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DICHROMATIC LINK INVARIANTS 

JIM HOSTE AND MARK E. KIDWELL 

ABSTRACT. We investigate the skein theory of oriented dichromatic links in S3 . 
We define a new chromatic skein invariant for a special class of dichromatic 
links. This invariant generalizes both the two-variable Alexander polynomial 
and the twisted Alexander polynomial. Alternatively, one may view this new 
invariant as an invariant of oriented monochromatic links in SI x D2 , and as 
such it is the exact analog of the twisted Alexander polynomial. We discuss basic 
properties of this new invariant and applications to link interchangeability. For 
the full class of dichromatic links we show that there does not exist a chromatic 
skein invariant which is a mutual extension of both the two-variable Alexander 
polynomial and the twisted Alexander polynomial. 

INTRODUCTION 

In 1984 Vaughan Jones discovered a significant new polynomial invariant of 
knots and links [J]. Since then others have found similar invariants that are more 
general than Jones's original polynomial, and collectively these new invariants 
have generated a tremendous resurgence of interest on John Conway's skein 
theory. Indeed, Conway's procedure of computing link invariants by changing 
and smoothing crossings in a link projection (actually discovered by Alexander, 
but neglected for forty years) has been virtually the only concept from classi-
cal link theory to be used successfully in studying the new invariants. Skein 
theory before Jones had been regarded as a computational tool allowing the 
recursive computation of known invariants (mainly the Alexander polynomial) 
of complicated links in terms of simpler links. 

Following the discovery of the Jones polynomial, knot theorists dared to use 
skein theory to define new invariants [P I]' In fact, several groups simultaneously 
discovered the two-variable twisted Alexander polynomial (also known as the 
HOMFLY, FLYPMOTH, generalized Jones, two-variable Jones, Jones-Conway, 
or skein polynomial), which can be regarded as satisfying a universal linear 
skein relation for oriented links in S3 [FYHLMO, PT]. (It thus includes the 
one-variable Alexander polynomial and the Jones polynomial as special cases.) 
Other groups soon discovered a similar polynomial invariant of unoriented links 
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198 JIM HOSTE AND M. E. KIDWELL 

[Ho, BLM]. Shortly thereafter, Kauffman discovered yet another new. polyno-
miallink invariant which related their invariant of unoriented links to the Jones 
polynomial [K1]. Surveys of these new invariants are given in [LM, K2 , P 2]' 

To date, only the classical multivariable Alexander polynomial takes into ac-
count the possibility that components of a link may have different labels or 
"colors." Two such chromatic links are equivalent if one can be moved to the 
other by an ambient isotopy so as to preserve colors. The multivariable Alexan-
der polynomial has one variable for each color used. (Several components of a 
chromatic link may have the same color.) Attempts to compute this polynomial 
recursively have been made by Hartley [Ha], Kidwell [Ki], Nakanishi [N], and 
Turaev [T]. The added difficulty in dealing with chromatic links, rather than 
monochromatic links, is the inability to smooth a crossing between strands of 
different colors. 

Our purpose in this paper is to investigate the skein theory of two-colored, or 
dichromatic, links in S3. We show that there does not exist a chromatic skein 
invariant which is a mutual extension of both the twisted Alexander polynomial 
and the twr,ariable Alexander polynomial. The main obstacle is revealed by 
the link 76 in Rolfsen's tables [R]. This is the first link in the table which 
has both components unknotted and which is non interchangeable; that is, no 
homeomorphism of S3 interchanges the components of 7~. Thus, the two 
ways of coloring 7~ are truly distinct. With each coloring one may reduce to 
simpler links by performing skein operations on only one of the two colors. 
Attempts to reconcile these four calculations lead to a drastic reduction in the 
possibilities for an invariant. 

In contrast to the general case, we show that for a special class of dichromatic 
links the most general possible chromatic skein invariant does in fact exist and 
that the twisted Alexander polynomial and the two-variable Alexander polyno-
mial are special cases of this more general invariant. We call this invariant nl . 
The subclass of dichromatic links for which it is defined consists of those links 
colored with the two colors {I, 2} where the color I is used only to color a 
single un knotted component. The color 2 is used to color all the remaining 
components. We call these I-trivial dichromatic links. (A similar invariant, 
n2, is defined for 2-triviallinks.) These links correspond in an obvious way 
to monochromatic links inside a solid torus Sl x D2 . Thus we may reinterpret 
our result by saying that we have found the analog of the twisted Alexander 
polynomial of links in S3 for links in Sl x D2 . Or equivalently, our result may 
be regarded as the computation of the skein module of Sl x D2. The skein 
module is defined for all 3-manifolds M but has previously been computed 
only for M = S3 [Pd. 

The paper is organized as follows. In § I we precisely formulate the prob-
lem we wish to investigate. We also list identities satisfied by both the twisted 
Alexander polynomial and the two-variable Alexander polynomial (as normal-
ized by Conway [C]). The nature of these identities and the similarities between 
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them provide the motivation for much of our work. In §2 we exhibit a dichro-
matic link invariant obtained by essentially applying monochromatic invariants 
to each of the two pure colored sublinks of a dichromatic link. We call this 
the uncoupled invariant. Moreover, we show that unless certain restrictions are 
made, only the uncoupled invariant is possible. However, in §3 we show that 
these restrictions are unnecessary provided we limit our attention to I-trivial 
(or, equivalently, 2-trivial) links. In this case we establish the existence of a gen-
eral I-trivial link invariant QI . The proof that QI exists is similar, yet more 
complicated than, the existence proof given by the first author in [H] for the 
twisted Alexander polynomial. Returning to the general case of dichromatic 
links in §4, we discover additional restrictions that must be satisfied by any 
dichromatic skein invariant. In particular, we show that there does not exist 
a dichromatic skein invariant which is a mutual extension of both the twisted 
Alexander polynomial and the two-variable Alexander polynomial. Finally, in 
§5, we discuss invariants which may be derived from QI and their applications 
to problems in knot theory. We show that QI is particularly adept at detecting 
noninterchangeability for two-component links with trivial components. 

1. PRELIMINARIES 

We shall deal exclusively with two-color, or dichromatic, oriented links in 
S3 and use "1" and "2" as labels representing the two colors. The sublink of 
a dichromatic link L consisting of the components colored i will be called 
the i-sublink and denoted L i • Unless otherwise stated, we will consider only 
links where both the 1- and 2-sublinks are non empty. In other words, the link 
is truly dichromatic. A dichromatic link is i-trivial if L j is an unknot. In 
this case we call L j the i-component. If K and J are two dichromatic links, 
and i-connected sum J #i K is an ordinary connected sum of J and K where 
additionally the connection takes place between an i-colored component of J 
and an i-colored component of K. Note that if J and K are i-trivial, so is 
their i-connected sum. 

Throughout this paper we will use Conway's normalized versionofthe Alexan-
der polynomial [C], with a minor change of variables introduced by the second 
author. (Our variables ZI and z2 correspond to Conway's {r} and {s}, re-
spectively. See [Ki] for details.) We have included in Table 1.2 a list of iden-
tities satisfied by both the two-variable Conway polynomial V'(ZI' z2) and the 
two-variable twisted Alexander polynomial P( v , z) . In listing these properties 
we have adopted notational conventions now common in the literature. For 
example, suppose D +, D _, and Do are three dichromatic diagrams which 
are identical except near a single right-handed crossing between two i-colored 
strands of D + . Near this crossing the three diagrams appear as shown in Figure 
1.1. Then the Conway polynomials of D +, D _ , and Do are related by 
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+ lL, +f-I 4 

I 
D_ Do D+ 

FIGURE 1.1 
which we abbreviate as 

V' C Xi) - V' ex i) = Z i V' C j~ i) . 

The reader should note that our choice of parametrization of the twisted 
Alexander polynomial differs from much of the literature. However, we are 
consistent with [M] and have adopted this convention because of the ease with 
which P reduces to the one-variable Conway polynomial, namely by setting 
v = 1. The two-variable Conway polynomial is related to the one-variable 
Conway polynomial by V'(z) = zV'(z, z). 

We shall distinguish between a diagram of a link, in which overcrossings and 
undercrossings are indicated in the usual way, and a projection of a link, in 
which the actual crossing (intersection) of strands is depicted. In a diagram 
of a dichromatic link, crossings between strands of the same color are called 
pure colored, while all others are called mixed. We can further divide pure 
colored crossings into pure I-colored and pure 2-colored and mixed crossings 
into l-over- 2 and 2-over- 1 . 

TABLE 1. 2. Properties satisfied by both V' ( z I ' Z 2) and 
P(v, z) for dichromatic links colored with "1" and "2." 
Note that i, j E {I , 2} and i -::f:. j in these identities. 

