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Introduction: The successful use of machine learning (ML) for medical

diagnostic purposes has prompted myriad applications in cancer image

analysis. Particularly for hepatocellular carcinoma (HCC) grading, there has

been a surge of interest in ML-based selection of the discriminative features

from high-dimensional magnetic resonance imaging (MRI) radiomics data. As

one of themost commonly usedML-based selectionmethods, the least absolute

shrinkage and selection operator (LASSO) has high discriminative power of the

essential feature based on linear representation between input features and

output labels. However, most LASSO methods directly explore the original

training data rather than effectively exploiting the most informative features of

radiomics data for HCC grading. To overcome this limitation, this studymarks the

first attempt to propose a feature selection method based on LASSO with

dictionary learning, where a dictionary is learned from the training features,

using the Fisher ratio to maximize the discriminative information in the feature.

Methods: This study proposes a LASSO method with dictionary learning to

ensure the accuracy and discrimination of feature selection. Specifically, based

on the Fisher ratio score, each radiomic feature is classified into two groups: the

high-information and the low-information group. Then, a dictionary is learned

through an optimal mapping matrix to enhance the high-information part and

suppress the low discriminative information for the task of HCC grading. Finally,

we select the most discrimination features according to the LASSO coefficients

based on the learned dictionary.
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Results and discussion: The experimental results based on two classifiers (KNN

and SVM) showed that the proposed method yielded accuracy gains, compared

favorably with another 5 state-of-the-practice feature selection methods.
KEYWORDS

hepatocellular carcinoma (HCC), radiomics, feature selection, magnetic resonance
imaging (MRI), least absolute shrinkage and selection operator (LASSO)
dictionary learning
1 Introduction

With an estimated incidence of >1 million cases by 2025, liver

cancer remains a global health challenge (1). Hepatocellular

carcinoma (HCC) is the most common form of liver cancer and

accounts for 90% of cases, most of which occur in the setting of

chronic liver disease (2). In clinical practice, different stages

(referring to how far a cancer tumor has grown and spread) of

HCC have different surgical cure rates, recurrence rates, and

survival rates, and require different treatment approaches (3–5).

Otherwise, inappropriate treatment makes HCC more prone to

relapse and metastasize, associated with a poor prognosis (3, 4).

Histopathologic grading describes how abnormal the cancer cells or

tissue look under a microscope, which helps to predict how quickly

cancer will grow and spread. Accurate visual assessment of HCC

grading is essential for clinical decision-making, treatment regimen

optimization, and prognostic prediction (5).

Current approaches to predict HCC grading include tumor

biopsy (6), postoperative histopathological examination (7),

ultrasound (8), computed tomography (CT) (9) and magnetic

resonance imaging (MRI) (10, 11), etc. Among them, MRI is the

most popular examination method for HCC grading due to its

noninvasive, good soft-tissue resolution, and absence of

radiation exposure.

Historically, in radiology practice, magnetic resonance imaging

(MRI)-based HCC grading requires visual inspection by a

radiologist. Such assessment, however, is often based on

education and experience and can be, at times, subjective and

time-consuming. Moreover, the visual judgment of MRI image

sequences by radiologists only provides limited information on

tumor heterogeneity, e.g., tumor location, size, peritumoral edema,

morphology, and borders (12). In contrast to such qualitative

reasoning, machine learning (ML) excels in identifying intricate

patterns in imaging data and can automatically provide a

quantitative evaluation. More accurate and reproducible radiology

assessments can then be made when ML is incorporated into the

clinical process as a tool to support radiologists (13).

In literature, several ML models have been proposed to

automate HCC grading, and the results are promising (14–17). In

those models, one of the most critical steps is feature extraction. In

previous studies, many feature extraction methods were developed,

such as texture features (17), shape features (18), radiomics features
02
(15), deep learning features (19), and multi-fractal features (20).

