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Algorithms for data-driven learning of domain-specific overcomplete dic-
tionaries are developed to obtain maximum likelihood and maximum
a posteriori dictionary estimates based on the use of Bayesian models
with concave/Schur-concave (CSC) negative log priors. Such priors are ap-
propriate for obtaining sparse representations of environmental signals
within an appropriately chosen (environmentally matched) dictionary.
The elements of the dictionary can be interpreted as concepts, features,
or words capable of succinct expression of events encountered in the en-
vironment (the source of the measured signals). This is a generalization
of vector quantization in that one is interested in a description involv-
ing a few dictionary entries (the proverbial “25 words or less”), but not
necessarily as succinct as one entry. To learn an environmentally adapted
dictionary capable of concise expression of signals generated by the envi-
ronment, we develop algorithms that iterate between a representative set
of sparse representations found by variants of FOCUSS and an update of
the dictionary using these sparse representations.

Experiments were performed using synthetic data and natural images.
For complete dictionaries, we demonstrate that our algorithms have im-
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proved performance over other independent component analysis (ICA)
methods, measured in terms of signal-to-noise ratios of separated sources.
In the overcomplete case, we show that the true underlying dictionary and
sparse sources can be accurately recovered. In tests with natural images,
learned overcomplete dictionaries are shown to have higher coding effi-
ciency than complete dictionaries; that is, images encoded with an over-
complete dictionary have both higher compression (fewer bits per pixel)
and higher accuracy (lower mean square error).

1 Introduction

FOCUSS, which stands for FOCal Underdetermined System Solver, is an
algorithm designed to obtain suboptimally (and, at times, maximally) sparse
solutions to the following m x 1, underdetermined linear inverse problem!
(Gorodnitsky, George, & Rao, 1995; Rao & Gorodnitsky, 1997; Gorodnitsky
& Rao, 1997; Adler, Rao, & Kreutz-Delgado, 1996; Rao & Kreutz-Delgado,
1997; Rao, 1997, 1998),

y = Ax, (1.1)

for known A. The sparsity of a vector is the number of zero-valued ele-
ments (Donoho, 1994), and is related to the diversity, the number of nonzero
elements,

sparsity = #{x[i] = 0}
diversity = #{x[i] # 0}

diversity = n — sparsity.

Since our initial investigations into the properties of FOCUSS as an al-
gorithm for providing sparse solutions to linear inverse problems in rel-
atively noise-free environments (Gorodnitsky et al., 1995; Rao, 1997; Rao
& Gorodnitsky, 1997; Gorodnitsky & Rao, 1997; Adler et al., 1996; Rao &
Kreutz-Delgado, 1997), we now better understand the behavior of FOCUSS
in noisy environments (Rao & Kreutz-Delgado, 1998a, 1998b) and as an in-
terior point-like optimization algorithm for optimizing concave functionals
subject to linear constraints (Rao & Kreutz-Delgado, 1999; Kreutz-Delgado
& Rao, 1997, 1998a, 1998b, 1998¢, 1999; Kreutz-Delgado, Rao, Engan, Lee, &
Sejnowski, 1999a; Engan, Rao, & Kreutz-Delgado, 2000; Rao, Engan, Cotter,
& Kreutz-Delgado, 2002). In this article, we consider the use of the FO-
CUSS algorithm in the case where the matrix A is unknown and must be
learned. Toward this end, we first briefly discuss how the use of concave (and

! For notational simplicity, we consider the real case only.
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Schur concave) functionals enforces sparse solutions to equation 1.1. We also
discuss the choice of the matrix, A, in equation 1.1 and its relationship to
the set of signal vectors y for which we hope to obtain sparse representa-
tions. Finally, we present algorithms capable of learning an environmentally
adapted dictionary, A, given a sufficiently large and statistically represen-
tative sample of signal vectors, y, building on ideas originally presented in
Kreutz-Delgado, Rao, Engan, Lee, and Sejnowski (1999b), Kreutz-Delgado,
Rao, and Engan (1999), and Engan, Rao, and Kreutz-Delgado (1999).
We refer to the columns of the full row-rank m x n matrix A,

A=Ta1,...,a,] e R™" n>m, (1.2)

as a dictionary, and they are assumed to be a set of vectors capable of provid-
ing a highly succinct representation for most (and, ideally, all) statistically
representative signal vectors y € R™. Note that with the assumption that
rank(A) = m, every vector y has a representation; the question at hand is
whether this representation is likely to be sparse. We call the statistical gen-
erating mechanism for signals, y, the environment and a dictionary, A, within
which such signals can be sparsely represented an environmentally adapted
dictionary.

Environmentally generated signals typically have significant statistical
structure and can be represented by a set of basis vectors spanning a lower-
dimensional submanifold of meaningful signals (Field, 1994; Ruderman,
1994). These environmentally meaningful representation vectors can be ob-
tained by maximizing the mutual information between the set of these vec-
tors (the dictionary) and the signals generated by the environment (Comon,
1994; Bell & Sejnowski, 1995; Deco & Obradovic, 1996; Olshausen & Field,
1996; Zhu, Wu, & Mumford, 1997; Wang, Lee, & Juang, 1997). This proce-
dure can be viewed as a natural generalization of independent component
analysis (ICA) (Comon, 1994; Deco & Obradovic, 1996). As initially devel-
oped, this procedure usually results in obtaining a minimal spanning set
of linearly independent vectors (i.e., a true basis). More recently, the desir-
ability of obtaining “overcomplete” sets of vectors (or “dictionaries”) has
been noted (Olshausen & Field, 1996; Lewicki & Sejnowski, 2000; Coifman
& Wickerhauser, 1992; Mallat & Zhang, 1993; Donoho, 1994; Rao & Kreutz-
Delgado, 1997). For example, projecting measured noisy signals onto the
signal submanifold spanned by a set of dictionary vectors results in noise
reduction and data compression (Donoho, 1994, 1995). These dictionaries
can be structured as a set of bases from which a single basis is to be selected to
represent the measured signal(s) of interest (Coifman & Wickerhauser, 1992)
or as a single, overcomplete set of individual vectors from within which a
vector, y, is to be sparsely represented (Mallat & Zhang, 1993; Olshausen &
Field, 1996; Lewicki & Sejnowski, 2000; Rao & Kreutz-Delgado, 1997).

The problem of determining a representation from a full row-rank over-
complete dictionary, A = [a1,...,a,], n > m, for a specific signal mea-
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surement, , is equivalent to solving an underdetermined inverse problem,
Ax = y,whichis nonuniquely solvable for any y. The standard least-squares
solution to this problem has the (at times) undesirable feature of involv-
ing all the dictionary vectors in the solution? (the “spurious artifact” prob-
lem) and does not generally allow for the extraction of a categorically or
physically meaningful solution. That is, it is not generally the case that a
least-squares solution yields a concise representation allowing for a precise
semantic meaning.? If the dictionary is large and rich enough in representa-
tional power, a measured signal can be matched to a very few (perhaps even
just one) dictionary words. In this manner, we can obtain concise seman-
tic content about objects or situations encountered in natural environments
(Field, 1994). Thus, there has been significant interest in finding sparse so-
lutions, x (solutions having a minimum number of nonzero elements), to
the signal representation problem. Interestingly, matching a specific signal
to a sparse set of dictionary words or vectors can be related to entropy min-
imization as a means of elucidating statistical structure (Watanabe, 1981).
Finding a sparse representation (based on the use of a “few” code or dictio-
nary words) can also be viewed as a generalization of vector quantization
where a match to a single “code vector” (word) is always sought (taking
“code book” = ”dictionary”).4 Indeed, we can refer to a sparse solution, x,
as a sparse coding of the signal instantiation, y.

1.1 Stochastic Models. It is well known (Basilevsky, 1994) that the sto-
chastic generative model

y=Ax+v, (1.3)

can be used to develop algorithms enabling coding of y € R" via solving
the inverse problem for a sparse solution x € R" for the undercomplete
(n < m) and complete (1 = m) cases. In recent years, there has been a great
deal of interest in obtaining sparse codings of y with this procedure for the
overcomplete (n > m) case (Mallat & Zhang, 1993; Field, 1994). In our earlier
work, we have shown that given an overcomplete dictionary, A (with the
columns of A comprising the dictionary vectors), a maximum a posteriori
(MAP) estimate of the source vector, x, will yield a sparse coding of y in
the low-noise limit if the negative log prior, —log(P(x)), is concave/Schur-
concave (CSC) (Rao, 1998; Kreutz-Delgado & Rao, 1999), as discussed below.

2 This fact comes as no surprise when the solution is interpreted within a Bayesian
framework using a gaussian (maximum entropy) prior.

3 Taking “semantic” here to mean categorically or physically interpretable.

4 For example, n = 100 corresponds to 100 features encoded via vector quantization
(“one column = one concept”). If we are allowed to represent features using up to four

columns, we can encode <1[1)0> + <120> + <120> + (12()) = 4,087,975 concepts showing

a combinatorial boost in expressive power.
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For P(x) factorizable into a product of marginal probabilities, the resulting
code is also known to provide an independent component analysis (ICA)
representation of y. More generally, a CSC prior results in a sparse represen-
tation even in the nonfactorizable case (with x then forming a dependent
component analysis, or DCA, representation).

Given independently and identically distributed (i.i.d.) data, Y = YN =
W1, .-, YN), assEmed to be generated by the model 1.3, a maximum likeli-
hood estimate, Ay, of the unknown (but nonrandom) dictionary A can be
determined as (Olshausen & Field, 1996; Lewicki & Sejnowski, 2000)

A\ML = arg mjx P(Y; A).

This requires integrating out the unobservable i.i.d. source vectors, X =
XN = (x1, ..., xn), in order to compute P(Y; A) from the (assumed) known
probabilities P(x) and P(v). In essence, X is formally treated as a set of
nuisance parameters that in principle can be removed by integration. How-
ever, because the prior P(x) is generally taken to be supergaussian, this
integration is intractable or computationally unreasonable. Thus, approxi-
mations to this integration are performed that result in an approximation
to P(Y; A), which is then maximized with respect to Y. A new, better ap-
proximation to the integration can then be made, and this process is iterated
until the estimate of the dictionary A has (hopefully) converged (Olshausen
& Field, 1996). We refer to the resulting estimate as an approximate maxi-
mum likelihood (AML) estimate of the dictionary A (denoted here by A ).
No formal proof of the convergence of this algorithm to the true maxi-
mum likelihood estimate, Anmy., has been given in the prior literature, but
it appears to perform well in various test cases (Olshausen & Field, 1996).
Below, we discuss the problem of dictionary learning within the frame-
work of our recently developed log-prior model-based sparse source vector
learning approach that for a known overcomplete dictionary can be used to
obtain sparse codes (Rao, 1998; Kreutz-Delgado & Rao, 1997, 1998b, 1998¢,
1999; Rao & Kreutz-Delgado, 1999). Such sparse codes can be found using
FOCUSS, an affine scaling transformation (AST)-like iterative algorithm
that finds a sparse locally optimal MAP estimate of the source vector x
for an observation y. Using these results, we can develop dictionary learn-
ing algorithms within the AML framework and for obtaining a MAP-like
estimate, Ay,p, Of the (now assumed random) dictionary, A, assuming in
the latter case that the dictionary belongs to a compact submanifold corre-
sponding to unit Frobenius norm. Under certain conditions, convergence
to a local minimum of a MAP-loss function that combines functions of the
discrepancy e = (y — Ax) and the degree of sparsity in x can be rigorously
proved.

