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ABSTRACT Deep learning has achieved exciting results in face recognition; however, the accuracy is

still unsatisfying for occluded faces. To improve the robustness for occluded faces, this paper proposes a

novel deep dictionary representation-based classification scheme, where a convolutional neural network is

employed as the feature extractor and followed by a dictionary to linearly code the extracted deep features.

The dictionary is composed by a gallery part consisting of the deep features of the training samples and

an auxiliary part consisting of the mapping vectors acquired from the subjects either inside or outside the

training set and associated with the occlusion patterns of the testing face samples. A squared Euclidean

norm is used to regularize the coding coefficients. The proposed scheme is computationally efficient and is

robust to large contiguous occlusion. In addition, the proposed scheme is generic for both the occluded and

non-occluded face images and works with a single training sample per subject. The extensive experimental

evaluations demonstrate the superior performance of the proposed approach over other state-of-the-art

algorithms.

INDEX TERMS Face recognition, convolutional neural network, occlusion-robust, deep learning, dictionary

representation.

I. INTRODUCTION

Face recognition (FR) is an important and challenging

research topic in computer vision and pattern recognition.

In recent years, FR has achieved great progress, bene-

fiting from the advancement of convolutional neural net-

works (CNNs) based methods. Although some exciting

results that could approach human vision performance have

been reported on challenging face benchmarks [1]–[3], such

as Labeled Faces in the Wild (LFW) [4] and YouTube Faces

Database (YFD) [5], there is still a long way towards achiev-

ing robust FR under challenging situations like partial occlu-

sion and image corruption.

In the CNN-based FR framework, the CNN is generally

used as a feature extractor, followed by a classifier [1]–[3].

The state-of-the-art CNNs [6]–[9], usually involving over

tens of millions of parameters, require a vast amount of

data to mitigate overfitting, when trained from scratch (with

random initialization). To collect sufficient task specified

The associate editor coordinating the review of this manuscript and
approving it for publication was Junchi Yan.

training face images is, however, difficult and expensive.

Thus, a popular and feasible choice in practice is directly

using a network pre-trained on large scale general purpose

face datasets (e.g., VGGFace2 [10], CASIA-WebFace [11],

and MegaFace [12]) as the off-the-shelf feature extractor for

the task of interest or as an initialization to fine-tune the

network on the face dataset specified to the application task.

Regarding the classifier, a simple classifier, such as softmax,

is usually selected due to the powerful capability of CNNs to

project the face images into a high-dimensional feature space

that is linearly separable.

The CNN-based FR schemes with the CNNs pre-trained

on large-scale face datasets are, usually, less sensitive to

facial deformation, such as illumination change, expres-

sion, and head pose variation. However, if the face is par-

tially occluded, identification of the subject with the simple

classifier is error prone. For instance, as shown in Fig.1

(b), for the sunglasses-occluded faces of different subjects

in the AR database, the deep feature vectors lie in the

subspace �oj, as distinct from the subspaces associated

with the non-occluded faces. A simple classifier is difficult
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FIGURE 1. Visualization of the deep feature vectors of the face images of
5 subjects randomly selected from the AR database [15]. (a) Example face
images of a subject. (b) 2-D visualization of the deep feature vectors. The
t-SNE [16] is applied to convert the high dimensional deep features into
2-D vectors for visualization convenience. (c) Visualization of the deep
feature components activated commonly for the natural faces associated
with different subjects (inter-subject), the non-occluded faces associated
with the same subject (intra-subject) and the sunglasses-occluded faces
associated with different subjects (sunglasses). The 4096-D feature vector
is reshaped to a matrix of 64 × 64 for the convenience of visualization.
The black dots represent the components activated commonly for
different faces.

to identify the subject for the deep feature vectors lying

in �oj.

In fact, the subspace�oj is associated with the class of sun-

glasses. Many research works have shown that the features

extracted by the CNNs are generic for various visual clas-

sification tasks outside the training domain [13], [14]. This

means that the CNN trained over the face images can also

effectively projects the images involving sunglasses with suf-

ficiently large size into adjacent locations to form a subspace

in the deep feature space. By examining the images of the

faces wearing sunglasses in Fig.1(a), we can observe that the

sunglasses occupy pretty large area of the face images. From

Fig.1(c), we can observe that the deep feature vectors lying

in different subspaces (the inter-subject case) and the same

subspace (the intra-subject case) have very few and many

common activations, respectively, and for the sunglasses case,

the number of the common activations is in-between. Even

less than that in the intra-subject case, the quantity of the

common activations in the sunglasses case is sufficient to

support a subspace with loose boundaries.