Although deep learning features can leverage neural networks

(NNs) and demonstrate an exceptional ability to learn high-level

features from data in an incremental manner, they are not widely

used as a replacement for experienced radiologists. Instead, they

have the potential to improve the accuracy and efficiency of

diagnostic processes in clinical practice. This is due to the

following reasons:
a. the shallow NNs cannot effectively extract complex features;

b. the deep NNs may suffer from the vanishing gradient

problem;

c. the internal mechanisms and the resulting features are often

not explainable.
By contrast, radiomics can use a large number of quantitative

image features to characterize tumor heterogeneity, providing a

better understanding of cancer imaging data for clinical decision-

making. Several studies have reported the successful applications of

radiomics in HCC grading (15, 21, 22).

However, radiomic features usually have thousands of variables,

leading to computational burden and the overfitting problem.

Recognizing this deficiency, an emerging solution is to select the

most discriminative features as input data for HCC grading. The

existing methods of feature selection are generally classified into

three categories:
a. Filter methods, including statistical (such as descriptive and

statistical dependency (DSD) method) (23), mutual

information (such as artificial variables and mutual

information (AVMI) method) (24), and reliefF (25), etc.

Although these methods are simple and fast, their selection

process is independent (i.e., not considering the interaction

between the chosen features and the grading model), which

compromises the grading accuracy. To overcome this

limitation, some researchers combine various methods

(26). For example, Qi et al. (26) take both inter- and

intra-factors into account and combine the variance filter,

t-test, and correlation coefficient on three MR to

sequentially ensure the greatest diagnostic value. This

model yields improved performance, but it is too complex

to be accepted clinically.
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b. Wrapped methods (27, 28). The selection features based on

the wrapper are evaluated and selected by an ML model.

Although the wrapper methods outperform the filter-based

equivalents, their learning process is data-hungry and time-

consuming, especially for the high-dimension data set (29).

c. Embedded methods, e.g., random forest(RF) based (30) and

least absolute shrinkage and selection operator (LASSO)

based (15). These methods consider all features as a whole

and take the learning performance into account. These

approaches have the advantages of both filter and wrapper

methods and are widely recommended by researchers.
Recently, a growing body of literature has investigated

embedded feature selection methods using LASSO, achieving

desirable performance in different fields (31–34). Wang et al. (33)

combined Chi-square and LASSO (Chi+LASSO) for selecting

radiomics features of HCC MRI data, where chi-square and

LASSO were used for univariate selection and multivariate

selection, respectively.

However, previous studies on LASSO based feature selection

approaches treat radiomic features equally for HCC grading. Since

these features can easily be affected by many factors, e.g., hardware

configuration, acquisition, data postprocessing, software

implementation, and noise, the meaningful features may not be

evaluated correctly, which may influence the weights of the features,

thus, deteriorate the performance of the grading model. To

overcome this limitation, this study proposes a LASSO method

with dictionary learning to ensure the accuracy and discrimination

of feature selection. Specifically, based on the Fisher ratio score, each

radiomic feature is classified into two groups: the high-information

and the low-information group. Then, a dictionary is learned

through an optimal mapping matrix to enhance the high-

information part and suppress the low discriminative information

for the task of HCC grading. Finally, we select the most

discrimination features according to the LASSO coefficients based

on the learned dictionary. Experimental results indicate that the

developed feature selection method can select the most informative

data from the high-dimensional radiomic features, and lead to

enhanced performance in subsequent HCC grading.

2 The LASSO model for
features selection

Given a dictionary X ϵ Rn×k consists of the radiomic features of

training data, where k is the dimension of the radiomic features, n is

the number of training data. The label y ϵ Rn×1 can be described as

y = Xa + e, (1)

where a is the weight vector to be estimated, e is the error vector

whose entries are assumed to be small. If we can find a with a few

nonzero entries such that Xa ≈ y, then the sparse vector can provide

the predictive relationships which generalize well to the test data. In

short, the greater the value of the element of a, the more effective the
tiers in Oncology 03
element for HCC grading. Therefore, based on the value of a, we can
select the first t radiomic features as the grading features, where t is a
constant. The value ofa can be estimated by solving the LASSOmodel:

â = arg  min  
a

Xa − y ‖22 +m
�� ��a ‖1 (2)