1.2 Related Work. Previous work includes efforts to solve equation 1.3
in the overcomplete case within the maximum likelihood (ML) framework.
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An algorithm for finding sparse codes was developed in Olshausen and
Field (1997) and tested on small patches of natural images, resulting in
Gabor-like receptive fields. In Lewicki and Sejnowski (2000) another ML
algorithm is presented, which uses the Laplacian prior to enforce sparsity.
The values of the elements of x are found with a modified conjugate gradient
optimization (which has a rather complicated implementation) as opposed
to the standard ICA (square mixing matrix) case where the coefficients are
found by inverting the A matrix. The difficulty that arises when using ML
is that finding the estimate of the dictionary A requires integrating over all
possible values of the joint density P(y, x; A) as a function of x. In Olshausen
and Field (1997), this is handled by assuming the prior density of x is a delta
function, while in Lewicki and Sejnowski (2000), it is approximated by a
gaussian. The fixed-point FastICA (Hyvérinen, Cristescu, & Oja, 1999) has
also been extended to generate overcomplete representations. The FastICA
algorithm can find the basis functions (columns of the dictionary A) one
at a time by imposing a quasi-orthogonality condition and can be thought
of as a “greedy” algorithm. It also can be run in parallel, meaning that all
columns of A are updated together.

Other methods to solve equation 1.3 in the overcomplete case have been
developed using a combination of the expectation-maximization (EM) algo-
rithm and variational approximation techniques. Independent factor anal-
ysis (Attias, 1999) uses a mixture of gaussians to approximate the prior
density of the sources, which avoids the difficulty of integrating out the
parameters X and allows different sources to have different densities. In
another method (Girolami, 2001), the source priors are assumed to be su-
pergaussian (heavy-tailed), and a variational lower bound is developed that
is used in the EM estimation of the parameters A and X. It is noted in Giro-
lami (2001) that the mixtures used in independent factor analysis are more
general than may be needed for the sparse overcomplete case, and they
can be computationally expensive as the dimension of the data vector and
number of mixtures increases.

In Zibulevsky and Pearlmutter (2001), the blind source separation prob-
lem is formulated in terms of a sparse source underlying each unmixed
signal. These sparse sources are expanded into the unmixed signal with a
predefined wavelet dictionary, which may be overcomplete. The unmixed
signals are linearly combined by a different mixing matrix to create the
observed sensor signals. The method is shown to give better separation
performance than ICA techniques. The use of learned dictionaries (instead
of being chosen a priori) is suggested.

2 FOCUSS: Sparse Solutions for Known Dictionaries

2.1 Known Dictionary Model. A Bayesian interpretation is obtained
from the generative signal model, equation 1.3, by assuming that x has the
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parameterized (generally nongaussian) probability density function (pdf),
Py(x) = Z,le W™, 7, = [ e~ gy, (2.1)

with parameter vector p. Similarly, the noise v is assumed to have a param-
eterized (possibly nongaussian) density P;(v) of the same form as equa-
tion 2.1 with parameter vector 4. It is assumed that x and v have zero means
and that their densities obey the property d(x) = d(|x|), for | - | defined
component-wise. This is equivalent to assuming that the densities are sym-
metric with respect to sign changes in the components x, x[i] < —x[i] and
therefore that the skews of these densities are zero. We also assume that
d(0) = 0. With a slight abuse of notation, we allow the differing subscripts
g and p to indicate that d; and d, may be functionally different as well as
parametrically different. We refer to densities like equation 2.1 for suitable
additional constraints on dy(x), as hypergeneralized gaussian distributions
(Kreutz-Delgado & Rao, 1999; Kreutz-Delgado et al., 1999).

If we treat A, p, and g as known parameters, then x and y are jointly
distributed as

Px,y) =P, y;p, 9, A).
Bayes’ rule yields

1 1
P(x|y;p, A) = EP(}/ | x;p, A) - P(x; p, A) = EPq(y—AX) Pp(x) (2.2)

B=Py) =Py;p.q.A) = /P(y | x) - Py(x) dx. (2.3)

Usually the dependence on p and 4 is notationally suppressed, for example,
B = P(y; A). Given an observation, y, maximizing equation 2.2 with respect
to x yields a MAP estimate . This ideally results in a sparse coding of the
observation, a requirement that places functional constraints on the pdfs,
and particularly on d,,. Note that 8 is independent of x and can be ignored
when optimizing equation 2.2 with respect to the unknown source vector x.

The MAP estimate equivalently is obtained from minimizing the negative
logarithm of P(x | y), which is

X=arg mxin dg(y — Ax) + Ady (%), (2.4)

where A = y,/y; and d;(y—Ax) = d;(Ax—y) by our assumption of symmetry.
The quantity } is interpretable as a signal-to-noise ratio (SNR). Furthermore,
assuming that both d,; and d,, are concave/Schur—concave (CSC) as defined in
section 2.4, then the term d,;(y — Ax) in equation 2.4 will encourage sparse
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residuals, e = y — AX, while the term d, (x) encourages sparse source vector
estimates, x. A given value of A then determines a trade-off between residual
and source vector sparseness.

This most general formulation will not be used here. Although we are
interested in obtaining sparse source vector estimates, we will not enforce
sparsity on the residuals but instead, to simplify the development, will
assume the g = 2 i.i.d. gaussian measurement noise case (v gaussian with
known covariance o2 - I), which corresponds to taking,

—~ 1 —_
Valay — AD) = 5 lly — AR, (25)

o2

In this case, problem 2.4 becomes
~ 1 2
X = argmin 5 ly — Ax||” + Ady(x). (2.6)

In either case, we note that A — 0 as y, — 0 which (consistent with
the generative model, 1.3) we refer to as the low noise limit. Because the
mapping A is assumed to be onto, in the low-noise limit, the optimization,
equation 2.4, is equivalent to the linearly constrained problem,

X = argmind,(x) subjectto Ax=y. 2.7)

In the low-noise limit, no sparseness constraint need be placed on the resid-
uals, e = y — AX, which are assumed to be zero. It is evident that the struc-
ture of dy(-) is critical for obtaining a sparse coding, X, of the observation y
(Kreutz-Delgado & Rao, 1997; Rao & Kreutz-Delgado, 1999). Throughtout
this article, the quantity d, (x) is always assumed to be CSC (enforcing sparse
solutions to the inverse problem 1.3). Asnoted, and as will be evident during
the development of dictionary learning algorithms below, we do notimpose
a sparsity constraint on the residuals; instead, the measurement noise v will
be assumed to be gaussian (g = 2).

2.2 Independent Component Analysis and Sparsity Inducing Priors.
Animportant class of densities is given by the generalized gaussians for which

n

dy() = IIx[l) = > Ix[KIIP. (2.8)

k=1

for p > 0 (Kassam, 1982). This is a special case of the larger £, class (the
p-class) of functions, which allows p to be negative in value (Rao & Kreutz-
Delgado, 1999; Kreutz-Delgado & Rao, 1997). Note that this function has
the special property of separability,

dp(x) =) dyp(x[kD),
k=1
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which corresponds to factorizability of the density Py (x),
n
Py(x) = [ [ Pp(xlkD),
k=1

and hence to independence of the components of x. The assumption of indepen-
dent components allows the problem of solving the generative model, equa-
tion 1.3, for x to be interpreted as an ICA problem (Comon, 1994; Pham, 1996;
Olshausen & Field, 1996; Roberts, 1998). It is of interest, then, to consider the
development of a large class of parameterizable separable functions d,(x)
consistent with the ICA assumption (Rao & Kreutz-Delgado, 1999; Kreutz-
Delgado & Rao, 1997). Given such a class, it is natural to examine the issue
of finding a best fit within this class to the “true” underlying prior density
of x. This is a problem of parametric density estimation of the true prior,
where one attempts to find an optimal choice of the model density P,(x)
by an optimization over the parameters p that define the choice of a prior
from within the class. This is, in general, a difficult problem, which may
require the use of Monte Carlo, evolutionary programming, or stochastic
search techniques.

Can the belief that supergaussian priors, P,(x), are appropriate for find-
ing sparse solutions to equation 1.3 (Field, 1994; Olshausen & Field, 1996) be
clarified or made rigorous? It is well known that the generalized gaussian
distribution arising from the use of equation 2.8 yields supergaussian dis-
tributions (positive kurtosis) for p < 2 and subgaussian (negative kurtosis)
for p > 2. However, one can argue (see section 2.5 below) that the condition
for obtaining sparse solutions in the low-noise limit is the stronger require-
ment that p < 1, in which case the separable function d,(x) is CSC. This
indicates that supergaussianness (positive kurtosis) alone is necessary but
not sufficient for inducing sparse solutions. Rather, sufficiency is given by
the requirement that — log P, (x) ~ d,(x) be CSC.

We have seen that the function d,(x) has an interpretation as a (negative
logarithm of) a Bayesian prior or as a penalty function enforcing sparsity
in equation 2.4, where d,,(x) should serve as a “relaxed counting function”
on the nonzero elements of x. Our perspective emphasizes that d,(x) serves
both of these goals simultaneously. Thus, good regularizing functions, d, (x),
should be flexibly parameterizable so that P,(x) can be optimized over the
parameter vector p to provide a good parametric fit to the underlying en-
vironmental pdf, and the functions should also have analytical properties
consistent with the goal of enforcing sparse solutions. Such properties are
discussed in the next section.

2.3 Majorization and Schur-Concavity. In this section, we discuss func-
tions that are both concave and Schur-concave (CSC functions; Marshall &
Olkin, 1979). We will call functions, d,(-), which are CSC, diversity functions,
anticoncentration functions or antisparsity functions. The larger the value of the
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CSC function d,(x), the more diverse (i.e., the less concentrated or sparse)
the elements of the vector x are. Thus, minimizing d,(x) with respect to x
results in less diverse (more concentrated or sparse) vectors x.

2.3.1 Schur-Concave Functions. A measure of the sparsity of the ele-
ments of a solution vector x (or the lack thereof, which we refer to as the
diversity of x) is given by a partial ordering on vectors known as the Lorentz
order. For any vector in the positive orthant, x € R}, define the decreasing
rearrangement

X=X ), Xy ==X =0

and the partial sums (Marshall & Olkin, 1979; Wickerhauser, 1994),

k
Sx[k] = me, k=1,...,n
i=1

We say that y majorizes x, y > x,iff fork=1,...,n,
Sylkl = Sufk]: Syln] = Sx[nl,

and the vector y is said to be more concentrated, or less diverse, than x. This
partial order defined by majorization then defines the Lorentz order.