On the other hand, within the subspace �oj, the faces

belonging to the same subject are very close to each other,

as shown in in Fig.1 (b), since the deep feature vectors not

only describe the features of the sunglasses but also reflect

the features of the faces. This phenomenon indicates that it is

possible to employ an advanced classifier rather than a simple

classifier to identify the subject correctly for the occluded

face images.

Let v and v0 be the deep feature vectors of the occluded

face image y and non-occluded face image y0 associated

with the same subject, respectively. As shown in Fig.1 (b),

the relationship between v and v0 can be modeled by

v = v0 + ǫ, (1)

where ǫ is the mapping vector from v0 to v (or the difference

vector between v and v0). If v0 is recovered from v,the FR

can be easily achieved.

Recovering v0 from v is quite similar to the intensively

studied problem arising from traditional FR for corrupted face

images in image space, i.e., recovering y0 from y. In the image

space, the relationship between y and y0 can be modeled

by

y = y0 + e, (2)

where e is the corruption or occlusion error. The most

prominent traditional framework to deal with this problem

is the sparse representation classification (SRC) proposed by

Wright et al. [17]. To effectively recover y0, the SRC-based

schemes require that the error e can be shared across (or

highly correlated between) different face images and sub-

jects. Apparently, this requirement is met in the image space

(e.g.the image variations caused by the same sunglasses for

different subjects are highly correlated). Furthermore, in the

linear feature space, the linear transformation of the image

space, such as Eigenfaces, Fisherfaces and Gabor feature

space, the conformance to this requirement is retained since

the linear transformation can be represented as a multiplica-

tion of a matrix R.1 Hence, the SRC and its improvements,

such as Extended SRC (ESRC) [18] and Superposed SRC

(SSRC) [19], can be easily applied to the linear feature space.

In contrast, the CNN-based feature extraction is, however,

a nonlinear projection from the image space to the deep

feature space, since it involves nonlinear operations, such as

ReLU and pooling. As a result, the deep feature is a kind of

holistic feature and the mapping vector ǫ in Eq.(1) is not a

projection of e to the deep feature space, i.e., ǫ 6= f (e), where

f (•) denotes the nonlinear projection of the CNN, but related

1Applying R to both sides of (2) yields Ry = Ry0 + Re. Therefore, if e
is shared across different face images, then Re will also be shared.
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to both the physical occlusion error e and the face image y0.

Therefore, the extension of the SRC and its improvements to

the deep feature space is not so apparent.

In this paper, we observe that for occluded face images,

the mapping vector ǫ can be approximated by a linear combi-

nation of the mapping vectors of other face images associated

with the same occlusion pattern. Motivated by this obser-

vation, we propose a deep dictionary representation based

classification (DDRC) method to perform FR through the

recovery of v0. Let �i be the subspace associated with the

non-occluded faces of the ith subject and �oj the subspace

associated with the faces occluded with the jth occlusion

pattern. Suppose that the faces are occluded with the jth

occlusion pattern. We observed that in the deep feature space,

the mapping function from the subspace �i to the subspace

�oj can be approximated by a linear combination of the

mapping vectors associated with the jth occlusion pattern,

i.e., the vectors drawn with blue arrows in Fig. 1 (b). Based

on this observation, we propose to use a dictionary consisting

of a gallery part and an auxiliary part to code the deep feature

vector of the testing sample. The deep feature vectors of the

training samples are used as the atoms of the gallery part. The

auxiliary part is constructed by concatenating the mapping

vectors associated with the occlusion pattern presented in the

testing samples. With this dictionary, the deep feature vector

of the occluded testing sample is coded by a squared l2-norm

minimization to recover the deep feature vector from occlu-

sion. The classification of the proposed DDRC is achieved

by searching for the subject having the closest deep feature

subspace to the recovered deep feature vector of the occluded

testing sample.