It has been reported that the choice of X is essential (35). In

previous studies, the dictionary is largely directly constructed from

the radiomic features of original training data. This work proposes a

learning method to define an adaptive dictionary based on the

contribution of both the radiomic features of training data and the

coefficient vector a, as described in the next section.
3 The proposed features
selection method

3.1 Dictionary learning

The proposed dictionary learning method is based on the

radiomic features of original data. We define the initial dictionary

a s D0 = ½d1, d2,…, dn� ∈ Rk�n, whe r e di, i = 1, 2,…, n i s th e

radiomic feature of the ith sample. We then decompose each

feature di into two parts, part dhi , which is more effective in HCC

grading, and part dli , which is less effective in HCC grading.

Furthermore, the dictionary D0 can be divided into two parts as,

D0 = Dh + Dl (3)

Here, part Dh includes more informative components (called

the high information part, HIP) and the other part Dl contains less

informative components (called the low information part, LIP). To

effectively exploit the useful information in both Dh and Dl , a

projection matrix P is designed to map the initial dictionary into a

new one, such that the energy of Dh would be effectively preserved,

while that of Dl would be suppressed.

Defined �dhc , �d
l
c, �d

h are the mean vector of all the features in Dh

belonging to cth grade, all the features in Dl belonging to cth grade,

and all the features in Dh, respectively. �dhi,c = di − �dhc , �dli,c = di −
�dlc, �dc,h = �dhc − �dh are the centralized image vectors. To make the

selected features effective in HCC grading, it is necessary to take into

account both between-class and within-class variation in the design

of project matrix P. We can construct the between-class average

projection energy of HIP as:

Eh
B =o

C

c=1
‖ P�dc,h ‖22

     =o
C

c=1
tr P�dc,h
� �

P�dc,h
� �T� �

     = tr P o
C

c=1

�dc,h �dc,h
� �T� �

PT

� �

     = tr PShBP
T

	 


(4)
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where tr is the matrix trace operator, ShB =oC
c=1(�d

h
c − �dh)(�dhc −

�dh)T is the scatter matrix of Dh, C is the number of grades, in this

study we set it as 2. The average within-class projection energy of

HIP is defined as,

Eh
w =o

c

c=1
o

di∈Dc

∥ Pdhi,c ∥
2
2

      =o
c

c=1
o

di∈Dc

tr Pd
h
i,c

� �
Pd

h
i,c

� �T� �

      = tr P o
C

c=1
o

di∈Dc

d
h
i,c d

h
i,c

� �T !
PT

( )

      = tr PShwP
T

	 

,

(5)

where Dc is the set of radiomic features of the cth class, ShW =

oC
c=1 o

di∈Dc

(di − �dhc )(di − �dhc )
T . Similarly, we can get El

W = tr(PSlWPT )

, where SlW =oC
c=1 o

di∈Dc

(di − �dlc)(di − �dlc)
T .

The projection matrix P is designed to facilitate HCC grading.

To that end, we need to maximize the between-class average

projection energy Eh
B and minimize the within-class average

projection energy Eh
W and El

W , by solving the following

optimization problem,

P̂ = arg  max
P

tr PShBP
T

� �
b · tr PShWPT

� �
+ (1 − b)tr PSlWPT

� �
    = arg  max

P

tr PShBP
T

� �
tr P(b · ShW + (1 − b)SlW )PT
� �

(6)

where scalar b is used to balance the within-class energy of HIP

and LIP. It is noted that two important aspects can affect the

effectiveness of the above dictionary learning process, namely,

the grouping of atoms di to obtain the decomposed D in Eq. (3)

and the solution of the optimization problem in Eq. (6), which will

be addressed in Subsections 3.2 and 3.3, respectively.
3.2 Feature grouping

In this retrospective study, the grading label of yi is available. In

this case, we introduce the Fisher ratio to group the features. If the

feature has a bigger Fisher ratio, this feature is more discriminative

in grading the lesions. Based on this heuristic, we can group the

features into a more discriminative group and a less discriminative

group. For each feature vector di, we represent it by the initial

dictionary D0:

di ≈ D0a = a1 · d1 + a2 · d2 +… + an · dn (7)

where a is obtained via the LASSO. Let zi = ai · di, the Fisher

ratio fi of feature images di is

fi =
oC

c=1(z − zc)
2

oC
c=1

1
nc odi∈Dc

(zi − zc)
2 , (8)
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where nc is the number of features belonging to the cth grade, z

is the mean vector of all the zi, zc is the mean vector of zi that

belongs to grade c. To this end, we re-order the zi according to the fi
in descending order, those features which have larger fi are added

up for the HIP Dh, and the remaining features are added up for the

LIP Dl . For the convenience of expression, we suppose that vectors

fz1, z2,…, zkg fall into the HIP and vectors fzk+1, zk+2,…, zng fall

into the LIP. Then we can define the high information part dhi and

low information part dli as

dhi = z1 + z2 +… + zk,

dhi = zk+1 + zk+2 +… + zn :
(9)

Then, each feature of the training lesion can be written as di =

dhi + dli , and we have D0 = Dh + Dl .
3.3 Solve the optimization problem

To solve the optimization problem in Eq. (6), let Sa = ShB and

Sb = b · ShW + (1 − b)SlW . The matrix P is split into n vectors as p1,

p2,…, pn, then we have,

tr(PSaPT )

   = tr

p1

p2

⋮    

pn

2
666664

3
777775S

a½pT1  pT2    ⋯    pTn �

0
BBBBB@

1
CCCCCA

   = tr

p1S
apT1 p1S

apT2 ⋯ p1S
apTn

p2S
apT1 p2S

apT2 ⋯ p2S
apTn

⋮      ⋮      ⋮

pnS
apT1 pnS

apT2 ⋯ pnS
apTn

2
666664

3
777775

0
BBBBB@

1
CCCCCA

   =o
n

i=1
piS

apTi :

(10)

In the same way, we have

tr(PSbPT ) =o
n

i=1
piS

bpTi : (11)

Then, by substituting Eqs. (10)-(11) into Eq. (6), we have,
tr(PSaPT )
tr(PSbPT )

= on
i=1

piS
apTi

on
i=1

piSbpTi
= on

i=1
ui

on
i=1

vi
≤ on

i=1
(ui+

ui
vioj≠i

vj)

on
i=1

vi

= o
n
i=1

ui
vi on

i=1vi

on
i=1vi

=o
n

i=1

ui
vi

=o
n

i=1

piS
apTi

piS
bpTi

, (12)

where ui and vi are defined as ui = piS
apTi and vi = piS

bpTi ,

respectively. Due to the fact that both Sa and Sb are positive definite

matrices, we have ui ≥ 0 and vi ≥ 0. For the two matrices Sa and Sb,

their generalized eigenvalues and eigenvectors are defined as li
(i = 1, 2,…, n) and qi (i = 1, 2,…, n), respectively, leading to,

max  
qiS

aqTi
qiSbqTi

= li : (13)
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Apparently, the desired P is composed of the generalized

eigenvectors of Saqi = liSbqi, corresponding to the n largest

eigenvalues, i.e. P = ½q1, q2,⋯, qn�.

4 Materials and workflow
for HCC grading

The workflow of this study was illustrated in Figure 1, as

detailed in the following.
4.1 Patient data

This retrospective study was approved by the institutional

review board and patient informed consent was waived. MRI data

of 462 patients examined from June 2016 to June 2021 at Sun Yat-

sen University Cancer Hospital and pathologically confirmed as

HCC were reviewed. Among them, 367 patients (284 males and 83

females, mean age 49.7 years, and age range 18-81 years) were

included in the final analysis. The inclusion criteria were as follows:
Fron
1. A complete clinical reports and be pathologically confirmed

as HCC;

2. Dynamic contrast enhanced MRI (DCE-MRI) examination

within seven days before surgery;