We are interested in scalar-valued functions of x that are consistent with
majorization. Such functions are known as Schur-concave functions, d(-): R’}
— R. They are defined to be precisely the class of functions consistent with
the Lorentz order,

y>x = dy <dx).

In words, if y is less diverse than x (according to the Lorentz order) then d(y)
is less than d(x) for d(-) Schur-concave. We assume that Schur-concavity is a
necessary condition for d(-) to be a good measure of diversity (antisparsity).

2.3.2 Concavity Yields Sparse Solutions. Recall that a function d(-) is con-
cave on the positive orthant R} iff (Rockafellar, 1970)

AQ —-—px+yy = A —p)dx) + ydy),

Vx,y € R%,Vy,0 <y < 1.Inaddition, a scalar function is said to be permu-
tation invariant if its value is independent of rearrangements of its compo-
nents. An important fact is that for permutation invariant functions, con-
cavity is a sufficient condition for Schur-concavity:

Concavity + permutation invariance = Schur-concavity.

Now consider the low-noise sparse inverse problem, 2.7. It is well known
that subject to linear constraints, a concave function on R} takes its minima
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on the boundary of R’} (Rockafellar, 1970), and as a consequence these min-
ima are therefore sparse. We take concavity to be a sufficient condition for a
permutation invariant d(-) to be a measure of diversity and obtain sparsity
as constrained minima of d(-). More generally, a diversity measure should
be somewhere between Schur-concave and concave. In this spirit, one can
define almost concave functions (Kreutz-Delgado & Rao, 1997), which are
Schur-concave and (locally) concave in all n directions but one, which also
are good measures of diversity.

2.3.3 Separability, Schur-Concavity, and ICA. The simplest way to en-
sure that d(x) be permutation invariant (a necessary condition for Schur-
concavity) is to use functions that are separable. Recall that separability of
dy(x) corresponds to factorizability of Py(x). Thus, separability of d(x) corre-
sponds to the assumption of independent components of x under the model
1.3. We see that from a Bayesian perspective, separability of (x) corresponds
to a generative model for y that assumes a source, x, with independent com-
ponents. With this assumption, we are working within the framework of
ICA (Nadal & Parga, 1994; Pham, 1996; Roberts, 1998). We have developed
effective algorithms for solving the optimization problem 2.7 for sparse so-
lutions when d, (x) is separable and concave (Kreutz-Delgado & Rao, 1997;
Rao & Kreutz-Delgado, 1999).

It is now evident that relaxing the restriction of separability generalizes
the generative model to the case where the source vector, x, has dependent
components. We can reasonably call an approach based on a nonsepara-
ble diversity measure d(x) a dependent component analysis (DCA). Unless
care is taken, this relaxation can significantly complicate the analysis and
development of optimization algorithms. However, one can solve the low-
noise DCA problem, at least in principle, provided appropriate choices of
nonseparable diversity functions are made.

2.4 Supergaussian Priors and Sparse Coding. The P-class of diversity
measures for 0 < p < 1 result in sparse solutions to the low-noise coding
problem, 2.7. These separable and concave (and thus Schur-concave) diver-
sity measures correspond to supergaussian priors, consistent with the folk
theorem that supergaussian priors are sparsity-enforcing priors. However,
taking 1 < p < 2 results in supergaussian priors that are not sparsity enforc-
ing. Taking p to be between 1 and 2 yields a d, (x) that is convex and therefore
not concave. This is consistent with the well-known fact that for this range
of p, the pth-root of d,,(x) is a norm. Minimizing d, (x) in this case drives x to-
ward the origin, favoring concentrated rather than sparse solutions. We see
that if a sparse coding is to be found based on obtaining a MAP estimate to
the low-noise generative model, 1.3, then, in a sense, supergaussianness is a
necessary but not sufficient condition for a prior to be sparsity enforcing. A
sufficient condition for obtaining a sparse MAP coding is that the negative
log prior be CSC.
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2.5 The FOCUSS Algorithm. Locally optimal solutions to the known-
dictionary sparse inverse problems in gaussian noise, equations 2.6 and 2.7,
are given by the FOCUSS algorithm. This is an affine-scaling transformation
(AST)-like (interior point) algorithm originally proposed for the low-noise
case 2.7 in Rao and Kreutz-Delgado (1997, 1999) and Kreutz-Delgado and
Rao (1997); and extended by regularization to the nontrivial noise case, equa-
tion 2.6, in Rao and Kreutz-Delgado (1998a), Engan et al. (2000), and Rao et
al. (2002). In these references, it is shown that the FOCUSS algorithm has
excellent behavior for concave functions (which includes the the CSC con-
centration functions) d,(-). For such functions, FOCUSS quickly converges
to a local minimum, yielding a sparse solution to problems 2.7 and 2.6.

One can quickly motivate the development of the FOCUSS algorithm
appropriate for solving the optimization problem 2.6 by considering the
problem of obtaining the stationary points of the objective function. These
are given as solutions, x*, to

AT(AX* —y) + AVydy (x*) = 0. (2.9)

In general, equation 2.9 is nonlinear and cannot be explicitly solved for a
solution x*. However, we proceed by assuming the existence of a gradient
factorization,

Vidy(x) = a(x)IT(x)x, (2.10)

where «(x) is a positive scalar function and IT(x) is symmetric, positive-
definite, and diagonal. As discussed in Kreutz-Delgado and Rao (1997,
1998¢) and Rao and Kreutz-Delgado (1999), this assumption is generally
true for CSC sparsity functions d,(-) and is key to understanding FOCUSS
as a sparsity-inducing interior-point (AST-like) optimization algorithm.”

With the gradient factorization 2.10, the stationary points of equation 2.9
are readily shown to be solutions to the (equally nonlinear and implicit)
system,

x* = (ATA 4 B T(x*) TATy (2.11)
=1 HATBEHT+ AT () AT) 1y, (2.12)

where B(x) = Aa(x) and the second equation follows from identity A.18.
Although equation 2.12 is also not generally solvable in closed form, it does

5 This interpretation, which is not elaborated on here, follows from defining a diagonal
positive-definite affine scaling transformation matrix W(x) by the relation

(x) = W2(x).
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suggest the following relaxation algorithm,
T o« ONI@®ATBEI+AT T @ADH 1y, (2.13)

which is to be repeatedly reiterated until convergence.

Taking B = 0 in equation 2.13 yields the FOCUSS algorithm proved in
Kreutz-Delgado and Rao (1997, 1998c) and Rao and Kreutz-Delgado (1999)
to converge to a sparse solution of equation 2.7 for CSC sparsity functions
dy(-). The case B # 0 yields the regularized FOCUSS algorithm that will
converge to a sparse solution of equation 2.6 (Rao, 1998; Engan et al., 2000;
Rao et al., 2002). More computationally robust variants of equation 2.13
are discussed elsewhere (Gorodnitsky & Rao, 1997; Rao & Kreutz-Delgado,
1998a).

Note that for the general regularized FOCUSS algorithm, 2.13, we have
B(X) = ra(X), where A is the regularization parameter in equation 2.4. The
function B(x) is usually generalized to be a function of ¥, y and the itera-
tion number. Methods for choosing A include the quality-of-fit criteria, the
sparsity critera, and the L-curve (Engan, 2000; Engan et al., 2000; Rao et al.,
2002). The quality-of-fit criterion attempts to minimize the residual error
y — Ax (Rao, 1997), which can be shown to converge to a sparse solution
(Rao & Kreutz-Delgado, 1999). The sparsity criterion requires that a certain
number of elements of each x; be nonzero.

The L-curve method adjusts A to optimize the trade-off between the resid-
ual and sparsity of x. The plot of d,(x) versus d;(y — Ax) has an L shape,
the corner of which provides the best trade-off. The corner of the L-curve
is the point of maximum curvature and can be found by a one-dimensional
maximization of the curvature function (Hansen & O’Leary, 1993).

A hybrid approach known as the modified L-curve method combines the L-
curve method on a linear scale and the quality-of-fit criterion, which is used
to place limits on the range of A that can be chosen by the L-curve (Engan,
2000). The modified L-curve method was shown to have good performance,
but it requires a one-dimensional numerical optimization step for each xy at
each iteration, which can be computationally expensive for large vectors.

3 Dictionary Learning

3.1 Unknown, Nonrandom Dictionaries. The MLE framework treats
parameters to be estimated as unknown but deterministic (nonrandom). In
this spirit, we take the dictionary, A, to be the set of unknown but determinis-
tic parameters to be estimated from the observationset Y = YN.In particular,
given YN, the maximum likelihood estimate A, is found from maximizing
the likelihood function L(A | YN) = P(YN; A). Under the assumption that
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the observations are i.i.d., this corresponds to the optimization

N
A\ML:ar max | | P(yx; A), 3.1
gma g (Wi; A) 3.1)

Py A) = / Pk x: A) dx = f Pk | x; A) - Py(x) d
= /Pq(yk — Ax) - Py(x) dx. (3.2)

Defining the sample average of a function f(y) over the sample set YN =
(yl, . ,]/N) by

N

1
SN =5 > fo.

k=1
the optimization 3.1 can be equivalently written as

-~

Ay = argmin —(log(P(y; A))w- 3.3)

Note that P(y; A) is equal to the normalization factor g already encoun-
tered, but now with the dependence of 8 on A and the particular sample,
Yk, made explicit. The integration in equation 3.2 in general is intractable,
and various approximations have been proposed to obtain an approximate
maximum likelihood estimate, A,,; (Olshausen & Field, 1996; Lewicki &
Sejnowski, 2000).

In particular, the following approximation has been proposed (Olshausen
& Field, 1996),

P, (x) ~ 8(x — X(A)), (3.4)
where
T(A) = arg max P(y, x; A, (3.5)
X
fork =1, ..., N, assuming a current estimate, ;1\, for A. This approximation

corresponds to assuming that the source vector x for which y; = Axj is
known and equal to xx(A). With this approximation, the optimization 3.3
becomes

Ay = arg min{d(y — AX)N, (3.6)
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which is an optimization over the sample average (-)n of the functional 2.4
encountered earlier. Updating our estimate for the dictionary,

A< A, (3.7)

we can iterate the procedure (3.5)(3.6) until A has converged, hopefully
(atleastin the limit of large N) to AML = AML (YN) as the maximum likelihood
estimate AML(YN ) has well-known desirable asymptotic properties in the
limit N — oo.

