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Dictionary Learning for Sparse Approximations

with the Majorization Method
Mehrdad Yaghoobi, Member, IEEE, and Thomas Blumensath, Member, IEEE and Mike E. Davies, Member, IEEE

Abstract—In order to find sparse approximations of signals,
an appropriate generative model for the signal class has to be
known. If the model is unknown, it can be adapted using a
set of training samples. This paper presents a novel method for
dictionary learning and extends the learning problem by intro-
ducing different constraints on the dictionary. The convergence
of the proposed method to a fixed point is guaranteed, unless the
accumulation points form a continuum. This holds for different
sparsity measures. The majorization method is an optimization
method that substitutes the original objective function with a
surrogate function that is updated in each optimization step. This
method has been used successfully in sparse approximation and
statistical estimation (e.g. Expectation Maximization (EM)) prob-
lems. This paper shows that the majorization method can be used
for the dictionary learning problem too. The proposed method
is compared with other methods on both synthetic and real
data and different constraints on the dictionary are compared.
Simulations show the advantages of the proposed method over
other currently available dictionary learning methods not only in
terms of average performance but also in terms of computation
time.

Index Terms—Dictionary Learning, Sparse Approxima-
tion, Majorization Methods, Surrogate Function Optimization
Method, Block Relaxation Methods, Constrained Optimization

I. INTRODUCTION

O
RTHOGONAL function representations, introduced in

the nineteenth century, are still a powerful tool in signal

analysis. These representations have unique characteristics that

make them suitable for many signal processing applications.

In the last two decades, many researchers have tried to extend

this idea to non-orthogonal and overcomplete representations

[1], [2]. The overcomplete representation problem with the

associated underdetermined linear system does not have a

unique solution. The method of frames finds the minimum

mean square solution and leads to representations where

most of the coefficients are non-zero. Minimum mean square

representations are desirable for some applications (e.g. robust

transform coding in the presence of noise or erasure [3]) while

there are other applications where sparsity of the representa-

tion is more desirable, e.g. in Compressed Sensing [4].
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Let y ∈ R
d and x ∈ R

N be the input signal and

the coefficient vector respectively. The sparsest representation

would be,

min
x

||x||0 s.t y = Dx, (1)

where D is a d × N matrix, often called dictionary and

||.||0 is the sparsity measure that counts the number of non-

zero coefficients. This formulation can be relaxed to sparse

approximations by using ||y − Dx||2 ≤ ǫ with a small

constant ǫ. Unfortunately finding the solutions to the above

combinatorial problems is not easy in general [5]. Many

approximations/relaxations have been presented to find accept-

able solutions, e.g. [6], [7].

These methods are more successful at finding a sparse x,

when there is a suitable dictionary for the given signal. A

simple method for dictionary generation is to add two or

more orthogonal bases. Block-wise orthogonality can then be

exploited to find the sparse approximation [8]. This also makes

it easier to analyze the performance of sparse approximation

methods [9], [10]. Another way to design a dictionary is to

sample the parameters of an analytic function. For example a

famous dictionary that has been used for overcomplete audio

and image representations, is the Gabor dictionary [6]. These

designed dictionaries are efficient when we have some a priori

information about the signal’s generative model. Alternatively

it is possible to adapt the dictionary to a given source using

a set of training samples (Y = {y(i) : 1 ≤ i ≤ L} where

L is the number of training samples). Dictionary learning is

the process of finding a dictionary D in which a given set

of training samples has sparse representations (or approxima-

tions) X = {x(i) : 1 ≤ i ≤ L}. Different methods have

been proposed to learn dictionaries [11]–[15]. These methods

are generally based on alternating minimization. In one step,

a sparse approximation/representation algorithm finds sparse

representations of the training samples with a fixed dictionary.

In the other step, the dictionary D is updated to decrease the

average approximation error while X (or the sparsity of X

[15]) remains fixed. Because the objective functions are non-

convex based on the pair of parameters (D,X ), these methods

generally only find a local minimum and different initial

value for D (or X ), lead to different solutions. Nevertheless,

in practice, good results have been reported [16], [17]. The

proposed method in this paper uses a general formulation of

alternating minimization. Therefore like other methods, we

only expect to find local minima in general.
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Contributions of the paper

This paper introduces a new algorithm for constrained

dictionary learning which is very flexible and can use different

constraints on the dictionary. The given method uses convex

admissible sets whose boundaries are the same as the most

frequently used admissible sets, however these convex sets

allow the algorithm to generate a sequence throughout the

sets (and not only on their boundaries). An advantage of the

given method is that it optimizes a joint parameter objective

function of the sparse coefficient matrix and the dictionary.

In this framework, it is possible to choose a better path from

the initial to the learnt dictionary by reducing the objective

in different directions (coefficients or dictionary) in a cyclic

way. This prevents oscillations of the sequence of updates

around the optimal path and makes the algorithm more suitable

for large scale problems, for which the calculation of sparse

approximations of the training samples is often impossible.

Another advantage of the proposed algorithm is that we can

impose a tighter constraint on the dictionary. For example,

when a minimum size dictionary is required or when the

optimum size of the dictionary is unknown, we can impose

an additional penalty on the number of the atoms in the

dictionary.

Numerical results show that the algorithm is faster than (or

at least as fast as) most of the available dictionary learning

methods.

Finally we show that the new algorithm is not only stable but

also converges to a fixed point or its accumulation points form

a continuum (in contrast to most of the dictionary learning

methods, for which so far only stability has been shown).

Organization of the paper

An overview of previous dictionary learning methods is

presented in Section II. Section III introduces the dictionary

learning framework used in this paper. We introduce two new

admissible sets for the dictionaries. Then, in Section III-A,

we introduce the majorization method which is used in the

matrix valued sparse approximation (III-B) and the dictionary

update (III-C1, III-C2) steps. We introduce a new objective

function to penalize the size of the dictionary in Section

III-D. By minimization of the new objective function with

the majorization minimization method, we find a minimum

size dictionary. The different dictionary update methods are

examined in the simulation section using training samples

generated synthetically or sampled from an audio signal. After

concluding the paper we present a convergence proof of the

algorithm in Appendix B.

Notation

In this paper we use the following conventions. We use

small and capital bold face characters for vector and matrix

valued parameters respectively. In an iterative algorithm, the

value of a parameter in the kth iteration is distinguished

by using the iteration number in square brackets, e.g. D[k].

We use a similar notation for a countable series. When a

parameter appears with a hat, it shows the current value

of that parameter. In the majorization method we introduce

an auxiliary parameter which is distinguished with a double

dagger superscript, e.g. X‡. In dictionary learning, we have

a set of training signals y(i), where i is the signal index.

Similarly, the associated coefficient vectors are x(i). In this

paper we use different norms for vectors and matrices. ||.||
and ||.||F are spectral and Frobenius norm in the Euclidean

vector space respectively. ||.||p : 0 < p ≤ 1 is the ℓp quasi-

norm (
∑

|.|p)
1
p .

