
UC San Diego
UC San Diego Previously Published Works

Title
Dictionary design for text image compression with JBIG2

Permalink
https://escholarship.org/uc/item/2m25k180

Journal
IEEE Transactions on Image Processing, 10(6)

ISSN
10577149

Authors
Ye, Y.
Cosman, P.

Publication Date
2001-06-01

DOI
10.1109/83.923278
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2m25k180
https://escholarship.org
http://www.cdlib.org/


818 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

Dictionary Design for Text Image Compression
with JBIG2

Yan Ye, Student Member, IEEE,and Pamela Cosman, Senior Member, IEEE

Abstract—The JBIG2 standard for lossy and lossless bilevel
image coding is a very flexible encoding strategy based on pat-
tern matching techniques. This paper addresses the problem of
compressing text images with JBIG2. For text image compression,
JBIG2 allows two encoding strategies: SPM and PM&S. We
compare in detail the lossless and lossy coding performance using
the SPM-based and PM&S-based JBIG2, including their coding
efficiency, reconstructed image quality and system complexity. For
the SPM-based JBIG2, we discuss the bit rate tradeoff associated
with symbol dictionary design. We propose two symbol dictionary
design techniques: the class-based and tree-based techniques.
Experiments show that the SPM-based JBIG2 is a more efficient
lossless system, leading to 8% higher compression ratios on
average. It also provides better control over the reconstructed
image quality in lossy compression. However, SPM’s advantages
come at the price of higher encoder complexity. The proposed
class-based and tree-based symbol dictionary designs outperform
simpler dictionary formation techniques by 8% for lossless and
16–18% for lossy compression.

Index Terms—Bilevel image coding, JBIG2, soft pattern
matching, symbol dictionary, text image compression.

I. INTRODUCTION

T HE JBIG2 standard [1], [2] is the new international stan-
dard for bilevel image compression. Bilevel images have

only one bit-plane, where each pixel takes one of two possible
colors. Prior to JBIG2, compression of bilevel images was ad-
dressed by facsimile standards such as ITU-T recommendations
T.4, T.6, and T.82 (JBIG1) [3], [4]. However, these recommen-
dations provide only for lossless compression of bilevel images.
JBIG2 is the first one that also provides for lossy compression.
A properly designed JBIG2 encoder not only achieves higher
lossless compression ratios than the other existing standards, but
also enables very efficient lossy compression with almost unno-
ticeable information loss.

Another main advantage of JBIG2 is its progressivity. JBIG2-
compliant bitstreams can be made progressive in two senses:
quality progressiveandcontent progressive. A quality progres-
sive bitstream first provides a lossy representation of the orig-
inal image at a relatively low bit rate, then successively refines

Manuscript received June 29, 2000; revised February 22, 2001. This work was
supported by the National Science Foundation under Grants MIP-9617366 and
MIP-9624729 (CAREER), and by the Center for Wireless Communications,
University of California at San Diego, La Jolla. The associate editor coordi-
nating the review of this manuscript and approving it for publication was Prof.
Touradj Ebrahimi.

The authors are with the Electrical and Computer Engineering
Department, University of California at San Diego, La Jolla, CA
92093-0407 USA (e-mail: yye@code.ucsd.edu; pcosman@code.ucsd.edu;
http://www.code.ucsd.edu/cosman/).

Publisher Item Identifier S 1057-7149(01)04478-5.

it to less lossy versions, until finally the reconstructed image be-
comes strictly lossless. A content progressive bitstream orders
the different types of image content, for example, first text, then
halftones, and finally general graphics (e.g., line art).

For these reasons, besides the obvious facsimile application,
JBIG2 will be useful in a variety of different applications, in-
cluding document storage and archiving, the World Wide Web,
wireless communications, and printing. To accomodate the var-
ious application needs, JBIG2 provides a standardized toolkit
from which each application can select different parts based on
its own system resources and requirements.

A typical JBIG2 encoder will first segment an image into
different regions [5] and then use different coding mechanisms
for text and for halftones. In this paper, we are concerned with
compressing text images, defined as bilevel images which con-
sist mainly of repeated text characters and possibly some gen-
eral graphic data (e.g., line art) but no halftones. A JBIG2 en-
coder uses pattern matching techniques to efficiently compress
the textual regions. For general graphic data not identified as
text, the encoder will use a cleanup coder which is essentially a
basic bitmap coder such as specified by JBIG1 or T.6.

To encode a page of text, rather than coding all the pixels of
each occurrence of each character, we code the bitmaps of a rep-
resentative subset and put them into thesymbol dictionary. We
define asymbolas one black connected component. We can ex-
tract symbols from the input image using a standard segmenta-
tion algorithm [6]. Usually one symbol represents an instance of
a certain alphanumeric character; however, characters that con-
tain separated parts, e.g., English letter “i,” will be extracted as
more than one symbol. Based on how the symbol dictionary is
formed and how symbol bitmaps are compressed, JBIG2 de-
fines two modes for the compression of text:pattern matching
and substitution(PM&S) [7] andsoft pattern matching(SPM)
[8].

Viewing the bitmap of each symbol as a binary pattern, we
can measure the similarity between two symbols using stan-
dard pattern matching techniques. When a certain matching cri-
terion declares a match between two symbol bitmaps that ac-
tually represent two different characters, we say a substitution
error has occurred. For the PM&S-based JBIG2 system, as we
will explain shortly, adopting a pattern matching criterion that
is robust against substitution errors is particularly important.
In [9], a pattern matching technique is introduced that is ro-
bust against character substitutions but very computationally de-
manding. In the JBIG2 system we built, we adopt the Hamming
distance matching criterion. We measure the percentage of dif-
ferent pixels between two symbols (binary patterns). In order to
control substitution errors, we set a low mismatch threshold.

1057–7149/01$10.00 © 2001 IEEE



YE AND COSMAN: DICTIONARY DESIGN FOR TEXT IMAGE COMPRESSION WITH JBIG2 819

In Section III, we will discuss how to choose representative
patterns to form the dictionary for an SPM-based JBIG2 en-
coder. Prior to our work, Zhanget al.also addressed codebook
design for text image compression [10], [11]. Their methods are
not directly comparable to ours for two reasons. Firstly, PM&S,
as opposed to SPM, is used as their framework. Secondly, their
work is not related to JBIG2, and so a number of system com-
ponents, e.g., location coding, dictionary structure, and index
coding, differ significantly from ours.