Performing the optimization in equation 3.6 for the g = 2 i.i.d. gaussian
measurement noise case (v gaussian with known covariance o2 - I) corre-
sponds to taking

~ 1 _
%W—Aﬂzzﬁw—Aw? (3.8)

in equation 3.6. In appendix A, it is shown that we can readily obtain the
unique batch solution,

A = 2555 (3.9)

xx

1 ~
Zykxk, Yep = N Zxkx,z (3.10)
k=

Appendix A derives the maximum likelihood estimate of A for the ideal
case of known source vectors X = (x1, ..., XN),

. 1
Known source vector case: Ay, = PIPDINNN

which is, of course, actually not computable since the actual source vectors
are assumed to be hidden.

As an alternative to using the explicit solution 3.9, which requires an
often prohibitive n x n inversion, we can obtain Ay, iteratively by gradient
descent on equations 3.6 and 3.8,

AAML <~ AAML M= Z ekxk ) (3.11)
k_

€ = A\AMLEEk_ykv k=1,...,N,

for an appropriate choice of the (possibly adaptive) positive step-size pa-
rameter u. The iteration 3.11 can be initialized as A, = A

A general iterative dictionary learning procedure is obtained by nesting
the iteration 3.11 entirely within the iteration defined by repeatedly solv-
ing equation 3.5 every time a new estimate, A v, Of the dictionary becomes
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available. However, performing the optimization required in equation 3.5 is
generally nontrivial (Olshausen & Field, 1996; Lewicki & Sejnowski, 2000).
Recently, we have shown how the use of the FOCUSS algorithm results in an
effective algorithm for performing the optimization required in equation 3.5
for the case when v is gaussian (Rao & Kreutz-Delgado, 1998a; Engan et al.,
1999). This approach solves equation 3.5 using the affine-scaling transfor-
mation (AST)-like algorithms recently proposed for the low-noise case (Rao
& Kreutz-Delgado, 1997, 1999; Kreutz-Delgado & Rao, 1997) and extended
by regularization to the nontrivial noise case (Rao & Kreutz-Delgado, 1998a;
Engan et al., 1999). As discussed in section 2.5, for the current dictionary
estimate, A, a solution to the optimization problem, 3.5, is provided by the
repeated iteration,

%« N @OAT (BRI + AT @A)y, (3.12)

k=1,...,N,with I1(x) defined as in equation 3.18, given below. This is the
regularized FOCUSS algorithm (Rao, 1998; Engan et al., 1999), which has
an interpretation as an AST-like concave function minimization algorithm.
The proposed dictionary learning algorithm alternates between iteration
3.12 and iteration 3.11 (or the direct batch solution given by equation 3.9
if the inversion is tractable). Extensive simulations show the ability of the
AST-based algorithm to recover an unknown 20 x 30 dictionary matrix A
completely (Engan et al., 1999).

3.2 Unknown, Random Dictionaries. We now generalize to the case
where the dictionary A and the source vector set X = XN = (x1,...,xy) are
jointly random and unknown. We add the requirement that the dictionary
is known to obey the constraint

A € A = compact submanifold of R™*".

A compact submanifold of R"*" is necessarily closed and bounded. On the
constraint submanifold, the dictionary A has the prior probability density
function P(A), which in the sequel we assume has the simple (uniform on
A) form,

P(A) = cX(A € A), (3.13)

where X (-) is the indicator function and c is a positive constant chosen to
ensure that

P(A) = / P(A)dA = 1.
A

The dictionary A and the elements of the set X are also all assumed to be
mutually independent,

P(A, X) = P(A)P(X) = P(A)Py(x1), ..., Pp(xn).
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With the set of i.i.d. noise vectors, (vi, ..., vy) also taken to be jointly ran-
dom with, and independent of, A and X, the observation set Y = YN =
(Y1, ...,Yn) is assumed to be generated by the model 1.3. With these as-
sumptions, we have

P(A, X | Y) = P(Y | A, X)P(A, X)/P(Y) (3.14)
= cX(A e AHP(Y | A, X)P(X)/P(Y)

_cXAeAH P
=50 gp(yk | A, x1) Pp (k)
XA AP
- L= E Py(y — Ax0)P, (xp).

using the facts that the observations are conditionally independent and
P(yx | A, X) = P(yx | A, x1).
The jointly MAP estimates

(AMAIH XMAP) = (AMAI"s 3C\l,MAP, ceey 5C\N,MAP)

are found by maximizing a posteriori probability density P(A, X | Y) simul-
taneously with respect to A € A and X. This is equivalent to minimizing
the negative logarithm of P(A, X | Y), yielding the optimization problem,

(Amars Xuar) = arg;gg}((dq(]/ — Ax) + )hdp(x»N- (3.15)

Note that this is a joint minimization of the sample average of the functional
2.4, and as such is a natural generalization of the single (with respect to the
set of source vectors) optimization previously encountered in equation 3.6.
By finding joint MAP estimates of A and X, we obtain a problem that is
much more tractable than the one of finding the single MAP estimate of A
(which involves maximizing the marginal posterior density P(A | Y)).

The requirement that A € A, where A is a compact and hence bounded
subset of R"™*", is sufficient for the optimization problem 3.15 to avoid the
degenerate solution,®

fork=1,...,N, yx = Axx, with |A|| - oo and |x¢]| — 0. (3.16)

This solution is possible for unbounded A because y = Ax is almost always
solvable for x since learned overcomplete A’s are (generically) onto, and for
any solution pair (A, x) the pair (éA, ax) is also a solution. This fact shows
that the inverse problem of finding a solution pair (A, x) is generally ill posed

6 |A| is any suitable matrix norm on A.
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unless A is constrained to be bounded (as we have explicitly done here) or
the cost functional is chosen to ensure that bounded A’s are learned (e.g.,
by adding a term monotonic in the matrix norm ||A|| to the cost function in
equation 3.15).

A variety of choices for the compact set .4 are available. Obviously, since
different choices of .4 correspond to different a priori assumptions on the
set of admissible matrices, A, the choice of this set can be expected to affect
the performance of the resulting dictionary learning algorithm. We will
consider two relatively simple forms for A.

3.3 Unit Frobenius—Norm Dictionary Prior. For thei.i.d.q = 2 gaussian
measurement noise case of equation 3.8, algorithms that provably converge
(in the low step-size limit) to alocal minimum of equation 3.15 can be readily
developed for the very simple choice,

Ar = {A | |Allr =1} Cc R™, (3.17)

where ||A||r denotes the Frobenius norm of the matrix A,
A2 = tr(ATA) £ trace (ATA),

and it is assumed that the prior P(A) is uniformly distributed on A as per
condition 3.13. As discussed in appendix A, Ar is simply connected, and
there exists a path in Ar between any two matrices in Ar.

Following the gradient factorization procedure (Kreutz-Delgado & Rao,
1997; Rao & Kreutz-Delgado, 1999), we factor the gradient of d(x) as

Vd(x) = a()IT(x)x, ax) >0, (3.18)

whereitisassumed that I1(x) is diagonal and Eositive definite for allnonzero
x. For example, in the case where d(x) = ||x||,,

M~ (x) = diag(|x[i]*P). (3.19)

Factorizations for other diversity measures d(x) are given in Kreutz-Delgado
and Rao (1997). We also define f(x) = Awa(x). As derived and proved in
appendix A, a learning law that provably converges to a minimum of equa-
tion 3.15 on the manifold 3.17 is then given by

d . —~ -
= —U{ATA + BEITIG))T — ATyi),
d

A= —u@A—tr(ATsA)A), u > 0, (3.20)

U

t
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fork =1,...,N, where Ais initialized to ||E||p =1, Qk are n x n positive
definite matrices, and the “error” §A is

_ - 1 . ~
OA = (e@F )N = D e@xL.  e@) = A% — Yk, (3:21)

k=1

which can be rewritten in the perhaps a more illuminating form (cf. equa-
tions 3.9 and 3.10),

A = AT — Bz (3.22)

A formal convergence proof of equation 3.20 is given in appendix A, where
itis also shown that the right-hand side of the second equation in 3.20 corre-
sponds to projecting the error term 8A onto the tangent space of Ay, thereby
ensuring that the derivative of A lies in the tangent space. Convergence of
the algorithm to a local optimum of equation 3.15 is formally proved by
interpreting the loss functional as a Lyapunov function whose time deriva-
tive along the trajectories of the adapted parameters (A, X) is guaranteed
to be negative definite by the choice of parameter time derivatives shown
in equation 3.20. As a consequence of the La Salle invariance principle, the
loss functional will decrease in value, and the parameters will converge to
the largest invariant set for which the time derivative of the loss functional
is identically zero (Khalil, 1996).

Equation 3.20 is a set of coupled (between A and the vectors %) nonlin-
ear differential equations that correspond to simultaneous, parallel updat-
ing of the estimates A and X. This should be compared to the alternated
separate (nonparallel) update rules 3.11 and 3.12 used in the AML algo-
rithm described in section 3.1. Note also that (except for the trace term) the
right-hand side of the dictionary learning update in equation 3.20 is of the
same form as for the AML update law given in equation 3.11 (see also the
discretized version of equation 3.20 given in equation 3.28 below). The key
difference is the additional trace term in equation 3.20. This difference corre-
sponds to a projection of the update onto the tangent space of the manifold
3.17, thereby ensuring a unit Frobenius norm (and hence boundedness) of
the dictionary estimate at all times and avoiding the ill-posedness problem
indicated in equation 3.16. It is also of interest to note that choosing €2 to
be the positive-definite matrix,

QU = (ATA + BGEOTIE) ™, i > 0, (3.23)

in equation 3.20, followed by some matrix manipulations (see equation A.18
in appendix A), yields the alternative algorithm,

d_. R -
7%= il — N GoAT (BGO+ AT @)AT) Ty} (3.24)
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with 7 > 0. In any event (regardless of the specific choice of the positive
definite matrices  as shown in appendix A), the proposed algorithm out-
lined here converges to a solution (X, A), which satisfies the implicit and
nonlinear relationships,

= N @)AT(BGO + AT G AT) 1y,
2;;}(2)%& —ch)7t e A, (3.25)

) >v>
Il

for scalar ¢ = tr(;fT(SA\).

To implement the algorithm 3.20 (or the variant using equation 3.24) in
discrete time, a first-order forward difference approximation at time t =
can be used,

d._. etp1) — X ()
— Iy~ ——— -
dtxk( 1 o =k
2 Sf\k[l +1] —fk[l] (3 26)
—a .
Applied to equation 3.24, this yields
Xl +11 = @ — pupxill] + x> [1]
T[] = M @A (BGEI + A @ AT) Ly,
i = nkAp > 0. (3.27)

Similarly, discretizing the A\-update equation yields the A-learning rule,
equation 3.28, given below. More generally, taking w; to have a value be-
tween zero and one, 0 < p; < 1 yields an updated value X[l + 1], which is
a linear interpolation between the previous value X[I] and X°*°[I].