II. DICTIONARY LEARNING METHODS

In traditional dictionary learning, one often starts with some

initial dictionary and finds sparse approximations of the set

of training signals while keeping the dictionary fixed. This

is followed by a second step in which the sparse coefficients

are kept fixed and the dictionary is optimized. This algorithm

runs for a specific number of alternating optimizations or

until a specific approximation error is reached. Most of these

algorithms have been derived for dictionary learning in a noisy

sparse approximation setting. Recently some researchers have

considered dictionary learning for exact sparse representations

[18], [19]. Like most other researchers, we consider dictionary

learning for sparse approximation.

A. Sparse Approximation

Given a set of training samples y(i), ∀i : 1 ≤ i ≤ L and a

dictionary D, sparse approximations are often found by 1,

x(i)∗ = argmin
x(i)

φi(x
(i)) ;

φi(x) =||y(i) − Dx||2 + λ||x||pp , p ≤ 1
(2)

An alternative to minimizing (2) individually on each vec-

tor is to find a joint sparse approximation of the matrix

Y = [y(1) y(2) ... y(L)] by employing a sparsity measure

in matrix form. The sparse matrix approximation problem can

be formulated as,

X∗ = arg min
X

φ(X) ; φ(X) = ||Y−DX||2F +λJp,p(X), (3)

where Jp,q(X) is defined as [20],

Jp,q(X) =
∑

i∈I

[
∑

j∈J

|xij |
q]p/q. (4)

For example, ||X||F = J1/2

2,2 (X) would be the Frobenius-norm.

When p = q all elements in X are treated equally.

In this paper we use p = 1, so that Jp,p is convex.

Extending the algorithm to 0 < p < 1 is possible by

using the majorization method proposed in [21]. However the

convergence of the algorithm in this setting has not yet been

proven [21], [22].

1Instead of minimizing an objective function like (2) one can also use a
greedy algorithm. Because greedy algorithms do not deal with an objective
function explicitly, convergence analysis of dictionary learning based on these
methods is not easy and is therefore not considered here.
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B. Dictionary Update

The second step in dictionary learning is the optimization of

the dictionary based on the current sparse approximation. The

cost function in (3) can be thought of as an objective function

with two parameters,

φ(D,X) = ||Y − DX||2F + λJ1,1(X). (5)

Without additional constraints on the dictionary, minimizing

the above objective function is an ill-posed problem. By

constraining the norm of D we can solve the scale ambiguity2

of the problem. Dictionaries with fixed column-norms or

fixed Frobenius-norm have been used in different papers (for

example [13] and [23]). We will use more general convex

admissible sets defined in (7) and (8) below.

C. Previously Suggested Dictionary Update Methods

In the Method of Optimal Directions (MOD) [13] the best

dictionaryD is found using the pseudo inverse of X , followed

by re-normalization of each atom. The Maximum Likelihood

based Dictionary Learning algorithm [11], is similar to MOD

but uses gradient optimization. In general, if the update is done

iteratively, the best possible dictionary is typically calculated

without any constraint. This update is then followed by nor-

malization of the atoms. This normalization step can increase

the total approximation error.

Kreutz-Delgado et al. [23] presented a dictionary learning

method based on Maximum a Posteriori estimation (from now

called MAP-DL3). By the use of an iterative method they

estimate a dictionary that is consistent with a Bayesian model

[23]. However, as reported in [15], when a fixed column-norm

constraint is used, the algorithm updates atom by atom, making

the method too slow for many applications.

The K-SVD method presented in [15] is fundamentally

different from these methods. Instead of keeping the sparse

coefficients fixed in the dictionary update step, only the

support of the coefficient vectors (the positions of the non-zero

coefficients) is kept fixed. Updates for each atom are found as

the best normalized elementary function that matches the error

(calculated after representing the signals with all atoms except

the currently selected atom).

The formulation of the problem in this paper has several

similarities with MAP-DL. However, our approach to solve

this problem is based on a joint objective function for both

the sparse approximation and the dictionary, which is good

because we can develop a uniform approach for the updates

and we have the flexibility to be able to switch between updat-

ing parameters easily. Furthermore, we use a different class of

constraints on the desired dictionaries. In this setting, we will

show a basic convergence proof. Our simulations furthermore

show faster convergence for the proposed approach. Moreover,

we can optimize the joint parameter objective function more

2Approximation error does not change by scaling up one parameter and
scaling down the other one with the same scaling factor. Therefore the
optimum X and D tend to zero and infinity respectively to minimize the
sparsity penalty.

3Although MAP actually refers to an objective, MAP-DL is an algorithm
for dictionary learning based on the MAP objective.

wisely (see section III-E) and thereby increase the observed

speed of convergence even further.

III. DICTIONARY LEARNING WITH THE MAJORIZATION

METHOD

We consider the dictionary learning problem as the follow-

ing constrained optimization problem,

min
D,X

φ(D,X) s.t. D ∈ D

φ(D,X) = ||Y − DX||2F + λJp,p(X),
(6)

where D is an admissible set of dictionaries. As noted in

[23], two typical constraints are the unit Frobenius-norm and

the unit column-norm constraints, both of which lead to non-

convex solution sets. Instead of using these constraints in the

algorithm derived below, we use the convex relaxed version of

these constrained sets. These are the convex sets of matrices

with bounded Frobenius norm,

DF = {Dd×N : ||D||F ≤ c1/2

F } (7)

where cF is a constant and the convex set of matrices with

bounded column norm,

DC = {Dd×N : ||di||2 ≤ c1/2

C }, (8)

where di is the ith column of the dictionary D and cC

is a constant. Note that when the sparsity measure in the

sparse approximation step penalizes coefficients based on their

magnitudes (e.g. lp : 0 < p ≤ 1), it is easy to show that the

solution of (6) is on the boundary of these convex admissible

sets. However, the convex admissible sets also allow the

optimization algorithm to “pass through” these admissible sets

while the traditional non-convex sets only allow the algorithm

to move along the boundary of these sets.

We use the block relaxation technique (see for example

[24]) to solve (6), where p = 1, that is, in one step we fix

D and minimize the objective based on X, while in the other

step we minimize the objective based on D with X fixed.

This alternating minimization continues until the algorithm

converges to an accumulation point. For a fixed dictionary,

ℓ1 penalized sparse approximation is a convex optimization

problem and using convex dictionary admissible sets also turns

the dictionary update into a convex optimization problem.

Whilst this allows us to find the optimum update in each

step, (5) is not convex as a function of the pair (X,D),
and alternating optimization is not guaranteed to find a global

optimum.

Various methods have been presented to solve the ℓ1 pe-

nalized sparse approximation [7], [25], [26]. We choose an

Iterative Thresholding (IT) approach, which is a majorization

minimization algorithm (see next subsection), which can be

extended to the sparse approximation problem in matrix form

(see III-B).

A. Majorization Minimization Method

Optimization of the problem in (6) with respect to any

one of the parameters is challenging. We here use a tech-

nique called the “majorization method” [24], [27]. In the
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majorization method, the objective function is replaced by

a surrogate objective function which majorizes it and can

be easily minimized. Here we are particularly interested in

surrogate functions in which the parameters are decoupled, so

that the surrogate function can be minimized element-wise.