This paper is organized as follows. In Section II we elaborate
on the two text compression modes in JBIG2. In Section III we
investigate the problem of symbol dictionary design for SPM-
based JBIG2. In Section IV we present our experimental results
in terms of compression performance and system complexity.
We conclude the paper in Section V.

II. TEXT IMAGE COMPRESSION WITHJBIG2

In this section we explain in detail the two text coding modes
supported by JBIG2: PM&S and SPM. First, we will explain
how these two systems work and their respective advantages and
disadvantages in lossless and lossy compression. Then, we will
explain how JBIG2 organizes the different types of information
into segments for text image compression.

A. Pattern Matching and Substitution

Ideally, in the symbol dictionary, we want one and only one
symbol bitmap to represent one certain character, such as the
letter “b.” This way each time there is another instance of the
letter “b,” we can use a pointer to the “b” in the symbol dic-
tionary to describe the bitmap of the current “b.” This leads to
the idea of pattern matching and substitution (PM&S) [7]. In
PM&S, a pattern matching criterion is first chosen to measure
the mismatch between two symbols. To code a new symbol, we
look for the dictionary entry which has the smallest mismatch
with the symbol to be coded. If that smallest mismatch is less
than the preset threshold, we code the symbol by using a pointer
to the dictionary entry. If the closest dictionary entry is too far
away, we code the new symbol bitmap with a JBIG1 or T.6 type
of entropy encoder (calleddirect coding). Then we add the new
symbol to the dictionary. Fig. 1 describes the typical coding pro-
cedure of a PM&S system.

Use of PM&S allows high compression ratios for text im-
ages that have many repeated symbols. However, it is inher-
ently lossy and there are inevitable substitution errors. How fre-
quently these occur depends solely on the pattern matching cri-
terion and threshold selected. If these errors are not acceptable,
JBIG2 allows the use of a residual coder which usesrefinement
coding [12]. Refinement coding refers to coding the original
image again with an arithmetic coder using context information
from both the lossy image transmitted and the already coded part
of the original image. The overall compression thus achieved is
better than that obtained by coding the original image by JBIG1.
We will discuss refinement coding further when we introduce
SPM. Besides refining the lossy image to its strictly lossless ver-
sion, the encoder can also elect to refine it merely to a less lossy
version.

Fig. 1. Flow chart of a typical PM&S system.

B. Soft Pattern Matching

As an alternative to PM&S, JBIG2 allows soft pattern
matching (SPM) [8]. Fig. 2 shows the original SPM system
block diagram as proposed in [8]. In SPM, if no match is found
in the symbol dictionary, the current bitmap is coded with
direct coding as in PM&S. But when a matching dictionary
entry is found for the current symbol, SPM differs from PM&S
in coding the new symbol with refinement coding and adding
it to the dictionary.

In Fig. 3, we show the JBIG2-compliant context templates
for direct and refinement coding used in our implementation.
In refinement coding, to predict the color of the current pixel,
the arithmetic coder not only uses knowledge about its causal
neighbors, but also draws information from the causal and non-
causal neighbors from the corresponding pixel in the reference
bitmap. Therefore, refinement coding achieves more accurate
prediction and hence higher compression ratios. Naturally, in
order to improve the prediction accuracy in refinement coding,
the reference bitmap should be a close match to the current one.
However, we note that even using a totally mismatched refer-
ence symbol merely leads to reduced compression efficiency,
not to any substitution errors. The residual coder mentioned ear-
lier uses refinement coding on the entire image level rather than
on the symbol level. To transmit the current image (either the
lossless one or a less lossy one), the residual coder uses knowl-
edge from both the already coded portion of the current image
and the lossy image transmitted to make prediction more accu-
rate.

Without the two dashed boxes in Fig. 2, SPM is a strictly loss-
less system. To achieve lossy compression with SPM, [8] pro-
posed three preprocessing techniques to introduce information
loss in a restricted manner. These techniques are calledspeck



820 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

Fig. 2. Flow chart of the original SPM system.

Fig. 3. Contexts used for direct and refinement coding: To code the pixel
marked X, the binary arithmetic coder forms a context using the neighboring
pixels.

elimination, edge smoothing, andshape unifying. Speck elim-
ination wipes out very tiny symbols or flying specks (symbols
no bigger than 2 2). Edge smoothing fixes jagged edges by
flipping protruding single black pixels or indented single white
pixels along text edges. Shape unifying (see Fig. 4) tries to make
the current symbol’s bitmap as similar as possible to its ref-
erence bitmap, without introducing “visible” changes. This is
achieved by flipping pixels in the current bitmap if they are iso-
lated areas of difference with the reference bitmap. Throughout
this paper, we use the term “isolated” to mean a 11, 1 2,
or 2 1 block of pixels. This modified current bitmap is then
refinement coded losslessly.

Shape unifying gives the largest amount of improvement over
compressing losslessly. Our experiments show that using only
the first two techniques together can improve compression by
around 8% over the strictly lossless case, while adding shape
unifying provides approximately 40% improvement. Shape uni-
fying is so efficient because isolated differences between the
current bitmap and its reference are very detrimental to arith-
metic coding efficiency (even more so than clustered differ-

Fig. 4. Example of shape unifying. The modified new symbol (e) is losslessly
coded.

ences); shape unifying completely eliminates such events. Fur-
thermore, except in the special case of very tiny symbols, these
preprocessing approaches do not introduce substitution errors.
The loss of visual information is almost imperceptible. Com-
pared to PM&S where the error image may contain many clus-
tered errors, SPM-based lossy compression generates mostly
dispersed errors. The quality of such reconstructed images is
better from the point of view of character recognition and vi-
sual appearance.

If a lossless or less lossy version of the original image is to
be requested later, as in the PM&S case, the SPM encoder can
also use a residual coder to efficiently transmit the original or
the less lossy image using the lossy version already sent.

