
Dictionary Matching and Indexing with Errors and Don’t
Cares∗

Richard Cole
Courant Institute

New York University
NY, NY 10012

cole@cs.nyu.edu

Lee-Ad Gottlieb
Courant Institute

New York University
NY, NY 10012

adi@cs.nyu.edu

Moshe Lewenstein
Department of Computer

Science
Bar-Ilan University
Ramat Gan 52900

Israel

moshe@cs.biu.ac.il

ABSTRACT
This paper considers various flavors of the following online
problem: preprocess a text or collection of strings, so that
given a query string p, all matches of p with the text can be
reported quickly.

In this paper we consider matches in which a bounded
number of mismatches are allowed, or in which a bounded
number of “don’t care” characters are allowed.

The specific problems we look at are: indexing, in which
there is a single text t, and we seek locations where pmatches
a substring of t; dictionary queries, in which a collection
of strings is given upfront, and we seek those strings which
match p in their entirety; and dictionary matching, in which
a collection of strings is given upfront, and we seek those
substrings of a (long) p which match an original string in
its entirety. These are all instances of an all-to-all matching
problem, for which we provide a single solution.

The performance bounds all have a similar character. For
example, for the indexing problem with n = |t| and m = |p|,

the query time for k substitutions is O(m + (c1 log n)k

k!
+

matches), with a data structure of size O(n (c2 log n)k

k!
)

and a preprocessing time of O(n (c2 log n)k

k!
), where c1, c2 >

1 are constants. The deterministic preprocessing assumes
a weakly nonuniform RAM model; this assumption is not
needed if randomization is used in the preprocessing.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Pat-
tern matching, computations on discrete structures; E.1 [Data

Structures]: Trees.

∗This work was supported in part by NSF grant CCR-
0105678.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’04, June 13–15, 2004, Chicago, Illinois, USA.
Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

General Terms
Algorithms.

Keywords
Dictionary query, dictionary matching, suffix trees, wild-
cards, approximate pattern matching, text indexing.

1. INTRODUCTION.
The internet is awash with an abundance of textual infor-
mation due to large and growing collections of databases,
articles, and books. It is essential to be able to access this
information with fast online queries of different sorts and
much work has been devoted to doing so efficiently.
In this paper we consider three different query paradigms.

1. Text Indexing: In text indexing one desires to prepro-
cess a text t and to answer where subsequent queries
p appear in the text t.

2. Dictionary Queries: Here one is given a dictionary D of
strings p1, ..., pd and subsequent queries ask whether a
given pattern query p appears in the dictionary.

3. Dictionary Matching: In dictionary matching one is
given a dictionary D of strings p1, ..., pd. Subsequent
queries provide a query string s and ask for each loca-
tion in s at which patterns of the dictionary appear.

As we will see, these are all instances of the following all-
to-all matching problem: given a preprocessed collection
of texts r1, r2, . . . , rx, and a collection of query patterns
q1, q2, . . . , qy, find all locations where some qi matches a sub-
string of some rj , and all locations where some rj matches
a substring of some qi.
The classical pattern matching problem is the problem in
which one searches for the appearances of a pattern p at
locations of a text t. Pattern matching has been gener-
alized to searching with error bounds, e.g. Hamming dis-
tance [10, 20, 28], and edit distance [15, 29, 34]. These
problems are known as approximate pattern matching. Sev-
eral other pattern matching problems have been consid-
ered within the approximate paradigm, e.g. approximate
2-dimensional matching, approximate repeats (in biology).
Fischer and Paterson [19] generalized pattern matching to
include don’t cares: given a pattern p and a text t either

of which may contain don’t cares, denoted φ, the goal is
to output all locations of t where p matches. (A don’t care
can match any alphabet character.) They presented an algo-
rithm that runs in time O(n log n log Σ). Cole and Hariharan
[16] improved this to O(n log n). The don’t care paradigm
has been extended to several other problems, including 2-
dimensional matching and various approximate matching
problems [11, 3, 4].
Approximate dictionary querying was introduced by Minsky
and Papert [33] in 1969. There are abundant applications for
approximate indexing, approximate dictionary queries, and
approximate dictionary matching, some of which we shall
mention later.
It is very natural to consider the online paradigm in conjunc-
tion with the approximate and don’t care paradigms. For
example, the biological retrieval system of IBM, TEIRE-
SIAS, can answer queries which contain don’t cares. (See
http://cbcsrv.watson.ibm.com/Tspd.html.)
For the approximate online problems some progress has been
made for the case k = 1, and for larger k for the Hamming
distance measure when some imprecision in the output is
acceptable. In particular, there are several solutions for the
case where one allows one error, i.e. k = 1 [8, 14]. How-
ever, even for two errors the naive bounds are still the best
currently known. If some imprecision in the output is ac-
ceptable, specifically, all matches within distance k and some
matches up to distance k(1 + ǫ), for a fixed constant ǫ > 0,
then there are efficient solutions [26, 27], for Hamming dis-
tance. (We note that this form of output is called approxi-
mate near neighbor, where the approximation refers to the
ǫ; we are using approximate to refer to k.) Setting ǫ < 1

k
eliminates the imprecision, but the performance is then no
better than that of a straightforward approach.
Results allowing don’t cares within online queries have been
heuristic. We are not aware of any complexity bounds for
such problems. Heretofore, it has not been apparent how to
approach this problem without paying a large penalty.
The central difficulty in extending the previous solutions,
for k = 1, is that they are tailored to one-error problems.
Most of the methods use a pair of suffix trees, one for the
text and the other for its reverse. The idea behind these
data structures is to imagine “sitting” on the error and to
verify matches to the right and left using the suffix trees.
(Other methods use slightly different data structures but
suffer from problems of the same flavor.)
In this paper we suggest a new general method for solving
this collection of problems. Our approach uses only one
suffix tree and treats errors by recursively creating subtrees
to handle them. The method entails a non-obvious subtree
merging, use of centroid path decompositions and elaborate
LCA queries. The primary and most important advantage
of our method is that it works for k ≥ 2. However, it must
be noted that it is most effective for constant k. In addition,
our method even improves what is known in the case of one
error, i.e. for k = 1.
For don’t cares we consider patterns that contain k don’t
cares. The methods are similar to those for k mismatches;
however, we can tighten the bounds even further here. We
can also allow don’t cares in the text; then the bounds are
similar to those for errors.
Approximate Indexing: The indexing problem arises in
textual retrieval systems for static texts and online queries.
Suffix trees are the classical data structure used to solve

this problem. Suffix trees can be constructed in linear,
O(n), time and space [17, 31, 37, 38] for linear-size alpha-
bets. Moreover, subsequent queries p are answered in linear,
O(m+occ), time, where occ is the number of answers to the
query and m = |p|.
For approximate indexing, given a distance k, one prepro-
cesses a specified text t. The goal is to find all locations ℓ
of t within distance k of the query p, i.e. for the Hamming
distance measure, all locations ℓ such that the length m sub-
string of t beginning at that location can be made equal to
p with at most k character substitutions. (The edit distance
is analogous, except that a mix of inserts, deletes and sub-
stitutions are allowed.) For k = 1, two solutions are known
[8, 14]. The more efficient method preprocesses the text in
time O(n log n) and answers subsequent queries p in time
O(m log log n + occ). For small k ≥ 2, nothing better than
the naive solution has been achieved. One possible solution
is to traverse a suffix tree. However, while the preprocessing
needed to build a suffix tree is cheap, the search is expensive,
namely, O(mk+1|Σ|k +occ). Another direct solution, for the
Hamming distance measure only, leads to data structures of
size approximately O(nk+1). This can be slightly improved
by using the one-error data structures, which reduce the size
to approximately O(nk). Similar bounds can be achieved by
setting ǫ = 1

k+1
in the algorithms with imprecision in the

output [26, 27], but the direct solution is simpler.
Our solution: The data structure for substitutions uses space

O(n (c1 log n)k

k!
), takes time O(n (c1 log n)k

k!
) to build, and an-

swers queries in time O((c2 log n)k log log n
k!