A function ψ majorizes φ when it satisfies the following

conditions,

φ(ω) ≤ ψ(ω, ξ), ∀ω, ξ ∈ Υ

φ(ω) = ψ(ω, ω), ∀ω ∈ Υ,
(9)

where Υ is the parameter space. The surrogate function has

an additional parameter ξ. At each iteration we first choose

this parameter as the current value of ω and find the optimal

update for ω.

ωnew = arg min
ω∈Υ

ψ(ω, ξ) (10)

We then update ξ with ωnew. The algorithm continues until

we find an accumulation point. In practice the algorithm is

terminated when the distance between ω and ωnew is less than

some threshold.

This iterative method can be viewed as a block-relaxed

minimization of the joint objective ψ(ω, ξ) [24]. In one step,

we find the minimum of ψ based on ω. In the next step we

minimize the objective based on ξ.

ξnew = argmin
ξ∈Υ

ψ(ω, ξ) (11)

In our formulation, minimization of ψ(ω, ξ) based on ξ is done
using ξnew = ω (due to the definition of majorization in (9)).

We use this interpretation of the majorization method to show

the convergence of the proposed method in Appendix B.

There are different ways to derive a surrogate function.

Jensen’s inequality and Taylor series have often been used for

this purpose [28] [29]. The Taylor series of a differentiable

function φ(ω) is,

φ(ω) = φ(ξ) + dφ(ξ)(ω − ξ) +
1

2!
d2φ(ξ)(ω − ξ)2 + o(ω3).

(12)

When φ has a bounded curvature (d2φ < cs for a finite

constant cs) this is majorized by,

φ(ω) ≤ φ(ξ) + dφ(ξ)(ω − ξ) +
cs
2

(ω − ξ)2, ∀ω, ξ ∈ Ω, (13)

and we can define ψ(ω, ξ) (which satisfies (9)) as follows,

ψ(ω, ξ) = φ(ξ) + dφ(ξ)(ω − ξ) +
cs
2

(ω − ξ)2. (14)

Then, at each iteration, φ(ωnew) ≤ ψ(ωnew, ω) ≤
ψ(ω, ω) = φ(ω), hence φ does not increase. Conditions

for which these algorithms converge have been presented in

[24] and [29]. The convergence of this method for sparse

approximation is shown in [26]. A similar analysis can be

derived for the iterative method in the dictionary update step.

In the next sections we show how we can use the majoriza-

tion method to optimize the objective introduced in (6) based

on X (Section III-B) or D (Sections III-C and III-D) using

different constraints. Updating the coefficient or the dictionary

matrices always reduces the joint objective function or keeps it

Algorithm 1 : SA(Xt,Dt)

1: initialization: cX > ‖DT
t Dt‖ , X[0] = Xt

2: for n = 1 to KX do

3: A = 1
cX

(DT
t Y + (cXI − DT

t Dt)X
[n−1])

4: X[n] = Sλ(A)
5: end for

6: output: Xt+1 = X[KX ]

at the same value. The fact that the objective function is lower-

bounded is sufficient to show stability of the updating process

in the sense of Lyapunov (Lyapunov second theorem) [30].

We also provide a basic convergence proof for the proposed

algorithm in Appendix B.

B. Matrix Valued Sparse Approximation

We begin by showing how the majorization method is used

for the first step of the alternating minimization: matrix valued

sparse approximation. The updating formula derived here is

used in the generalized block relaxation method derived later

in this section. For fixed D, we use the matrix form of the

Taylor series inequality (13), see Appendix A, to derive the

following majorizing function,

||Y − DX||2F ≤ ||Y − DX||2F

+ cX||X − X[n−1]||2F − ||DX − DX[n−1]||2F

= ||Y − DX||2F + πX(X,X[n−1])
(15)

where X[n−1] is the coefficient matrix in the previous step,

πX(X,X[n−1]) := cX ||X − X[n−1]||2F − ||DX − DX[n−1]||2F
and cX > ||DT D|| is a constant, where ||.|| is defined as the

spectral norm [31]. This type of majorization has already been

used for sparse approximation with vector valued coefficients

[26], [32], [33]. Φ(D,X) in (6) has two terms, ||Y−DX||2F
and λJp,p(X). Therefore a function majorizing Φ(D,X) is,

Φ(D,X) ≤ Φ(D,X) + πX(X,X[n−1]) (16)

Let A := 1
cX

(DT Y + (cXI−DT D)X[n−1]). It can be shown

that the optimum of the surrogate objective (16), where p = 1,
is found by shrinking elements in A [26], [34], that is,

{X[n]}i,j = Sλ(A) =

{
ai,j − λ/2 sign(ai,j) λ/2 < |ai,j |

0 otherwise.
(17)

The matrix A is the modified Landweber update [35], (which

is a gradient descent update) of the matrix valued coefficients.

This iterative update continues until X[n] converges to the

optimum solution. The pseudocode for this coefficient update

is presented in Algorithm 1. The operator Sλ is the shrinkage

operator defined in (17).

C. Dictionary Update

In the second step of the alternating minimization, we

minimize the objective function with respect to D keeping X

fixed. This constrained minimization problem can be solved

using several methods. Among these, fixed-point iteration and



5

iterative gradient projection methods have been suggested for

the dictionary updates in [23], [11]. In this paper we derive a

majorization method for the dictionary update.

The quadratic part of the objective function in (6) has a

bounded curvature when minimizing over D. So again using

the Taylor series, the majorizing function is as follows,

||Y − DX||2F ≤ ||Y − DX||2F

+ cD||D − D[n−1]||2F − ||DX − D[n−1]X||2F

= ||Y − DX||2F + πD(D,D[n−1])
(18)

where D[n−1] is the dictionary found in the previous step,

πD(D,D[n−1]) := cD||D − D[n−1]||2F − ||DX − D[n−1]X||2F
and cD > ||XT X|| is a constant. When X changes in the

sparse approximation step, this spectral norm needs to be re-

calculated. We know that the spectral norm of a Hermitian

matrix is its largest eigenvalue and various efficient methods

have been presented to calculate it [36].

This majorizing function can be used with different

constraints. In the following two subsections we derive the

optimum of (18) under bounded Frobenius and column-norm

constraints.

1) Constrained Frobenius-Norm Dictionaries: An advan-

tage of using a constraint on the Frobenius-norm of the

dictionary is that the learnt dictionary can have columns with

different norms. Such dictionaries can then be used in the

weighted-pursuit framework [37], where atoms with large

norms have more chance to appear in the approximations.

It has been shown that the average performance of sparse

approximation increases when the weights are chosen correctly

for the class of signals under study [37].