When implemented in discrete time, and setting ; = 1, the resulting
Bayesian learning algorithm has the form of a combined iteration where we
loop over the operations,

T < I GAT(BEOI+ AT GOAD) i,
k=1,...,N and
A<« A—yGA-tr(ATsA)A) y > 0. (3.28)
We call this FOCUSS-based, Frobenius-normalized dictionary-learning al-
gorithm the FOCUSS-FDL algorithm. Again, this merged procedure should
be compared to the separate iterations involved in the maximum likelihood

approach given in equations 3.11 and 3.12. Equation 3.28, with SA given by
equation 3.21, corresponds to performing a finite step-size gradient descent



Dictionary Learning Algorithms for Sparse Representation 369

on the manifold Ag. This projection in equation 3.28 of the dictionary up-
date onto the tangent plane of A: (see the discussion in appendix A) ensures
the well-behavedness of the MAP algorithm.” The specific step-size choice
w1 = 1, which results in the first equation in equation 3.28, is discussed at
length for the low-noise case in Rao and Kreutz-Delgado (1999).

3.4 Column-Normalized Dictionary Prior. Although mathematically
very tractable, the unit-Frobenius norm prior, equation 3.17, appears to be
somewhat too loose, judging from simulation results given below. In simu-
lations with the Frobenius norm constraint Af, some columns of A can tend
toward zero, a phenomenon that occurs more often in highly overcomplete
A. This problem can be understood by remembering that we are using the
dy(x),p # 0 diversity measure, which penalizes columns associated with
terms in x with large magnitudes. If a column 4; has a small relative magni-
tude, the weight of its coefficient x[i] can be large, and it will be penalized
more than a column with a larger norm. This leads to certain columns being
underused, which is especially problematic in the overcomplete case.

An alternative, and more restrictive, form of the constraint set A is ob-
tained by enforcing the requirement that the columns 4; of A each be nor-
malized (with respect to the Euclidean 2-norm) to the same constant value
(Murray & Kreutz-Delgado, 2001). This constraint can be justified by noting
that Ax can be written as the nonunique weighted sum of the columns g,

Ax =Y axdi] =Y (Z—) (aixli]) = A'x',
i=1 1

i= !

foranyo; >0,i=1,...,n,

showing that there is a column-wise ambiguity that remains even after the
overall unit-Frobenius norm normalization has occurred, as one can now
Frobenius-normalize the new matrix A’.

Therefore, consider the set of matrices on which has been imposed the
column-wise constraint that

1 .
.AC:{A‘||ui||2:aiTai:;,1:1,...,11}. (3.29)

The set A¢ is an mn —n = n(m —1)-dimensional submanifold of R"*". Note
that every column of a matrix in .Ac has been normalized to the value ﬁ

7 Because of the discrete-time approximation in equation 3.28, and even more generally
because of numerical round-off effects in equation 3.20, a renormalization,

A < A/Alg,

is usually performed at regular intervals.
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In fact, any constant value for the column normalization can be used (in-
cluding the unit normalization), but, as shown in appendix B, the particular
normalization of ﬁ results in Ac being a proper submanifold of the mn — 1

dimensional unit Frobenius manifold A,
Ac C Ay,

indicating that a tighter constraint on the matrix A is being imposed. Again,
it is assumed that the prior P(A) is uniformly distributed on A. in the
manner of equation 3.13. As shown in appendix B, Ac is simply connected.

A learning algorithm is derived for the constraint A in appendix B,
following much the same approach as in appendix A. Because the derivation
of the X; update to find sparse solutions does not depend on the form of
the constraint .4, only the A update in algorithm 3.28 needs to be modified.
Each column g; is now updated independently (see equation B.17),

a; < a; — y(I = aia} )da;
i=1,...,n, (3.30)
where 8a; is the ith column of §A in equation 3.21. We call the resulting
column-normalized dictionary-learning algorithm the FOCUSS-CNDL al-

gorithm. The implementation details of the FOCUSS-CNDL algorithm are
presented in section 4.2.

4 Algorithm Implementation

The dictionary learning algorithms derived above are an extension of the
FOCUSS algorithm used for obtaining sparse solutions to the linear inverse
problem y = Ax to the case where dictionary learning is now required. We
refer to these algorithms generally as FOCUSS-DL algorithms, with the unit
Frobenius-norm prior-based algorithm denoted by FOCUSS-FDL and the
column-normalized prior-base algorithm by FOCUSS-CNDL. In this sec-
tion, the algorithms are stated in the forms implemented in the experimen-
tal tests, where it is shown that the column normalization-based algorithm
achieves higher performance in the overcomplete dictionary case.

4.1 Unit Frobenius-Norm Dictionary Learning Algorithm. We now
summarize the FOCUSS-FDL algorithm derived in section 3.3. For each
of the data vectors y,, we update the sparse source vectors x; using the
FOCUSS algorithm:

M @) = diag(&lill* ")
T < T @OAT il + AT @)AT) lye  (FOCUSS),  (4.1)
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where Ay = B(Xy) is the regularization parameter. After updating the N
source vectors xx, k =1, ..., n, the dictionary A is reestimated,

SA = A — Tz
A< A—yGBA-tr(ATSAA), y >0, 4.2)

where y controls the learning rate. For the experiments in section 5, the data
block size is N = 100. During each iteration all training vectors are updated
using equation 4.1, with a corresponding number of dictionary updates
using equation 4.2. After each update of the dictionary A4, it is renormalized
to have unit Frobenius norm, ||A|r = 1.

Thelearning algorithm is a combined iteration, meaning that the FOCUSS
algorithm is allowed to run for only one iteration (not until full convergence)
before the A update step. This means that during early iterations, the X are
in general not sparse. To facilitate learning A, the covariances X,; and X;
are calculated with sparsified X that have all but the 7 largest elements set
to zero. The value of 7 is usually set to the largest desired number of nonzero
elements, but this choice does not appear to be critical.

The regularization parameter Ay is taken to be a monotonically increasing
function of the iteration number,

Ak = Amo tanh(1072 - (iter — 1500)) + 1). (4.3)

While this choice of Ax does not have the optimality properties of the modi-
fied L-curve method (see section 2.5), it does not require a one-dimensional
optimization for each X and so is much less computationally expensive.
This is further discussed below.

4.2 Column Normalized Dictionary Learning Algorithm. The im-
proved version of the algorithm called FOCUSS-CNDL, which provides
increased accuracy especially in the overcomplete case, was proposed in
Murray and Kreutz-Delgado (2001). The three key improvements are col-
umn normalization that restricts the learned A, an efficient way of adjusting
the regularization parameter 1, and reinitialization to escape from local op-
tima.

The column-normalized learning algorithm discussed in section 3.4 and
derived in appendix B is used. Because the X; update does not depend
on the constraint set A, the FOCUSS algorithm in equation 4.1 is used to
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update N vectors, as discussed in section 4.1. After every N source vectors
are updated, each column of the dictionary is then updated as
. . a0 sa;
a; < a; — y (I —aa; )éa;
i=1,...,n, (44)

where 84a; are the columns of 82, which is found using equation 4.2. After
updating each g, it is renormalized to ||a; I2=1/n by

ai

Vilaill’

a; <

(4.5)

which also ensures that || Al|r = 1 as shown in section B.1.

The regularization parameter Ay may be set independently for each vec-
tor in the training set, and a number of methods have been suggested,
including quality of fit (which requires a certain level of reconstruction ac-
curacy), sparsity (requiring a certain number of nonzero elements), and
the L-curve which attempts to find an optimal trade-off (Engan, 2000). The
L-curve method works well, but it requires solving a one-dimensional op-
timization for each Ay, which becomes computationally expensive for large
problems. Alternatively, we use a heuristic method that allows the trade-off
between error and sparsity to be tuned for each application, while letting
each training vector y; have its own regularization parameter A to improve
the quality of the solution,

— A%
)“k = )"max 1- M s )"ka )"max > 0. (46)
[l

For data vectors that are represented accurately, Ax will be large, driving the
algorithm to find sparser solutions. If the SNR can be estimated, we can set
Ao = (SNR)L,

The optimization problem, 3.15, is concave when p < 1, so there will
be multiple local minima. The FOCUSS algorithm is guaranteed to con-
verge only to one of these local minima, but in some cases, it is possible to
determine when that has happened by noticing if the sparsity is too low. Pe-
riodically (after a large number of iterations), the sparsity of the solutions X}
is checked, and if found too low, Xy is reinitialized randomly. The algorithm
is also sensitive to initial conditions, and prior information may be incor-
porated into the initialization to help convergence to the global solution.

5 Experimental Results

Experiments were performed using complete dictionaries (n = m) and over-
complete dictionaries (n > m) on both synthetically generated data and
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natural images. Performance was measured in a number of ways. With syn-
thetic data, performance measures include the SNR of the recovered sources
x; compared to the true generating source and comparing the learned dic-
tionary with the true dictionary. For images of natural scenes, the true un-
derlying sources are not known, so the accuracy and efficiency of the image
coding are found.

5.1 Complete Dictionaries: Comparison withICA. To test the FOCUSS-
FDL and FOCUSS-CNDL algorithms, simulated data were created follow-
ing the method of Engan et al. (1999) and Engan (2000). The dictionary A of
size 20 x 20 was created by drawing each element a;; from a normal distribu-
tion with = 0, 02 = 1 (written as NV (0, 1)) followed by a normalization to
ensure that ||A||r = 1. Sparse source vectors xi, k = 1, ..., 1000 were created
with » = 4 nonzero elements, where the r nonzero locations are selected
at random (uniformly) from the 20 possible locations. The magnitudes of
each nonzero element were also drawn from N (0, 1) and limited so that
lxx| > 0.1. The input data y; were generated using y = Ax (no noise was
added).

For the first iteration of the algorithm, the columns of the initializa-
tion estimate, A;nit, were taken to be the first n = 20 training vectors yy.
The 1n1t1a1 xk estlmates were then set to the pseudoinverse solution X =

mzt(Am'tAmzt) Yk- The constant parameters of the algorithm were set as
follows: p = 1.0, y = 1.0, and A,., = 2 x 10~ 3 (low noise, assumed SNR
~ 27 dB). The algorithms were run for 200 iterations through the entire
data set, and during each iteration, A was updated after updating 100 data
vectors xk

To measure performance, the SNR between the recovered sources X and
the the true sources x; were calculated. Each element x;[i] for fixed i was
considered as a time-series vector with 1000 elements, and SNR; for each
was found using

(5.1)

1112
SNR: = 1010g,, < el ) .

llxie[i] — Xieli]112

The final SNR is found by averaging SNR; over the i = 1, ..., 20 vectors
and 20 trials of the algorithms. Because the dictionary A is learned only to
within a scaling factor and column permutations, the learned sources must
be matched with corresponding true sources and scaled to unit norm before
the SNR calculation is done.