The research is originally motivated by cloud-based face

applications. With the development of deep neural network

accelerator chips [20], the CNN-based feature extraction will

gradually shift to the terminal or mobile end. To reduce the

bandwidth of transmission, only the deep features, rather than

the images, of the faces will be transmitted to the cloud for

further processing, such as classification and verification. The

transmission of deep features requires less bandwidth and is

much safer in terms of protection of private information than

using images. In such situation, however, we have to cope

with the occlusion in the deep feature space at the cloud end.

Therefore, instead of removing occlusion in image space,

we focus on alleviating the negative impact of occlusion on

FR in the deep feature space.

Our main contributions are summarized as follows.

1) We observe that for occluded face images, the mapping

vector ǫ can be approximated by a linear combination

of the mapping vectors of other face images associated

with the same occlusion pattern.

2) We propose to apply the dictionary representation cod-

ing with squared l2-norm minimization in the deep

feature space for FR. To alleviate the negative effect of

occlusion in the deep feature space, based on the above

observation, we propose a novel auxiliary dictionary,

which is generated with the mapping vectors associated

with the same occlusion pattern as the testing face

images.

3) We present extensive experiments on publicly avail-

able databases and show that the proposed DDRC is

a real-time occlusion-robust scheme and can simulta-

neously handle multiple complex FR challenges even

with a single training sample per subject. We also

demonstrate the significant improvement of the pro-

posed DDRC over the state-of-the-art approaches.

4) Although end-to-end learning is desired in many appli-

cations, the proposed approach, by making optimal

use of the available CNN and the classical learning

approaches, provides a new perspective to other similar

problems.

The rest of the paper is organized as follows. Section II

briefly reviews the related work. Section III describes the

proposed DDRC. Section IV shows experiments, and the

paper is concluded in Section V.

II. RELATED WORK

The defining characteristic of these approaches is the use of

the CNNs as a feature extractor. A representative system is

DeepFace, where Taigman et al. [1] derived a face repre-

sentation from a nine-layer deep neural network by training

it on the largest facial dataset and reached a FR accuracy

closely approaching human-level performance on the LFW

dataset. The DeepFace work was extended by the DeepID

series of papers by Sun et al. [2], [21]–[23]. Multiple CNNs

were introduced in [2]; multi-task learning over classification

and verification was proposed in [21]; different CNNs archi-

tectures which branch a fully connected layer after each con-

volution layer were presented in [22] and very deep networks

are used in [23]. These series of works steadily improved the

performance on LFW dataset. Researchers from Google [3]

employed a massive dataset and a triplet-based loss to train

the CNNs. Wen et al. [24] proposed a latent factor guided

CNNs to address the age-invariant face recognition task, and

then, introduced a center loss function to help the CNNs to

learn the discriminative features for FR [25]. However, all of

these works primarily focus on the network construction and

network learning, while none of them are concerned about the

occlusion problem in FR.

The pioneer SRC FR system was proposed by

Wright et al. [17]. In their work, the occluded face image

was first coded via l1-norm minimization as a sparse linear

combination of the expanded dictionary which consists of the

training samples and the occlusion dictionary. Then, the clas-

sification was conducted by searching for which class of

training samples could result in the minimum reconstruction

error with the sparse coding coefficients.

Following Wright et al.’s work, many researchers

worked towards improving the SRC accuracy under various

conditions. Deng et al. [18] employed an auxiliary intraclass

variant dictionary to improve the generalization ability for

undersampled FR under variable expressions, illuminations
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and disguise, and then, they proposed SSRC to learn the

prototype images as the gallery dictionary to obtain a better

gallery dictionary to deal with non-linear variations [19].

Yang and Zhang [26] and Yang et al. [27] introduced the

Gabor feature into the SRC framework to compress the occlu-

sion dictionary and reduce the computational cost in coding

occluded face images. Ou et al. [28] proposed to learn the

occlusion dictionary from the data and incorporate a mutual

incoherence regularization term into the dictionary learning

objective function, which aims at weakening the correlation

between the occlusion dictionary and the training sample dic-

tionary.Wang et al. [29] improved the robustness to illumina-

tion variations and occlusions by using amanifold regularized

local sparse representation model. Zhang et al. [30] proposed

a mixed norm sparse representation classification method to

exploit the correlation among the variance face images in the

query for multi-view recognition. Zhuang et al. [31] intro-

duced a sparse illumination learning and transfer technique

to increase the robustness of FR with a single face training

sample under the condition of misalignment, illumination

variation and random corruption. Zhao et al. [32] combined

the forward and backward sparse representation together for

robust FR. Gao et al. [33] improved the performance under

the condition of the small number of labeled examples by

using a semi-supervised sparse representation-based classifi-

cation approach.