3. Staging results;

4. No history of other types of tumor.
We identified a total of 599 lesions from these HCC patients

based on the liver imaging reporting and data system (LI-RADS)
tiers in Oncology 05
v2018 criteria [9]. The detailed characteristics and statistics for

these patients were shown in Table 1.
4.2 Data acquisition

All examinations had been performed on a 3.0T MRI scanner

(Skyra, Siemens, Germany) with a sixteen-channel phase array coil

that covered the entire liver. Routine MRI protocols included a

respiratory-triggered fat-suppressed T1-weighted dual-echo

sequence (DE-T1WI), a respiratory-triggered fat-suppressed T2-

weighted fast spin-echo sequence (FSE-T2WI), and a diffusion-

weighted sequence (DWI). The scanning parameters of different

MRI sequences are shown in Table 2.

Contrast agents (GD-EOB-DTPA, Primovist, Bayer) were

administered with an injection rate of 2 ml/s and gadolinium

dose of 0.1 mmol/kg body weight, followed by a 20 ml normal

saline flush. The post-contrast scan was performed at four different

phases: arterial phase (30 s after contrast injection), portal venous
TABLE 1 Characteristics of included HCC patients.

Item Total Training Test

Age

Range 18-81 18-81 18-76

Mean 49 49 49

Gender

Male 284 200 84

Female 83 59 24

Lesion

Male 465 321 144

Female 134 98 36

Stage

LR-1 145 106 39

LR-2 172 108 64

LR-3 37 28 9

LR-4 54 39 15

LR-5 191 138 53
FIGURE 1

The workflow of HCC grading.
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phase (60 s), transitional phase (180 s) and hepatobiliary phase (20

mins), respectively. The post-contrast scan sequence was T1-

weighted 3D gradient echo sequence with fat saturation and

volumetric interpolated breath-hold examination with the

parameters of slice thickness (6 mm), TR (3.12 ms), TE (1.51

ms), matrix (290×290), and flip angle (10°).
4.3 Manual segmentation and grading

HCC lesions were manually segmented by two radiologists (LD

and PW) with thirty and nine years of experience, respectively. For

each case, one radiologist manually delineated the maximum extent of

the visible lesion using ITK-SNAP 3.8.0 without prior knowledge of

the histopathological results. The other radiologist reviewed the

segmentation result independently to sure the accuracy of the

segmentation. In addition, for the purpose of quantitative

comparisons the segmentation agreements, three assessment metrics

including dice coefficient (DC) (36), global consistency error (GCE)

(37) and probabilistic rand index (PRI) (38, 39), are introduced to

evaluate the segmentation results. The values of DC, GCE and PRI are

0.873, 0.052 and 0.792, respectively. Note that all the values were

calculated based on the region of interest rather than the full image. By

segmenting the data volumes, a total of 599 lesions were obtained. The
Frontiers in Oncology 06
min, max, mean, and median values of tumor volume are 29 voxels,

800842 voxels, 16346 voxels and 1588 voxels, respectively.

After segmentation, these two radiologists independently

assigned a grading label for each lesion according to the LI-RADS

v2018 criteria (40). Disagreements regarding the LI-RADS

categorization were resolved by consensus with a senior

abdominal radiologist (JY) with over 32 years of 204 liver

imaging experience. Based on the LI-RADS categories, the lesions

are classified as low-grade HCC (LR-1 and LR-2) and high-grade

HCC (LR-3, LR-4 and LR-5) in this study. Representative images

from 206 HCC patients and the corresponding segmentation and

grading results were presented in Figure 2, and the 207 LI-RADS

distribution of all lesion data was shown in the Figure 3.
4.4 Feature extraction and selection

Feature extraction was performed by using an open-source

Python package (Pyradiomics V2.1.2) for each lesion. The

extracted features were divided into the following seven categories:
I. first-order statistical properties;

II. gray level co-occurrence matrix (GLCM);

III. gray level dependence matrix (GLDM);
FIGURE 2

The segmentation and grading results of representative images.
TABLE 2 Scan parameters of different routine MRI sequences.