The FOCUSS-FDL and FOCUSS-CNDL algorithms were compared with
extended ICA (Lee, Girolami, & Sejnowski, 1999) and Fastica® (Hyvérinen

8 Matlab and C versions of extended ICA can be found on-line at http: //www.cnl.salk.
edu/~tewon/ICA/code.html. Matlab code for FastICA can be found at: http: //www.cis.
hut.fi/projects/ica/fastica/.
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Figure 1: Comparison between FOCUSS-FDL, FOCUSS-CNDL, extended ICA,
and FastICA on synthetically generated data with a complete dictionary A, size
20 x 20. The SNR was computed between the recovered sources % and the true
sources xx. The mean SNR and standard deviation were computed over 20 trials.

et al.,, 1999). Figure 1 shows the SNR for the tested algorithms. The SNR
for FOCUSS-FDL is 27.7 dB, which is a 4.7 dB improvement over extended
ICA, and for FOCUSS-CNDL, the SNR is 28.3 dB. The average run time for
FOCUSS-FDL/CNDL was 4.3 minutes, for FastICA 0.10 minute, and for
extended ICA 0.19 minute on a 1.0 GHz Pentium III Xeon computer.

5.2 Overcomplete Dictionaries. To test the ability to recover the true A
and x; solutions in the overcomplete case, dictionaries of size 20 x 30 and
64 x 128 were generated. Diversity r was set to fixed values (4 and 7) and
uniformly randomly (5-10 and 10-15). The elements of A and the sources
Xx were created as in section 5.1.

The parameters were set as follows: p = 1.0, ¥ = 1.0, Apox = 2 % 103,
The algorithms were run for 500 iterations through the entire data set, and
during each iteration, A was updated after updating 100 data vectors X.

As a measure of performance, we find the number of columns of A that
were matched during learning. Because A can be learned only to within col-
umn permutations and sign and scale changes, the columns are normalized
so that |[7;|| = llajl = 1, and A is rearranged columnwise so that?z} is given
the index of the closest match in A (in the minimum two-norm sense). A
match is counted if

1— |afa;| < 0.01. (5.2)
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Table 1: Synthetic Data Results.

Learned A Columns Learned x

Algorithm Sizeof A Diversity,r Average SD % Average SD %

FOCUSS-FDL 20 x 30 7 253 34 842 6759 141.0 67.6
FOCUSS-CNDL 20 x 30 7 289 1.6 96.2 846.8 97.6 847
FOCUSS-CNDL 64 x 128 7 1253 21 979 94140 4065 94.1
FOCUSS-CNDL 64 x 128 5-10 1263 13 98.6 95055 263.8 95.1
FOCUSS-FDL 64 x 128 10-15 1028 45 803 4009.6 499.6 40.1
FOCUSS-CNDL 64 x 128 10-15 1274 13 995 94634 3303 94.6

Similarly, the number of matching ¥ are counted (after rearranging the
elements in accordance with the indices of the rearranged A),

1— |xI%i| < 0.05. (5.3)

If the data are generated by an A that is not column normalized, other
measures of performance need to be used to compare x; and .

The performance is summarized in Table 1, which compares the FOCUSS-
FDL with the column-normalized algorithm (FOCUSS-CNDL). For the 20 x
30 dictionary, 1000 training vectors were used, and for the 64 x 128 dictionary
10,000 were used. Results are averaged over four or more trials. For the
64 x 128 matrix and r = 10-15, FOCUSS-CNDL is able to recover 99.5%
(127.4/128) of the columns of A and 94.6% (9463 /10,000) of the solutions xi
to within the tolerance given above. This shows a clear improvement over
FOCUSS-FDL, which learns only 80.3% of the A columns and 40.1% of the
solutions xi.

Learning curves for one of the trials of this experiment (see Figure 2)
show that most of the columns of A are learned quickly within the first 100
iterations, and that the diversity of the solutions drops to the desired level.
Figure 2b shows that it takes somewhat longer to learn the x; correctly and
that reinitialization of the low sparsity solutions (at iterations 175 and 350)
helps to learn additional solutions. Figure 2c shows the diversity at each
iteration, measured as the average number of elements of each ¥ that are
larger than 1 x 1074

5.3 Image Data Experiments. Previous work has shown that learned
basis functions can be used to code data more efficiently than traditional
Fourier or wavelet bases (Lewicki & Olshausen, 1999). The algorithm for
finding overcomplete bases in Lewicki and Olshausen (1999) is also de-
signed to solve problem 1.1 but differs from our method in a number of
ways, including using only the Laplacian prior (p = 1), and using conjugate
gradient optimization for finding sparse solutions (whereas we use the FO-
CUSS algorithm). It is widely believed that overcomplete representations
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Figure2: Performance of the FOCUSS-CNDL algorithm with overcomplete dic-
tionary A, size 64 x 128. (a) Number of correctly learned columns of A at each
iteration. (b) Number of sources x; learned. (c) Average diversity (n-sparsity) of
the xx. The spikes in b and ¢ indicate where some solutions X were reinitialized
because they were not sparse enough.
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are more efficient than complete bases, but in Lewicki and Olshausen (1999),
the overcomplete code was less efficient for image data (measured in bits
per pixel entropy), and it was suggested that different priors could be used
to improve the efficiency. Here, we show that our algorithm is able to learn
more efficient overcomplete codes for priors withp < 1.

The training data consisted of 10,000 8 x 8 image patches drawn at
random from black and white images of natural scenes. The parameter
p was varied from 0.5-1.0, and the FOCUSS-CNDL algorithm was trained
for 150 iterations. The complete dictionary (64 x 64) was compared with
the 2x overcomplete dictionary (64 x 128). Other parameters were set:
y = 0.0, Apoe = 2 x 1073. The coding efficiency was measured using
the entropy (bits per pixel) method described in Lewicki and Olshausen
(1999). Figure 3 plots the entropy versus reconstruction error (root mean
square error, RMSE) and shows that when p < 0.9, the entropy is less for
the overcomplete representation at the same RMSE.

An example of coding an entire image is shown in Figure 4. The original
test image (see Figure 4a) of size 256 x 256 was encoded using the learned
dictionaries. Patches from the test image were not used during training. Ta-
ble 2 gives results for low- and high-compression cases. In both cases, coding
with the overcomplete dictionary (64 x 128) gives higher compression (lower
bits per pixel) and lower error (RMSE). For the high-compression case (see

Comparison of image coding efficiency
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Figure 3: Comparing the coding efficiency of complete and 2x overcomplete
representations on 8 x 8 pixel patches drawn from natural images. The points on
the curve are the results from different values of p, at the bottom right, p = 1.0,
and at the top left, p = 0.5. For smaller p, the overcomplete case is more efficient
at the same level of reconstruction error (RMSE).
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Figure 4: Image compression using complete and overcomplete dictionaries.
Coding with an overcomplete dictionary is more efficient (fewer bits per pixel)
and more accurate (lower RMSE). (a) Original image of size 256 x 256 pixels.
(b) Compressed with 64 x 64 complete dictionary to 0.826 bits per pixel at RMSE

=0.329. (c) Compressed with 64 x 128 overcomplete dictionary to 0.777 bits per
pixel at RMSE = 0.328.
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Table 2: Image Compression Results.

Dictionary Compression Average
Size 4 (bits /pixel) RMSE  Diversity
64 x 64 05 2.450 0.148 17.3
64 x 128 0.6 2.410 0.141 15.4
64 x 64 0.5 0.826 0.329 4.5
64 x 128 0.6 0.777 0.328 4.0

Figures 4b and 4c), the 64 x 128 overcomplete dictionary gives compression
of 0.777 bits per pixel at error 0.328, compared to the 64 x 64 complete dic-
tionary at 0.826 bits per pixel at error 0.329. The amount of compression was
selected by adjusting A, (the upper limit of the regularization parameter).
For high compression, 1., = 0.02, and for low compression, A, = 0.002.

6 Discussion and Conclusions

We have applied a variety of tools and perspectives (including ideas drawn
from Bayesian estimation theory, nonlinear regularized optimization, and
the theory of majorization and convex analysis) to the problem of develop-
ing algorithms capable of simultaneously learning overcomplete dictionar-
ies and solving sparse source-vector inverse problems.

The test experiment described in section 5.2 is a difficult problem de-
signed to determine if the proposed learning algorithm can solve for the
known true solutions for A and the spare source vectors x; to the underde-
termined inverse problem y, = Axi. Such testing, which does not appear
to be regularly done in the literature, shows how well an algorithm can ex-
tract stable and categorically meaningful solutions from synthetic data. The
ability to perform well on such test inverse problems would appear to be at
least a necessary condition for an algorithm to be trustworthy in domains
where a physically or biologically meaningful sparse solution is sought,
such as occurs in biomedical imaging, geophysical seismic sounding, and
multitarget tracking.

The experimental results presented in section 5.2 show that the FOCUSS-
DL algorithms can recover the dictionary and the sparse sources vectors.
This is particularly gratifying when one considers that little or no opti-
mization of the algorithm parameters has been done. Furthermore, the con-
vergence proofs given in the appendixes show convergence only to local
optima, whereas one expects that there will be many local optima in the
cost function because of the concave prior and the generally multimodal
form of the cost function.

One should note that algorithm 3.28 was constructed precisely with the
goal of solving inverse problems of the type considered here, and therefore
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one must be careful when comparing the results given here with other al-
gorithms reported in the literature. For instance, the mixture-of-gaussians
prior used in Attias (1999) does not necessarily enforce sparsity. While other
algorithms in the literature might perform well on this test experiment, to
the best of our knowledge, possible comparably performing algorithms
such as Attias (1999), Girolami (2001), Hyvarinen et al. (1999), and Lewicki
and Olshausen (1999) have not been tested on large, overcomplete matrices
to determine their accuracy in recovering A, and so any comparison along
these lines would be premature. In section 5.1, the FOCUSS-DL algorithms
were compared to the well-known extended ICA and FastICA algorithms
in a more conventional test with complete dictionaries. Performance was
measured in terms of the accuracy (SNR) of the recovered sources x, and
both FOCUSS-DL algorithms were found to have significantly better per-
formance (albeit with longer run times).

We have also shown that the FOCUSS-CNDL algorithm can learn an over-
complete representation, which can encode natural images more efficiently
than complete bases learned from data (which in turn are more efficient than
standard nonadaptive bases, such as Fourier or wavelet bases; Lewicki &
Olshausen, 1999). Studies of the human visual cortex have shown a higher
degree of overrepresentation of the fovea compared to the other mammals,
which suggests an interesting connection between overcomplete represen-
tations and visual acuity and recognition abilities (Popovic & Sjostrand,
2001).

Because the coupled dictionary learning and sparse-inverse solving al-
gorithms are merged and run in parallel, it should be possible to run the
algorithms in real time to track dictionary evolution in quasistationary en-
vironments once the algorithm has essentially converged. One way to do
this would be to constantly present randomly encountered new signals, yy,
to the algorithm at each iteration instead of the original training set. One
also has to ensure that the dictionary learning algorithm is sensitive to the
new data so that dictionary tracking can occur. This would be done by an
appropriate adaptive filtering of the current dictionary estimate driven by
the new-data derived corrections, similar to techniques used in the adaptive
filtering literature (Kalouptsidis & Theodoridis, 1993).