Conway Polynomial 
V(zl' z2) 

I. V(i X i) - V(iXi) = Zi V(; ')( i) 

2. V(i~j)+V(;Aj) 

= { [ZI z2 + J"(Z-:i-+-4-)(--:Z~:-+-4-)'] /2 } V(; j( j) 
3. V(;Jrj)+vC'i j ) 

= { [-ZI z2 + J~(Z-=i-+-4-)-(Z"""~-+-4-)'] /2} V(i )~j) 

4. VJII;K = ziVJVK 

5. V(I 00 2) = 0 

6.V(Oi)=z:1 

7. V(I ill 2) = I 
8,V(l ill 2)=-1 

Twisted Alexander Polynomial 
P(v, z) 

-I v P(iXi) - vpCX i ) = ZPCj~;l 
v- 2 PC ~ j) + v 2 P(i A j) 

2 =(2+z )P(;j(j) 

v-I PC 'i j) + vpC 'i j) 
-I = (v +v)P(i'~j) 

PJII;K = PJPK 
P(I 00 2) = (v- I - V)Z-I 

P( o;l = I 
3 -I P(lill2)=(v-v)z +VZ 

P(I ill 2) = (v- 3 - v-I)z-I - v-I Z 
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Each crossing in a diagram has a sign of ± 1 depending on whether it is right 
or left handed, respectively. (The crossing of D + shown in Figure 1.1 is right 
handed.) The chromatic linking number, /(L), of a dichromatic link L is the 
sum of the signs of the I-over-2 crossings in any diagram of L. This is exactly 
Ik(L, ' L 2 ) , the sum of the individual linking numbers between the components 
of L, and the components of L2 • 

An important class of I-trivial dichromatic links is the set of 2-bridge links. 
We shall adopt the following notation. If w = anI bml ... a nk is a word in the 
letters a and b, let H (w) be the 2-bridge link shown in Figure 1. 3. The twists 
are chosen so that the chromatic linking number is L: nj and the writhe of the 
2-component, as pictured in Figure 1.3, is 2 L: m j • If K and L are 2-bridge 
links corresponding to the words g and h, then we may also denote their 1-
connected sum as K#, L = H(g#, h). We shall usually write w instead of 
H ( w). Except when we are explicitly discussing words rather than links, this 
convenience should not give rise to any confusion. 

Suppose that L is an i-trivial dichromatic link. Then we may move L by 
an ambient isotopy in R3 U {oo} until the i-component is the z-axis union the 
point at infinity, oriented downward. If we now project the link into the x-y 
plane we are left with a diagram of only the j-sublink, j =f. i, in the punctured 
plane R2 -{O}. We call such a diagram an i-punctured diagram. It is shown in 
[HP] that two such diagrams represent the same i-trivial link if and only if they 
are related by a finite sequence of Reidemeister moves in R2 -{O}. Of course, 
such moves could never reverse the orientation of the i-component, so it is 
important that we have adopted the convention that it be oriented downward. 

We shall call a diagram (i-punctured or ordinary) descending if it is possible 
to traverse the components (in the direction of their orientation) in some order 
and starting from some point on each component so that each crossing is reached 
for the first time on the overcrossing strand. Clearly any diagram may be made 
descending by changing crossings of the diagram. If an i-punctured diagram 
is descending, it is not hard to see that it represents an i-connected sum of 
2-bridge links. If, additionally, each component descends from a basepoint 
located as far away as possible from the puncture (that is, the basepoint lies on 
the boundary of the unbounded region in the complement of that component), 
then the diagram represents an i-connected sum of (2, 2k)-torus links with 
parallel orientations. 

k·' jC~'::x: 
···X "I full tw;'-:-st-s ----

FIGURE 1.3 
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The process of resolving a link into simpler links by repeatedly changing and 
smoothing crossings is by now well documented and should be familiar to the 
reader. We shall call an ordered triple of diagrams (D + ' D _ , Do) i a chromatic 
skein triple of diagrams, or more simply a diagram triad, if D _ is obtained 
from D + by changing a single right-handed pure i-colored crossing and Do 
is obtained by smoothing that crossing. (The diagrams may be ordinary or 
punctured diagrams.) We shall call (L+, L_ , LO)i a chromatic skein triple of 
links, or more simply a link triad, if there exists a diagram triad (D + ' D _ , Do) i 
representing the link triad in the obvious way. Link triads may be joined to form 
trees of links. Such a tree is a resolving tree of a link L if one of its outermost 
links is L and all other outermost links belong to some previously chosen set 
of elementary links whose values of a given invariant are preassigned. 

In the well-known case of computing the twisted Alexander polynomial of 
a monochromatic link, the unknot can serve as the sole elementary link, its 
value being arbitrarily assigned to be 1. The resolution of a dichromatic link 
requires a far more complicated set of elementary links. In particular, since 
the changing and smoothing of pure colored crossings preserves the chromatic 
linking number I, there must be at least one elementary link in each linking 
number class. A reasonable set of representatives of the linking number classes is 
the set of (2, 2/)-torus links with parallel orientation. Clearly any dichromatic 
link can be resolved into I-trivial links by changing and smoothing only pure 
I-colored crossings. By passing to I-punctured diagrams and then making these 
diagrams descending, we can further resolve I-trivial links into I-connected 
sums of torus links. Finally, any unlink summand can be eliminated in the 
presence of other summands. To see this last point, imagine a triad obtained 
by first introducing a I-gon by means of a Type I Reidemeister move somewhere 
along a 2-colored component and then changing and smoothing this crossing. 
Obviously, the previous argument can be made with the color 1 replaced with 
the color 2. Thus we have proved that each of the sets 

g; = {H(a n1 #i ... #i ank ) I n, -j. O} U {H(I)} 

for i = 1 or i = 2 is elementary. 
A third elementary set of interest is the following set of 2-bridge links: 

!B = {H(aklbaklb ... bakn)lk, -j.O}U{H(I)}. 

To see that !B is elementary it suffices to show that every link in g;, for 
example, can be resolved into elements of !B . But the triad 

( kl b k2 # ... # kn kl +k2 # ... # kn kl # kl # ... # kn) a a11a,a 1 la,a la 1 la 2 

shows how one can successively eliminate i-connected summands in favor of 
elements of !B . 

Summarizing, we have 

Lemma 1.1. The sets of dichromatic links g;, g;, and !B are each elementary. 
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Of course, the choice of an elementary set of links is by no means unique. 
For example, if f5' is elementary and f5' c.'T , then .'T is also elementary. An 
extreme case is the one where f5' is the set of all links. However, it is of more 
interest to consider elementary sets which are minimal. In §3 we prove that 
both g; and g:; are minimal. 

Using Lemma 1.1, we see that to compute Y'(ZI' z2) relative to g;, for 
example, one must eventually compute the Conway polynomial for I-connected 
sums of (2, 2k)-torus links. Since the Conway polynomial obeys a connected 
sum rule (Property 4 in Table 1.2), it remains only to compute the values of the 
torus links themselves. But these values are uniquely determined by the "clasp 
rule" (Property 2 in Table 1.2) together with the values 0, 1, and -1 of the 
unlink and right-handed and left-handed Hopf links, respectively. 

The twisted Alexander polynomial is actually an invariant of monochromatic 
links, but we shall consider it as an invariant of dichromatic links by simply 
ignoring the coloring of a link. As a dichromatic invariant it can be computed 
in a fashion similar to that just described for the Conway polynomial. Again, 
the values of P(v, z) for the elementary links are uniquely determined by a 
connected sum rule and a clasp rule. 

We may now state the basic goal of this paper, which is to investigate the 
following question. 

Question 1.2. Let f5' be some elementary set of dichromatic links, for example, 
g;, g:;, or !B, and for each E E f5' let [E] be an indeterminate. What are 
ne.cessary and sufficient relations among {VI' v2 ' Z I' Z2' {[E]} EEg"} so that 
there exists a well-defined invariant Q of ambient isotopy classes of oriented 
dichromatic links uniquely determined by the following identities? 

(1.1) v~IQ(1 x I) - vIQ(1 X I) = ZIQ(I ~~ I)' 

( 1.2) 

( 1.3) 

V;I Q(2 x 2) - v2Q(2 x 2) = z2Q(2 ~~ 2)-, 

Q(E) = [E] for all E E f5' . 
Table 1.2 shows that two definite possibilities are the Conway polynomial 

Y'(ZI' z2) and the twisted Alexander polynomial P(v, z). Thus, part of our 
interest in Question 1.2 is motivated by our desire to answer the following, more 
specific, question. 
Question 1.3. In particular, is there an invariant Q as described in Question 
1.2 which is a mutual extension of both the twisted Alexander polynomial and 
the Conway polynomial? 

We shall prove in §4 that the answer to Question 1.3 is no. In §3 we provide 
a complete answer to Question 1.2 in the case of i-trivial dichromatic links. 
(Of course, in this case, we must not allow the use of rule (1.1) if i = 1 or (1.2) 
if i = 2 in order to avoid leaving the class of i-trivial links.) For the case of 
all dichromatic links we provide, in §4, only a partial answer to Question 1.2. 
In particular, we find some necessary, but insufficient, relations. 
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Some remarks on our formulation of equations (1.1) and (1.2) are in order. 
We call these identities skein relations or crossing rules. Apparently more general 
are the relations 

i = 1,2. 

However, if AiBi =I- 0 this relation may be symmetrized by dividing by 
(AiBi)I/2. The substitutions Vi = (BjAi/2 and Zi = Cj(AiBi/2 then return 
us to (1.1) and (1.2). The two-term skein relations in which Ai = 0 or Bi = 0 
appear to be uninteresting. We shall also make the blanket assumption that 
zi=l-O. 

We shall say that link invariant a extends link invariant P if a takes dif-
ferent values on two links whenever p takes different values on the same two 
links. If a can distinguish a pair of links which p cannot, then we say that 
a is a proper extension. For example, the twisted Alexander polynomial is a 
proper extension of both the Jones polynomial and the one-variable Alexander 
polynomial. Two link invariants are called independent if neither extends the 
other and equivalent if each extends the other. 