In the dictionary update step, with the help of a Lagrangian

multiplier γ, we turn (6) into an unconstrained optimization

problem,

min
D

φγ(D,X), (19)

where φγ(D,X), for p = 1, is now defined as,

φγ(D,X) = ||Y−DX||2F +λJ1,1(X)+γ(||D||2F −cF ). (20)

Fixing X, the solution to this minimization problem is a global

minimum if the solution satisfies the K.K.T conditions [38,

Theorem 28.1]. As the admissible set is convex, any minimum

of Φγ(D,X) is an optimal solution if γ(||D||2F − cF ) = 0.
Therefore if ||D||2F 6= cF , γ must be zero.

The majorizing function is generated by adding πD to the

objective function,

ψγ(D,D[n−1]) = φγ(D,X) + πD(D,D[n−1]). (21)

X has here been omitted from the list of parameters because

it is assumed fixed in the dictionary update step. The optimum

of this function is at a point with zero gradient,

d

dD
ψγ(D,D

[n−1]) = −2XYT + 2XXT D[n−1]T + 2cDDT

− 2cDD[n−1]T + 2γDT = 0

Algorithm 2 : DU(Xt+1,Dt)

1: initialization: cD > ‖XT
t+1Xt+1‖ , D[0] = Dt

2: for n = 1 to KD do

3: B = 1
cD

(YXT
t+1 + D[n−1](cDI− Xt+1X

T
t+1))

4: D[n] = P(B)
5: end for

6: output: Dt+1 = D[KD ]

By solving the above equation we find the optimal dictionary,

D∗
γ =

cD

γ + cD

B (22)

where B is defined as

B :=
1

cD

(YXT + D[n−1](cDI − XXT )). (23)

B has again the same role as the Landweber update. To satisfy

the K.K.T. conditions, a non-negative γ has to be found such

that γ(||D[n]||2F − cF ) = 0. If D∗
0 = B is admissible, we can

update the dictionary D[n] = B. Otherwise we scale B to have

Frobenius-norm equal to c1/2

F .

D[n] = PF

cF
(B) =

{
B ||B||F ≤ c1/2

F

c
1/2
F

||B||F
B otherwise

(24)

The pseudocode for this dictionary update is presented in

Algorithm 2. Here P is the operator PF
cF

presented in (24). In

the following, we show that the dictionary updates, subject to

the constraints on the column-norms or the joint sparsity (see

below) of the dictionaries, have similar algorithms, but with

the different operators for P .

If we use an equality in the definition of (7), i.e. we demand

a fixed Frobenius-norm, γ can become negative. In this case

the decision criteria of (24) becomes an equality (||B||F =
c1/2

F ).

2) Constrained Column-Norm Dictionaries: Another often

used admissible set in dictionary learning is the set of fixed

or unit column norm matrices. Instead a bound on the column

norms of the dictionary can be used to get a convex admissible

set. To make (6) an un-constrained optimization problem

we need N Lagrangian multipliers (equal to the number of

constraints),

min
D

φΓ(D,X), (25)

where φΓ(D,X), for p = 1, is now defined as,

φΓ(D,X) = ||Y − DX||2F + λJ1,1(X) +

N∑

i=1

γi(d
T

i di − cC)

(26)

With this formulation, the K.K.T conditions are,

∀i : 1 ≤ i ≤ N, γi(d
T

i di − cC) = 0 . (27)

This means that for each i when dT

i di is not equal to cC , γi

should be zero. (25) can be rewritten as

φΓ(D,X) = ||Y−DX||2F +λJ1,1(X)+ tr{Γ(DT D− cCI)},
(28)
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where Γ is a diagonal matrix with the γi as the ith diagonal

element. By adding πD, we get the majorizing function,

ψΓ(D,D[n−1]) = φΓ(D,X) + πD(D,D[n−1]). (29)

The gradient is again set to zero and the optimum solution is

found to be,

D∗
Γ = B(

1

cD

Γ + I)−1, (30)

where B has the same definition as introduced in (23). All γi

are non-negative and ( 1
cD

Γ + I) is an (invertible) diagonal

matrix. In equation (30), by changing γi, we multiply the

corresponding column of B by a scalar. We start by setting all

γi = 0. For any columns of D∗
0 = B for which the norm is

more than c
1/2
C , we find the smallest value of γi which scales

down that column to have the largest acceptable norm (c1/2

C ).

D[n] = PC

cC
(B) = {b[n]

j }1≤j≤N

d
[n]

j =

{
bj ||bj ||2 ≤ c1/2

C

c
1/2
C

||bj||2
bj otherwise,

(31)

where dj and bj are the jth columns of D and B respectively.

Alternatively, we can use a fixed column-norm constraint

(D = {Dd×N : ||di||2 = c1/2

C }). Here the algorithm may

find a Γ in which some of the γi are negative. The dictionary

update can then be found by a similar operator as (31) but

with equality in the decision criteria (||bj ||2 = c1/2

C ) or simply

by

d
[n]

j =
c1/2

C

||bj ||2
bj . (32)

When the norm of any columns of B is zero, we have some

ambiguity in the update formula. In this case we can shrink

the size of the dictionary by deleting this atom or keep the

size fixed by introducing a random atom to the dictionary. In

practice we have not encountered such an ambiguity.

D. Jointly Sparse Dictionaries

The majorization approach to dictionary learning is ex-

tremely flexible. To demonstrate this, we introduce an ad-

ditional constraint that encourages dictionary size reduction.

In some applications there is a benefit in using a smaller

dictionary. One of these benefits could be in coding, where the

coding cost increases when the size of the dictionary grows.

To shrink the dictionary size during learning, we introduce the

following additional constraint on the number of atoms in the

dictionary.

min
X,D∈D

φθ,0,∞(D,X) ;

φθ,0,∞(D,X) = ||Y−DX||2F +λJ1,1(X)+θ‖max
i

|{D}i,j|‖0

where ||.||0 is an operator that counts the number of non-zero

elements. Because φθ,0,∞ is non-convex and non-continuous,

we replace the objective function with a relaxed version as

follows,

min
X,D∈D

φθ,1,q(D,X) ;

φθ,1,q(D,X) = ||Y −DX||2F + λJ1,1(X) + θJ1,q(D
T ) (33)

This objective is convex when X is fixed. For fixed X, to

minimize over D, the joint sparsity penalty is again decoupled

by adding πD, (defined above), to the objective function

ψθ,1,q(D,D
[n−1]) = φθ,1,q(D,X) + πD(D,D[n−1]). (34)

By separating the terms depending on D, the surrogate cost

can be written as,

ψθ,1,q(D,D
[n−1]) ∝ cstr{DDT − 2BDT} + J1,q(D

T ) (35)

where B is defined in (23). The dictionary constraint is

again introduced into the objective function using Lagrangian

multiplier(s). Let dj and bj be the jth columns of D and

B respectively. The objective function, using the bounded

column-norm (8), can be written as,

ψθ,1,q(D,D
[n−1]) ∝

∑

j

(tr{τ2
j djd

T

j − 2bjd
T

j } + θ
cD

||dj ||q)

=
∑

j

(τ2
j dT

j dj − 2dT

j bj + θ
cD

||dj ||q)

∝
∑

j

((τjdj − bj/τj)
2 + θ

cDτj
||τjdj ||q)