+m+ occ), where
c1, c2 > 1 are constants, and k ≤ log n. For edit distance,
the constants c1 and c2 are larger, and the query time be-

comes O((c2 log n)k log log n
k!

+ m + 3k · occ). Note that even
for k = 1 our query time improves on the previous results.
More importantly, this yields an efficient solution for k ≥ 2.
However, it must be pointed out that this result is most
effective for constant k.
For indexing with k don’t cares in the pattern, we can
preprocess t in O(n logk n + n log Σ) time to build a size
O(n logk n) data structure which answers queries in time
O(2k log log n+m+ occ).
Approximate Dictionary Queries: Minsky and Papert
[33] originally formulated the problem as follows. Given a
dictionary D of x1 binary strings, a k-query p asks for all
strings in D within Hamming distance k of p. This problem
in its more modern version is known as the nearest neighbor
problem, with Hamming distance used as the desired mea-
sure. Applications for this problem appear in Geographic In-
formation Systems (GIS), Computer Aided Design (CAD),
computational biology, decision support, and pattern recog-
nition [36]. Password security is an application that uses
very small constant k [30]. We let n denote the sum of the
lengths of the strings in D and m = |p|.
For the case of imprecise outputs, progress has been made
in obtaining efficient data structures, as with the approx-
imate indexing problem. Otherwise, once again the only
progress has been for the case of k = 1. Here, Yao and Yao
[40] presented the first results, namely O(m log log x) query
time with a data structure of size O(n logm). Brodal and
Ga̧sieniec [12] improved this to a size O(n) structure with
O(m) query time. Brodal and Venkatesh [13] improved this

1conventionally, d is used to denote |D|.

further, for the cell-probe model with word size Θ(m), giv-
ing a solution requiring O(n

m
logm) space and O(1) query

time. However, all these results are for k = 1.
Our solution: We present results that carry over to a larger
number of errors. Namely, for k substitutions our data struc-

ture uses space O(n + x (c1 log x)k

k!
), is built in time O(n +

x (c1 log x)k

k!
+n log n), and has a query time of O(m+ (c2 log x)k

k!
·

log log n+ occ), where c1, c2 > 1 are constants. The bounds
for edit distance have larger constants c1 and c2. Random-
ization reduces the n log n term in the preprocessing to n.
Approximate Dictionary Matching: The dictionary
matching problem and several variants of the problem have
been well studied [2, 5, 6, 7, 25]. We are interested in
the approximate version of the problem. There are many
applications to this very natural problem; see, for exam-
ple, an application in text filtering [18]. Here, once again,
there are several algorithms for the case where k = 1 [8,
14, 18]. The best solution for this problem has query time
O(m log log n+occ) [14], where m is the query text size, and
n =

Px
i=1 |ri| is the dictionary size, where ri are the patterns

in the dictionary; the data structure uses space O(n log n)
and can be built in time O(n log n).
Our solution: We achieve the same bounds as in the approx-
imate dictionary query problem.
Remark. For both the dictionary problems the log log n term
can be reduced to O(log log x).
Our constructions all require Σ to be ordered. Further, we
are using a RAM model with length w words, w ≥ log n. In
the deterministic preprocessing, if w > Θ(logn), we need a
fixed number of precomputed constants (as specified in [23]).
This is the weakly nonuniform model mentioned earlier.
Paper organization: Section 2 covers definitions and other
preliminaries. The heart of the paper, Section 3, provides
the solution for each match relation in turn: wildcards in
the pattern, wildcards in the text and wildcards in both,
substitution or Hamming distance, and edit distance. In
each case, we begin with the solution for k = 1 and then
extend it to general k with a simple recursion. We then
provide two technical sections which contain the methods
for merging compressed tries and for constructing the LCP
data structure (defined below).

2. PRELIMINARIES AND DEFINITIONS
We are concerned with strings over a finite alphabet Σ.
A prefix-free collection of strings has the property that no
string in the collection is a prefix of another. Given a not
necessarily prefix-free collection {s1, · · · , sk} we make it prefix-
free by appending a new character $ /∈ Σ to each string. As
usual t denotes a text and p a pattern. n = |t| and m = |p|.
A trie is a tree that stores a prefix-free collection of strings
as follows. Each edge in the trie is labelled by a character.
Each leaf is associated with a unique string in the collection.
Further, the concatenated labels of the edges on the path
from the root to a leaf ℓ form the string sℓ associated with
that leaf. Finally, the labels on edges exiting a node are
all distinct. Sometimes, to avoid heavy handed terminology
we will refer to a string u, where u is a leaf; su, the string
associated with u, will be intended. Likewise a string su

may be called a leaf; and u will be intended.
In a compressed trie the labels on the edges are strings of
one or more characters. A compressed trie for a collection of
strings is obtained from the corresponding (uncompressed)

trie by replacing maximal paths of one-child nodes with a
single edge.
A location in a trie is the name of a node in the trie. A
location in a compressed trie is the node or (imaginary) point
on an edge corresponding to a node in the corresponding
uncompressed trie. It can be specified as a pointer to an
edge together with an index into that edge’s label.
The suffix tree for a string t is the compressed trie storing
all suffixes of t$. As is well known, such a suffix tree can
be built in linear time [17, 31, 37, 38], as can the suffix
tree for a collection of prefix-free strings. We will also need
to add the suffixes of a query string p to the suffix tree
which can be done readily in O(p log Σ) time. If a hash
function has been built for Σ (or rather that portion of Σ
used in the text), which can be done in deterministic time
O(min{n,Σ} log n) [23] (the weak nonuniformity arises here)
or randomized time O(n), then p and its suffixes can be
added in O(p) time.
Often, data structures for constant time LCA queries are
used with suffix trees, as will be the case here. An LCA
query lca(u, v) is given two nodes u, v in a tree T and re-
ports the lowest common ancestor w of u and v in T . Data
structures for answering LCA queries in O(1) time can be
built in linear time [24, 35]. These data structures also al-
low the reporting in O(1) time of the edges exiting w on the
paths to u and v. In addition, they yield the length of the
longest common prefix of the suffixes su and sv associated
with u and v, again in O(1) time.
We will also need a data structure for answering the follow-
ing query on an n-node compressed trie in O(log log n) time.
Given a leaf u and a distance h, report the location at which
the prefix of su of length |su| − h ends, i.e. the location dis-
tance h above u, where edges are deemed to have length
equal to their labels. We call this the measured ancestor
structure. Again, such data structures can be built in linear
time [9].
Our construction uses centroid paths and centroid path de-
compositions. For our setting, we define the centroid path of
a tree T to be the path starting at T ’s root, which at each
node v on the path branches to v’s “largest” child, with ties
broken arbitrarily; the size of a node is simply the number
of leaves in the subtree rooted at that node. In a centroid
path decomposition, we decompose each off-path subtree of
the centroid path recursively.
The weight of a node on a centroid path is defined to be the
number of leaves in its off-path subtrees.
In our applications, for node v on a centroid path with off-
path child u, it is convenient to include edge (v, u) in the
off-path subtree Tu incorporating node u. We will also say
that Tu hangs from node v.
The following property of a centroid path decomposition of
a tree is well known.