2. THE UNCOUPLED INVARIANT 

As we have already said, there exist dichromatic link invariants which satisfy 
equations (1.1) and (1.2) provided one introduces relations among the variables 
Vi and zi and among the elementary values {[E]}. These are the Conway 
and twisted Alexander polynomials. But if no relations are introduced among 
{VI' v2 ' Z I ,z2} there still exists an invariant of dichromatic links satisfying 
(1.1) and (1.2). This invariant is 

where I(L) is the chromatic linking number of Land [all is an indeterminate. 
If E and F are two elementary links in fB with chromatic linking number I , 
then we have set [E] = [F] = [a l ]. So while no relations have been introduced 
among {VI' v2' zi ' z2}' many relations have been introduced among the ele-
mentary values {[E]} EE~' (If we worked over the elementary set g:; instead of 
fB, for example, the relations among the elementary values would be different.) 
Since the components of the (2, 2/)-torus link al are themselves unknotted, 
we see that the indeterminates {[al]) are simply the values taken by 'lI on 
the torus links (as well as all other links of two trivial components with linking 
number l). It is not hard to verify that 'lI does indeed satisfy equations (1.1) 
and (1.2). We call 'lI the uncoupled invariant. Note that 'lI cannot distinguish 
any pair of 2-bridge links having the same chromatic linking number I. Since 
this is not the case for either the Conway polynomial or the twisted Alexander 
polynomial, we see that 'lI extends neither. Similarly, V(z I ' z2) cannot dis-
tinguish any pair of split links (since it is zero for such links) while 'lI can. 
Finally, it is easy to produce a pair of links which P(v, z) cannot distinguish 
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while W can. For example, consider a link of three components colored in two 
different ways and with different chromatic linking numbers in each case. Thus 
neither V'(ZI' z2) nor P(v, z) extends W. However, we show in §5 that for 
i-trivial links, Qi is a proper extension of each of these three invariants. 

The remainder of this section is devoted to proving the following theorem. 

Theorem 2.1. Suppose Q is an invariant of dichromatic links satisfying the skein 
relations (1.1) and (1.2). If v~ =f:. vi then 

In particular, if there are no relations among {VI' v2 ' ZI ' z2}' then Q can be 
derived from W by substituting for each indeterminate [a'] the value Q(a'). 
Proof. In order to prove the theorem it suffices to do so in the case where L is a 
I-connected sum of (2, 21)-torus links. This is because Lemma 1.1 guarantees 
that every dichromatic link can be resolved into such links. Furthermore, it is 
easy to show that if the theorem holds for any two links of a triad, it holds for 
the third link as well. 

Therefore, assume that L = ak , #1 ak2 #1 ... #1 akn • If n = 1, the result 
is obvious since both LI and L2 are unknotted. Proceeding inductively, we 
consider a tree of four link triads, the first of which is 

( k, b k2 # ... # k n k, +k2 # ... # kn k, # k2 # ... # kn) a a I I a ,a I I a ,a I a I I a 2' 

Since 2-bridge links are interchangeable, we may redraw the link ak , bak2 with 
k k k the colors reversed. If we carry the other components of a 'ba 2 #1 '" #1 a n 

along, we can then generate the triad 

( k, b k2 # # kn k, +k2 # # kn k, # ( k2 # # kn)) a a I'" I a ,a I'" I a ,a 2 a I'" I a I' 

If we then "put back" the crossing we just changed and smoothed, but with 
opposite handedness, we obtain the triad 

( k, +k2 # ... # kn k, b-I k2 # ... # kn k, # ( k2 # ... # kn)) a I I a ,a a I I a ,a 2 a I I a I' 

Finally, we can once again interchange the components of ak 'b- I ak2 , carrying 
along the remaining components of ak , b -I ak2 #1 ... #1 akn • We can then form 
the fourth triad 

( k, +k2 # # kn k, b-I k2 # # kn k, # k2 # # kn) a I'" I a ,a a I'" I a ,a I a I'" I a 2' 

Imagine these four triads joined along 
k b kkk, # ( k2 # # kn) k -I k k a' a 2 #1 ... #1 a n a 2 a I' .. I a , and a' b a 2 #1 ... #1 a n 

respectively, so that the outermost vertices of the tree are two copies of ak , #1 ak2 

#1 ... #1 akn and four copies of ak ,+k2 #1 ... #1 akn • We can therefore attempt 
to solve for Q(ak , #1 ak2 #1'" #1 akn ) in terms of Q(ak ,+k2 #1 ... #1 akn ). This 
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will be possible if v ~ I V2 - V I v; I f:. 0, for it is possible to combine the four 
skein relations arising from the four triads to obtain 

( -I -I) n( kl # k2 # # kn) VI V2 -VIV2 Z2ua la I··· la 
-I -I -I k +k k = (VI V2 - VIV2 )(V2 - v2)O(a I 2 #1 ... #1 an). 

Hence if v~ f:. v; we have 

n( kl # k2 # # kn) (-I ) -In( kl+k2 # # kn) u a I a I· .. I a = v2 - v2 z2 u a I ... I a . 

Now applying our inductive hypothesis gives 
k k k -I -I -I -I n-2 k +···+k 

O(a I #1 a 2 #1 ... #1 a n) = (V2 - V2)Z2 [(V2 - V2)z2] O(a I n) 
/(L) 

= PL (VI' zl)PL (v2 , z2)O(a ). 0 
I 2 

3. DEFINING Oi FOR i-TRIVIAL LINKS 

As we saw in the last section, unless relations are introduced among the 
variables {VI' V2 ' ZI' Z2}' any invariant satisfying the skein relations must 
simply be a derivative of the uncoupled invariant '!I. We shall prove in this 
section that quite the reverse is true if one restricts to the class of i-trivial links. 
Indeed, in this case, without introducing any relations among {VI' v2' zi ' z2}' 
there exists an invariant Oi of i-trivial links which satisfies the skein relations. 
Of course, since we are restricting our attention to i-trivial links, we cannot 
consider both skein relations (1.1) and (1.2). For example, if i = 1 we must 
exclude relation (1.1) since smoothing a pure I-colored crossing produces a link 
which is not I-trivial. Thus ni will employ only the variables V j and Z j , 

j f:. i, and the elementary values {[E]} EEg' We shall work exclusively with 
W = ~. We shall prove that both V'(ZI' Z2) and P(v, z) can be derived from 
Oi. 

We will define Oi so that for an arbitrary link L the invariant Oi(L) will 
equal a linear combination of the values of the elementary links with coefficients 
in Z[vt, zt], j f:. i. The values of Oi for the elementary links ~ will 
remain as indeterminates denoted by ni(E) = [E], where E E ~. If E 
is the specific elementary link E = H(anl #i ... #i ank ), we sometimes write 
[ani #i ... #ia nk ] in place of [E]. Note that the integers nr need not be distinct 
and that their order is irrelevant. . 

Theorem 3.1. There exists a unique isotopy invariant 

jf:.i, 

of i-trivial dichromatic links L satisfying the following properties: 
1. Crossing rule: 

jf:.i. 
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2. Initial data: 

ni(E) = [E) for all E E g;. 
Proof. For notational convenience, we will prove Theorem 3.1 with i = 1 , the 
case where i = 2 being completely symmetric. Moreover, since every occur-
rence of v and z is then subscripted with a "2," we shall omit these subscripts 
for the remainder of this section! 

Since the proof of Theorem 3.1 is rather long, we begin with a brief outline of 
what will follow. Our overall plan is to define nl first for I-punctured diagrams 
and to show that it is preserved by Reidemeister moves in R2 -{O}. Thus nl 
is actually an invariant of I-trivial links. It will then be a simple matter to pass 
to ordinary diagrams rather than just I-punctured diagrams. 

To define nl for I-punctured diagrams we proceed in several steps. In Part 
1 we define nl for descending I-punctured diagrams having any number of 
crossings. Such a diagram D represents a I-connected sum of 2-bridge links 
and hence corresponds to a collection of words in a and b. We first describe 
how to obtain these words from the diagram and then how to operate on these 
words to arrive at nl(D). If D is a I-punctured diagram having no crossings, 
then it is descending with respect to every possible choice of basepoints and 
ordering of the components. Thus nl (D) is defined. This begins an inductive 
argument based on the number of crossings in a I-punctured diagram. 

In Part 2 we assume, inductively, that nl has been defined for alII-punctured 
diagrams having fewer than n crossings and that, moreover, for such diagrams 
nl satisfies four properties. Using this assumption, together with the definition 
of nl for descending diagrams obtained in Part 1, we define nl for an arbi-
trary I-punctured diagram having n crossings. The definition involves making 
several choices, which we show, in Part 3, are irrelevant. To complete the in-
ductive step we must still show that nl continues to satisfy the four properties 
of the inductive hypothesis. 

After completing Part 3 we will have defined nl for all I-punctured dia-
grams and know that it satisfies the four properties of the inductive hypothesis. 
From one of these properties it will follow immediately that nl is preserved by 
Reidemeister moves in R2 -{O} and hence that it actually represents an invari-
ant of I-trivial links. 

To conclude the proof, it will remain to show that Property 1 of Theorem 
3.1 holds for ordinary diagrams as well as for I-punctured diagrams. This is 
done in Part 4. 

Part 1. Defining nl for descending diagrams. Let D be a pointed and ordered 
I-punctured diagram. That is, the components have been ordered and each has 
been endowed with a chosen basepoint. Assume additionally that D is descend-
ing with respect to this choice of pointing and ordering. Hence D represents a 
I-connected sum of 2-bridge links. Our first task is to determine which 2-bridge 
links comprise D. To do this we introduce the following construction. 
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Let A and B be two "branch cuts" for each component K of D. That is, A 
and B are disjoint closed rays embedded in R2 which emanate from the origin 
and basepoint b of K, respectively, and which meet K transversely in a finite 
number of points. ("A" stands for "axis" and "B" stands for "basepoint.") Ori-
ent A and B away from their endpoints and assign a ± 1 to each intersection 
of A or B with K as follows: Replace each intersection of B - {b} with K 
by a crossing of B over K and assign + 1 for a right-handed crossing, -1 for 
a left-handed crossing. Similarly, replace each intersection of A with K by a 
crossing of A under K and assign + 1 for a right-handed crossing, -1 for a 
left-handed crossing. Now as we traverse K, starting at the basepoint band 
traveling in the direction of its orientation, we may write down a word W in 
the letters a and b as follows: If A is crossed we record a±1 according to 
whether the crossing is positive or negative, and if B is crossed we similarly 
record b±1 . If neither A nor B is crossed we write the empty, or trivial, word 
1. Note that every exponent appearing in W is ± 1 , unless W = 1. These 
will be the only kinds of words we consider. In particular, it is not necessary to 
consider the free group generated by a and b or the usual equivalence relation 
on such words. 