Notice that speck elimination and edge smoothing are truly
preprocessing techniques. Shape unifying, on the other hand, is
not strictly a preprocessing procedure since it is not done until
after symbols find their best matches in the dictionary, which,
for the proposed dictionary design techniques, will not happen
until the entire dictionary itself is finally decided. Once the en-
tire symbol set is altered with these three approaches, the page
is compressed losslessly; no further loss will be introduced.

Perfect Symbols:For symbols that are matched in the dictio-
nary, PM&S transmits them using only an index pointer. SPM
transmits not only the index pointer, but also the refinement
coded bitmap. Therefore, PM&S encodes faster. However, in
the lossy SPM case, the bitmap coding procedure can be sped
up by taking advantage ofperfect symbols. Perfect symbols are
those refinement symbols that become identical to their refer-
ences after shape unifying. That is, the block in Fig. 4(d) is
blank. For perfect symbols, the following two facts hold true:

1) there is no need to send a symbol’s bitmap with refine-
ment coding if it is perfect;

2) a dictionary symbol that becomes perfect can be removed
from the dictionary.

Obviously, 1) saves compression time by skipping the expen-
sive arithmetic coding procedure. Experimental results in Sec-
tion IV will show that shape unifying can sometimes render



YE AND COSMAN: DICTIONARY DESIGN FOR TEXT IMAGE COMPRESSION WITH JBIG2 821

a significant percentage of perfect symbols, thereby compen-
sating for the higher complexity of an SPM encoder. As will be
discussed later, 2) can further improve compression by reducing
the dictionary size and hence bits spent on index coding.

C. JBIG2 Segments

When a symbol bitmap is extracted from the input image,
its location information is obtained at the same time. These
different types of information are organized into JBIG2 seg-
ments. For a typical page of text, a group of dictionary sym-
bols will be transmitted first in thesymbol dictionary segments
[1]. There are two types of symbol dictionaries:direct dictio-
nary andrefinement/aggregate dictionary. Entries in the direct
dictionary are symbols that do not refer to any other symbols.
Their bitmaps are Huffman coded or arithmetically coded using
direct coding. Entries in the refinement/aggregate dictionary are
symbols that refer to some other dictionary symbol (either in
the direct or in the previous part of the refinement/aggregate
dictionary). Their bitmaps are arithmetically coded using re-
finement/aggregate coding. Aggregate coding is a special mode
of refinement coding that allows the current bitmap to use two
or more bitmaps at the same time as its reference. Symbols in
the dictionary segments are arranged into classes with the same
height; inside one height class symbols are usually sorted by
width, making transmittal of size information more efficient.

After the dictionary segments, next are encoded thetext re-
gion segments, in which the makeup of the input page is de-
scribed to the decoder. Each text region segment consists of
narrow horizontal coding strips. In the transpose mode, coding
strips are vertical. The symbol instances whose reference cor-
ners (e.g., the lower left corner) lie inside the coding strip are en-
coded together. To describe each symbol instance, several things
are transmitted: its vertical offset relative to the top of the cur-
rent strip, its horizontal offset relative to the previous symbol
instance, its dictionary index, a one-bit flag to signal whether
its bitmap is refined from the dictionary symbol it refers to, and
its refinement coded bitmap if the previous bit is one. We call
the refinement coding of bitmaps that happens in the text region
segmentsembedded coding. In PM&S, no embedded coding is
used.

Since a typical text image can also contain line art that is
not identified as text, such general graphics are encoded in the
generic region segments. Generic region segments are encoded
with the cleanup coder, a basic bitmap coder such as specified
in JBIG1 or T.6.

If the page image described so far is lossy, and the lossless
image or a less lossy one is desired, the encoder transmits the
refinement information ingeneric refinement region segments
using a residual coder.

In Fig. 5, we show the order in which different types of JBIG2
segments are sent in PM&S and SPM systems. We note that the
PM&S system does not need to send a refinement dictionary
segment.

III. SYMBOL DICTIONARY DESIGN FORSPM-BASED JBIG2

For a PM&S-based JBIG2 encoder, ideally, we want one and
only one symbol bitmap in the dictionary to represent one cer-

Fig. 5. PM&S- and SPM-based JBIG2 systems.

tain character. This way all distinct characters get represented
and no bitmap and index resource is wasted representing some
characters repeatedly. For an SPM-based JBIG2 encoder, the
goal is not as obvious. In SPM, a matching dictionary symbol
is not directly substituted for the current symbol; rather, it pro-
vides useful prior knowledge to guide the refinement coding of
the current bitmap. A more accurate match means less expen-
sive refinement coding. Therefore, the symbol dictionary should
be seen as a pool of useful reference information rather than as
a collection of distinct characters that occur in the image. An
SPM dictionary can have several symbols inside it representing
the same character, as long as each provides some useful refer-
ence information. Furthermore, sometimes it may be efficient to
refine a symbol representing one character from a symbol rep-
resenting a different character. For example, the letters “c” and
“o” are similar enough that the current “c” is better off being
coded by refining the previous “o” than by direct coding.

In SPM, the basic bit rate tradeoff associated with symbol
dictionary design is as follows. If one puts more symbols into
the dictionary, all dictionary symbols have a longer index. Thus
index codingwill require more bits. However, with more dictio-
nary symbols, all symbols will have a broader range of choices
for more accurate matches, and hencerefinement codingcan be
made less expensive. Therefore, to resolve the tradeoff at a fa-
vorable point, our goal is to design a reasonably small dictio-
nary that can still provide comprehensive and accurate refer-
ence information. This involves not only choosing a good rep-



822 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

Fig. 6. Super-class merging process. Shaded areas indicate three existing super-classes. Black symbols are super-class leaders. Thin arrows show the reference
relationship within each super-class. Removal of the dashed thin arrows breaks the unique loop in each super-class. Thick arrows show how the three leaders are
matched at the next round. Removal of the dashed thick arrow breaks the new loop. The three existing super-classes are merged into one new super-class.The new
leader is the black “e” in the middle.

resentative small subset from the entire extracted symbol set
as the dictionary, but also deciding the reference relationships
among dictionary symbols so that we can efficiently compress
the dictionary itself. That is, how should we decide the reference
relationship between them in such a way that each dictionary
symbol can have an accurate reference and thus be compressed
efficiently?