Property 1. Let T be an n-node tree with a centroid
path decomposition. Let v be a node of T . The path from
the root of T to v traverses at most log n centroid paths.

In the uncompressed trie, the one-character edge label of
the edge on C leaving ℓ will sometimes be called the next
character after location ℓ on centroid path C. The same
terminology is used with respect to the corresponding lo-
cation in the corresponding compressed trie. Likewise, the
first character in a subtree U rooted at node v is simply the
next character after v.

Finally, we need a new data structure, which we call the
LCP data structure, but before defining it, we specify the
query problem formally.

2.1 Problem Specification
The matching problem is parameterized by an error bound
k and a match relation R (one of wildcards in the pattern,
wildcards in both the text and the pattern, Hamming dis-
tance, edit distance).
The matching problem has the following form.
Input: text strings r1, r2, · · · , rx.
Query: pattern strings q1, q2, · · · , qy .
Output: Category 1 - for each qj , all i such that a prefix
of ri matches qj , and
Category 2 - for each ri, all j such that a prefix of qj matches
ri.
If qj matches ri this part of the output is in both categories.
In text indexing, the ri’s consist of all the suffixes of an input
text t. A query consists of a single pattern. Thus x = |t| and
y = 1. The output is filtered so as to include only Category
1 locations.
In the dictionary query problem, the ri’s consist of the
strings p1, · · · , pd forming the dictionary, and again a query
consists of a single pattern. Thus x = d and y = 1. The out-
put is filtered so as to include only those locations in both
categories.
In dictionary matching, the ri’s again consist of the strings
p1, · · · , pd. The query patterns consist of all the suffixes of
an input string s. Thus x = d and y = |s|. The output is
filtered so as to include only Category 2 locations.
Below, to simplify, we only describe how to find Category 1
locations. Only cosmetic changes are needed to find Cate-
gory 2 locations, or locations in both categories.
The complexity of the data structure used for our algo-
rithm depends on the cost of building a suffix tree S for
r1, r2, · · · , rx and for adding q1, q2, · · · , qy to S. To this end,
we introduce the following notation. Let n = |S| and let m
be the size of a suffix tree for q1, q2, · · · , qy . Further, suppose
the input is provided so that S can be computed in O(n)
time and so that the suffixes q1, q2, · · · , qy can be added to S
in O(m log n) time. That this matters can be seen for exam-
ple in the indexing problem, where r1, r2, · · · , rx are the suf-
fixes of the input string t; given t, S can be built in O(t) =
O(n) time rather than O(

Px
i=1 |ri|) = O(n2) time. Then

the size of the data structure is O(n+ ckx logk x
k!

) where c is a
suitable constant which depends on the match relation, and

it can be built in deterministic time O(n log n+ ckx logk+1 x
k!

)

and in randomized time O(n+ ckx logk x
k!

). The query time is

O(m+ ybk logk x log log n
k!

+ occ) where b is a suitable constant
which depends on the match relation. (Actually when the
match relation is wildcards in the pattern, the query time
is smaller: it is O(m + y2k log log n + occ); and when the
match relation is edit distance, the term occ is replaced by
3k · occ for category 1 matches.)
Note that in text indexing, n = |t|. Likewise, in dictionary
matching m = |s|.
When dealing with wildcards in building the suffix tree,
wildcards in the text are regarded simply as another distinct
character. However, for a pattern qi = qi0φqi1φ · · ·φqik,
where φ denotes a wildcard, instead of adding qi to the suf-
fix tree, each of qi0, qi1, · · · , qik are added to the suffix tree.
This does not affect the complexities stated above.

2.2 The LCP Data Structure
We need to introduce a new data structure, the longest com-
mon prefix data structure, or LCP for short. This structure
comes in two forms: the rooted LCP and the unrooted LCP,
depending on the form of the queries, as described next.
The LCP structure stores a set of strings s1, s2, . . . , sz. In
our application, s1, s2, . . . , sz are some of the suffixes of the
input strings r1, r2, . . . , rx. The LCP structure is built on
top of the compressed trie T for s1, s2, . . . , sz.
A query consists of a pattern p. In a rooted query, the task
is to report the location ℓ in T corresponding to the longest
common prefix of p and s1, · · · , sz. This is the location
reached if one follows the path from the root labelled by p
until one can go no further. We also call this the location at
which p diverges from T . In an unrooted query, the query
consists of an input location h in addition to pattern p. The
query is simply a rooted query on the subtrie rooted at h.
Suppose that it outputs location ℓ. We call ℓ the location
at which p diverges from T when starting at h.
The rooted LCP takes space O(z) and the unrooted LCP
takes space O(z log z). Given the compressed trie T , the
time to build the data structures is O(z) and O(z log z), re-
spectively, assuming that the suffix tree S for strings
r1, r2, . . . , rx is available. (The weak nonuniformity is used
here too.)
We explain later for which collections of suffixes rooted and
unrooted LCP structures are built.
The query patterns too will be somewhat limited. Each
matching task concerns a collection of patterns q1, q2, · · · , qy .
The queries to the rooted or unrooted LCPs are all suffixes
of q1, q2, · · · , qy . By preprocessing q1, q2, · · · , qy once they
are known, each query can then be answered in O(log log n)
time. This further round of preprocessing takes time
O(

Py
i=1 |qi|), and occurs once for each matching query. This

preprocessing consists of adding each of the strings q1, q2, · · · , qy

to S, so as to determine for each suffix s of each qi an index
that lies between the indices for the two strings in S strad-
dling s in lexicographic order. (This can be kept integral by
using only even indices for strings in S.)
Thus, the picture in general is that the text (r1, r2, . . . , rx) is
preprocessed once and for all; Then, on receipt of a match-
ing query, the pattern (q1, q2, . . . , qy) is also preprocessed.
Finally, the matching query itself is performed.