=
∑

j

ψ
θ

cDτj
q (τjdj ,bj/τj)

(36)

where ψα
q (v,w) = (w − v)2 + α||v||q , τj = (1 + γj/cD)1/2

and γj are the Lagrangian multipliers. To minimize (36), we

can minimize the first term by minimizing ψα
q for each dj

independently. With the help of two lemmas presented in [39],

we can find the optimum of ψα
q based on dj for q = 1, 2 and

∞. The minimum of ψα
q (v,w) based on v [39, Lemma 4.1]

is,

min
v
ψα

q (v,w) = w − P
q′

α (w) (37)

where Pq′

α is the orthogonal projection onto the dual norm

ball with radius w and the dual norm is defined as ||.||q′ with

1/q′ + 1/q = 1. This minimization problem can be solve

analytically for some q [39, Lemma 4.2]. In this paper we

derive the dictionary update formula for q = 2. Interested
readers can derive the update formulas when q = 1 or q = ∞
in the same way. We have

B∗
τ = {b∗

j}1≤j≤N

b∗
j = arg min

dj

ψ
θ

csτj
2 (τjdj ,bj/τj)

=

{
1
τ2

j
(1 − θ

2cD||bj ||2
) bj

θ
2cD

< ||bj ||2

0 otherwise ,

(38)

where τ = {τj}1≤j≤N . When all γj are non-negative, for

any inadmissible b∗
j with τj = 1 (γj = 0), one can decrease

||d∗
j ||2 to c

1/2
c by increasing τj to satisfy the K.K.T conditions.

Let SJ
θ

cD

(B) := B∗
τ=1

for any B found by (23). The dictionary

update is therefore done by PC
cC
SJ

θ
cD

(B).

When we are looking for a bounded Frobenius-norm dictio-

nary, the dictionary update could be derived, using a similar

approach, by PF
cF
SJ

θ
cD

(B).
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Algorithm 3 : DL(X0,D0)

1: for t = 1 to T do

2: Xt+1 = SA(Xt,Dt)
3: Dt+1 = DU(Xt+1,Dt)
4: end for

5: output: DT

E. Generalized block relaxation method for dictionary learn-

ing

In the previous subsections we presented a block relaxation

method to optimize X and D iteratively. In each step, we

used an iterative method to find the optimum solution based

on one variable while keeping the other variable fixed. The

pseudocode for dictionary learning in this framework is pre-

sented in Algorithm 3.

Because the joint objective function does not have a fixed

bounded curvature, we could not use the majorization method

for both parameters jointly. On the other hand, this alternating

optimization decreases the rate of convergence as it often

oscillates around the optimal path. Instead of fully optimizing

with respect to a single parameter in each step, the generalized

block relaxation method updates each variable at a time and

reduces the objective function, using for example a cyclic

selection or any other periodic selection of the parameters.

A simple way to choose which parameter to update is to

calculate the update based on each parameter and then choose

the parameter that decrease the objective function the most. A

drawback of this type of parameter selection is that it doubles

the computational cost. Another technique is to alternatively

update each parameter. For dictionary learning, we found that

using more coefficient updates than dictionary updates is in

general more beneficial. So one can use p updates of X

followed by q updates of D when p ≥ q.
A more complete explanation and a basic convergence proof

for the generalized block relaxed dictionary learning algorithm

are provided in Appendix B. It is easy to show that the

block relaxation method is a special case of the generalized

block relaxation method. Therefore convergence of the block

relaxation method (alternating minimization) for the dictionary

learning follows as a corollary of this result.

IV. SIMULATIONS

We evaluate the proposed method with synthetic and real

data. Using synthetic data with random dictionaries helps us

to examine the ability of the proposed methods to recover

dictionaries exactly (to within an acceptable squared error).

We generated the synthetic data and dictionaries as proposed

in [23] and [15]. To evaluate the performance on real data,

we chose audio signals, which have been shown to have

some sparse structure. We then used the learnt dictionary for

audio coding and show some improvements in Rate-Distortion

performance compared to coding with classical dictionaries.

A. Synthetic Data

A 20 × 40 matrix D was generated by normalizing a

matrix with i.i.d. uniform random entries. The number of
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Fig. 1. A comparison of the dictionary recovery success rates using different
dictionary learning methods under a column-norm constraint.
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Fig. 2. A comparison of the computation costs of the dictionary learning
methods under a column-norm constraint.

non-zero elements in each of the coefficient vectors was

selected between 3 and 7. The locations of the non-zero

coefficients were selected uniformly at random. We generated

1280 training samples where the absolute values of the non-

zero coefficients were selected uniformly between 0.2 and 1.

In the setting for exact dictionary recovery [15], [23] and under

a mild condition, the constrained column-norm dictionary and

the K-sparse signals are the global solutions of the dictionary

learning problem based on exact sparse representations and

the ℓ1 based exact sparse representation problems, respec-

tively (see for example [19]). The proposed algorithm as

well as the other dictionary learning algorithms discussed,

are proposed for sparse approximations, that is, they allow

approximation error when calculating the sparse coefficients.

To adapt the algorithm to this problem, we assumed that

the sparse approximation finds the correct support in each

step. Once the support has been identified, we find the best

approximation by projecting onto the selected sub-space. This

is called debiasing.

We here compare the majorization based dictionary learning
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Fig. 3. A comparison of the dictionary recovery success rates using MM
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column-norms.
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Fig. 4. A comparison of the computation costs of the dictionary learning
methods under a Frobenius norm constraint.

algorithm to MOD, K-SVD and MAP-DL. The stopping crite-

ria for IT was the distance between two consecutive iterations

(δ = 3×10−4) and λ was set to 0.4. The termination conditions

for the iterative dictionary learning methods (majorization

method for dictionary learning (MM-DL) and MAP-DL) was

set to (||D[n] − D[n−1]||F ≤ 10−7).

We started from a normalized random D and used 1000 it-

erations. The learning parameter (γ) in MAP-DL was selected

as described in [23] and we down-scaled γ by a factor of

2−j (j > 1) when the algorithm was diverging. To allow a

fair comparison, we repeated the simulations 5 times. If the

squared error between a learnt and true dictionary element

was below 0.01, it was classified as correctly identified. The

average percentages and standard deviations are shown in

Figure 1. It can be seen that in all cases, MM-DL with fixed

column-norm and K-SVD recovered nearly the same number

of atoms and performed better than the other methods (al-

though, for the signals with less than 6 non-zero coefficients,

MM-DL recovered all desired atoms, performance of K-SVD

was very close to it). The debiasing process creates some

ambiguities in dictionary learning when using the bounded-

norm constraints as they reduce the effect of the coefficient

magnitudes in the sparsity measure. Therefore, we observe

atoms which do not have a boundary norm (here, unit norm),

even after 1000 iterations. In this case, we get better results

using a fixed column-norm admissible set which resolves

this ambiguity. The MAP-DL algorithm did not perform well

in this simulation. We guess the reason for this is slow

convergence of the approach and the use of more iterations

might improve the performance.