In this section, we will first introduce two simple existing
methods for dictionary formation, and then we will elaborate
on the two proposed dictionary design techniques, one based on
the concept of classes, the other based on minimum spanning
trees.

A. Simple Methods for Dictionary Formation

As shown in Fig. 2, the original SPM system proposed by
Howard [8] described a sequential way to form the dictionary.
As each symbol is extracted from the page, its bitmap is matched
with the existing dictionary entries (this match is prescreened
by size) and transmitted with direct or refinement coding de-
pending on whether the best match found in the dictionary is
acceptable. Then, the new symbol is added to the dictionary.1

The dictionary size keeps increasing as the page gets processed.
By the end of the page, the dictionary contains every extracted
symbol. We refer to this asone-passdictionary formation.

The one-pass dictionary inevitably containssingletons[6],
[13], i.e., dictionary entries that are never referenced by other
symbols. They are detrimental to compression efficiency in that
they provide no useful reference information, yet dictionary in-
dices are allocated to them, thereby increasing the length of all
dictionary indices. Singletons are of two types.Direct singletons
are symbols that neither refer to other symbols nor are referred
to by other symbols; usually they are “strange” symbols in the
image, e.g., a company logo in a business letter. Direct single-
tons can be removed from the direct dictionary and relegated
to generic region segments (the cleanup coder) to be coded to-
gether with other general graphics.Refinement singletonsare

1Later in [2], the authors described the SPM system as conditionally adding
the new symbol into the dictionary after coding its bitmap but did not give more
detail. Here, we only consider the simpler case where each symbol is added into
the dictionary.

symbols that refer to other symbols but are not referred to by
any one else. They can be removed from the refinement dic-
tionary and relegated to the text region segments for embedded
coding. We will refer to the dictionary formation method that
excludes direct and refinement singletons as thesingleton ex-
clusiondictionary. Forming this singleton exclusion dictionary
is still essentially one-pass in the sense that each symbol finds
its best match only among previous symbols.

B. Class-Based Symbol Dictionary Design

Because a JBIG2 encoder has access to the entire set of ex-
tracted symbols before any actual coding is carried out, each
symbol can find its best match amongall other symbols. There-
fore each symbol can potentially find a more accurate reference
symbol. In our class-based symbol dictionary design technique
[14], we define a class to be a set of symbols for which

1) each symbol in a class has its best match symbol also
within the class;

2) there is no way of subdividing the class into subgroups
in such a way that each symbol in a subgroup still has its
best match in the subgroup.

One way to partition the entire symbol set into classes is to
point each symbol to its best match. This way the symbol set is
partitioned into small pieces of connected graphs with very sim-
ilar symbols clustered together. These connected graphs have
weighted edges where the weights are the mismatch scores be-
tween each pair of symbols. Since class members are very sim-
ilar, only one dictionary symbol is needed to provide reference
information for one class. This dictionary symbol is called the
class representative. We choose the class representative as the
symbol with the smallest average mismatch within the class.

After a dictionary consisting of class representatives has
been formed, we follow a similar procedure recursively to
efficiently compress the dictionary itself. First, each dictionary
symbol is pointed to its best match among other dictionary
symbols, so the dictionary symbols are partitioned into small
connected graphs. Each graph has exactly one loop inside;
we call these connected graphssuper-classes(see Fig. 6).
Each loop is broken by eliminating the edge with the highest



YE AND COSMAN: DICTIONARY DESIGN FOR TEXT IMAGE COMPRESSION WITH JBIG2 823

weight (i.e., biggest mismatch score); this generates one
super-class leader for each super-class. At the next round,
these super-class leaders go out and find their best matches
among other super-classes (not just other super-class leaders).
In this way super-classes are merged together. For each merge
we will have another unique loop within the newly generated
super-class, which is broken in the same manner as before. We
repeat this “match–merge–break” iteration recursively until no
super-class leader can find an acceptable best match among
the other super-classes, i.e., the smallest mismatch score is no
longer below the preset threshold. At this point the dictionary
symbol set is partitioned into disjoint super-classes that are
sufficiently dissimilar from each other. We have obtained a
suboptimal solution to the reference relationship among the
dictionary symbols. The final super-class leaders go into the
direct dictionary and other class representatives go into the
refinement dictionary. The natural order by which symbols
are extracted has been changed, and we will need to reorder
the dictionaries so that each symbol comes after its reference
symbol.

C. Tree-Based Symbol Dictionary Design

In the dictionary design technique based on minimum
spanning trees [15], we first consider all the extracted symbols
as a set of vertices. We try to connect each pair of vertices
with an edge whose weight is the mismatch score between
the corresponding symbols. Because weights can not exceed
the preset mismatch threshold, there is no edge connecting
symbols that have unacceptable mismatch. Therefore, the entire
extracted symbol set is represented by a number of undirected
graphs. Strictly speaking, these graphs are not undirected as the
mismatch from symbol A to symbol B is not necessarily the
same as the mismatch from symbol B to symbol A. However,
this difference is small, and so we treat the two scores as equal.

To obtain the reference relationship among all symbols suit-
able for compression, many edges in the graphs must be elimi-
nated. This is because

1) each symbol needs only one symbol as its reference;
2) symbols can not refer to each other circularly, i.e., the

final graphs must be acyclic.
The final matching graphs should be trees spanning all the

symbols. Furthermore, for the compression to be efficient, the
overall weight (i.e., mismatch) of the trees should be small. The
minimal overall weight solution is given by the classic minimum
spanning tree (MST) algorithm. We use Kruskal’s Algorithm
[16]. First, we take out all the edges from the initial graphs,
leaving only vertices. Then we put back the next edge with the
smallest weight provided that it does not introduce cycle into
any of the current graphs. We continue until we can add no more
edges into the existing graphs. That gives us the final MSTs.
Fig. 7 shows the initial matching graphs and the MSTs con-
structed. The isolated nodes in the picture represent “strange”
symbols that resemble no other symbol; they are direct single-
tons and will be coded in generic region segments.