3. THE K-ERRATA TRIE
We describe in turn the following data structures:

1. for up to k wildcards in the pattern,

2. for up to k wildcards in the pattern or text,

3. for up to k substitution errors,

4. for up to k substitutions, insertions or deletions.

In each case, the data structure provides an efficient im-
plementation of the following naive strategy for matching a
query string q. Given a compressed trie T for the collec-
tion of strings to be searched, for example the suffix tree
of a text string, the algorithm simply follows each pos-
sible path P starting at the root of T until k wildcard
errors are encountered on P in matching the given pat-
tern q. (In case (4) multiple possible combinations of sub-
stitutions/insertions/deletions may have to be considered

on each path.) For an alphabet Σ, in problem (1) this
yields a search time of O(qΣk), in problems (2) and (3) of
O(qk+1Σk), and in problem (4) of O(qk+1Σkk). One factor
of q can be reduced to an O(log log n) factor by using the
LCP data structure. We show how to achieve polylogarith-
mic search time for fixed k, at the cost of a polylogarithmic
increase in the size of the data structure.

3.1 Wildcards in the Pattern
We begin by describing the solution for k = 1.
The expense in the naive algorithm comes from the fact that
if a wildcard in the pattern corresponds to the first character
following a node v in T , then all the up to Σ subtrees rooted
at v have to be searched. We show how to reduce this to
two searches.
Our solution is readily understood by considering a centroid
path decomposition of T . Let C be one of the resulting
centroid paths and let v be a node on C. We form a new
wildcard subtree at v comprising the merge of all off-path
subtrees of v, but with the first character of each subtree
being replaced by a new symbol φ /∈ Σ.
We start by building the suffix tree S for r1, r2, . . . , rx in
time O(n). Then, from S, we extract the compressed trie
T for r1, r2, . . . , rx. Next, we build a rooted LCP structure
for each of the wildcard subtrees minus their first character,
and an unrooted LCP structure for T .
Given a query string q = p0φp1, where φ denotes a wildcard,
the search proceeds as follows.

1. Add p0 and p1 to S.

2. Perform an LCP query for p0 from the root of T . If
this location ℓ is at depth |p0| the search can continue.

3. Advance one character along the centroid path edge
at ℓ to location ℓ′ (effectively reading the wildcard in
q), and perform an (unrooted) LCP query for p1 from
ℓ′. If this yields a location ℓ′′ at depth |q|, then all the
descendant leaves of ℓ′′ correspond to matches of q.

4. If ℓ is a node, then Step 3 is also performed on the
wildcard subtree at ℓ, except that the LCP query is
rooted.

Lemma 1. The above search runs in time O(q+log log n+
occ).

Lemma 2. The above data structure uses space O(n +
x log x).

Proof. Let u be a leaf in T . We argue that u (or rather
leaves corresponding to strings obtained by replacing one
character in su by φ) belongs to at most log x wildcard trees.
For consider traversing the path vj , · · · , v1 from u to the root
of T . u belongs to the wildcard tree hanging from vi exactly
if vi and vi+1 are on distinct centroid paths. But there are
at most log x such nodes. ⊓⊔
To build a k-errata data structure we begin by building the
data structure for one wildcard and then recursively pro-
cessing each wildcard subtree to handle k − 1 (additional)
wildcards.
Let q = p0φp1φp2φ · · ·φpk be a query pattern. Now each of
p0, p1, p2, · · · , pk has to be added to the suffix tree S.
In the search p0 is sought as before. Then, in steps 2 and 3,
p1φp2φ · · ·φpk is sought recursively. It is readily seen that:

Lemma 3. The above data structure supports searches in
time O(q + 2k log log n+ occ).

We show:

Lemma 4. The above data structure has size O(n+ (k+log x)k

k!
).

Proof. Consider a structure on a collection R of x input
strings. Consider the compressed trie T for R. Let C be
the centroid path starting at the root of R. The wildcard
trees hanging from C have size at most x/2 and total size x.
Consider the centroid paths hanging from C; the wildcard
trees hanging from these centroid paths each have size at
most x/4 and total size x; at the next level down the wild-
card trees each have size at most x/8 and total size x, and
so forth.
Let Sk(x) denote the space taken by the structure for k
wildcards on a collection of x strings and inductively suppose
that Sk(x)/x is a non-decreasing function of x. Then:

Sk(x) ≤ x+ x
Sk−1(x/2)

x/2
+ x

Sk−1(x/4)

x/4
+ · · ·x

Sk−1(1)

1
, k ≥ 1

S0(x) = x
It is not hard to verify by induction that

Sk(x) ≤ x+x
log x

1!
+· · ·+x

(log x)(1 + log x) · · · (k − 1 + log x)

k!

For
Pℓ

i=1
i(i+1)···(i+j−1)

j!
= ℓ(ℓ+1)···(ℓ+j)

(j+1)!
. ⊓⊔

It then follows readily that:

Lemma 5. The above data structure can be built in de-
terministic time O(n log n+ x (k+log x)k

k!
) and in randomized

time O(n+ x (k+log x)k

k!
).

3.2 Wildcards in the Text and Pattern
Again, we start with the case k = 1. For simplicity, we start
with the case in which the wildcards occur only in the text.
Suppose we build a trie for the text in which wildcards are
treated as a new character, α say. We call each off-path
subtree whose first character is α an α-wildcard subtree.
Consider a search. It proceeds as before, but if it encounters
an α on the current centroid path, it continues the search
from the next location on the edge, just as in Step 3 in the
wildcards in the pattern problem. Additionally, suppose the
search path leaves the current centroid path C at node v;
then all α-wildcard subtrees hanging from v or its ancestors
on C need to be searched. Potentially, many α-wildcard sub-
trees need to be searched. To keep the search costs bounded
we will form groups of subtrees.
The goal is to ensure that only O(log x) group trees need
to be searched. Each group tree will be derived from a
collection of suffixes of the original set R of input strings.
Let T1, T2, · · · , Th be the α-wildcard subtrees hanging from
centroid path C, in top to bottom order. The obvious so-
lution is to form a log x-level hierarchy of group trees. The
bottom level comprises the individual trees, the next level
pairs of adjacent trees (i.e. T1 ∪ T2, T3 ∪ T4, etc.), the next
level foursomes of adjacent trees, and so forth. (However,
as we see later, the meaning of a merge is not completely
obvious.) Then on any centroid path C, in order to search
trees T1, T2, · · · , Tg , we may need to search up to log x group
trees. As up to log x distinct centroid paths may be tra-
versed in tracing the pattern q without error, this may entail
the search of θ(log2 x) group trees.
In fact, by using suitable weights in organizing the hierar-
chy, the total number of group trees that need to be searched

can be kept to O(log x). Specifically, α-wildcard subtree Tf ,
hanging off node v, is given a weight equal to the number of
strings stored in the off-path subtrees hanging from v (i.e.
their number of leaves). In particular, suppose that trees
T1, T2, · · · , Th have weights w1, w2, · · · , wh and let W =Ph

i=1 wi. The hierarchy of groups is organized so that Tf be-

longs to O(log W
wf

) groups, in analogy with weighted search

trees.
To understand the construction, it is helpful to imagine the
subtree Tf occupying an interval If of length wf , with the
intervals arranged contiguously in index order on the interval
(0,W]. The construction proceeds top-down. At the top
there is a single group for the interval (0,W]. A group for
the interval (u, x] will have three subgroups; one will contain
a single tree, the tree whose interval includes point u+x

2
,

and covers interval (v, w]; the other two subgroups cover
intervals (u, v] and (w, x], respectively. Clearly, an interval
at depth i has size at most W

2i−1 , and hence a subtree of size

wf belongs to at most 1+⌈log W
wf

⌉ groups.