In Fig.2 we compare the computation time of the algorithms

for the above simulations. Simulations ran on the Intel Xeon

2.66 GHz dual-core processor machine and both cores were

used by Matlab. In this graph the total execution time of the

algorithms (sparse approximations plus dictionary updates for

1000 iterations) is shown. MOD was fastest followed by our

MM-DL.

We have a larger admissible set when fixing the Frobenius-

norm of the dictionary, which makes the problem of exact

recovery more complicated and we expect to observe worse

performance in terms of exact atom recovery. To test this,

we started with a normalized random dictionary, normalized

either to have fixed Frobenius-norm or fixed column-norm.

The simulations were repeated for 5 trials and the averages

and standard deviations of the atom recovery are shown in Fig.

3. In these simulations MM-DL performed slightly better than

MAP-DL. The other observation in this figure is that when the

desired dictionaries have equal column-norms, performance

of the algorithms increase but do not reach the performance

observed when using the more restricted (and appropriate)

admissible set. Computation times of the algorithms, on the

machine described formerly, are shown in Fig.4.

In the next experiment we assume that the desired dictionary

size is unknown but bounded. We generated the data as in the

previous experiments but the simulations were started with

four times overcomplete dictionaries (two times larger than the

desired dictionary size). The dictionary updates were based on

the joint sparsity objective function (33) (with θ = 0.05, p = 1
and q = 2). The average percentage of exact atom recovery for

5 trials are shown in Fig. 5 and 6. We plotted the percentage

of the exact recovery of the original atoms, regardless of the

learnt dictionary size. In the lower plot, we show the size of

dictionary after 1000 iterations. With this θ we identified the

size correctly but for less sparse signals (higher k) we got less
accurate results. The overall performance of the algorithm is

determined by the correct choice of θ. By increasing θ we find
smaller dictionaries and vice versa.

B. Dictionary Learning for Sparse Audio Coding

In this section we demonstrate the performance of the

proposed dictionary learning method on audio signals and thus

show that our method is applicable to large dictionary learning

problems. An audio sample of more than 8 hours was recorded

from BBC radio 3, which plays mostly classical music.

In the first experiment we used bounded column-norm and

bounded Frobenius-norm dictionary admissible sets. The audio



9

3 3.5 4 4.5 5 5.5 6 6.5 7

0

20

40

60

80

100

Bounded column−norm
A

v
e
ra

g
e
 p

e
rc

e
n
ts

 o
f 
e
x
a
c
t 
re

c
o
v
e
ry

a
ft
e
r 

1
0
0
0
 i
te

ra
ti
o
n
s

3 3.5 4 4.5 5 5.5 6 6.5 7

40

42

44

46

48

S
iz

e
 o

f 
th

e
 d

ic
ti
o
n
a
ry

Sparsity (# of non−zero elements in each coefficient vector)

Fig. 5. Dictionary recovery success rates under a column-norm constraint
and joint sparsity penalty.
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Fig. 6. Dictionary recovery success rates under a Frobenius norm constraint
and joint sparsity penalty.

sample was summed to mono and down-sampled by a factor

of 4. From this 12kHz audio signal, we randomly took 4096

blocks of 256 samples each. The set of dictionaries with the

column-norms bounded by cC is a subset of the set of bounded

Frobenius-norm dictionaries, when cF = NcC . We chose

dictionary admissible sets with column-norms and Frobenius-

norms bounded by cC = 1 and cF = N respectively. We

initialized the dictionary with a 2 times overcomplete random

dictionary and used 1000 iterations. The objective function

against iteration, for two different values of λ, are shown in

Fig. 7. This figure shows that the optimal bounded Frobenius-

norm dictionaries are better solutions for the objective func-

tions.

As a second experiment, we looked at an audio coding

example. We used the proposed method with the bounded

Frobenius-norm constraint to learn a dictionary based on a

training set of 8192 blocks, each 1024 samples long. In this

experiment we want to learn the dictionary for a larger block

length than the previous experiment. The convergence of the

traditional block relaxation method for a problem with this
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Fig. 7. ℓ1 cost functions for two different Lagrangian multipliers (λ) .005
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domain. Their norms are shown in the right panel.

size is very slow. Therefore we run the simulations with

the generalized block relaxation method and a joint sparsity

constraint on the dictionary to encourage shrinkage of the

dictionary. This shrinkage makes the algorithm faster in later

iterations. Even though the recorded audio had 48k samples

per second, the audio had a maximum frequency of 16kHz.

Therefore we downsampled the original audio by a factor of

3/2 without any degradation in the audio fidelity. It has been

shown that audio can be modeled reasonably well using tonal,

transient and noisy residual components [40]. We chose a 2

times overcomplete sinusoid dictionary (frequency oversam-

pled DCT) as the initialization point and ran the simulations

with different lambda values for 5000 iterations of alternative

optimization of (41), which took approximately 8 hours for

each λ, running on the machine mentioned in the previous
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Fig. 9. Number of appearances of the learnt atoms in the representations of
the training samples (of size 8192).

subsection.

A subset of the learnt atoms (λ = .01, θ = .01), which
is selected by uniformly sampling the atom indices, is shown

in Fig. 8. These atoms are shown in the time and frequency

domain in the left and middle windows respectively. The

norms of the selected atoms are shown in the right window.

The number of appearances of each atom, which are sorted

based on their ℓ2 norms, are shown in Fig. 9. To design an

efficient encoder we only used atoms that were used frequently

in the representations. Therefore we were able to further

shrink the dictionary size. In this test we chose a threshold

of 40 appearances (out of 8192) as the selection criteria.

This dictionary was used to find the sparse approximations of

4096 different random blocks, each of 1024 samples, from the

same data set. We then encoded the location (significant bit

map) and magnitude of the non-zero coefficients separately.

In this paper we used a uniform scalar quantizer with a

double zero bin size to code the magnitude. We estimated

the entropy of the coefficients to approximate the required

coding cost. To encode the significant bit map, we assumed

an i.i.d. distribution for the location of the non-zero atoms. The

same coding strategy was used to code sparse approximations

with a two times frequency overcomplete DCT (the initial

dictionary used for learning ) followed by shrinking based

on the number of appearances. For reference we calculated

the rate-distortation of the DCT coefficient encoding of the

same data, using the same method of significant bitmap and

non-zero coefficients coding. The performance is compared

in Fig. 10. In the sparse coding methods, the convex hulls

of the rate-distortion performances calculated with different

dictionaries, each optimized and shrunk for different bit-rate,

are shown in this figure. Using the learnt dictionaries for sparse

approximation is superior to using the DCT or overcomplete

DCT for the range of bit-rates shown.

It would be nice to compare these real data experiments with

K-SVD, which is shown to perform well in dictionary learning

for medium size problems. However, we found K-SVD to be

too slow on problems of this size. For example, one sparse
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Fig. 10. Estimated Rate-Distortion for the audio coding example using the
learnt dictionary, the shrunk 2 times overcomplete DCT dictionary and the
DCT.

approximations of the signals, using a fast implementation of

OMP [41], and one dictionary update approximately took 10

hours and this has to be repeated for a reasonable number of

iterations, e.g. 1000 iterations!