Each component Ki of D determines a word Wi in a and b as described 
above. Clearly D represents the link H(wl #1 ... #1 wk). The following lemma 
describes how the choice of branch cuts influences the words WI' ... , wk' 

Lemma 3.2. Let D be a I-punctured diagram with exactly one component K 
which is descending with respect to some basepoint b. Let A and B be branch 
cuts for K and let W be the associated word. If A' and B' are two other 
branch cuts for K (with respect to the same basepoint of course) with associated 
word Wi , then Wi can be obtained from w by a finite sequence of the following 
operations: 

1. Introduce or delete a leading or trailing b or b -I . 
2. Introduce or delete bb -I , b -I b, aa -I , or a -I a from somewhere within 

the word. 

Proof. There exists an isotopy taking A an.d B to A' and B' keeping K fixed. 
This isotopy may be accomplished so that the branch cuts change relative to K 
by a finite sequence of moves of the type shown in Figure 3.1. It is now a simple 
matter to check that these moves affect the word w as claimed. 0 

We now return to the problem of defining QI (D), where D is a pointed and 
ordered diagram which is descending with respect to its pointing and ordering. 
We shall do this by assigning a value f(s) to the collection s = {WI' ... , wk } 

of words determined by the components of D as described above. It will turn 
out that f(s) is invariant under the operations described in Lemma 3.2, so the 
choice of branch cuts will not influence the outcome. 

Let :7 be the set of all finite nonempty unordered collections of (not nec-
essarily distinct) words in the letters a and b, including the trivial word 1. 
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H or B 

K 

FIGURE 3.1 

Moreover, assume that each word in a and b uses exponents of only ± 1 , so 
that {aaaa- I , abba, I} E Y but {a 2 , ab2a, a2a-"2} ~ Y. Define an ele-
mentary word to be either the trivial word 1 or a word that does not involve b 
and has all its exponents equal to 1 or all its exponents equal to -1. Finally, 
let the elementary collections ?: c Y be {I} together with all collections of 
nontrivial elementary words. These correspond, of course, to the elementary 
links. 

We will define a function f: Y ---- Z[V±I , Z±I , ([e]}eEg;] such that f(e) = 

[e] if e E?: and otherwise f(s) is a linear combination of the elementary val-
ues with coefficients in Z[ v ± I , z± I ]. In other words, the elementary collections 
serve as indeterminates in terms of which all other collections are expressed. 

Theorem 3.3. There exists a unique function f: Y ---- Z[V±I , Z±I , ([e]}eEg;] 
satisfying the following properties: 

1. If e E?: then f(e) = [e]. 
2. f({l, WI' ... , w k }) = (v-'_V)Z-'f({W" ... , w k }) for all {WI' ... , 

Wk}EY. 
3. f({gb±'h,w" ... ,wk }) 

±2 ±I 
= v f({gh, WI' ... , w k }) ±v zf({g, h, WI' ... , w k }) 

for all {g, h, WI' ... , w k } E Y. 
4. If s' is obtained from s by deleting aa -I , a -I a, bb -lor b -I b from 

somewhere within a word of s, then f(s) = f(s'). 
5. If s' is obtained from s by deleting a leading or trailing b±1 from one 

of the words of s, then f(s) = f(s'). 

Remember that elements of Yare unordered collections of words. Thus 
the operations indicated in properties 2 and 3 may be applied to any word in 
the collection, not just the "first" word. 
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Proof. We may write !7 as !7 = U~ where ~ are all collections of !7 
having n or fewer total appearances of b or b- I . If S E Yo then define f(s) 
as follows. First replace each nontrivial word of s with an, where n is the 
sum of all the exponents in that word. If n = 0 write 1 instead of aO • Now 
return to an element of !7 by replacing an with a string of n a's if n > 0 or a 
string of n a -I 's if n < O. Next, eliminate excess 1 's, if any, by using property 
2. Now what remains is an elementary collection e, so assign it the value [e]. 
This defines f uniquely for Yo, and furthermore f satisfies properties 1-5. 

Now suppose inductively that f has been defined for ~ and continues to 
satisfy properties 1-5. Let s E ~+I' Choose an appearance of b±1 , say bP , 
in one of the words of s and define 

P f(s) = f({ ... , gb h, ... }) 
2P P = V f( { ... , gh, ... }) + pv zf( { ... , g, h, ... }). 

If bP is actually at the beginning of the word, then g will not appear in sand 
we interpret the right-hand side of this equation by replacing gh with h in the 
first term and g with 1 in the second term. Similar considerations are made if 
bP appears at the end of the word or comprises the entire word. The collections 
on the right side of this equation are in ~ , hence their values are defined and 
satisfy properties 1-5 above. To see that f(s) is well defined, we must show 
that the choice of which appearance of b± I to eliminate is immaterial. So 
suppose that 

P , y , s = { ... , gb h, ... , g b h , ... }. 

If we first eliminate bP and then bY we obtain 

2P , Y , f(s)=v f({ ... ,gh, ... ,gb h , ... }) 

+ pvP zf( { ... , g, h, ... , g' bY h' , ... }). 
2P+2y , , = v f( { ... , gh, ... , g h , ... }) 

2P+r , , + yv zf( { ... , gh, ... , g , h , ... }) 
P+2y , , + pv zf( { ... , g, h, ... , g , h , ... }) 

P+r 2 , , + pyv z f( { ... , g, h, ... , g , h , ... }). 

But the reader may easily check that if we first eliminate bY and then bP we 
obtain the same result. A similar computation holds if both bP and bY are in 
the same word. Thus f(s) is well defined. 

It remains to complete the inductive step, that is, to show that f continues to 
satisfy properties 1-5. If s E ~+I and s' is obtained from s by deleting aa- I 

or a-Ia from within some word of s. then it is easy to see that f(s) = f(s'). 
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It is more interesting if s' is obtained by deleting bb -lor b -I b. For example, 
-I J(s) =J({ ... , gbb h, ... }) 

= v 2J({ ... , gb-Ih, ... }) +vzJ({ ... , g, b-Ih, ... }) 
=J({ ... , gh, ... })-vzJ({ ... , g, h, ... }) 

-I 2 + V zJ( { ... , g, h, ... }) - z J( { ... , g, 1, h, ... }) 
, -I 2 -I -I h =J(s)-[vz-v z+z (v -v)z ]J({ ... ,g, , ... }) 

= J(s'). 

Thus the extension of J to ~+I continues to satisfy property 4 of the inductive 
hypothesis. We leave verification that J satisfies the other properties to the 
reader. 0 

Remark 3.4. As already mentioned, the words associated to a descending dia-
gram by means of the branch cuts may be taken to have only exponents of ± 1 . 
We have proved Theorem 3.3 with this assumption and we could continue to 
deal only with words of this kind. However, it is obviously more convenient 
to write a lO for aaaaaaaaaa. Therefore, we shall henceforth make full use 
of the usual equivalence relation on words. This allows one, for example, to 
replace property 3 of Theorem 3.3 with 

3'. J({gbnh, WI' ... , wk }) = v2sgn(n)J({gbn-sgn(n)h, WI' ... , wk }) 

+ sgn(n)vSgn(n) zJ( {g, h, WI' ... , w k }) 

for all nEZ, where sgn(n) = n/lnl. 
We leave it to the reader to check that no ambiguities can arise by operating in 
this greater generality. 

Another useful notational convenience is to write { ... , kw , ... } in place 
of the collection { ... , W , W , ... , W , ... } where the same word W appears 
k times. Thus, instead of writing {aaa -I bbba, a, a, 1, 1}, we may write 

3 {ab a, 2a, 2}. 

Remark 3.5. If s = {Sl ' ... , Sj} and t = {t l ' ... , tk } are elements of Y, we 
shall denote their concatenation by s, t = {SI ' ... , Sj' tl ' .. , , tk }. (Remember 
that the elements of Yare collections of not necessarily distinct words.) 

If J(s) = 2:pJei] and J(t) = 2: q)d) where Pi' qj E Z[V±I , z±l] and ei , 
d j E ~ , it is not difficult to show that 

J(s, t) = LPiqjJ(ei , d). 

Even though ei and d j are both elementary, their concatenation ei , d j need 
not be, since one or both of ei or d j might equal {1}. 

Finally, we may use Theorem 3.3 to define 0 1 (D) , where D is a pointed and 
ordered diagram which is descending with respect to its pointing and ordering. 
Namely, first choose branch cuts for each component of D and use these to de-
termine an associated word in the letters a and b. This determines a collection 
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s E SI" for which we may compute /(s) as in Theorem 3.3. Because of.Lemma 
3.2 and properties 4 and 5 of Theorem 3.3, /(s) does not depend on the choice 
of branch cuts. Now derive 0.' (D) from /(s) by replacing each occurrence of 
the elementary value [e] in /(s) by the corresponding elementary value [E]. 
F I [ -2 2 -, 2]. 1 d b [-2 2 -, 2 or examp e, a , a ,a, a IS rep ace y a #, a #, a #, a ]. 