Recall we assumed that the path traced by pattern q leaves
the centroid path C at node v. This causes α-wildcard trees
T1, T2, · · · , Tg to be searched, where Tg is hanging from node
v. The handling of T1, · · · , Tg−1 and Tg differ, as we explain
next.
In order to form groups involving subsets of T1, · · · , Tg−1, we
need the group tree to match the characters in the pattern
originally aligned with a wildcard in some α-wildcard tree.
To this end, for each Tf , 1 ≤ f < g, its first character is
changed to equal the next character on the centroid path
C from which it hangs. The group trees are formed from
C and these altered wildcard trees T ′

f . The rooted LCP
queries are made on the group trees whose disjoint union
forms T ′

1 ∪ T ′

2 ∪ · · · ∪ T ′

g−1.
However, the search in Tg is different. As the path traced
by the query pattern leaves C at node v, q does not match
the next character labelling C. Instead, here Tg is main-
tained as is, and the search continues in Tg, skipping the
next character in q and the first character in Tg.
We note that in principle two rooted LCP structures on each
Tf are needed. First, an LCP structure is needed for the
modified tree T ′

f because it will occur in a singleton group,
which may need to be searched. Second, an LCP structure
is needed for tree Tf minus its first character. But the latter
structure can be used for the first problem by starting the
search after skipping the first characters in T ′

f and the LCP
query pattern.
To allow the right group trees to be searched, the path Pq

traversed by q has to be identified to the following extent:
for each centroid path Ci overlapping Pq the vertex vi at
which Pj leaves Ci has to be found. This is most readily
done following the LCP query, which reports the location ℓ
at which query pattern q diverges from T , by tracing back
from location ℓ to the root of T , taking O(1) time to go
from node vi to the root of centroid path Ci and then to
its parent node vi−1, for each of the O(log x) centroid paths
ancestral to ℓ. This takes O(log x) time.
We describe later, in Section 4, how the group trees are
built. There, we analyze the search time and the space used
by the data structure.

Lemma 6. The search takes time O(log x log log x+ occ).

Proof. Consider the path traced in S by a wildcard-free
pattern p and the wildcard trees hanging from this path.

It is convenient to view the search as generating recursive
1-errata search problems as it descends the group hierarchy
or switches paths. Consider a size x 1-errata search prob-
lem. We argue that in reaching a size at most x

2
1-errata

problem, it generates at most 4 LCP searches on appropri-
ate subgroups. This can occur if the first search generates a
recursive 1-errata subproblem on the middle group (of size
almost x). The next recursive 1-errata problem will have size
at most x

2
, however. Any other choice results in only 2 LCP

searches. Thus, overall, there are O(log n) LCP searches.
⊓⊔

Lemma 7. The data structure uses space O(x log x).

Proof. Consider the group wildcard trees to which a
string s belongs. As these are all associated with the first
wildcard in s, they are all associated with one centroid path
and consequently there are at most log x+ 1 of them. ⊓⊔
To handle wildcards in both the pattern and text, we overlay
the above two constructions. More specifically, for each node
v, the off-path subtrees hanging from v, with the exception
of the α-wildcard tree, are merged to form a wildcard tree at
v as is done in the wildcards in the pattern data structure.
The only change in the search arises if a wildcard in the
pattern is encountered. If this wildcard is read immediately
after a node v is met then LCP queries must be performed
on both the α-wildcard and wildcard trees hanging from
v. The asymptotic complexity of the solution for k = 1 is
unaffected, however.
The k-errata structure is built as before by recursion on the
α-wildcard and wildcard trees.

Lemma 8. For k ≤ log n, the above k-errata structure

uses space O(x log x(1+log x)···(k−1+log x)
k!

).

Proof. First, we analyze the structure that handles wild-
cards in the text alone.
Consider an arbitrary string s ∈ T and consider the (k−1)−
α-wildcard group trees in which s is placed. This series of α-
wildcard group trees, from largest to smallest, at least halves
in size from tree to tree, except possibly at the bottommost
level, which is formed by the singleton group.
Let Sk(m) denote the space used by a k-errata tree on m

strings. Let S̃k(m) = Sk(m)/m. We assume inductively

that S̃k(m) is a non-decreasing function of m. Then the
space used by (k− 1)-errata structures on the non-singleton
group trees is at most:

x[S̃k−1(x/2) + S̃k−1(x/4) + · · · + S̃k−1(1)].

While the space used by (k − 1)-errata structures for the
singleton group trees is at most:

zX

i=1

xiS̃k−1(xi), where
zX

i=1

xi = x,

for the sets of strings stored in the α-wildcard trees are dis-
joint.
But

Pz
i=1 xiS̃k−1(xi) ≤ xS̃k−1(x), thus the space used by

the k-errata structure Sk(x) is bounded by:

Sk(x) ≤ x[S̃k−1(x) + S̃k−1(x/2) + · · · + S̃k−1(1)] + x.

This yields the stated bound as in Lemma 4.
To accommodate wildcards in the pattern, wildcard trees are
needed as well as α-wildcard trees. But the sets of strings in

the wildcard and α-wildcard trees are disjoint, so the same
recurrence equation, which held for each scenario separately,
continues to apply. ⊓⊔

Lemma 9. The search time in the k-errata structure for x
strings is O(4k log x(1+log x) · · · (k−1+log x)/k!·log log n+
occ).