Appendix A: The Frobenius-Normalized Prior Learning Algorithm ____

Here we provide a derivation of the algorithm 3.20-3.21 and prove that
it converges to a local minimum of equation 3.15 on the manifold A; =
{A ] JAllr = 1} € R™" defined in equation 3.17. Although we focus on the
development of the learning algorithm on Ay, the derivations in sections A.2
and A.3, and the beginning of subsection are done for a general constraint
manifold A.
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A.1 Admissible Matrix Derivatives.

A.1.1 The Constraint Manifold Ar. In order to determine the structural
form of admissible derivatives, A = %A for matrices belonging to Ag 2 itis
useful to view A; as embedded in the finite-dimensional Hilbert space of
matrices, R"*", with inner product

(A, B) = tr(ATB) = tr(BTA) = tr(ABT) = tr(BAT).

The corresponding matrix norm is the Frobenius norm,

Al = [Allr = Vir ATA = Vir AAT.

We will call this space the Frobenius space and the associated inner product
the Frobenius inner product. It is useful to note the isometry,

A e R™" &= A =vec(A) e R™,

where A is the mn-vector formed by stacking the columns of A. Henceforth,
bold type represents the stacked version of a matrix (e.g., B = vec(B)). The
stacked vector A belongs to the standard Hilbert space R, which we shall
henceforth refer to as the stacked space. This space has the standard Euclidean
inner product and norm,

(A,B) = ATB, |A| = ATA.
It is straightforward to show that
(A,B)=(A,B) and [|A]l = [|A]l.
In particular, we have
Ae A= A=Al =1.

Thus, the manifold in equation 3.17 corresponds to the (mn—1)-dimensional
unit sphere in the stacked space, R™" (which, with a slight abuse of notation,
we will continue to denote by Ag). It is evident that A is simply connected
so that a path exists between any two elements of A; and, in particular, a
path exists between any initial value for a dictionary, A, € A, used to
initialize a learning algorithm, and a desired target value, A;., € A, 10

° Equivalently, we want to determine the structure of elements A of the tangent space,
T Ag, to the smooth manifold A at the point A.
10 For example, for 0 < t < 1, take the t-parameterized path,

(1 — B) Ainic + tAfinal

A(t) = .
11— ) Ainie + tAgnalll
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A.1.2 Derivatives on Ag: The Tangent Space TAp. Determining the form
of admissible derivatives on equation 3.17 is equivalent to determining the
form of admissible derivatives on the unit R”"—sphere. On the unit sphere,
we have the well-known fact that

d . .
AGAF:EHAHZ:ZATA:O:AJ_A.

This shows that the general form of A is A = AQ, where Q is arbitrary and

AAT
A= (1 - W) = (I —AAT) (A1)

is the stacked space projection operator onto the tangent space of the unit
R™—sphere at the point A (note that we used the fact that || A|| = 1). The pro-
jection operator A is necessarily idempotent, A = A”. A is also self-adjoint,
A = A", where the adjoint operator A* is defined by the requirement that

(A"Q1,Q2) = (Q1, AQy), forall Qr, Q; € R™,

showing that A is an orthogonal projection operator. In this case, A* = AT,
so that self-adjointness corresponds to A being symmetric. One can readily
show that an idempotent, self-adjoint operator is nonnegative, which in this
case corresponds to the symmetric, idempotent operator A being a positive
semidefinite matrix.

This projection can be easily rewritten in the Frobenius space,

A=AQ=0Q0-(A QA= A=AQ0=0-(4.QA
=Q—tr(ATQ)A. (A.2)

Of course, this result can be derived directly in the Frobenius space using
the fact that

d . .
Aec A = EIIAIIZ =2(A, A) =2tr(ATA) =0,
from which it is directly evident that
AeTAatAc A & (A A)=trATA=0, (A.3)

and therefore A must be of the form!!

, tr(ATQ) T
A=AQ=Q- A=Q—tr(A"Q)A. A4
Q=0Q- L arnA=02-tAQ (A4)
1 It must be the case that A =1 — Im(lé‘ = [ — |A)(A], using the physicist’s “bra-ket”

notation (Dirac, 1958).
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One can verify that A is idempotent and self-adjoint and is therefore a
nonnegative, orthogonal projection operator. It is the orthogonal projection
operator from R"*" onto the tangent space TA;.

In the stacked space (with some additional abuse of notation), we repre-
sent the quadratic form for positive semidefinite symmetric matrices W as

1Ay = ATWA.

Note that this defines a weighted norm if, and only if, W is positive defi-
nite, which might not be the case by definition. In particular, when W = A,
the quadratic form ”A”‘ZA is only positive semidefinite. Finally, note from

equation A .4 that VA € A,
AQ =0<= Q=cA, withc=tr(ATQ). (A.5)

A.2 Minimizing the Loss Function over a General Manifold .A. Con-
sider the Lyapunov function,

VN(X, A) = (dg(y — Ax) + rdy ()N, A € A, (A.6)

where A is some arbitrary but otherwise appropriately defined constraint
manifold associated with the prior, equation 3.13. Note that this is pre-
cisely the loss function to be minimized in equation 3.15. If we can de-
termine smooth parameter trajectories (i.e., a parameter-vector adaptation
rule) (X, A) such that along these trajectories V(X, A) < 0, then as a conse-
quence of the La Salle invariance principle (Khalil, 1996), the parameter val-
ues will converge to the largest invariant set (of the adaptation rule viewed
as a nonlinear dynamical system) contained in the set

r={X A | Vy(X,A)=0and A € A}. (A7)

The set I" contains the local minima of V. With some additional technical
assumptions (generally dependent on the choice of adaptation rule), the
elements of I" will contain only local minima of V.

Assuming the ii.d. g = 2 gaussian measurement noise case of equa-
tion 3.8,!2 the loss (Lyapunov) function to be minimized is then

1
VN(X, A) = <§||Ax —y|* + kdp(x)> , Ac A, (A.8)
N

which is essentially the loss function to be minimized in equation 3.15.13

12 Note that in the appendix, unlike the notation used in equations 3.8 et seq., the “hat”
notation has been dropped. Nonetheless, it should be understood that the quantities A
and X are unknown parameters to be optimized over in equation 3.15, while the measured
signal vectors Y are known.

13 The factor % is added for notational convenience and does not materially affect the
derivation.
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Suppose for the moment, as in equations 3.4 through 3.9, that X is as-
sumed to be known, and note that then (ignoring constant terms depending
on X and Y) Vy can be rewritten as

VN(A) = (tr(Ax — y)(Ax — ')y
= (tr(AxxTAT) -2 tr(AxyT) + tr(ny))N
= trAZ AT —2tr A%,
VN(A) = tr{AZ AT — 24},
for Xy and T, = 2] defined as in equation 3.10. Using standard results

from matrix calculus (Dhrymes, 1984), we can show that Viy(A) is minimized
by the solution 3.9. This is done by setting

P -
—Vn(A) =0,
oA N(A)

and using the identities (valid for W symmetric)

) 9
— tr AWAT = 2AW and — tr AB = BT.
9A dA

This yields (assuming that X, is invertible),

) ~ ~ N
B—AVN(A) =2A% — 22§y =2(AZ — Tyy) =0,
= A=3;35]

xx’

whichis equation 3.9, as claimed. For X, nonsingular, the solution is unique
and globally optimal. This is, of course, a well-known result.

Now return to the general case, equation A.8, where both X and A are
unknown. For the data indexed by k =1, ..., N, define the quantities

dy = dp(x1), e(x) = Ax —y, and ey = Axg — V.
The loss function and its time derivative can be written,

VN(X, A) = <%eT(x)e(x) + xdp(x)>
N

Vn(X, A) = (T (0e) +aVTd,(0)%)N
= (e () (A% + Ax) + AV d, ()3 N.

Then, to determine an appropriate adaptation rule, note that

Vn =T1 + Ta, (A.9)
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where
1 N
Ty = (" (M)A + AVTd,(x)¥)n = N Z(e,{A + AvTdya, (A.10)
k=1
and
) 1 &
Ty = (T (x)Ax)y = N > el Ax. (A.11)
k=1

Enforcing the separate conditions
Ty <0and T2 <0, (A12)

(as well as the additional condition that A € .A) will be sufficient to ensure
that Vi < 0 on A. In this case, the solution-containing set I" of equation A.7
is given by

I ={X,A)|Ti(X,A) =0, Ta(X, A) =0and A € A}. (A.13)

Note that if A is known and fixed, then T, = 0, and only the first condition
of equation A.12 (which enforces learning of the source vectors, xx) is of
concern. Contrawise, if source vectors xx, which ensure that e(x;) = 0 are
fixed and known, then T; = 0, and the second condition of equation A.12
(which enforces learning of the dictionary matrix, A) is at issue.

A.3 Obtaining the x; Solutions with the FOCUSS Algorithm. We now
develop the gradient factorization-based derivation of the FOCUSS algo-
rithm, which provides estimates of x; while satisfying the first convergence
condition of equation A.12. The constraint manifold A is still assumed to
be arbitrary. To enforce the condition T1 < 0 and derive the first adaptation
rule given in equation 3.20, we note that we can factor Vdy = Vd(xy) as
(Kreutz-Delgado & Rao, 1997; Rao & Kreutz-Delgado, 1999)

Vdi = o Mixg

with oy = ay, > 0 and I, = II; positive definite and diagonal for all
nonzero xx. Then, defining B = Aog > 0 and selecting an arbitrary set of
(adaptable) symmetric positive-definite matrices Q, we choose the learning
rule

i = —Q{ATex + AVdy) = —U((ATA + Bllxe — ATy,
k=1,....N, (A.14)
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which is the adaptation rule for the state estimates x; = X given in the first
line of equation 3.20. With this choice, we obtain

Ty

—(IATe(x) + AVd@®) 13N

1 N
—x 2 AT ek + AV,
k=1

1 N
-5 D IATA + BTl — ATyellg, < 0. (A.15)
k=1

as desired. Assuming convergence to the set A.13 (which will be seen to be
the case after we show below how to ensure that we also have T, < 0), we
will asymptotically obtain (reintroducing the “hat” notation to now denote
converged parameter estimates)

IATA + BTk — ATyel3, = 0.k =1,....N,
which is equivalent to

= (ATA+ g ATy k=1,... N, (A.16)

at convergence. This is also equivalent to the condition given in the first line
of equation 3.25, as shown below.