Part 2. Defining 0.' for arbitrary I-punctured diagrams. We shall now return to 
our overall program of defining 0.1 (D) for an arbitrary I-punctured diagram D. 
As already mentioned, we shall do so by inducting on the number of crossings 
in the diagram. If D has no crossings, then D is descending with respect to 
every possible choice of pointing and ordering. Moreover, the collection s of 
words associated to D does not depend on the pointing and ordering. Thus 
the definition given in Part 1 for descending pointed and ordered diagrams may 
be applied to produce a unique value for D. In particular, if D represents a 
I-connected sum of r right-handed Hopf links, s left-handed Hopf links, and 
t (two-component) unlinks, then 

1 { (( V-I - v) z - , ) / - , [l ] if r + s = 0 , 
0. (D) = (-\ -, t -I 'f (v -v)z ))[sa #,ra] 1 r+s>O. 

Now suppose, inductively, that 0.1 has been uniquely defined for all 1-
punctured diagrams having less than n crossings and, for such diagrams, satis-
fies the following properties: 

1. Crossing rule: If (D + ' D _ , Do) is a triad of I-punctured diagrams, then 
-I , , , 

v 0. (D+) - vo. (D_) = zo. (Do). 

2. Descending diagram rule: If D is a I-punctured diagram which is de-
scending with respect to some choice of ordering and basepoints, and s 
is the associated collection of words relative to some choice of branch 
cuts, then o.l(D) = /(s) as defined in Theorem 3.3. 

3. Invariance under Reidemeister moves: If D and D' are I-punctured di-
agrams and D' is obtained from D by a Reidemeister move in R2 -{O} 
which does not increase the number of crossings, then 0.' (D') = 0.' (D) . 

4. Invariance under moving separated subdiagrams: Suppose D is a 1-
punctured diagram and d, and d2 are two disjoint disks in R2 -{O} 
with {) d l and {) d2 disjoint from the components of D. If D' is 
obtained from D by exchanging d, with d2 , then 0.' (D) = 0.' (D') . 

Note that our definition of 0.' (D) in the case where D has no crossings does 
indeed satisfy these properties. (Properties 1 and 3 are vacuously satisfied.) 

Now suppose that D is a I-punctured diagram with n crossings. In order 
to define 0. 1 (D) we proceed as follows. First choose some ordering of the 
components of D together with a basepoint on each component. Next choose 
a sequence in which to change crossings in order to arrive at a diagram which 
is descending relative to this choice of ordering and basepoints. Accompanying 
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each changing of a crossing is a smoothing of that crossing. Thus the process 
generates a binary tree T which we call a resolution of D. The diagrams of T 
that have n crossings are all pointed and ordered, while those that result from 
the smoothings, and hence have n - 1 crossings, are considered unpointed and 
unordered. Let D;, 1 ~ i ~ m - 1, be the diagrams created as a result of 
the smoothings and Dm be the descending diagram at the end of the resolution 
obtained by changing the crossings. For i < m each D; has n - 1 crossings and 
so 0 1 (D j ) exists by assumption. Furthermore, Dm is a pointed and ordered 
diagram which is descending with respect to its pointing and ordering. Therefore 
define OI(Dm) as in Part 1. We may now use the crossing rule together with 
the tree T and all the values 0 1 (DJ to assign a value of 0 1 to D. We must 
now show that 0 1 (D) is well defined. 

Part 3. Proving that 0 1 is well defined. We must show that the definition of 0 1 

given in Part 2 does not depend on the choice of ordering of the components, 
the basepoints chosen for each component, or the order in which crossings are 
changed to reach a descending diagram. Note that after a descending diagram 
Dm is reached, more choices are still made in the computation of OI(Dm), 
namely the choice of branch cuts used to determine the collection of words 
associated to Dm and then the order in which b's are eliminated from these 
words. However, we have already shown that these choices are irrelevant. 

Step 1. The order in which the crossings of D are changed to reach the de-
scending diagram is immaterial. 

The proof of this proceeds exactly as in [H) since only the crossing rule is 
employed. 

Step 2. The choice of basepoints is immaterial. 
The proof of this step is nearly the same as that given in [H), the difference 

being due to the fact that our elementary links are now 2-bridge links rather 
than unlinks. Proceeding as in [H), it suffices to consider the case where D is 
descending and consists of a single component and D' is obtained from D by 
moving the basepoint forward past one crossing. It must appear as shown in 
Figure 3.2. 

There are two cases: either a right- or left-handed crossing is involved. Con-
sider a right-handed crossing and the tree shown in Figure 3.3. 

Now DI is descending with respect to its basepoint and D2 is a two-compo-
nent link diagram which is descending with respect to the choice of pointing 
and ordering shown. 

t D t D' -t- ---+ -1-
FIGURE 3.2 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



214 JIM HOSTE AND M. E. KIDWELL 

FIGURE 3.3 

Let A and B be branch cuts for D with the beginning of B appearing as 
shown in the figure. Suppose w = gh is the word associated with D, where 
g is that part of w determined by D up to the crossing in question and h is 
the latter part of w. So 0 1 (D) = j( {gh}). But we may choose branch cuts 
for DI which coincide with A and B except for the very beginning of Band 
conclude that OI(DI) = j({gb-1h}). Similarly, 01(D2) = j({g, h}). Now 
OI(D') is given by 

1 I 2 1 1 o (D ) = v 0 (D1) + v zO (D2) 

= v2j({gb- 1h}) +vzj({g, h}) 

=V2[V- 2j({gh})_v- 1zj({g, h})]+vzj({g, h}) 

=j({gh}) 

= OI(D). 

Step 3. The choice of ordering of the components is immaterial. 
Again proceeding as in [H], it suffices to consider the case where D is a 

diagram with n crossings which is descending with respect to some choice of 
pointing and ordering. 

If there are no crossings between the components, then clearly the choice of 
ordering is immaterial since the diagram remains descending if the ordering is 
changed. Our strategy now is to reduce to this case by performing Reidemeister 
moves in R2 -{O}, each of which does not increase the number of crossings. 
We must then prove that such moves preserve the value of 0 1 • This is the 
same as the strategy employed in [H] but is complicated here by the fact that 
the Reidemeister moves must take place in R2 -{O} rather than R2 U {oo} . 

We begin by considering projections in R2 -{O} rather than diagrams. We say 
that a projection P can be strongly reduced to the projection p' if P can be 
transformed to p' by a finite sequence of Reidemeister moves in R2_{O}, none 
of which increase the number of double points, together with moving separated 
subprojections. 
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Lemma 3.4 (1- and 2-gon clearing lemma). Let P be a link projection in R2 -{O} 
and suppose one of the following is true. 

(1) A strand of P forms a I-gon which bounds a disk d in R2_{O} as 
shown below. 

(2) Two strands of P form a 2-gon with distinct vertices which bounds a 
disk d in R2 -{ O} as shown below. 

Then P can be strongly reduced to a projection where d is clear; that is, no 
strands of P meet the interior of d. Hence d can be eliminated by a Type I 
or II Reidemeister move and P can be strongly reduced to a projection having 
fewer double points. 
Proof. First move any separated subprojetions out of d if necessary. We now 
begin with a special case of 2. Suppose that d contains no I-gons or 2-gons. 
Then the strands of P that lie in d form a braid from one side of d to the 
other. If this braid is trivial, we may push the strands out of either end of d 
using Type III moves. Since d has two distinct vertices this really does clear d . 
If the braid is nontrivial, we may first use Type III moves to push the crossings 
of the braid out one side or the other of d . 

Now suppose that d contains no I-gons. By successively clearing and elimi-
nating innermost 2-gons, we may arrive at the previous case. 

We shall now prove case 1. If d contains no I-gons, then any strand crossing 
d forms a 2-gon with ad. This 2-gon contains no I-gons and so may be 
cleared and eliminated. If d contains I-gons, then by successively clearing and 
eliminating innermost I-gons we may arrive at the previous case. 

Finally, we return to the general case of 2. By successively clearing and 
eliminating innermost I-gons inside d we may arrive at a previous case. 0 

Lemma 3.5. Let P be a projection in R2 -{O} having at least two components. 
Then P can be strongly reduced in R2 -{O} to a disconnected projection. 
Proof. By using Lemma 3.4 we may assume that P contains no 1- or 2-gons 
which bound disks in R2 -{O}. Now let A be a branch cut from {O} to 00 

which meets P transversely in as few points as possible. We claim that each 
component of P must cross A in only one direction (if they cross A at all). 
For suppose not. Then there exists a path a in P that leaves and returns to 
the same side of A and otherwise does not meet A. Since P contains no 
bounding I-gons, this path is simple. Consider the disk d bound by a and p , 
that part of A between a a. Since P contains no bounding 2-gons, any strand 
of P that enters d via a must exist via P . Thus if we replace P with a slight 
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push-off of a we may produce a branch cut with at least two fewer points of 
intersection with P. 

We may assume that every component of P meets A. For if not, then such 
a component must be disjoint from all other components and bound a disk in 
R2 -A. Thus we may safely ignore these components by picking them up and 
moving them far away from the origin. Hence P is isotopic as a projection to a 
braid which is braided around the origin. We claim that Type III Reidemeister 
moves will now suffice to separate the components. 

Think of P as built from a union of concentric circles centered at the origin 
and with radii 1, 2, ... ,m by inserting crossings between adjacent circles, 
with one crossing in each sector 2n j / n :5 () :5 2n (j + 1) / n, where n is the 
number of crossings. Let r be the maximum radius at which more than one 
component is present. If all the components are disjoint, no such radius exists 
and we let r = o. If we consider all the components at radius r, at most one 
of them can attain a larger radius. If one does, then call that component J. If 
none do, then let J be any of the components at radius r. Our goal is to push 
all components other than J at radius r down to lower radii. Let K be such 
a component. 