sequence parameter DE-T1WI FSE-T2WI DWI

TR(ms) 4.5 3000 3500

TE(ms) 1.29/2.52 84 59

Slice thickness(mm) 3 5 5

Gap of slice(mm) 0.6 1 1

FOV(mm × mm) 380 × 340 380 × 380 380 × 340

Matrix 195 × 320 320 × 320 108 × 128

b values — — 0,400,1000s/mm2
TR-repetition time; TE-echo time; FOV-field of view.
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IV. gray level run length matrix (GLRLM);

V. grar level size zone matrix (GLSZM);

VI. neighborhood gray tone difference matrix (NGTDM);

VII. 2D shape features.
Among them, the 2D shape features are calculated from the

original images. The other six features are calculated based on the

original images, Laplacian of Gaussian filtered images (with a kernel

size of 1.5 mm and 2.5 mm) and wavelet-based images. A total of

1050 features were extracted for each lesion. Detailed information

about the feature extraction method and filters can be found on the

web here.

Note that before feature selection, the features were first

normalized (Z-score normalization) to ensure a relatively uniform

distribution of the image features.

The proposed dl-LASSO for feature selection has been

introduced in detail in the above Sections 2 and 3. The weights of

all the non-zero features and the selected features were shown

in Figure 4.
tiers in Oncology 07
4.5 HCC grading

All the lesions were randomly divided into 7:3 partitions and

were utilized as training and validation sets. The statistics for the

training and test data were shown in Table 1.

Two machine learning classifiers were used for HCC grading in

this study, i.e. support vector machine (SVM) (41) and K-nearest

neighbor (KNN) (42). The operating environment of both

classifiers is MATLAB 2021.

4.5.1 Support vector machine (SVM)
As one of the most popular classifiers, the basic design

philosophy of SVM is to maximize the classification boundaries

and the hyper-plane (43). For training pairs (di, yi), i = 1, 2,…, n,

the SVM requires solving the following optimization problem.

min
w ,b

wTw=2 + Co
n

i=1
xi ∘ s : t : ∘ yi(w

Tf(di) + b) ≥ 1 − xi, (14)

where xi is a non-negative relaxation variable, f is a function

that maps the vector di into a higher dimensional space. Then SVM

finds a linear separating hyperplane with the maximal margin in

this higher dimensional space. Furthermore, we call K(di, dj) =

f(di)f(dj) as the kernel function. In this study, radial basis

function kernels have been selected, and 10-fold cross-validation

was used.

4.5.2 K-nearest neighbors (KNN)
In addition to SVM, we introduce another KNN classification

approach to grade the HCC lesion. KNN is one of the simplest and

most commonly used classification methods, it classifies the data

according to the distance information of K nearest neighbors. For a

test sample dt , calculates the Euclidean distance between it and the

training data d1,d2,…,dn,

Edi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
n

i=1
(dt − di)

2

s
, (15)

According to the calculated distance values, the category with

the most occurrence of the KNN is the category of the test sample.

In this study, the K is set as 7.
4.6 Evaluation

The effectiveness of HCC grading was evaluated based on the

following performance indicators: recall, precision, F1-score,

accuracy, and the area under curve (AUC) from the receiver

operator characteristic (ROC) curve. The ROC curve was drawn

according to the False Positive Rate and True Positive Rate. The

calculation methods of these five indicators were shown in Table 3.

All the experiments were performed on a workstation with a 28-

core Intel (R) Xeon (R) Gold 5120 CPU (2.5 GHz) with 128 GB of

RAM, Windows 10 operating system.
FIGURE 3

The distribution of LI-RADS results.
FIGURE 4

The non-zero coefficients in dl-LASSO and the selected features by
dl-LASSO (red mark).
frontiersin.org

https://doi.org/10.3389/fonc.2023.1123493
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lei et al. 10.3389/fonc.2023.1123493
5 Experiments and discussion