After the MSTs are obtained, we need to decide a root node
for each MST. See the “a” tree and the “b” tree in Fig. 7. We
would like to choose the root that gives the lowest refinement

Fig. 7. Minimum spanning trees constructed from original matching graphs.
Broken edges existed in the original graphs but are discarded by Kruskal’s
algorithm.

and index coding cost. For refinement coding, once an MST is
constructed, the total amount of mismatch this tree carries (this
is defined as the sum of the weights of all the edges) is fixed re-
gardless of the choice of root. Although mismatch score based
on Hamming distance does not correspond directly to refine-
ment coding efficiency, experimentally it is observed that this
mismatch score is a fairly accurate indicator of the actual re-
finement compression efficiency. Therefore, refinement coding
should not be affected significantly by choosing different nodes
as the root.

However, index coding cost does directly relate to the choice
of root. Since the leaves of the trees are refinement singletons
which will not get assigned dictionary indices, more leaves
means lower index coding cost. For each MST, we choose
arbitrarily any node with degree greater than 1 as its root (a
node’s degree is the number of connecting edges it has). This
is because the following theorem is true (proof is trivial).

Theorem 1: For a tree with nodes, of which are degree-1
nodes, , it will have leaf nodes if any degree-1 node
is chosen as the root, and haveleaf nodes otherwise.

MSTs give us the optimal reference relationship between ex-
tracted symbols. After we have chosen the tree roots, we con-
struct the symbol dictionary and calculate its size. Suppose al-
together symbols are extracted (i.e., the undirected graphs
have vertices). Using Kruskal’s algorithm, trees are con-
structed. Out of the trees, trees have only one node,
and have more than one node. For thetrees with more than
one node, assume we choose their roots as just described and get

leaf nodes in total. The symbols represented by the
single-node trees are direct singletons. Theleaf nodes from



824 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

the multinode trees are refinement singletons. These single-
tons do not go into the dictionary. All the tree roots go into
the direct dictionary; the remaining internal nodes
go into the refinement dictionary.

D. Changing the Dictionary Size

Using “good” dictionaries (reasonably efficient suboptimal
dictionaries) with different sizes, we can analyze the bit tradeoff
problem, and try to resolve it at a favorable point for a particular
page image. In this section, we explain how to modify sizes for
the class-based and tree-based symbol dictionaries.

1) Class-Based Design:The mismatch threshold deter-
mines the number of classes and therefore the class-based
dictionary size. The size can be modified by merging similar
classes before putting their representatives into the dictionary.
To do this we find the two existing classes that are the most
similar, i.e., their representatives have the smallest mismatch. If
these two classes are sufficiently similar, we merge them into a
new one. We then choose the new representative as the symbol
with the lowest average mismatch within the new class. We
repeat this until a desired dictionary size is reached or until we
can find no similar classes.

2) Tree-Based Design:The initial dictionary constructed
from the MSTs has direct dictionary symbols and

refinement dictionary symbols. The direct dictio-
nary size cannot be changed unless we use a different mismatch
threshold. The refinement dictionary size, however, is reducible
by increasing the number of leaf nodes. To do this, we consider
each internal node as a leaf candidate. To change an internal
node to leaf, we need to relocate all its children to other internal
nodes. For each child, its next best parent is chosen as the
internal node that gives the next lowest mismatch and is not
this child’s offspring (otherwise we will introduce a cycle).

Therefore, for each internal node, we can define itscost as
leaf as the sum of all the mismatch differences its children will
suffer by being relocated to their new parents. Sometimes we
may not find a new parent with an acceptable mismatch. In this
case the child can not relocate; its parent’s cost as leaf is infinite.

Fig. 8 illustrates the tree modification process. Starting from
the initial MSTs, we calculate every internal node’s cost. We
choose the node with the lowest cost as leaf, relocate its children
to their new parents, and make this node a new leaf. The dictio-
nary size decreases by one. By doing so, the parent–offspring
relationship for some nodes has changed and we need to recal-
culate their cost as leaf. We continue this greedy process until
some target dictionary size is reached, or until no more valid
leaf candidates can be found and the minimum dictionary size
is attained. This allows us to obtain symbol dictionaries with al-
most arbitrary sizes.

IV. EXPERIMENTAL RESULTS

In this section we show our experimental results on text image
compression using JBIG2. Our encoder is fully JBIG2-com-
pliant. Our test images are from two sources.

1) Two CCITT images that are mainly textual: f01_200 and
f04_200. Their resolution is 200 dpi, size 17282339
pixels;

Fig. 8. Tree modification process. Solids arrows show the current tree.
Lettered nodes are internal nodes. Numbered nodes are leaf nodes. The cost as
leaf is 0.03 for “a” and 0 for “d.” Node “d” is first turned into a leaf. Its child
“5” goes to “c.” Then “a” is turned into a leaf. Its child “c” goes to “b.” Note
that “c” takes its children “1,” “2,” and “5” together with it.

2) Ten images selected from the University of Washington
Document Image Database I [17]. This database contains
about 980 scanned document images. The 10 images we
selected are mostly streak-free, not obviously skewed,
from various sources, and contain mainly text, little line
art and no halftones. All of them have 300 dpi resolu-
tion. Eight of the images have the same size 25923300
pixels, while N03H has size 2480 3508 and S012 2536

3308.

A. PM&S versus SPM

In this section, we compare the lossless and lossy coding per-
formance of the PM&S-based and SPM-based JBIG2 systems.
For the pattern matching criterion, we used the percentage of
mismatch based on Hamming distance in both systems. For the
PM&S system, our experiments show that a mismatch threshold
of 0.1 (meaning that at most 10% of pixels have different colors)
leads to rare substitution errors. Therefore, unless otherwise
stated, we preset the mismatch threshold to 0.1 for PM&S. In
the SPM system, the mismatch threshold is not directly related
to the number of substitution errors, and our experiments show
that the overall compression differs by less than 1% with dif-
ferent thresholds between 0.1 and 0.2. The optimal value occurs
around 0.15; therefore 0.15 is used as the mismatch threshold for
our SPM results.