The circle of radius r meets P in a finite union of disjoint circular segments, 
some of which belong to K. Choose a segment belonging to K and consider 
the braid in the sector S containing this segment. It must appear as in Figure 
3.4. Now p may be empty since r may equal m. Clearly, if a is trivial than 
P contains a bounding 2-gon. So assume that a is nontrivial. Write a as 
a = a 1a 2 , where a l is a maximal braid of the form a l = Gr_ 1Gr_ 2 ··• Gr_ k • 

Suppose first that a 2 = I . In this case a single Type III Reidemeister move 
can be used to move the segment of K at radius r down to radius r - 2. This 
lowers the number of segments in K which lie at radius r. 

If a 2 =F 1 , let Gj be the first crossing of a 2 • If j < r - k - 1 , we may reduce 
the length of a 2 by isotoping Gj out the "top" of the sector S . If j = r - k - 1 , 
a 1 is not maximal. If j = r - k, P contains a bounding 2-gon. If j > r - k , 
then again a single Type III Reidemeister move can be used to reduce the length 
of a 2 • 

FIGURE 3.4 
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Thus the number of segments of K which lie at radius r may be reduced 
until none remain. Repeating the argument, we may eventually move all com-
ponents other than J down to smaller radii, thus reducing r. 0 

Lemma 3.6. Let D, be a pointed and ordered i-punctured diagram having n 
crossings and which is descending with respect to its pointing and ordering. Sup-
pose that 

(a) D2 is obtained from D, by a single Reidemeister move in R2 -{O} which 
does not increase the number of crossings and which furthermore takes 
place in a disk not containing the basepoint of D, ' or 

(b) D2 is obtained from D, by moving separated subdiagrams. 

In either case, let Di be obtained from Di by reordering the components 
according to some nontrivial permutation a. Then n'(D,) = n'(D2 ) and 
n'(D,) = n'(.D2). 

Proof. The proof of case b is obvious, so consider case a. Since D, is de-
scending and the Reidemeister move takes place away from the basepoints, it 
follows that D2 is descending too. To compute n' for D, and D2 we use the 
descending diagram rule. However, when choosing branch cuts for the various 
components of D, or D2 we may choose the cuts to lie away from the site of 
the Reidemeister move and hence to be the same for both D, and D 2 • Thus 
n'(D,) = n'(D2 ). 

Now consider D, and a Type I move. Suppose the move will eliminate 
crossing c. Since D, is descending we do not need to change c to make D, 
descending. Thus we may create a resolution T, of D, in which c is never 
changed. Let T2 be the resolution of D2 obtained from T, by eliminating 
c from each diagram of T,. If D;, ... ,D~ are the outermost diagrams of 
Ti then n' (D)) = n' (D~) for j < m, since these diagrams have less than 
n crossings, and for j = m by the previous case, since these diagrams are 
descending. Hence n' (D,) = n' (D2 ) . 

Now suppose we perform a Type II move, eliminating crossings c and d. 
Either both crossings need to be changed to make D, descending or neither 
does. If neither does the proof proceeds as above. If both do, then begin to 
resolve D, by changing c and d first. Let D: result from smoothing c and 
Di result from first changing c and then smoothing d. Finally, let D~ result 
from changing both c and d. Now n'(D:) = n'(D~) and since c and d , ~ " '" ~ have opposite signs we have n (D,) = n (D3). But n (D3) = n (D2 ) by the 
previous case. 

Finally, consider a Type III move. If none of the crossings need to be changed 
to make D, descending, then proceed as before. Otherwise, the argument is 
similar to those given above. We shall prove one case and leave the others to 
the reader. 
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,,(i) ,,(i) "0) ,,(i) ,,(i) "0) 

/'" /'" 
}Q tQ ~'{ Qt 

FIGURE 3.5. Here i < j but aU) > aU) 

Suppose that the three strands involved in the Reidemeister move belong to 
only two components and that two of the crossings of VI need to be changed. 
We begin to resolve 151 and 152 as shown in Figure 3.5. Clearly nl (D;) = 

nl(DJ) for j = 1,2 and furthermore for j = 3 by the previous case. Hence 
I - I -o (D I ) = 0 (D2). 0 

We are now ready to prove Step 3. Let DI be a pointed and ordered 1-
punctured diagram having n crossings which is descending with respect to its 
pointing and ordering. let VI be obtained from DI by reordering the com-
ponents according to some permutation a. We want to prove that 0 1 (D I ) = 

OI(VI ). Let PI be the projection of DI or equivalently of 151 , By Lemma 
3.5 there exists a sequence of projections PI' ... , Pm where each Pi strongly 
reduces to Pi+1 either by a single Reidemeister move or by moving separated 
subprojections, and Pm has no double points between components. 

We would like to transform, by means of Reidemeister moves or by moving 
separated subdiagrams, both DI and VI through a sequence of diagrams having 
projections {Pi}' But this may not be possible since a Type II or Type III 
Reidemeister move performed in a projection P may be "locked" in a diagram 
D having P as its projection. 

Nevertheless, we shall create sequences {Di} and {15;} beginning with DI 
and VI of pointed and ordered diagrams such that 

1. Each Di is descending with respect to its pointing and ordering. 
2. Each Vi is obtained from D; by reordering the components according 

to a. 
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3. Both Di and Di have projection Pi. 
.. 1 1 ~ 1 1 ~ 

4. For each 1, If Q (Di+ l ) = Q (Di+ l ) then Q (D) = Q (D). 

Thus QI(Dm) = QI(Dm) since Pm is a disconnected projection and from 
this it follows that QI(D1) = QI(D1). 

Hence it remains only to construct the sequences {Di} and {Di}. Suppose 
this has been done up to i = j. Now P}+I is obtained from Pj by a single 
Reidemeister move which does not increase the number of crossings, or by 
moving ~ separated sUbprojection. Clearly the latter can be mimicked in both 
D j and D j , so suppose that Pj is altered by a Reidemeister move. Suppose this 
move takes place inside the disk d. Suppose further that Dj has no basepoints 
in d. Then the Reidemeister move can be carried out in both Dj and Dj to 
give D j +1 and Dj +1 • Now properties 1, 2, and 3 are clearly true and property 
4 follows from Lemma 3.6. 

If D j has basepoints in d, then let DJ be obtained from D j by moving 
the basepoint out of d and let DJ be obtained from this by reordering the 

I 1 I 1 ~ I ~I components. Now by Step 2 we have Q (D) = Q (D j ) and Q (D) = Q (D j ) . 

Let DJ be obtained from DJ by changing crossings so that DJ is descending 
with respect to its pointing and ordering. Again let DJ be obtained from this by 
reordering of the components. Now since the diagrams produced by smoothing 
crossings in DJ and DJ have one less crossing, it follows that if Q\DJ) = 

1 ~2 I I 1 ~ I 2 ~2 Q (D j ) then Q (D j ) = Q (D j ). The diagrams D j and D j now satisfy the 
earlier case. 0 

This completes the proof that QI is well defined for I-punctured diagrams 
having n crossings. It now remains to complete the inductive step, that is, to 
show that QI continues to satisfy the four properties assumed in the inductive 
hypothesis. The only nontrivial property is the third one. However, the proof 
is similar to that given in Lemma 3.6 with the additional freedom of being able 
to choose basepoints and ordering as we wish. We leave this as an advanced 
exercise for the reader. 

Having completed the inductive step, we may now conclude that QI is de-
fined for all I-punctured diagrams and satisfies the four properties listed in the 
inductive hypothesis. The third property implies that QI is preserved by Rei-
demeister moves in R2 -{O}. Thus QI is actually a I-trivial dichromatic link 
invariant, since two I-punctured diagrams represent the same I-trivial dichro-
matic link if and only if they are related by Reidemeister moves in R2 -{O} . 

Part 4. Passing to ordinary diagrams. If L is a I-trivial dichromatic link, it 
is convenient to work with ordinary diagrams of L in R2 U {oo} rather than 
I-punctured diagrams. This improvement to ordinary link diagrams is all that 
remains to prove Theorem 3.1. 
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To verify property 1 of Theorem 3.1 let (L+, L_ , Lo) be a triad of dichro-
matic link diagrams in R2 . There exists a triad (D + ' D _ , Do) of I-punctured 
diagrams which respectively represent the links (L+, L_ , Lo). Now the cross-
ing rule for I-punctured diagrams implies the crossing rule for ordinary di-
agrams of I-trivial dichromatic links. This completes the proof of Theorem 
3.1. 0 

Corollary 3.7. The elementary sets ,g:; and g:; are both minimal. 
Proof. Suppose E E,g:; but ,g:; -{E} is minimal. Then there exists a resolution 
T of E into links of ,g:; - {E}. Now Theorem 3.1 guarantees that any resolution 
of E will produce the elementary value [E]. But clearly the resolution T will 
not. 0 

For any 3-manifold M one can define the skein module .9(M) as follows. 
Let R = Z[X±I , y±1 , Z±I] and denote by 2' the free R-module generated 
by the isotopy classes of all oriented links in M. Let 9'1 be the submodule 
generated by the skein relations 

x[L+] + y[L_] + z[Lo]' 

where (L+, L_, Lo) is a skein triple in M defined in the obvious way and 
[L] is the class of L in 2'. Then the skein module of M is defined as 
.9(M) = 2'/9'1. The reader is referred to [Pd for a general treatment of skein 
modules. 

Since I-trivial dichromatic links correspond to oriented monochromatic links 
in Sl x D2 , we have the following corollary to Theorem 3.1. 

Corollary 3.8. The skein module .9(SI x D2) is free on an infinite set of gener-
ators. These generators may be taken as the links in Sl x D2 corresponding to 
the elementary dichromatic links g;. 