To validate the effectiveness of the proposed HCC grading

method based on dl-LASSO, we compared it with 5 other state-

of-the-practice feature selection algorithms, including AVMI, RF,

ReliefF, DSD, and Chi with LASSO. Figure 5 compares ROC curves

between the proposed feature selection method (i.e., dl-LASSO) and

other methods (including AVMI, RF, ReliefF, DSD, Chi+LASSO)

based on SVM and KNN classification models, respectively. A

higher location of the ROC curve indicates a better grading

quality. The figure shows that the curves of the proposed method

are generally positioned higher than those of the other methods,

although the improvements are not significantly apparent. In

particular, for the curves derived from the KNN model, RF even

outperforms the proposed model at low False Positive Rates

(<20%). To conduct a more comprehensive comparison,

additional index parameters are computed, which are presented

in Table 4 and discussed as follows.
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Recall denotes the accuracy in predicting positive cases. The recall

values of the 6 feature selection methods based on KNN are 0.714,

0.750, 0.679, 0.667, 0.738, and 0.643, respectively. These outcomes

indicate that AVMI achieves the highest accuracy in true lesion

recognition, followed by the proposed method dl-LASSO. Although

AVMI’s recall value (0.690) based on the SVM model is lower than

that of the proposed method (0.714), AVMI still performs better than

the other four methods in this regard. The results imply that AVMI’s

integration of mutual information (MI) results in enhanced feature

distinguishing ability. However, when the false lesion recognition is

considered, AVMI is no longer a competitive method, for example, its

precision value (0.708) is lower than that of the proposed method

(0.750) and RF (0.722). This may be explained by the fact that AVMI

only compares the MI value between the rearranged feature and the

original one, without setting corresponding thresholds.

Consequently, this may lead to the misidentification of benign

tumors. More specifically, the lack of the thresholds in AVMI gives

rise to the possibility of overweighting benign tumors with noise,

which can result in their misclassification. As a result, this issue also

affects the F1-score and accuracy metrics of AVMI, which are 0.728

and 0.739, respectively, based on KNN, and 0.682 and 0.700,

respectively, based on SVM.

Precision measures the ability of selected features to identify

benign tumors. The precision values of the proposed dl-LASSO

method, based on KNN and SVM models, are 0.750 and 0.789,

respectively, and both are superior to those of the other five methods.

These findings indicate that the proposed method has a competitive

edge in distinguishing benign tissue from noise information. This

could be attributed to the consideration of the correlation within and

between features in selection. It is worth noting an interesting aspect

of the precision results, wherein the precision values of RF based on

KNN and SVM models are 0.722 and 0.773, respectively, which are

only slightly lower than those of the proposed method. Furthermore,

RF’s AUC value based on KNN is relatively high (0.822). These imply

that RF can be considered a competitive approach for feature
TABLE 3 Performance indexes used for the evaluation and comparison
of the estimated model.

Index Formula

Recall TP
TP + FN

Precision TP
TP + FP

F1-score 2(Precision � Recall)
Precision + Recall

Accuracy TP + TN
TP + TN + FP + FN

False Positive Rate FP
FP + TN

Ture Positive Rate TP
TP + FN
TP, True Positive; TN, True Negative; FP, False Positive; FN, False Negative.
TABLE 4 The ROC curves of KNN and SVM classifier.

Feature selection method classification model Recall Precision F1-Score Accuracy AUC

dl-LASSO KNN 0.714 0.750 0.732 0.756 0.807

AVMI 0.750 0.708 0.728 0.739 0.779

RF 0.679 0.722 0.699 0.728 0.822

ReliefF 0.667 0.667 0.667 0.689 0.773

DSD 0.738 0.639 0.685 0.683 0.748

Chi+LASSO 0.643 0.711 0.675 0.711 0.771

dl-LASSO SVM 0.714 0.789 0.750 0.778 0.836

AVMI 0.690 0.674 0.682 0.700 0.780

RF 0.202 0.773 0.321 0.600 0.804

ReliefF 0.679 0.770 0.722 0.756 0.811

DSD 0.690 0.674 0.682 0.700 0.782

Chi+LASSO 0.667 0.709 0.687 0.717 0.811
frontier
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selection. However, RF’s superior performance may not be entirely

reliable, as suggested in the literature (44) and evidenced in Table 4 by

its low recall and F1-score values derived from the SVMmodel (0.202

and 0.321, respectively, both of which are the lowest). Therefore,

additional research is necessary to further investigate the stability and

reliability of the RF method.