1) Lossless Compression:Table I lists the total lossless bit
rates and corresponding compression ratios on the 12 test im-
ages for the PM&S- and SPM-based JBIG2. For SPM, singleton
exclusion dictionaries are used to obtain the bit rates shown in
this table. (The more sophisticated SPM symbol dictionary de-
sign methods give further compression gains at the expense of
greater complexity.)

From Table I we see that the SPM-based JBIG2 achieves
more efficient lossless coding. The last row gives the total
number of bytes needed for the two systems to compress the
12 test images losslessly. The total number of uncompressed
bytes is 11 700 164. The compression ratios (CRs) are 23.5 for
PM&S and 25.6 for SPM, respectively. This amounts to about



YE AND COSMAN: DICTIONARY DESIGN FOR TEXT IMAGE COMPRESSION WITH JBIG2 825

Fig. 9. Original and reconstructed images from lossy PM&S and SPM. Test image is S012.

TABLE I
COMPRESSEDFILE SIZES (IN BYTES) FOR LOSSLESSPM&S AND SPM

JBIG2 SYSTEMS

8% better compression for SPM over PM&S. SPM is more
efficient because it successively refines the symbol bitmaps
on-the-fly by referring them to the best reference bitmaps it can
find at the current moment. The PM&S encoder takes care of
refinement coding only after all symbols have been transmitted
at a lossy level. It then uses the residual coder to bring up the
image quality. This is equivalent to refinement coding a group
of symbols based on only one reference. Therefore, PM&S
provides each refinement bitmap with less accurate reference
information. Even though SPM usually generates a larger
symbol dictionary and hence has higher index coding cost, it
achieves better overall compression. A larger dictionary is also
one reason why SPM has longer encoding time as we will show
soon.

In Table II, we compare our lossless encoder with an-
other JBIG2-compliant encoder by University of British
Columbia and Image Power, Inc. This encoder is available at
http://spmg.ece.ubc.ca/jbig2/ as binary executables for several
OS platforms. Currently it has only lossless mode. Although
detailed information about the UBC/Image Power encoder has
not been made publicly available, we attempted to set the en-
coding parameters to values that correspond to our encoder. For
example, the two systems use the same context templates for
direct and refinement coding; they both have the same coding

TABLE II
LOSSLESSCOMPRESSIONRATIOS FROM OUR ENCODER AND UBC/IMAGE

POWER JBIG2 ENCODER

strip size of eight pixels; and they both treat symbols smaller
than 2 2 as specks and code them with cleanup coding, etc.
We see that our encoder compresses more efficiently.

2) Lossy Compression:To achieve lossy compression using
SPM-based JBIG2, the encoder preprocesses the input image
using the three techniques described in Section II-B. The
encoder then encodes the preprocessed image losslessly. This
leads to compression approximately 40% more efficient than
the strictly lossless case, while guaranteeing the reconstructed
image to be different from the original mostly at isolated pixel
positions. For PM&S, using the Hamming distance matching
criterion, we would not have this nice property because the
encoder will indiscriminately introduce clustered errors as well
as isolated ones. This can be seen by combining the results
in Table III which lists the compressed file sizes in bytes and
the percentages of flipped pixels and Table IV which lists
the percentages of single-pixel errors, double-pixel errors and
clustered errors (containing three or more connected error
pixels). To obtain a valid comparison in Table III, we fine tune
the mismatch threshold used in the PM&S system to make the
compressed file sizes very close to those generated from SPM.
From Tables III and IV we see that although the reconstructed
PM&S images contain fewer error pixels, the percentages
of clustered errors are significantly higher in PM&S than in
SPM (27% compared to 4%). Isolated errors are not only less
visually perceptible, but also less likely to cause character
substitutions. The enlarged portions of the original image and
the reconstructed ones from PM&S and SPM are compared
in Fig. 9. Visually the SPM image looks closer to the original
image. It also looks more appealing because edge smoothing
removed the protruding or indenting single pixels, making the



826 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

TABLE III
COMPRESSEDFILE SIZES (IN BYTES) AND PERCENTAGES OFFLIPPED

PIXELS FOR LOSSYPM&S AND SPM SYSTEMS

text edges more continuous and smooth. The superiority of
the lossy SPM system comes at the cost of encoding time and
system complexity. The complexity gap between PM&S and
SPM is even bigger than in the lossless case because lossy
PM&S does not need the residual coder, while lossy SPM has
to perform the three preprocessing steps on the whole image.

3) System Complexity:As shown in Figs. 1 and 2, PM&S
and SPM share very similar structures. Building blocks such
as symbol extraction, location and other numerical data coding,
and cleanup page coding are basically the same. The big differ-
ence is that PM&S does not do refinement bitmap coding. For
lossless coding, the PM&S system needs the residual coder at
the very end. For lossy coding, the SPM system needs to prepro-
cess the input image. In real applications, when using PM&S for
lossy coding, extreme care should be taken in selecting a proper
pattern matching criterion so that the system suffers minimal
character substitution. Usually this means a more sophisticated
pattern matching technique that takes longer to compute [9].
However, in our experiments, we use the same Hamming dis-
tance matching criterion for both systems. We set the mismatch
threshold to be low for the PM&S encoder to suffer rare substi-
tution errors.

Our experiments are done on a Pentium Pro 200 MHz, run-
ning Red Hat Linux 6.0, with 64 MB physical memory. Such
a system is far from state-of-the-art, however, we can still ob-
tain a valid relative comparison between the PM&S and SPM
systems. Our code was not optimized for speed or memory ef-
ficiency.

We use execution time (Unix “time”) and peak memory usage
(“top”) to measure the system complexity. Table V shows the
execution time (in seconds) and peak memory consumption (in
megabytes) of the two systems, in lossless and lossy modes,
averaged over the 12 images. The timing results vary slightly
each time the program is run; therefore we run each test image
three times and take the average.