4. GENERAL DICHROMATIC SKEIN INVARIANTS 

In this section we refocus our attention on Question 1.2. Because of Theorem 
2.1 we shall investigate possible invariants n which satisfy the skein relations 
(1.1) and (1.2) with v; = vi . In particular, we shall assume that v I = v2 = V • 

Note that choosing -VI = v2 = v cannot possibly yield anything different, as 
replacing z I with - z I returns us to the first case. 

Unlike the situation of i-trivial links, we show that, in general, there must 
exist further relations among the indeterminates. This provides a partial answer 
to Question 1.2. As a corollary we obtain a negative answer to Question 1.3. 

Theorem 4.1. Suppose n is an invariant of dichromatic links satisfying the skein 
relations 

i = 1,2. 
Then either 

(i) v 2 = 1, and n does not extend the twisted Alexander polynomial, or 
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FIGURE 4.1. The link 7~ 

(ii) z~ = z;, and n does not extend the Conway polynomial, or 
(iii) o.(aba- I ) = 0.(1), and 0. extends neither. 
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Furthermore, none of these relations are sufficient. However, in each case, there 
does exist an invariant of dichromatic links satisfying these relations (among 
others), namely the Conway polynomial, the twisted Alexander polynomial, and 
the uncoupled invariant, respectively. 

Corollary 4.1 (Answer to Question 1.3). There does not exist an invariant 0. of 
dichromatic links which satisfies the skein relations (1.1) and (1.2) and which 
is a mutual extension of both \i'(ZI' Z2) and P(v, z). 
Proof of Theorem 4.1. Let L be the link 7~ in Rolfsen's tables [R], oriented 
and colored as shown in Figure 4.1. 

Since 7~ is both 1- and 2-trivial, we may compute n relative to the elemen-
tary links ~ in two very different ways. If we change only I-colored crossings 
and employ equation (1.1), we obtain 

2 -4 -4 2 -2 -4 -4 2 -I o.(76)=(1+v +v zl)o.(I)-(v +v +v zl)o.(aba ) 
-2 -4 2 -2 -4 -2 + (v + v )o.(a ba ) - v o.(ababa ). 

On the other hand, we may also compute 0. by changing only 2-colored cross-
ings and employing equation (1.2). This yields 

2 -2 -2 2 -2 -2 2 -I o.(76)=(I-v -v z2)o.(I)+(v +v z2)Q.(aba ). 

If 0. is an invariant of dichromatic links, these two expressions must be 
equal. Equating them, we arrive at 

-2 -4 2 -2 -4 -2 (v + v )o.(a ba ) - v o.(ababa ) 
-2 -2 2 -4 -4 2 =-(v +v Z2+V +v ZI)o.(l) 

-2 -2 2 -4 -4 2 -I +(2v +V Z2+V +V zl)o.(aba ). 

Finally, consider repeating the entire calculation above, starting with 7~ colored 
in the opposite way. Since 2-bridge links are interchangeable, reversing their 
coloring has no effect. Hence we obtain a formula identical to the one above 
except that Z 1 and Z 2 are interchanged. Equating the right-hand sides of these 
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equations and factoring gives 
-4 2 2 2 -I 0= v (v - l)(zl - z2)(0(aba ) - 0(1)). 

This implies that either v 2 = 1, zi = z;, or O(aba- I ) = 0(1). 
However, if we set v 2 = 1 the initial two expressions will still be unequal. 

Nor will setting zi = z; or O( aba -I) = O( 1) reconcile these calculations. 
Thus, while these relations are necessary, they are not sufficient. 

If v2 = 1, it is not hard to show that 0 is zero for any split link. Simply 
consider a triad (K #i J , K #i J , K U J) obtained by changing and smoothing 
a crossing located at a half twist in the band connecting K to J. Thus, in this 
case, 0 cannot extend P(v, z). 

If zi = z;, then 0 is unaffected by color reversal. This is because the 
skein relations do not depend on the coloring and neither do the values of the 
elementary 2-bridge links, since they are interchangeable. Thus, in this case, 0 
cannot extend the Conway polynomial. 

Finally, if the Whitehead link aba-I and the unlink 1 cannot be distin-
guished by 0, then 0 extends neither the twisted Alexander polynomial or 
the Conway polynomial since both of these invariants can distinguish these 
links. 0 

We shall not address Question 1.2 any further in this paper. Yet it remains 
an interesting question if there exist invariants satisfying the relations given in 
Theorem 4.1 which are proper extensions of V, P, and W, respectively. Cer-
tainly no amount of computations employing the skein relations can ever lead to 
relations among elementary links having different chromatic linking numbers. 
Thus it is hard to imagine how assuming v = 1 , for example, will force 0 to 
collapse all the way to the Conway polynomial, where the clasp rule relates links 
of different chromatic linking. 

5. INVARIANTS DERIVED FROM Oi AND SOME OF THEIR PROPERTIES 

The initial data for Oi consists of an infinite set of indeterminates, namely 
the values of the elementary links S:;. An invariant Wi having only a finite 
number of indeterminates may be derived from Oi by introducing relations 
among {[E]} EE~' We shall do this in such a way that Wi then satisfies a clasp 
rule. Such is the ~ase for both the Conway polynomial and the twisted Alexander 
polynomial, and it is this fact that provides the motivation for collapsing Oi 
to Wi. 

While Wi appears to be a radical simplification of Oi , it still contains the 
invariants W, V, and P as special cases. Furthermore, there exists an invari-
ant di which can be derived from Wi which is completely analogous to the 
Jones polynomial. In fact, the existence of di can be quickly established using 
the analog of the Kauffman bracket. This is done in [HP]. Moreover, the Jones 
polynomial V," can be derived from d~. Figure 5.1 depicts the relationship 
between these i-trivial link invariants. 
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Qi 

1 
Wi [ ,/ \, 1 

'U 'V(Zl.Z2) p at 
\, ,/\, ,/ 

'V(z) v 
FIGURE 5.1. Invariants of i-trivial links with arrows 
indicating how one extends another 
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In this section we define Wi and di and describe a few of their basic prop-
erties. We give examples illustrating their utility in studying various link sym-
metries. 

The following theorem describes the invariant Wi. 

Theorem 5.1. There exists a unique invariant Wi of i-trivial dichromatic links 
which may be derived from Oi and which satisfies the following properties: 
Crossing rule: 

Clasp rule: 

-1/2 -I W i( A ) + 1/2 W i( v ) _ (-1/2 h 1/2h) ,-1 W i( ) V X k j V X k><j-V ++V _II. k)(j' 

j i= k. 

Antic/asp rule: 
1/2 -I i( ~ -1/2 i, 1/2h -1/2 -I i 

V X W k'~) + v x W (k 'i. ) = (V + + v h _)l W (k ~( ) , 

Sum rule: 

Wi(K#iJ) = (V-I -v)z;lrlwi(K)Wi(J), 

Initial data: 

j i= k. 

j i= i. 

Proof. Beginning with the invariant Oi, we first introduce new variables x, 
h+, h_, and l and then make substitutions for the elementary values [E] as 
follows. Let 

-I -I h [a] = x h+ and [a ] = x _. 
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Next, let [an] for n different from 1 or -1 be determined recursive~y by the 
formula 

-1/2 -I[ n+l] 1/2 [n-I] (-1/2h 1/2h) ,-I[ n] V X a +v xa = v ++v _II. a . 

Note that this gives [1] = A. Finally, let an arbitrary elementary value be given 
by 

j # i. 
This process determines a unique substitution for each elementary value. Let 
Wi be the invariant derived from Oi by making these substitutions. It is now 
straightforward to check that Wi satisfies the properties listed in the theorem. 
Alternatively, one could repeat the proof of Theorem 3.1 working with Wi 
instead of Qi. 0 

Theorem 5.2. The analog o/the Jones polynomial/or i-trivial links, di(A j , h), 
b d . d fi Wi b' A-4 A-2 A2 A-6 can e erzve rom y settmg v j = j , Z j = j - j' x = j , 

h+ =h_ =hj , and A= 1. 

The invariant di(A j , h) can be quickly defined from a "bracket" function of 
i-punctured diagrams similar to Kauffman's bracket function for ordinary dia-
grams. Briefly, one begins with an invariant () i of an unoriented i-punctured 
diagram defined by the following properties. 

1. ('O)i = 1 ; 
2. (O)i=hj ; 
3. (X)i=Aj()()i+Ajl(X)i; 
4. (. 0 K)i = -(A~ + Aj2)(.K)i' K # 0; 
5. (OK)i = -(A~ + Aj2)hj(.K)i' K # 0. 

Then for an unoriented i-trivial link L define 

i(L)(Aj , h) = (_A~)-SW(D)(D)i 

where D is any i-punctured diagram of Land sw(D) is the self-writhe of 
D. Finally, if L is an oriented i-trivial link, let ILl denote L stripped of its 
orientation and lk( L) equal the sum of the linking numbers between every pair 
of components of L. Then 

di(L) = (_A~)-2Ik(L) i (ILl). 

Details can be found in [HP]. 
The invariant Wi and those derived from it satisfy multiplicative rules for 

connected sums which we have listed in Table 1.2 and in Theorem 5.1. The 
invariant Oi nearly does and can be made to do so, without any loss of gen-
erality, by adopting some notational conventions. To see this we first state the 
following theorem, the proof of which we leave to the reader. 
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Theorem 5.3. Let L be an i-trivial dichromatic link and M a j-colored mono-
chromatic link, j =f. i . 

(i) If Li and L j are split (separated by a 2-sphere), then O/(L) 
=PL (v., z.)[I]. 

j ) ) 

(ii) If L II M denotes the split union of Land M, then gi(L II M) = 
(Vii - V)zil PM(vj , z)gi(L). 