V. CONCLUSIONS

We have presented a new algorithm for dictionary learning

and have shown its advantages with different experiments and

for different data sets. The proposed method is very flexible

in using different constraints on the dictionaries. Because

the problem of dictionary learning is considered in a more

general form (bounded norm for dictionaries), better results

were possible.

While some of the other methods are based on atom-wise

dictionary update (K-SVD, MAP-DL with unit column-norm

a priori information), the proposed method updates the whole

dictionary at once. Although the computational complexity

of each iteration of the given algorithm is roughly cubic,

we found that the algorithm is much faster for large scale

problems than, for example, K-SVD (which has a higher order

of complexity).

The given method solves the dictionary learning problem in

a unified framework. This unified framework provides extra

flexibility to update the coefficients and the dictionary in a

more efficient way. Furthermore, we showed the convergence

of the method to a set of fixed points in this framework.

Finally we have shown that the constrained Frobenius-

norm can increase the performance of dictionary learning by

increasing the possible solution set. Audio coding with the

learnt dictionary showed a superior rate-distortion performance

over traditional orthogonal transform coding and overcomplete

sparse coding with an oversampled DCT.

APPENDIX A

MATRIX FORM OF THE MAJORIZING FUNCTION

We can use the Taylor series to majorize the quadratic term

of the objective function which has a bounded curvature. The
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Taylor series in matrix form [42, Appendix D 1.7] is given by,

f(U) = f(V) +
→U−V

df(V)+
1

2!

→U−V

df2(V)+o(||U||3) (39)

where
→U−V

df(V) and 1
2!

→U−V

df2(V) are the directional first and second
derivatives of f at V in the U − V direction. The directional

derivatives are defined by,

→Y

df(X) = {
d

dt
f(X + tY)}t=0,

→Y

df2(X) =
→Y

df (
→Y

df (X)).

For a bounded curvature objective function we have,

f(U) ≤ f(V) +
→U−V

df(V) +
1

2
tr{(U − V)T Π(U − V)}, (40)

where Υ = Π −
→U−V

df2(V) is positive definite (Υ ≻ 0).

APPENDIX B

CONVERGENCE STUDY OF THE ALGORITHM

In the first step of analyzing an iterative algorithm, we need

to show the boundedness of the solutions (or the stability of

the algorithm). The stability of the algorithms, in which a

positive objective is reduced in each iteration, is guaranteed

using Lyapunov’s second theorem. For example the stability

of the MAP-DL is guaranteed when a suitable step size is

chosen (to the authors knowledge, no analytical study has been

done on how to choose this step size). The convergence of

the alternating (gradient) projection based methods essentially

depends on the admissible sets (and the gradient step size).

In the dictionary learning problem with the admissible sets

given by [13] [11], the convergence of the algorithm is not

guaranteed. In K-SVD, one needs to find the sparse approxi-

mations based on the ℓ0 sparsity measure for which no efficient

algorithm exists so that the stability analysis is challenging.

In practice we observed that in MOD and K-SVD, when the

solution sequence enters a neighborhood of a local minimum,

the objective increases in some iterations. Therefore, it does

not converge monotonically to the solution.

The next step is to show the convergence of the algorithm

to a fixed point or a set of fixed points. The authors in

[23] referred to the convergence of the gradient flow method

to show the convergence of the MAP-DL. Although this

statement is completely correct, it requires the use of an

arbitrary small step size which is practically impossible.

The stability of dictionary learning based on the majoriza-

tion method has already been proven by the fact that we reduce

the objective in each step. Here, we show the convergence to a

set of fixed points. Our dictionary learning framework can be

viewed as a generalized block-relaxed minimization scheme

applied to an augmented objective function. Specifically, we

combine two majorizing objectives, (15) and (18),

ψ(D,X,D‡,X‡) = φ(D,X) + cD||D − D‡||2F

+ cX ||X− X‡||2
F
− ||DX − D‡X‡||2

F

(41)

where X‡ and D‡ are two auxiliary parameters corresponding

to X and D respectively. cD and cX have been chosen to

be larger than the spectral norms of X‡T X‡ and D‡T D‡

respectively. This augmented objective function does not ma-

jorize the joint objective, however when (D,D‡|D‡=D) or

(X,X‡|X‡=X) are fixed, (41) majorizes the original joint

objective based on the other pair of parameters. When the

optimization method is viewed in the block relaxation frame-

work, the optimum of X‡ or D‡ is easily found by X or D

respectively. This corresponds to the parameter update in the

standard majorization method [29]. Therefore any sequence

of updates is acceptable, given each update of D (or X) is

followed by an update based on D‡ (or X‡) respectively.

Such a block-relaxed sequential constrained minimization

is not in general guaranteed to converge (see [24] for some

counter examples). To study the convergence of our algorithm,

we need to do a little more work. In the next subsection, we

introduce some theoretical analysis of the generalized block

relaxation method. We then analyze the proposed algorithm

for dictionary learning, based on the given theoretical analysis.

A. Generalized Block relaxed iterative mappings and their

convergence

Let η(ω) : Ω → R be the multi-parameter objective function

which we want to minimize. Let Υ be the set of admissible

parameters. The parameter ω is defined as the concatenation of

the blocks of parameters {ω ∈ Υ : ω = (ω1, ω2, ..., ωp) , ωi ∈
Ωi} where Ω = Ω1 × Ω2 × ... × Ωp. In dictionary learning

based on block relaxation, p = 2, ω1 = X and ω2 = D. In

generalized block-relaxed dictionary learning, p = 4 as we

have two more auxiliary parameters X‡ and D‡.

We now need to introduce point to set maps,

Definition B.1 (Point to set map). Let Υ be an arbitrary set

and let Γ be the set of all subsets of Υ. A map ∆ : Υ → Γ is

a point to set map (see for example [43]).

In the block relaxation technique a set of point to set maps

∆i : Υ → Γ are defined as ∆i(ω̂) = {ω ∈ Υ : ∀j 6= i ωj =
ω̂j} where ω̂ = (ω̂1, ω̂2, ..., ω̂p) is the current value of the

parameters. These point to set maps keep all the blocks of

parameters fixed apart from the ith block.

By starting from ω[0], the set of possible solutions Λ in the

minimization problem is defined as, Λ = {ω ∈ Υ : η(ω) ≤
η(ω[0])}. For any ω ∈ Λ in each block update we minimize

the objective for the selected parameters. This gives us the

following updating operator:

Ui : Λ → {u ∈ ∆i(ω̂) : η(u) ≤ η(t), ∀t ∈ ∆i(ω̂)} (42)

In general this updating operator is a point to set map and we

can choose an update parameter within the resulting set. In our

case, the objective function always has a unique minimizer and

the updating operators are point-to-point mappings. To use a

set of updating operators, we also need to have an operator

selector.