Singleton exclusion SPM is about three times slower than
PM&S in lossless coding and two times slower in lossy coding.
PM&S encodes only direct bitmaps, which, in our experiments,
account for an average of only 12% of all extracted symbols;
lossless SPM has to encode all extracted symbols and lossy SPM

TABLE IV
RECONSTRUCTEDIMAGE QUALITY FOR PM&S AND SPM. ALL

NUMBERS ARE IN PERCENTAGES

TABLE V
EXECUTION TIME (IN SECONDS) AND PEAK MEMORY USAGE(IN MEGABYTES)

FOR THELOSSLESS ANDLOSSYPM&S AND SPM SYSTEMS

has to encode most of them (about 75% of all the symbols, see
Table VI). Also, PM&S takes less time to match the symbols
with the dictionary because it retains a smaller dictionary with
only direct symbols; SPM adds every symbol into the dictionary,
making it grow much faster.

PM&S needs about 2–4% less physical memory than SPM.
Both systems need a page buffer, which, depending on the image
size, is about 8 MB in our tests. Both systems also need the same
number of arithmetic coders and the same coding strip buffer
used for text region segments. Storing the dictionary only takes
up a small percentage of the total memory; therefore, a smaller
dictionary in PM&S only leads to marginal savings.

Finally, in Table VI, we list the percentages of perfect sym-
bols generated in lossy SPM. This is a measure of how much
encoding time is saved by not coding the bitmaps of the perfect
symbols. While the percentage is image-dependent and varies
a great deal (from 3% to 57%), we see on average 25% of the
symbols are perfect. Omitting the arithmetic coding procedure
for one quarter of all the symbols saves a nontrivial amount of
encoding time. Note that we made no attempt to optimize our
encoder toward generating more perfect symbols. Each symbol
refers to its closest match in the dictionary, regardless of whether
this reference will make it a perfect symbol or not.

B. Different Symbol Dictionaries for SPM-Based JBIG2

In this section we first investigate the effects on coding ef-
ficiency of using different symbol dictionaries for SPM-based
JBIG2. We then change the dictionary sizes to obtain the dictio-
nary size versus compression tradeoff curves.

1) Lossless and Lossy Compression Ratios:Table VII com-
pares the total number of bytes required to encode the test im-
ages using the four symbol dictionary designs discussed in Sec-
tion III: the one-pass, singleton exclusion, class-based and tree-
based dictionaries. The percentages of improvement over the
simplest one-pass design are shown for each of the other three



YE AND COSMAN: DICTIONARY DESIGN FOR TEXT IMAGE COMPRESSION WITH JBIG2 827

TABLE VI
PERCENTAGE OFTOTAL PERFECTSYMBOLS GENERATED BY LOSSYSPM SYSTEM

Fig. 10. Dictionary size versus compression tradeoff curves on two test images.

TABLE VII
TOTAL COMPRESSEDFILE SIZES FORLOSSLESS ANDLOSSYSPM SYSTEMS

WITH THE FOUR DICTIONARIES

TABLE VIII
AVERAGE DICTIONARY SIZES AND REFINEMENT COMPRESSIONRATIOS

(RCRS) FOR THETHREE DICTIONARIES

designs. The one-pass dictionary gives the poorest compres-
sion. By adopting the singleton exclusion dictionary, on av-
erage 5% and 11% of improvement can be achieved for loss-
less and lossy compression, respectively. More sophisticated
dictionary designs lead to greater improvements. In the loss-
less case, the class-based and the tree-based dictionaries both
achieve around 8% of improvement on average. In the lossy
case, the class-based dictionary is the most efficient, achieving
18% of improvement; the tree-based design is not as efficient as
the class-based design but still very comparable, improving the
compression by 16% on average.

Table VIII compares the sizes and corresponding refinement
compression ratios (RCRs) obtained from the three symbol dic-
tionaries. RCR is defined as the number of bits used to store the
raw bitmaps of all refinement symbols divided by the number of
bits spent on refinement coding these bitmaps. The one-pass dic-
tionary is no longer listed for comparison because of its inferior
performance. In lossless coding, the class-based and tree-based
dictionaries achieve very close RCRs (5.62 and 5.64 compared
to 5.65) with only half as many symbols as in the singleton ex-
clusion dictionary (644 compared to 1365). For lossy coding we
have similar results. Therefore, these two dictionaries are pro-

viding about the same amount of useful reference information
even though they are much smaller. This explains the compres-
sion improvements obtained in Table VII.

2) Bit Rate Tradeoff Curves:Fig. 10 shows overall bit rate
as a function of dictionary size for two test images, f01_200
and S012. Image f01_200 contains only 1088 symbols which is
the least among all images, while image S012 contains 5653
symbols, the most among all. Starting with big dictionaries,
we follow the procedures described in Section III-D to shrink
their sizes. For the class-based design, we start from the initial
classes and try to merge the most similar ones subject to the mis-
match threshold. For the tree-based design, the biggest size cor-
responds to the initial MSTs. We relocate tree nodes till we get
down to the smallest possible size for which all the tree branches
still have weights below the mismatch threshold. The images
are compressed using these dictionaries of different sizes. We
plot the size versus bit rate curves in Fig. 10. The tree-based
curves have rather broad flat floors. For both images tested, the
overall compression stays nearly constant (0.5% off the lowest
values) over about 50% of the entire size ranges. So the com-
pression is not very sensitive to the particular dictionary size
chosen as long as it is within a reasonable range. However, the
compression can be hurt by 4–6% if the dictionary is too big or
too small. The class-based curves sit above the tree-based ones
and cover narrower size ranges. They also shoot up faster at the
left end, leading to 6–12% rate loss when the dictionary is too
small. Both designs achieve the best compression at a size very
close to the initial size of the class-based design.

V. CONCLUSION

In this paper, we investigate compression of text images using
the JBIG2 standard. First we compare the PM&S-based and
SPM-based JBIG2 systems, in terms of their coding efficiency,
reconstructed image quality in lossy compression, and system
complexity. The SPM system achieves on average 8% more ef-
ficient compression in the lossless case. In the lossy case, at



828 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 10, NO. 6, JUNE 2001

comparable bit rates, the SPM system also has a better con-
trol over the reconstructed image quality, making clustered er-
rors very unlikely to occur. However, the SPM advantages come
at the cost of higher system complexity: 2–4% higher memory
consumption and two to three times longer encoding time. We
also examine the bit rate tradeoff problem associated with SPM
symbol dictionary design. We propose two new dictionary de-
sign techniques: the class-based and tree-based design. We test
the proposed techniques on a set of 12 text images and find them
to outperform the simplest one-pass dictionary formation by an
average of 8% in lossless compression and 16–18% in lossy
compression. We also propose methods to change the class- and
tree-based dictionary sizes, and plot the bit rate as a function of
dictionary size. Over a very broad size range (50% of the en-
tire size range), the overall compression is not very sensitive to
dictionary size, but it can be hurt by 4–6% using symbol dictio-
naries which are too small or too big. Finally, the tradeoff curves
for the two dictionaries show that the initial class-based dictio-
nary size falls into the optimal dictionary size range. For future
work we will look at extending the proposed dictionary design
methods into multi-page text image coding systems.