Proof. It is convenient to view the k-errata search as
it descends the group hierarchy or switches centroid paths
as generating a recursive k-errata search. The O(log log n)
cost of the one LCP query is charged to the size 1 k-errata
problem at the base of the recursion. The O(log x) cost of
tracing the centroid paths is charged at a rate of O(1) to
each of the k-errata recursive calls.
There can be at most 4 recursive (k − 1)-errata searches,
using the same argument as in the proof of Lemma 6.
Thus letting Tk(x) denote the search time for a k-errata
search on a data structure for x strings, we have:

Tk(x) ≤ Tk(x/2) + 4Tk−1(x) + 1, k ≥ 1, x > 1

Tk(1) = log log n+ Tk−1(1) k ≥ 1

T0(x) = log log n

It is a straightforward induction to verify that:

Tk(x) ≤ {4k log x(1 + log x) · · · (k − 1 + log x)/k!
+ 4k−12 log x(1 + log x) · · · (k − 2 + log x)/(k − 1)!
+ · · ·
+ 4k log x
+ (k + 1)} log log x
+ 4k−1 log x(1 + log x) · · · (k − 1 + log x)/k!
+ 4k−2 log x(1 + log x) · · · (k − 2 + log x)/(k − 1)!
+ · · ·
+ log x

⊓⊔

3.3 Hamming or Substitution Distance
We begin with the solution for the case k = 1. It is similar
to the wildcard in text data structure.
Consider a centroid path C in the compressed trie T . For
each node v on C, for each off-path subtree Tva, where a
denotes the first character in Tva, a substitution tree T s

va is
formed. T s

va is identical to Tva, except that the first charac-
ter is replaced by a new symbol ψ. The substitution trees
T s

va hanging from v are grouped in a manner analogous to
the grouping of α-wildcard trees to form a hierarchy of group
trees associated with v.
In addition, substitution trees T s

v are formed. T s
v comprises

the merge of all the substitution trees T s
va, but with the ψ

changed to be the next character on centroid path C. The
trees T s

v are also grouped in the same way as the α-wildcard
trees.
The search method is similar to that used for wildcards in
the text. An LCP query for p is performed on the com-
pressed trie T . Suppose p traces out a path through centroid
paths C1, C2, · · · , Cj , leaving centroid path Ci at location
ℓi, 1 ≤ i ≤ j. Note that for i < j, ℓi is a node, which
we rename vi, while for i = j it need not be. Then the
substitution trees T s

u hanging from nodes u above ℓi on Ci

are searched by means of LCP queries on O(log x) groups,
exactly as in the wildcard in the text data structure. In
addition, at node vi, the substitution trees T s

via, apart from
the substitution tree containing centroid path Ci+1, are also
searched by means of LCP queries on group trees; as we will

see, this entails searching a further O(log x) group trees.
Finally, for each Ci, an unrooted LCP query is performed
starting one character below location ℓi.

Lemma 10. For k ≤ log n, the above k-errata structure
uses space O(3kn log n(1 + log n) · · · (k − 1 + log n)/k!).

Proof. Consider an arbitrary leaf u ∈ T and consider the
(k − 1)-substitution group trees in which u is placed. Each
successive group tree, from top to bottom, is decreasing in
size, and in fact at least halves in size, except when the
group tree corresponds to a middle interval, which occurs at
most twice per centroid path ancestral to u.
Let Sk(x) denote the space used by a k-errata tree on x

strings. Let S̃k(x) = Sk(x)/x. We assume inductively that

S̃k(x) is a non-decreasing function of x. Then:

Sk(x) ≤ 3x[S̃k−1(x)+S̃k−1(x/2) + · · ·+S̃k−1(1)] + x for
k ≥ 1 and S0(x) = x.
It is readily verified that this has solution:

Sn(x) ≤ x[3k log x(1 + log x) · · · (k − 1 + log x)/k!
+ 3k−1 log x(1 + log x) · · · (k − 2 + log x)/(k − 1)!
+ · · ·
+ 1]

⊓⊔

Lemma 11. The search time in the above k-errata data
structure is O(6k log x(1+ log x) · · · (k− 1+ log x)/k!+ occ).

Proof. Let Tk(x) be the search time on the k-errata
structure for x strings. We will derive:

Tk(x) ≤ Tk(x/2) + 6Tk−1(x) + 1 k ≥ 1, x > 1

Tk(1) ≤ log log n+ Tk−1(1) k ≥ 1

T0(x) = log log n

which yields the lemma, as before.
To help verify the above recursive equation we introduce
some more notation to specify different types of recursive
subproblems. Let CPGk(x) denote the running time for
searching a k-errata group tree on x strings for a collection
of two or more nodes on a centroid path, and let CPSk(x)
denote the same running time for a group associated with
a single node; also, let OPGk(x) denote the corresponding
running time for a group associated with two or more off-
path subtrees hanging from a common node on a centroid
path, and OPSk(x) be the running time associated with a
single off-path subtree. Then:

OPSk(x) ≤ max{CPGk(x/2) + 2OPSk−1(x), CPSk(x/2)

+2OPSk−1(x)} + 1

CPGk(x) ≤ max{CPGk(x/2) + 2OPSk−1(x), CPSk(x)

+2OPSk−1(x)}

CPSk(x) ≤ max{OPGk(x/2) + 2OPSk−1(x),OPSk(x)

+2OPSk−1(x)}

OPGk(x) ≤ max{OPGk(x/2) + 2OPSk−1(x),OPSk(x)

+2OPSk−1(x)}

The result now follows from:

Tk(x) = max{CPGk(x), CPSk(x), OPGk(x),OPSk(x)}.

⊓⊔

3.4 Edit Distance
Again, we start with the case k = 1.
Our approach is to create deletion and insertion subtrees
that act in the same way as substitution trees. Consider an
off-path subtree U hanging from node v on a centroid path
of compressed trie T . The insertion tree UI , attached to
node v, is formed by adding a new first character β /∈ Σ to
U , preceding the correct first character for U . Consider an
attempted match with query pattern q that seeks to follow
the path into UI . It must take a substitution on character
β, which adds one to the number of mismatches. While this
mismatch can now be processed as a substitution, it is in
fact an insertion in the text.
The deletion tree UD is formed by replacing the first char-
acter of U with β. UD is attached to the location vup one
character above v, if need be by creating a new node at
that location. The effect is to replace the deletion of the
first character of U with a substitution with respect to the
previous character in q. However, we need to ensure that
this substitution is allowed only if q matches the character
labelling edge (vup, v). To this end, UD will be included in
the group trees for the centroid path including v, but not in
the group trees for the trees hanging from node vup.
There is one significant change to note regarding the search.
At the location ℓ at which query pattern q mismatches in
the LCP search, all three possible edits are explored along
the centroid path containing ℓ; i.e. a deletion or substitution
of the next character after ℓ, and an insertion immediately
following ℓ.

Lemma 12. For k ≤ log x, the above k-errata structure
uses space O(5kx(k+1+log x)(k+2+log x) · · · (2k+log x)/k!).

Proof. Omitted.

Lemma 13. The search time in the above k-errata data
structure is O(6k log log n(k + log x)(k + 1 + log x)(k + 2 +
log x) · · · (2k − 1 + log x)/k! + 3k · occ).