Both the F1-score and accuracy metrics show that the proposed

dl-LASSO method outperforms the others. The KNN- and SVM-

based F1-score values are 0.732 and 0.750, respectively, while the

accuracy values are 0.756 and 0.778, respectively - all of which are

the highest. This underscores the superior ability of the proposed

approach to accurately grade tumors using discriminative features.

These findings provide strong evidence of LASSO’s effectiveness as

a feature selection method with comprehensive recognition ability

for lesions, benign tumors, and even noisy data. If unreliable values

of RF are disregarded, the AUC results exhibit the same trend. AUC

is a potent measure for grading, with higher values indicating

greater grading accuracy. Based on KNN, the AUC values for six

feature selection methods (the proposed dl-LASSO, AVMI, DSD,

ReliefF, and Chi with LASSO) are 0.807, 0.779, 0.773, 0.748, and

0.771, respectively. Based on SVM, these values are 0.836, 0.780,

0.811, 0.782, and 0.811, respectively. These results suggest that the

proposed method produces the best grading results.

Table 4 also suggests that DSD’s performance is not outstanding,

regardless of the indicator used. The KNN-based DSD yields values of

Recall, Precision, F1-Score, Accuracy, and AUC at 0.738, 0.639, 0.685,

0.683, and 0.748, respectively. Based on SVM, these values are 0.690,

0.674, 0.682, 0.700, and 0.782, respectively. This may be attributed to

DSD’s disregard for relationships between and within feature classes,

indicating that there is still room for improvement in grading accuracy.

Moreover, DSD’s effectiveness depends heavily on data quality, which

explains its poor performance in this study since our data are not

preprocessed extensively. As shown in Figure 5, the DSD curve appears

unstable, which suggests that DSD cannot be applied to our database.

Based on the analysis presented above, it can be concluded that

the proposed featured selection method dl-LASSO can outperform

the other five existing methods. LASSO adopts a shrinking

(regularization) process to penalize the coefficients. Through the

process of shrinking and removing coefficients, LASSO can reduce

variance without causing significant bias. This makes it particularly

effective in high-dimensional feature spaces, resulting in highly

accurate feature selection. Furthermore, the proposed dl-LASSO
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method improves noise resistance and grading accuracy by

considering the correlation between features and grading results

as well as the relationships within and between features.

This study aims to address radiomics feature selection

problems, and therefore, develops an efficient method for

extracting discriminative features. Nonetheless, this work also has

some limitations that remain critical roadblocks for its practical

implementation in the HCC grading system. Firstly, the data only

includes MR images of HCC from one hospital, which may lack

diversity. It would be intriguing to explore the potential benefits of

incorporating data from different imaging modalities (such as CT in

addition to MR), different stages of the disease (including healthy

data), and different detection methods, which may help to address

the diversity limitation of the current study. In fact, we are in the

process of doing this, we are now collecting data from different

hospitals using CT or MR with different parameter settings. In our

future work, therefore, we plan to investigate the performance of the

proposed approach on a more comprehensive dataset. Secondly, the

feature extraction process requires manual delineation of the tumor

on multiple image slices. This process was time-consuming, and the

segmentation performance relies on the experience of radiologists.

The rapid progress in the field of deep learning has resulted in the

emergence of automated segmentation of medical images, which

could be potentially used in future studies. Finally, as this was a

retrospective study, there is a possibility of bias in patient selection.
6 Conclusion

This study proposed a feature selection method based on

LASSO with dictionary learning. Firstly, according to the

influence of each feature on the grading result and the value of

the vector a, each feature is divided into the high information part

and the low information part. Subsequently, through the mapping

matrix, the high-information part of the dictionary is strengthened

and the low-information part is suppressed. Finally, the

effectiveness of the proposed method has been assessed by a series

of comparison experiments based on the grading performance. The

experimental results based on two classifiers showed that the

proposed method yielded accuracy gains, compared favorably

with another 5 state-of-the-practice feature selection methods.
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