the characteristics of the
stimulus, and the surrounding stimuli. When a point is
located outside Panum’s fusional area, dissimilar images
fall on corresponding areas, giving an experience of
binocular rivalry.
An interesting aspect is the expansion of Panum’s

fusional area with eccentricity. It has been reported that

Figure 13. The red curves show (a) the mean luminance gradient

ratios, (b) the mean luminance contrast ratios, and their 95%

confidence intervals (CIs) for all patch sizes and all subjects. The

blue curves show (a) the mean disparity gradient ratios, (b) the

mean disparity contrast ratios, and their 95% CIs for all patch

sizes and all subjects. Different markers represent different

subjects: LKC (“)”), CHY (“*”), JSL ($). The black lines at 1 are

plotted for reference. Most of the ratios of luminance features are

larger than 1, and most of the ratios of disparity features are

smaller than 1. LKC has ratios of luminance contrast very close to 1.

However, LKC’s ratios of luminance contrast are generally greater

than his ratios of disparity contrasts. These results are also similar

to Figure 9.
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the fusion limit is about 10V in the fovea, increasing to
about 30Vat an eccentricity of 6- (Mitchell, 1966; Palmer,
1961). The fovea has a small disparity tolerance, but the
periphery has a larger operational range for fusion. This
observation might support one of our hypotheses: When
viewing an object, observers tend to fixate toward the center
of the object, leaving the object boundaries (often associ-
ated with depth discontinuities) to peripheral disparity. Such
a strategy would allow the fovea to operate under better
posed stereo viewing conditions, leaving the periphery to
deal with binocular rivalries caused by object boundaries.
The characteristics of the stimulus can also modify the

shape of Panum’s fusional area. For example, Burt and
Julesz (1980) found limits on the fusability of large
disparity gradients. Note that, while the disparity gradient
is often defined to be the ratio between the disparity and
the relative angular difference between two images, the
definition used here is practically the same but easier to
understand in the context of luminance gradients. If the
disparity gradient between two points becomes large, a
“forbidden zone” is created about the fused point within
which other image points have a large disparity gradient
that cannot be fused. In other words, smooth surfaces are
more likely to be fused than depth discontinuities. In light
of our results, this supports the suggestion that the human
eye–brain stereoscopic system prefers to fixate on
smoother regions (having smaller disparity gradient and
smaller disparity contrast), thus increasing the incidence
of fusable features.
Another explanation of the apparent preference for

fixating high luminance variations and low disparity
variations might lie in the effect of luminance contrast on
stereoacuity. Higher luminance contrast appears to promote
stereoacuity. Cormack et al. (1991) used dynamic random
dot stereograms and found a cube-root dependency of
stereoacuity on luminance contrast above threshold and a
square-root dependency for contrasts below about five
times the threshold. Rohaly and Wilson (1999) found that
perceived depth varies as a power law function of contrast.
Cisarik and Harwerth (2008) reported that luminance
contrast also has the same affect on disparity perception.
Stereoacuity also increases with interocular correlation

and decreases with interocular difference. Smooth surfa-
ces that contain smaller disparity gradients and disparity
contrast generally have a large interocular correlation.
Depth discontinuities and slants usually alter the two
retinal images, thus reducing the interocular correlation.
Depth discontinuities also typically accompany half-
occlusions, which makes resolving stereo correspondences
even more difficult. Harris, McKee, and Smallman (1997)
argued that the correlator size at the fovea should be very
small (4–5 arcmin in diameter). The occurrence of large
disparities at the fovea could thus disrupt mechanisms for
fine-scale stereo correspondence within the foveal region.
Another way to interpret our results arises from fMRI

studies on the cortical activity of disparity processing.
Tootell, Hamilton, Silverman, and Switkes (1988) found

enhanced neural activity as reflected in the uptake of
deoxyglucose along cortical regions corresponding to
disparity borders between different textures. The enhance-
ment is only observable under binocular conditions.
Backus, Fleet, Parker, and Heeger (2001) found that
human cortical activity in V1 increased as the disparity
increased above the stereoacuity threshold and dropped as
the disparity approached the upper depth limit. Georgieva,
Peeters, Kolster, Todd, and Orban (2009) showed that
activity in occipital cortex and ventral IPS at the edges of
the V3A complex was correlated with the amplitude of the
disparity variation that subjects perceived in the stimuli.
Brouwer, van Ee, and Schwarzbach (2005) presented
stimuli with zero disparity, incongruent disparity (dispar-
ity cues inconsistent with other cues), and congruent
disparity (more similar to natural disparities) to human
observers. They reported that stimuli with congruent
disparities correspond to the largest responses, while the
zero disparity stimuli correspond to the smallest responses
in V4d-topo, V7, and many other areas. All of these
studies show that the processing of large, complex
disparity shapes involves the allocation of more neuronal
resources and energy than do smooth disparity fields.
Most of the human fMRI data were collected by using
simple, artificial stimuli. We believe that fMRI experi-
ments using complex 3D natural scenes would be very
fruitful toward understanding the overall computational
mechanism of depth perception in the natural world.
Another fact worth mentioning is that the stimuli we

used are of outdoor natural scenes containing few objects
with regular, smooth geometrical shapes. We suspect that
the higher luminance variation and low disparity variation
effect at human fixations may be even stronger in indoor
scenes, where the luminance content at the center of the
objects often tends to contain significant high-level
information (for example, characters printed on bottles),
which could alter the fixation patterns greatly.
Jansen et al. (2009) showed that human fixations have

higher disparity contrast than random locations do, when
subjects were presented with white/pink noise stereograms.
This would appear to be a result opposite from ours.
However, they did not observe any significant difference
between the disparity contrast at fixations as compared to
other points, using naturalistic stereo images.
Our stimuli are naturalistic stereo images. Given the

significant statistical and structural differences between
natural images and white/pink noise, we think that the two
sets of results are not comparable. Another major differ-
ence between the two studies was the method of disparity
map computation. Jansen et al. (2009) computed disparity
maps using a laser scanner and a geometric transforma-
tion, referencing the technical details to an unpublished
conference poster. The exemplar disparity map shown in
Figure 1 of Jansen et al. (2009) appears to be heavily
smoothed compared to its luminance counterpart. Heavy
smoothing of the disparity could significantly bias a
disparity feature analysis.
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There is one additional issue that is relevant to studies
of this type. We maintain that binocular viewing con-
ditions are essential to make concrete claims on fixated
scene features. Work in this area is limited by the
laboratory environment wherein stereo images are dis-
played on monitors at a constant distance and where the
accommodation of the two eyes is also constant. Whereas
the 3D viewing conditions that are experienced in daily
life are much different, accommodation varies continu-
ously with fixation distance. Objects that are farther or
nearer than at the fixations exhibit some degree of blur,
depending on the depth of field of the lens. This change of
accommodation also alters the image statistics around the
fixation and hence alters many functionalities of stereopsis
(Hoffman, Girshick, Akeley, & Banks, 2008).
It remains a significant challenge for scientists to

measure the real distribution of luminance and disparity
features in real-world situations, given current eye track-
ing and displaying technology. We believe that our
current experiments could yield even more interesting
results by improving the binocular viewing setup, for
example, by deploying a 3D display system with multi-
focal planes such as proposed by Akeley, Watt, Girshik,
and Banks (2004).
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