Proof. As in previous proofs, we identify the worst se-
quence of k-errata problems on which to recurse. We start
with a weight 2w problem for the combined insert and sub-
stitute trees for path C. The next problem, a non-middle
group tree for path C, has weight at most 3

2
w. Its middle

group, of weight at most w, is the next recursive problem.
(This corresponds to the merged insert and substitute trees
hanging from a node v.) the next problem is of weight almost
w and corresponds to the merged insert and substitute trees
for one centroid path C′ hanging from v. This generates 6
recursive problems on (k − 1)-errata trees each of weight at
most 3

2
w < 2w, giving the recurrence equation

Tk(x) ≤ 6Tk(x/2) + 6Tk−1(2x) + 1 k ≥ 1, x > 1

Tk(1) ≤ log log n+ 3Tk−1(1) k ≥ 1

T0(x) = log log n

where Tk(x) denotes the search time on a k-errata structure
for x strings. The 3k · occ term reflects the possibility that
each match could be reported up to 3k times, once for each
possible pattern of k edits. ⊓⊔

4. GROUP TREES CONSTRUCTION
We describe the solution for k = 1, first. The group trees
are formed top-down. First, all the (non-group) errata trees

associated with a centroid path C are merged together to
form the group tree at the top of the hierarchy for C. Then
the smaller group trees are formed level by level by unmerg-
ing. To form the top level group tree, for each errata tree
T the following path is identified: the path TC formed by
the continuation in the errata tree of the centroid path C.
It takes O(log log n) time to identify where this path leaves
the errata tree using a rooted LCP query on the errata tree,
and traversing up from this point identifies the path TC in
the errata tree, in time proportional to the number of edges
on this path.
The subtrees in the errata tree hanging from TC are sepa-
rated, and reattached to the centroid path C, possibly with
the introduction of additional nodes on C. The top level
group tree is completed by merging, at each node v on the
centroid path, the errata tree subtrees now hanging from v.
The resulting tree rooted at the root of C is the top level
group tree for C.
Note that the trees being merged are all compressed tries
for collections of suffixes of the input strings. Using LCA
queries on S, the suffix tree for the input strings, the merge
of two such trees Ta and Tb can be done in time |Ta|+|Tb|. To
keep the cost adequately bounded, we perform the merges
so that a tree T hanging from node v is involved in O(log W

w
)

merges, where W is the total weight of the subtrees hanging

from node v, and w is the weight of the errata tree eT from
which T was formed.
A merge of Ta and Tb proceeds via a straightforward algo-
rithm. The leaves of Ta and Tb are traversed left to right
with the next leaf in lexicographic order being added to the
combined tree. The height of the insertion point for node
v is determined by the query lca(su,sv) on S, where u is
the last inserted node. The rightmost path in the current
new tree is traversed upward from u to find the possibly new
node at which the path to v diverges. It is not hard to argue
that this traversal takes O(|Ta| + |Tb|) time.
The telescoping argument used to bound the total size of
the group error trees also shows that over all the centroid
paths the time to build the top level group tree for each path
is O(x log x). It remains to form the other group trees. We
describe how to form Tc and Td from T , where T is the merge
of Tc and Td. We simply label the leaves of T associated
with suffixes having leaves in Tc. Then a straightforward
traversal of T yields Tc. Td is built in the same way. As
the total size of the group trees is O(x log x), this takes time
O(x log x). We have shown:

Lemma 14. The group trees for the one-errata tree can
be built in O(x log x) time.

The generalization to larger k is immediate, yielding:

Lemma 15. The group trees for the k-errata tree can be
built in time linear in the size of the k-errata tree.

5. THE LCP DATA STRUCTURE
Recall that S is the suffix tree for the input strings r1, . . . , rx.
Let T be the compressed trie for a collection of suffixes of
r1, . . . , rx. We explain how to build the rooted and unrooted
LCP structures for T .
We assume that the following information has already been
computed for S. First, its leaves have been numbered in
lexicographic order. Second, an LCA structure on S has

been built, plus a measured ancestor structure. This can all
be done in O(S) time in any event.
For T , first the LCA and measured ancestor structures are
built in O(T) time. Then its leaves are put in an array in
lexicographic order, recording, for each leaf, its index (or
numbering) in S. Finally, a Y-fast trie [39] is built over this
array, in time O(T log n). (See [23] for how to do the hashing
deterministically.) This will be used to support O(log log n)
time searches over the leaf indices. In fact, by building a
Y-fast trie over every log n-th item and binary search trees
over the intermediate items, one can achieve a preprocessing
of O(T) time, while maintaining the O(log log n) query time.
To build the unrooted LCP structure, a centroid path de-
composition is computed, and for each subtree hanging from
a centroid path the rooted LCP structure is formed.
When a pattern p is received, for each suffix p′ of p, its
longest prefix in common with any of the suffixes of the
input strings, called the longest common prefix of p′ and
S, is found as follows. p is processed as if S were being
augmented with the suffixes of p. Let r̃ be the location at
which p′ branches away from S. r̃ immediately yields the
longest common prefix of p′ and S.
We also determine the two suffixes in S straddling p′ in
lexicographic order. At least one of these suffixes has prefix
equal to the longest common prefix of p′ and S; this suffix,
breaking ties arbitrarily, is called the highest overlap string
in S for p′. This computation is readily done if we have
previously recorded, with each node in S, its leftmost and
rightmost descendant leaves.
Suppose the highest overlap string for p′ has index g; then
p′ is given index g + 1

2
(all indices can be doubled to keep

them integral, if desired). Clearly, the preprocessing of p
takes time O(p).
Thus the cost of building the LCP for T is given by:

Lemma 16. The rooted LCP can be built in time O(T)
and the unrooted LCP in time O(T log T).

A rooted LCP query (p′, T) proceeds as follows.

1. Find the predecessor sp and successor su of p′ in T .
This can be done in time O(log log n) by searching for
the index of p′ in the Y-fast trie for T . This takes time
O(log log n).

2. Compute v = lca(ℓsp, ℓsu) in T , where ℓx is the leaf
in T corresponding to suffix x. Also report the edges
exiting v on the paths to ℓsp and ℓsu. This takes O(1)
time using the LCA data structure for T .
Step 2 is useful because the sought location r′ is one of:
v, a location on the path from v to ℓsp, or a location
on the path from v to ℓsu.

3. This step finds the length h of the longest common
prefix of p′ and T .

Let ssp′ denote the highest overlap string in S for p′,
and suppose this overlap has length h′. Let hp denote
the length of the longest common prefix of ssp′ and
sp, and hu the length of the longest common prefix
of ssp′ and su. Then h = min{h′,max{hp, hu}}. h′

could be precomputed as part of the preprocessing of
p, and hp, hu can be found using, respectively, the LCA
queries lca(ssp′, sp) and lca(ssp′, du) on S.

4. Find the location in T at distance |sp| − h above leaf
ℓsp. This can be done in time O(log log n) thanks to
the preprocessing of T .

An unrooted LCP query (p′, T, r) proceeds in two steps.

1. Consider the centroid path C of T going through r.
Determine h, the length of the longest common prefix
of p′ and the portion σ of C starting at r. Indexing
into C yields location ρ on C at distance h from r.

To this end, determine the length hp of the longest
common prefix of σ and sp′, where sp′ is the highest
overlap string in T for p′. This can be found by means
of a query lca(σ, sp′) on S. As before, we let h′ denote
the length of the longest common prefix of sp′ and p′.
Then h = min{h′, hp}.

2. If ρ is a node there may be one off-path subtree of C at
ρ in which the search for p can continue (the subtree
whose first character matches the next character of p′).
The search on this subtree is performed by a rooted
LCP query.

We have shown:

Lemma 17. An LCP query takes time O(log log n).