Definition B.2 (Operator selector). s(k) : N → P which

P = {i : 1 ≤ i ≤ p}

This operator can choose the updating operator by sequen-

tially selecting (circular) or free steering through the available

operators. By using the updating operators defined in (42) and
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an update selector s(k), we can summarize the (generalized)

block relaxed minimization by the following algorithm.

Algorithm B.1. Let ω[0] be a given starting point, then

{ω[k]}k∈N is the sequence of updates given by ω[k+1] ∈
Us(k){ω

[k]} and stop when ∀i ∈ P : ω̂ = Ui{ω̂}

When the updating operator is injective, ω[k+1] =
Us(k){ω

[k]}, to analyze the sequence generated by Algorithm

B.1, we need to introduce some characteristics of the infinite

series.

Definition B.3 (Asymptotically regularity). A sequence

{α[n]}n∈N is asymptotically regular if ||α[n+1] − α[n]|| → 0,
when n→ ∞.

|| . || is a norm defined in the solution space. An operator

is called asymptotically regular when the series generated by

the sequential use of that operator is asymptotically regular.

Definition B.4 (Essentially periodic). An infinite sequence

{α[n]}n∈N drawn from a finite alphabet P = {Ai : 1 ≤ i ≤
p} is essentially periodic, with a period m ∈ N,m ≥ p when

∀j ∈ N, ∀Ai ∈ P, ∃n ∈ [jm+ 1, (j + 1)m] and α[n] = Ai.

The sequence of {ω[k]} of the Algorithm B.1 is asymptoti-

cally regular when ∆i and η satisfy the following hypotheses

[44],

Hypotheses B.1. For all i ∈ P and η : Υ → R,

• ∀ω : ω ∈ ∆i(ω)
• ∆i is continuous on Υ
• ∀ω ∈ Υ, η has a unique minimizer over ∆i(ω)
• ∃ω[0] ∈ Υ such that Λ is a compact subset.

We now study the accumulation points of Algorithm B.1,

when the Hypotheses B.1 are satisfied. From basic mathe-

matical analysis, we know that any bounded sequence has at

least one accumulation point (Bolzano-Weierstrass Theorem

[45, Theorem 4.1]). As Λ is closed, the accumulation points

of {ω[n]} are in Λ.

Theorem B.1. [44, Theorem 15] Let the update selector,

s(k), be essentially periodic and ∆i and η satisfy Hypotheses

B.1. Every accumulation point ω∗ of {ω[n]}, generated by

Algorithm B.1, satisfies ω∗ = Ui{ω
∗} for any i ∈ P

The set of accumulation points T belongs to a level set of

η. If η is continuous, T is closed and as Λ is bounded and

T ⊆ Λ, T is bounded. Therefore T is compact.

Proposition B.1. [29, Proposition 10.3.1] If a bounded se-

quence {ω[n]}n∈N is asymptotically regular, then its set of

accumulation points is connected. If this set is finite, then it

reduces to a single point.

In a normed space, the following lemma guarantees that

the sequence {ω[n]}n∈N generated by Algorithm B.1 will stay

arbitrarily close to the accumulation points, when n > N for

some N .

Lemma B.1. Let {ω[n]}n∈N be a bounded asymptotically

regular sequence and T be the set of its accumulation points

then, ∀ǫ > 0, ∃N ∈ N, for n > N, ∃t ∈ T, ||ω[n] − t|| < ǫ

Proof: Let S be an ǫ-neighborhood of T and Sc be its

complement in the admissible set. As the admissible set is

compact, Sc is also compact. Because S is a neighborhood

of T there is no accumulation point t in Sc. If {ω[n]}
has infinitely many points in Sc, then it has a converging

subsequence and at least one accumulation point in Sc . This

contradicts the fact that there is no accumulation point in

Sc. Therefore ∃N : ω[n] ∈ S, ∀n > N . On the other

hand ǫ-neighborhood implies that for all n > N , ∃t ∈ T :
||ω[n] − t|| < ǫ.
In the next subsection we show asymptotic regularity of the

generalized block relaxation method for dictionary learning.

This is followed by showing the convergence of the proposed

method to a set of fixed points.

B. Convergence study of the generalized block-relaxed dictio-

nary learning

In dictionary learning, there are two parameters, coefficient

matrix and dictionary. In generalized block-relaxed dictionary

learning (41), we have four parameters. We mentioned that the

augmented function (41) majorizes (6) only when one pair of

parameter blocks ( (D,D‡|D‡=D) or (X,X‡|X‡=X) ) is fixed.
Therefore ∆X : X ∈ {D, X, D‡, X‡} are the point to set

maps which fix all parameters but X (from now on we use

this indexing for the point to set maps).

Proposition B.2. The generalized block-relaxed minimization

of (41) is asymptotically regular when the updates of D and

X are followed by updating of D‡ and X‡ respectively.

Proof: To show the asymptotic regularity we show that

all the hypotheses in Hypotheses B.1 are satisfied. ∆X : X ∈
{D, X, D‡, X‡} are self contained, i.e. X̂ ∈ ∆X {X̂ }, and
continuous. Therefore they satisfy the first two hypotheses.

The minimum of (41) based on each parameter is unique (the

sparse approximation minimum is reached using soft shrinkage

(17) over A and the dictionary update is reached by one

of the operators introduced in (24), (31) or (38) over B ).

(41) is strictly convex based on X‡ or D‡ when all other

parameters are fixed. Therefore minimization based on D‡ or

X‡ has a unique solution. Surrogate objective function (41)

is a continuous function. When a mapping is continuous, its

epigraph Λ is a closed set [38, Theorem7.1]. As the admissible

set is a closed set, the intersection of Λ and this set, which

is the possible solution set, is closed. On the other hand

there is no infinitely large point in Λ (maximum value of

||D||F and J1,1(X) are bounded based on the dictionary

constraints and φ(D[0],X[0])/λ respectively). In an Euclidean

space boundedness and closedness are sufficient for a set to be

compact. Therefore the hypothesis is satisfied and the sequence

of (D,X,D‡,X‡)[i] : i ∈ N is asymptotically regular [44].

Finally we present a Proposition which shows the conver-

gence of the proposed algorithm.

Proposition B.3. Generalized block-relaxed dictionary learn-

ing converges to a single fixed point (D∗,X∗) or gets arbitrary
close to a continuum of accumulation points, where each

accumulation point satisfies:

• ψ(D∗,X∗,D∗,X∗) ≤ ψ(D∗,X,D∗,X∗) : ∀X
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• ψ(D∗,X∗,D∗,X∗) ≤ ψ(D,X∗,D∗,X∗) : ∀D ∈ D

Proof: Due to Proposition B.2, the sequence generated by

generalized block-relaxed dictionary learning is asymptotically

regular. Due to Theorem B.1 and Lemma B.1, the algorithm

converges either to a fixed point or gets arbitrary close to a

continuum of accumulation points. Because any accumulation

point of the algorithm is a fixed point for all Ui : ∀i ∈ P [44,

Theorem 15],X∗ is the best coefficient matrix using dictionary

D∗ and D∗ is the best admissible dictionary, using X∗ as the

sparse representation.
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