(iii) gi(L#j M) = PM(vj , z)O/(L). 
(iv) If K isan i-trivial link and ni(L) = Ea,[E,L and gi(K) = E'l"s[Fs]i' 

where each E, and Fs are elementary links in g; and a, and 'l", are 
polynomials in vt and zt, then gi(L#iK) = Ea,'l"sni(E'#iFs)· 

Note that E, #i Fs may not be elementary since one or both summands might 
be trivial. 

Corollary 5.4. If we agree to let [EUF]i = ni(E#iF) for all E, FE g; and 
[1] = (Vii - V)Zil, then gi(L#iK) = n\L)ni(K). There is no loss ofgen-
erality in doing this. If we further agree to expand the class of i-trivial links to 
include the i-colored unknot (which strictly speaking is not dichromatic since the 
j-sublink is empty) and define gi ( () ;) = 1, then property (i) of Theorem 5.3 
becomes a special case of property (ii). 

We now list some of the basic properties of Wi . 

Theorem 5.5. Let L be an i-trivial dichromatic link with chromatic linking 
number 1= lk(LI' L 2 ). Then 

(i) Wi detects I. In particular we have 

Wi(L) = x'(Wi(L)lx=I)· 

(ii) The uncoupled invariant may be derived from Wi by setting x = 1 and 
A. = h ~2 h '}2 . In particular, 

j=f.i. 

(iii) The variable x is redundant. That is, Wi(L) and Wi(L)lx=1 are 
equivalent invariants. In particular, Wi(L) may be recovered from 
Wi(L)lx=l· 

(iv) The twisted Alexander polynomial of L j' j =f. i, can be derived from 
Wi by 

Wi(L)lx=1 A=I h =1 h =1 =PL(v, z).). , ,+ ,- J 

(v) The sum of the exponents of h +' A., and h _ in each term of Wi is 1. 
(vi) The twisted Alexander polynomial of L can be derived from Wi(L) by 

. 1 (-1)/ 3/2 h -1/2 -1/2-1 settmg z j = Z, /'. = V - V z, x = v , + = v z + v z -
3/2 -I d h 1/2 1/2 -I + -3/2 -I V Z ,an _ = -v z - v z v z . 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



226 JIM HOSTE AND M. E. KIDWELL 

(vii) The Conway polynomial of L can be derived from Wi by three succes-
sive substitutions. First set x = 1, h+ = V I/ 2 , and h_ = V- I/ 20:A. -
V- I/ 2 , where 0: is a new variable, and simplify the results. Next set 
A. = (v -I - v) / Z I Z 2 and simplify the results. Finally, set v = 1 and 
0: = [ZI Z2 + ((zi + 4)(z; + 4))1/2]/2. 

Proof. Clearly (i) is true for the unlink and both the right- and left-handed 
Hopf links. Now if it is true for any two of three links related by changing or 
smoothing either a crossing or a clasp, then it is not hard to prove that it is true 
for the third as well. A similar proof may be given for property (ii). 

Properties (iii) and (iv) follow immediately from the first two properties. 
Note that Property (v) is true for the unlink and the right- and left-handed 

Hopf links. By inducting on n and using the clasp rule, it is a simple matter to 
prove that it is true for (2, 21)-torus links. The connected sum rule now implies 
that elementary links satisfy property (v). Finally, if two links in a triad satisfy 
property (v), then so does the third. 

It is not hard to verify the last two properties. Simply make these substitu-
tions and compare with Table 1.2. 0 

If L is an i-trivial link, let r denote the mirror image of L obtained by 
reflecting L through a plane. Let - L denote the link obtained by reversing all 
the orientations of L, and denote by L_i the link obtained by reversing only 
the orientations of the i-sublink. Note that -L_i = L_j , j =1= i. Finally, let 
L denote the j-trivial link, j =1= i , obtained from L by reversing the colors of 
L. The following theorem relates the values of these various links. We omit 
the proofs, which are all straightforward and similar in spirit. 

Theorem 5.6. Let L be an i-trivial link. Then the following are true. 
(i) ni(L) = ni( -L). 

(ii) ni(r) is obtained from ni(L) by replacing v with V-I and, in each 
elementary value [E], replacing a with a -I . 

(iii) Wier) isobtainedfrom Wi(L) by replacing v with V-I, Zj with zjl, 
x with X-I, h+ with h_, and h_ with h+. 

(iv) Wi(L_) is obtained from Wi(L) by replacing x with X-I, h+ with 
h_ , and h_ with h+. 

Theorem 5.7. Suppose L is an i-trivial link and j =1= i. Then oj (L) is obtained 
from ni(L) by replacing Vj with Vi' Zj with zi' and each elementary value 
[akl#i"'#iakn ] with [akl#j"'#jakn ]. Similarly, Wj(L) is obtained from 
Wi(L) by replacing Vj with Vi and Zj with zi' 

Corollary 5.S. If L is both 1- and 2-trivial and interchangeable, that is, L = L, 
then n j (L) is obtained from n j (L) by replacing v j with Vi' Z j with Z i ' 
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and each elementary value [a kl #i ... #i akn ] with [akl #j ... #j akn ]. Similarly, 
Wj(L) is obtainedfrom Wi(L) by replacing Vj with Vi and Zj with Zi' 

Thus, n I (L) and n2 (L) can sometimes be used to show that a link is not 
interchangeable. For example, they may be used to show that the link 7~, 
as oriented in Figure 4.1, is not interchangeable. However, even the Conway 
polynomial can detect this. (So can dl and d2 , as shown in [HP].) Even as an 
unoriented link 7~ is not interchangeable. This can be seen by considering how 
each component wraps around the other. In general, if L is an i-trivial link, let 
wrapi(L) denote the minimal geometric intersection number of the j-sublink 
of L with any disk that spans the i-component of L. 

Theorem 5.9. Let L be an i-trivial link with 
. k k n'(L) = LO"r(vj , z)[a ',I #i ... #i a "n,]. 

Then 
maxr{lkr 11+'" + Ikr n I} ~ wrapi(L). . . , 

Moreover. these quantities are equal mod 2. 
Proof. Suppose wrapi(L) = m. Then there exist an i-punctured diagram of L 
and a branch cut from the puncture to infinity meeting L in exactly m points. 
If D has no crossings, L must be an i-connected sum of m Hopf links since 
m is minimal. In this case the result is obviously true. Assume now that D 
has k crossings but that the result is true for any link having an i-punctured 
diagram with fewer than k crossings. By placing basepoints on each component 
of D as far away as possible from the puncture and making D descending with 
respect to this choice of basepoints, we arrive at a descending diagram where 
once again the theorem is clearly true. But the diagrams produced by smoothing 
crossings all have k - 1 crossings and so by assumption satisfy the theorem. 
Finally, using the crossing rule to combine these polynomials will produce a 
value for D which also satisfies the theorem. 0 

Computing nl and n2 for the link 7~ yields 
I 2 -2 2 -2 2 -I -I 3 -I n(76)=(2-v2 +z2+ v2 z2)[lh+(v2 z2+ V2 z2)[a#l a ]1 

and. 
2 2 -4 -2 2 -4 2 -I -3 -3 3 -I n(76 )=(vl -VI ZI+VI zl)[lh-(2v I ZI+VI ZI+VI zl)[a#2 a h 

-3 2 -2 -2 2 -2 
+VI zl[a #2 a h-vi zl[a#2 a #2 a h· 

Here we have subscripted the elementary values with i = 1, 2 to especially 
emphasize that these indeterminates correspond to elementary links taken from 
different elementary sets. Thus the values of nl and n2 of 7~ show that the 
components wrap at least 2 and 4 times, respectively, about each other. The 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



228 JIM HOSTE AND M. E. KIDWELL 

FIGURE 5.2 

wrapping numbers are in fact equal to 2 and 4, as can be seen from specific dia-
grams of the link. The Conway polynomials also provides lower bounds on the 
wrapping numbers and these can be used to show that 7~ is not interchangeable. 

The following example, however, exhibits a noninterchangeable boundary 
link. Since the Conway polynomial vanishes for boundary links, we cannot use 
it as a tool to study interchangeability in this case. 

Example 5.10. Let L be the dichromatic boundary link shown in Figure 5.2 
Then one can compute 

1 4422 2 2242 24 o (L) = [v2(2 - v2) + v2(1 + v2)(1 - v2)(1 + 2v2)z2 + v2 (1 + v2)(1 - v2)z2][1] 
3 2 2 3 2 2 3 5 2 5 -I + [2v2 (1 + v2)(1 - V2)z2 - 2V2 (1 + v2) z2 - v2 (1 + v2)z2][a #1 a] 

5 2 3 -2 2 4 2 4 -I -I 2 
+v2(I+v2)z2[a #I a ]+v2(I+v2)z2[a #Ia #a] 

3 2 3 -I -I 
+ v2 (1 + v2)z2[a #1 a # 1 a #1 a] . 

Computing 02(L) is much more laborious than computing 0 1 (L) , but one can 
compute the terms of the form cv~[1] more easily. These are (v~ +v~ -v:O)[I]. 
Hence, by Corollary 5.8, L is not interchangeable. 0 

We close with the following example of two 2-bridge links which have the 
same value of 0 1 (or 0 2). This example was shown to us by J. H. Przytycki. 

Example 5.11. The polynomial 0 1 (or 0 2 ) cannot distinguish the following 
two 2-bridge links: 

-I -I -I -I -I -I -I -I -1-1 
LI = H(ab aba bab a ba ), L2 = H(a bab aba ba b a). 

To see that 0 1 (L 1) = 0 1 (L2 ) it is sufficient to consider skein triples involving 
the "middle" b. Moreover, it follows from the classification of 2-bridge links 
that LI and L2 are different. 0 
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