Remark. For the dictionary problems, in the suffix tree S,
only the suffixes that occur in an LCP structure need be
numbered. There are O(ckx(k+ log x)k) such strings where
c > 1 is a constant, and consequently the term log log n in
the complexity (based on n consecutively numbered strings)
can be reduced to O(log log x) (at least for k =polylog(x)).

6. OPEN QUESTION
Can the 3k term multiplying the # matches term in the
query time for the edit problem be reduced, ideally to O(1)?

7. ACKNOWLEDGMENTS
We thank a referee for multiple helpful comments, and in
particular for asking whether an all-to-all problem could be
solved.

8. REFERENCES
[1] K. Abrahamson. Generalized string matching. SIAM

J. Computing, 16(6):1039–1051, 1987.

[2] A.V. Aho and M.J. Corasick. Efficient string
matching. Comm. ACM, 18(6):333-340, 1975.

[3] T. Akutsu. Approximate string matching with don’t
care characters. Information Processing Letters,
55:235-239, 1995.

[4] T. Akutsu. Approximate string matching with
variable length don’t care characters. IEICE Trans.
Information and Systems, E79-D:1353-1354, 1996.

[5] A. Amir and M. Farach. Adaptive dictionary
matching. Proc. of the Symposium on Foundations of
Computer Science, 1991, 760-766.

[6] A. Amir, M. Farach, R. Giancarlo, Z. Galil and K.
Park. Dynamic dictionary matching. J. of Computer
and System Sciences, 49(2):208-222, 1994.

[7] A. Amir, M. Farach, R.M. Idury, J.A. La Poutré, and
A.A Schäffer. Improved dynamic dictionary matching.
Information and Computation, 119(2):258–282, 1995.

[8] A. Amir, D. Keselman, G.M. Landau, N. Lewenstein,
M. Lewenstein, and M. Rodeh. Text Indexing and
dictionary matching with one error. J. of Algorithms,
37(2): 309-325, 2000.

[9] A. Amir, G. Landau, M. Lewenstein and D. Sokol.
Dynamic pattern, static text matching. Submitted for
journal publication; preliminary version, Proc. of
Workshop on Algorithms and Data Structures, 2003,
340-352.

[10] A. Amir, M. Lewenstein and E. Porat. Faster
algorithms for string matching with k mismatches.
Proc. of the Symposium on Discrete Algorithms, 2000,
794-803.

[11] A. Amir, M. Lewenstein and E. Porat. Approximate
subset matching with don’t cares. Proc. of the
Symposium on Discrete Algorithms, 2001, 279-288.

[12] G. S. Brodal and L. Gasieniec. Approximate
dictionary queries. Proc. of the Symposium on
Combinatorial Pattern Matching, 1996, 65-74. (LNCS
1075).

[13] G. S. Brodal and S. Venkatesh. Improved bounds for
dictionary lookup with one error. Information
Processing Letters, 75(1-2):57-59 (2000).

[14] A.L. Buchsbaum, M.T. Goodrich, J. Westbrook.
Range searching over tree cross products. Proc. of the
European Symposium on Algorithms, 2000, 120-131.

[15] R. Cole and R. Hariharan. Approximate string
matching: A faster simpler algorithm. Proc. of the
Symposium on Discrete Algorithms, 1998, 463-472.

[16] R. Cole and R. Hariharan. Verifying candidate
matches in sparse and wildcard matching. Proc. of the
Symposium on Theory of Computing, 2002, 592-601.

[17] M. Farach. Optimal suffix tree construction with large
alphabets. Proc. of the Symposium on Foundations of
Computer Science, 1997, 137–143.

[18] P. Ferragina, S. Muthukrishnan, and M. deBerg.
Multi-method dispatching: a geometric approach with
applications to string matching. Proc. of the
Symposium on the Theory of Computing, 1999,
483-491.

[19] M.J. Fischer and M.S. Paterson. String matching and
other products. Complexity of Computation, R.M.
Karp (editor), SIAM-AMS Proceedings, 7:113–125,
1974.

[20] Z. Galil and R. Giancarlo. Improved string matching
with k mismatches. SIGACT News, 17(4), 52-54, 1986.

[21] D. Greene, M. Parnas and F. Yao. Multi-index hashing
for information retrieval. Proc. of the Symposium on
the Foundations of Computer Science, 1994, 722-731.

[22] R. Grossi, J.S. Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and
string matching. Proc. of the Symposium on Theory of
Computing, 2000, 397-406.

[23] T. Hagerup, P. B. Miltersen, R. Pagh. Deterministic
dictionaries. J. of Algorithms, 41(1):69-85, 2001.

[24] D. Harel, R.E. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal on
Computing, 13(2):338-55, 1984.

[25] R.M. Idury and A.A Schäffer. Dynamic dictionary
matching with failure functions. Proc. of the 3rd
Annual Symposium on Combinatorial Pattern
Matching, 1992, 273-284.

[26] P. Indyk and R. Motwani. Approximate nearest
neighbors: towards removing the curse of
dimensionality. Proc. of the Symposium on Theory of
Computing, 1998, 604–613.

[27] E. Kushilevitz, R. Ostrovsky, Y. Rabani. Efficient
search for approximate nearest neighbor in high
dimensional spaces. SIAM Journal on Computing,
30(2):457–474, 2000.

[28] G. M. Landau and U. Vishkin. Efficient string
matching with k mismatches. Theoretical Computer
Science, 43, 239-249, 1986.

[29] G. M. Landau and U. Vishkin. Fast parallel and serial
approximate string matching. J. of Algorithms,
10(2):157-169, 1989.

[30] U. Manber and S. Wu. An algorithm for approximate
membership checking with applications to password
security. Information Processing Letters, 50:92-197,
1994.

[31] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. of the ACM, 23:262-272,
1976.

[32] K. Mehlhorn. Data Structures and Efficient
Algorithms, Vol. 1: Sorting and Searching, pp.
177-178. Springer Verlag, EATCS Monographs, 1984.

[33] M. Minsky and S. Papert. Perceptrons. MIT Press,
Cambridge, Mass., 1969.

[34] S. C. Sahinalp and U. Vishkin. Efficient approximate
and dynamic matching of patterns using a labeling
paradigm. Proc. of the Symposium on Foundations of
Computer Science, 1996, 320-328.

[35] B. Schieber and U. Vishkin. On finding lowest
common ancestors: simplifications and parallelization.
SIAM Journal on Computing, 17(6):1253-62, 1988.

[36] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu,
C.T. Lu. Spatial databases - accomplishments and
research needs. TKDE, 11(1):45-55 (1999).

[37] E. Ukkonen. On-line construction of suffix trees.
Algorithmica, 14:249–260, 1995.

[38] P. Weiner. Linear pattern matching algorithm. Proc.
of the Symposium on Switching and Automata Theory,
1973, 1-11.

[39] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(n). Information
Processing Letters, 17(2):81-84, 1983.

[40] A. C.-C. Yao and F. F. Yao. Dictionary lookup with
one error. J. of Algorithms, 25(1):194–202, 1997.