Exploiting the fact that Q in equation A.14 are arbitrary (subject to the
symmetry and positive-definiteness constraint), let us make the specific
choice shown in equation 3.23,

QU =mATA+ B Lk >0k=1,...,N. (A.17)

Also note the (trivial) identity,
(ATA+ pmn AT = AT(ATT AT + BI),

which can be recast nontrivially as

(ATA+ g TAT = m1AT(BI + ATT1AT) L. (A.18)
With equations A.17 and A.18, the learning rule, A.14, can be recast as

e = =l — MO AT+ AT AD) Ty k=1, N, (A19)

which is the alternative learning algorithm, 3.24. At convergence (wWhen
T1 = 0) we have the condition shown in the first line of equation 3.25,

Te=T"AT (B + ATT'AT) . (A.20)
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This also follows from the convergence condition A.16 and the identity A.18,
showing that the result, A.20, is independent of the specific choice of €2 > 0.
Note from equations A.14 and A.15 that T1 = 0 also results in %, = 0 for
k=1,...,N, so that we will have converged to constant values, X}, which
satisfy equation A.20.

For the case of known, fixed A, the learning rule derived here will con-
verge to sparse solutions, xi, and when discretized as in section 3.3, yields
equation 3.27, which is the known dictionary FOCUSS algorithm (Rao &
Kreutz-Delgado, 1998a, 1999).

Note that the derivation of the sparse source-vector learning algorithm
here, which enforces the condition T; < 0, is entirely independent of any
constraints placed on A (such as, for example, the unit Frobenius-norm and
column-norm constraints considered in this article) or of the form of the
A-learning rule. Thus alternative choices of constraints placed on A, as con-
sidered in Murray and Kreutz-Delgado (2001) and described in appendix B,
will not change the form of the xi-learning rule derived here. Of course,
because the x; learning rule is strongly coupled to the A-learning rule, algo-
rithmic performance and speed of convergence may well be highly sensitive
to conditions placed on A and the specific A learning algorithm used.

A.4 Learning the Dictionary A.

A.4.1 General Results. We now turn to the enforcement of the second
convergence condition, T, < 0and the development of the dictionary adap-
tation rule shown in equation 3.20. First, as in equation 3.21, we define the
error term SA as

1 N
SA = (e(0)xT)n = N > e@xf = ASy — Sy, (A21)
k=1

using the fact that e(x) = Ax — y. Then, from equation A.11, we have
Tz = (' (MAx)y = {tr(xe’ () A)y = tr((xe’ (0))nA)
=tr(sATA) = sATA. (A.22)
So far, these steps are independent of any specific constraints that may be
placed on A, other than that the manifold .A be smooth and compact. With
A constrained to lie on a specified smooth, compact manifold, to ensure

correct learning behavior, it is sufficient to impose the constraint that A lies
in the tangent space to the manifold and the condition that T, < 0.

A.4.2 Learning on the Unit Frobenius Sphere, Ap. To ensure that T, < 0
and that A is in the tangent space of the unit sphere in the Frobenius space
R™ we take

A=—pASA & A=—pASA=—puA — tr(ATSA)A), u > 0, (A.23)
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which is the adaptation rule given in equation 3.20. With this choice, and
using the positive semidefiniteness of A, we have

Ty = —ullsAl} <0,

as required. Note that at convergence, the condition T, = 0, yields A = 0, so
that we will have converged to constant values for the dictionary elements,
and

0= ASA = A(AZg; — By3) = §A = (ASg; — By0) = cA, (A.24)
from equation A.5, where ¢ = tr(;fr 8;\\). Thus, the steady-state solution is
A=3,:(S5x—cD)" € A, (A.25)

Note that equations A.20 and A.25 are the steady-state values given earlier
in equation 3.25.

Appendix B: Convergence of the Column-Normalized Learning
Algorithm

The derivation and proof of convergence of the column-normalized learn-
ing algorithm, applicable to learning members of A, is accomplished by
appropriately modifying key steps of the development given in appendix A.
As in appendix A, the standard Euclidean norm and inner product apply
to column vectors, while the Frobenius norm and inner product apply to
m x n matrix elements of R"*".

B.1 Admissible Matrix Derivatives.

B.1.1 The Constraint Manifold Ac. Lete; = (0---010---0)T € R" be
the canonical unit vector whose components are all zero except for the value
1 in the ith location. Then

n
I= ZeieiT and a; = Ae;.
i=1

Note that
lai|® =a)a; = (Ae)T Ae; = el AT Ae; = trejel ATA = tr MT A= (M;, A),

where
M; & Aeiel =ael =[00---0a;0--- 0] € R™", (B.1)
Note that only the ith column of M; is nonzero and is equal to 4; = ith

column of A. We therefore have that

A= ZM, (B.2)
i=1
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Also, fori, j=1,...,n,
(M, Mj) =tr MiTM]' =tr e,-e,-TATAejejT =tr el-TATAe]-ejTe,- =|a; ”281}]‘7 (B.3)
where §; ; is the Kronecker delta. Note, in particular, that [|a;|| = || M.
Let A € A, where A¢ is the set of column-normalized matrices, as de-

fined by equation 3.29. A is an mn—n = n(m—1)-dimensional submanifold
of the Frobenius space R"*" as each of the n columns of A is normalized as

2 2
llaill® = 1Ml

[II
Sy

)

and

IAI> = tr ATA = tr

n
i=

n n
T 2_ I
MPY My = Zlnaiu = =1
j=1 i=

using linearity of the trace function and property, B.3. Itis evident, therefore,
that

1

ACCAF,

for A; defined by equation 3.17.

We can readily show that A¢ is simply connected, so that a continu-
ous path exists between any matrix A = A,,, € Ac to any other column-
normalized matrix A’ = A, € Ac. Indeed, let A and A’ be such that

A=lay,....a,], A'=]a},....a,],
laill = la}ll = 1/5/m. Vi, j=1,....n.

There is obviously a continuous path entirely in 4. from A € A to the inter-
mediate matrix [a], a4z, . .., a,] € Ac. Similarly, there is a continuous path en-
tirely in Ac from [a}, a3, ..., a,]to [a},a), ..., a,],and soonto [4], ..., a,] =
A’. To summarize, Ac is a simply connected (nm —n)—-dimensional subman-
ifold of the simply connected (nm — 1)-dimensional manifold A; and they
are both submanifolds of the (nm)-dimensional Frobenius space R"™*".

B.1.2 Derivatives on Ac: The Tangent Space TAc. For convenience, for
i=1,...,ndefine

- a; .
a; = = Vnai, @] =1,
llail|

and

§ — = M' :A' T, M' = 1.
i Ml \/% i = aie; [l M|
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Note that equation B.3 yields
(Mi, M) = tr MI M; = & ;. (B.4)

For any A € Ac we have foreachi=1,...,n,

0= %llﬂi|l2 = %a?ai = %eiTATAei = ZeiTATAe,-
= 2tree] ATA =2tr M A,
or
AcAc= Mj, Ay =trMIA=0 for i=1,...,n. (B.5)

In fact,

AeTAcatAec A & (1VL-,A):tr]VIfA:O
for i=1,...,n. (B.6)

Note from equations B.2 and B.5 that

n
(A, A) = <Z M;, A> =0,
i=1
showing that (see equation A.3) TA. C TA;, as expected from the fact that
Ac C A
An important and readily proven fact is that foreachi =1, ..., n,

rM/A=0 & A=PQ (B.7)
for some matrix Q; and projection operator, P;, defined by

PiQ 2 Q— Mi(M;, Q) = Q — Mitr M Q. (B.8)
From equation B.4, it can be shown that the projection operators commaute,

PiP;=PiP;, i#j ij=1,...,n, (B.9)
and are idempotent,

P?=P;, i=1,...,n (B.10)

Indeed, it is straightforward to show from equation B.4 that for all Q,

P;iPiQ = PiP;Q = Q — Mi(M;, Q) — Mj(M;, Q), forall i#j, (B.11)
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and
P?PQ=0Q— Mi(M;,Q)=P,Q, i=1,...,n. (B.12)

It can also be shown that

(PiQ1, Q2) = (Q1, PiQa),
showing that P; is self-adjoint, P; = P?.
Define the operator,

P=Py,....P,. (B.13)

Note that because of the commutativity of the P;, the order of multiplica-
tion on the right-hand side of equation B.11 is immaterial, and it is easily
determined that P is idempotent,

P> =P.

By induction on equation B.11, it is readily shown that
PQ=Q—M;(Mi, Q) —---—My(My, Q) = Q— ZM (M:, Q). (B.14)

Either from the self-adjointness and idempotency of each P;, or directly from
equation B.14, it can be shown that P itself is self-adjoint, P = P¥,

(PQ1, Q2) = (Q1, PQy).
Thus, P is the orthogonal projection operator from R"*" onto T Ac.
As a consequence, we have the key result that

AeTAcatA & A=PQ, (B.15)

for some matrix Q € R"*". This follows from the fact that given Q, then
the right-hand side of equation B.6 is true for A = PQ. On the other hand,
if the right-hand side of equation B.6 is true for A, we can take Q = A
in equation B.15. Note that for the T.4;—projection operator A given by
equation A.2, we have that

P = AP =PA,

consistent with the fact that TA. C TA;.
Let g, i = 1,...,n be the columns of Q = [q1, ..., g4]. The operation
Q" = P;Q, corresponds to

gi=qi, i#j and g =I-aa)q,
while the operation Q' = PQ, corresponds to

q;:([—fz\la\lT)ql, i=1,...,n
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B.2 Learning on the Manifold Ac. The development of equations A.6
through A.22 is independent of the precise nature of the constraint manifold
A and can be applied here to the specific case of A = Ac. To ensure that
T, < 0in equation A.22 and that A € TA., we can use the learning rule,

n
A=—uPSA=—pn <6A - Mitr MiaA) , (B.16)
i=1

for i > 0 and 8 A given by equation A.21. With the ith column of §A denoted
by éa;, this corresponds to the learning rule,

g = —pn( —@a sa;, i=1,...,n. (B.17)
With rule B.16, we have

To = (A, A) = —u(8A, PSA) = —n(SA, P2SA)
—u(PSA, PSA) = —u|PSA|* <0,

where we have explicitly shown that the idempotency and self-adjointness
of P correspond to its being a nonnegative operator. Thus, we will have
convergence to the largest invariant set for which A = 0, which from equa-
tion B.16 is equivalent to the set for which

PSA =8A—Y  Mi(M;, 8A) =0. (B.18)

n

i=1

This, in turn, is equivalent to
A =

n n n
Mi(M;, 8A) = Z nM;(M;, 8A) = Z ciM;, (B.19)
i=1 i=1 i=1

with
A T .
ci = n{M;, 6A) =na; da;, i=1,...,n.
An equivalent statement to equation B.19 is
Saj=ca;, i=1,...,n.
Defining the diagonal matrix
C = diag|c;, . .., cul

and recalling the definitions A.21 and B.1, we obtain from equation B.19
that

AZyy — Xy = 8A = AC,
which can be solved as
A=Zp(Ex—-0O" (B.20)

This is the general form of the solution found by the .A.-learning algorithm.
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