ACKNOWLEDGMENT

The authors would like to thank Dr. R. Arps, Prof. H. H. Koh,
and D. Schilling for their helpful discussions.

REFERENCES

[1] JBIG2 Final Draft International Standard, ISO/IEC JTC1/SC29/WG1
N1545, Dec. 1999.

[2] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. Ruck-
lidge, “The emerging JBIG2 standard,”IEEE Trans. Circuits Syst. Video
Technol., vol. 8, pp. 838–848, Nov. 1998.

[3] R. B. Arps and T. K. Truong, “Comparison of international standards
for lossless still image compression,”Proc. IEEE, vol. 82, pp. 889–899,
June 1994.

[4] R. Hunter and A. H. Robinson, “International digital facsimile coding
standards,”Proc. IEEE, vol. 68, pp. 854–867, July 1980.

[5] D. Tompkins and F. Kossentini, “A fast segmentation algorithm for
bi-level image compression using JBIG2,” inProc. 1999 IEEE Int.
Conf. Image Processing, Kobe, Japan, Oct. 1999, pp. 224–228.

[6] I. H. Witten, A. Moffat, and T. C. Bell,Managing Gigabytes. San
Mateo, CA: Morgan Kaufmann, 1999.

[7] R. N. Ascher and G. Nagy, “Means for achieving a high degree of com-
paction on scan-digitized printed text,”IEEE Trans. Comput., vol. C-23,
pp. 1174–1179, Nov. 1974.

[8] P. Howard, “Lossless and lossy compression of text images by soft pat-
tern matching,” inProc. 1996 IEEE Data Compression Conf., J. A.
Storer and M. Cohn, Eds., Snowbird, UT, March 1996, pp. 210–219.

[9] S. Inglis and I. H. Witten, “Compression-based template matching,” in
Proc. 1994 IEEE Data Compression Conf., J. A. Storer and M. Cohn,
Eds., Snowbird, UT, March 1994, pp. 106–115.

[10] Q. Zhang and J. M. Danskin, “Bitmap reconstruction for document
image compression,”Proc. SPIE, vol. 2916, pp. 188–199, Nov. 1996.

[11] Q. Zhang, J. M. Danskin, and N. E. Young, “A codebook generation
algorithm for document image compression,” inProc. 1997 IEEE Data
Compression Conf., Snowbird, UT, Mar. 1997, pp. 300–309.

[12] K. Mohiuddin, J. Rissanen, and R. Arps, “Lossless binary image com-
pression based on pattern matching,” inInt. Conf. Computers, Systems,
Signal Processing, Bangalore, India, Dec. 1984, pp. 447–451.

[13] Xerox Proposal for JBIG2 Coding, ISO/IEC JTC1/SC29/WG1 N339,
June 1996.

[14] Y. Ye, D. Schilling, P. Cosman, and H. H. Koh, “Symbol dictionary de-
sign for the JBIG2 standard,” inProc. 2000 IEEE Data Compression
Conf., Snowbird, UT, Mar. 2000, pp. 33–42.

[15] Y. Ye and P. Cosman, “JBIG2 symbol dictionary design based on min-
imum spanning trees,” inProc. 1st Int. Conf. Image Graphics (ICIG),
Tianjin, China, Aug. 2000, pp. 54–57.

[16] R. Gould,Graph Theory. Redwood City, CA: Benjamin Cummings,
1988, ch. 3, pp. 68–72.

[17] E. S. Askilsrud, R. M. Haralick, and I. T. Phillips, “A quick guide to
UW English document image database I, v. 1.0.,” Intelligent Syst. Lab.,
Univ. Washington, CD-ROM, August 1993.

[18] C. Constantinescu and R. Arps, “Fast residue coding for lossless tex-
tual image compression,” inProc. 1997 IEEE Data Compression Conf.,
Snowbird, UT, Mar. 1997, pp. 397–406.

Yan Ye (S’99) received the B.S. and M.S. degrees in
electrical engineering from the University of Science
and Technology of China, Hefei, in 1994 and 1997,
respectively. She is currently pursuing the Ph.D. de-
gree in electrical engineering at the University of Cal-
ifornia at San Diego, La Jolla, where she is a Graduate
Student Researcher in the Information Coding Labo-
ratory.

Her research interests include data compression
and digital image processing.

Pamela Cosman (S’88–M’93–SM’00) received
the B.S. degree with honors in electrical engi-
neering from the California Institute of Technology,
Pasadena, in 1987, and the M.S. and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, in 1989 and 1993, respectively.

She was an NSF Postdoctoral Fellow with Stanford
University and a Visiting Professor with the Univer-
sity of Minnesota, Minneapolis, from 1993 to 1995.
Since July of 1995, she has been on the faculty of the
Department of Electrical and Computer Engineering,

University of California at San Diego (UCSD), La Jolla, where she is currently
an Associate Professor. Her research interests are in the areas of data compres-
sion and image processing.

Dr. Cosman is the recipient of the ECE Departmental Graduate Teaching
Award, UCSD (1996), a Career Award from the National Science Foundation
(1996–1999), and a Powell Faculty Fellowship (1997–1998). She is an Asso-
ciate Editor of the IEEE COMMUNICATIONS LETTERS, and was a Guest Editor of
the June 2000 special issue on “Error-resilient image and video coding” of the
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. She was the Tech-
nical Program Chair of the 1998 Information Theory Workshop, San Diego, CA.
She is a member of Tau Beta Pi and Sigma Xi.