However, due to the use of l1-norm minimization, the SRC

is computationally expensive as the dictionary size grows.

Shi et al. [34] and Zhang et al. [35] independently argued

that the l1-norm does not play a critical role in robust FR.

Based on such observations, Zhang et al. [35] put forward

to use the squared l2-norm minimization to gain significant

advantage on the computational cost over the traditional SRC

algorithm. Cai et al. [36] introduced a probabilistic collabora-

tive representation based classifier (ProCRC), which jointly

maximizes the likelihood that a test sample belongs to each

of the multiple classes. Liu et al. [37] employed an itera-

tive relaxed collaborative representation model with adaptive

weights learning to enhance the resolution of face images

corrupted by noise.

Nevertheless, all of these SRC based works focus on the

image space or linear feature space and none of them address

the occlusion problem in the deep feature space.

Recently, with the rapid development of generative adver-

sarial networks (GAN), some efforts have been made to

apply the GAN to recover occluded face image. Li et al. [38]

use a deep generative model to generate the corrupted part

of the face. The deep generative model consists of an

encoding-decoding generator and two adversarial discrimi-

nators to synthesize the missing contents from random noise.

However, this model could not well handle some unaligned

faces, and moreover, this method needs to know the occlusion

position in advance. Zhao et al. [39] introduced a robust

LSTM-autoencoders model, consisting of a multi-scale spa-

tial LSTM encoder to produce an occlusion-robust repre-

sentation of the face and a dual-channel LSTM decoder to

recurrently remove the occlusion in the image space. These

methods, acted as preprocessing procedures for FR, are usu-

ally complex and, depending on the problem scales, at times

require very large scale occluded training datasets.

III. THE PROPOSED DDRC

A. FEATURE EXTRACTION

In the proposed DDRC, the CNNs are first applied to extract

the face features. Suppose that the size of the input patch and

the length of the output feature vector of the CNNs are h×w

and l, respectively. The CNNs actually perform a nonlinear

mapping from the image space to the deep feature space, i.e.,

f : Rh×w 7−→ R
l
. (3)

The construction and training of the CNNs are out of the

scope of this paper. Here, we should note that in spite

of the fact that the VGG-Face networks [40] are the only

CNNs evaluated in following experiments, any CNNs well

pre-trained with numerous extra face images can be applied

to the proposed DDRC.

B. DICTIONARY REPRESENTATION

Suppose there areK subjects and the ith subject has ki training

samples. Let ui,j ∈ R
l, j = 1, 2, · · · , ki denote the deep

feature vector of the jth training sample of the ith subject

and Di = [ui,1,ui,2, · · · ,ui,ki ] ∈ R
l×ki the matrix formed by

stacking all the ui,j’s of the ith subject. Assume that the deep

feature vectors of the non-occluded face samples associated

with the same subject lie in a low-dimensional subspace.

If there are sufficient training samples for the ith subject,

the subspace of the ith subject can be approximated with the

linear span of Di. For a test sample y, if it belongs to the ith

subject, its deep feature vector vwill be able to be represented

with a very small error as a linear combination of the column

vectors of Di.

However, the membership of the test sample is unknown

beforehand. It turns out that we need to figure out the subject

that has the best approximation of v within its subspace. By

concatenating the Di of all subjects we get a gallery

D = [D1,D2, . . . ,DK ] ∈ R
l×k

, (4)

where k =
∑K

i=1 ki. Then, the linear representation of v on

the space spanned by the entire training set can be written as

v = Dα + z, (5)

where α = [αT1 , . . . ,αTi , . . . ,αTK ]
T is the coding coef-

ficient vector and z denotes the noise term. Here, αi =

[αi,1, . . . , αi,ki ]
T ∈ R

ki is the coefficient vector associated

with the ith training subject. Using only the coefficients

associated with the ith training subject, we can approximate v

of the given test sample as v̂i = Diαi. Then, we classify y by

assigning it to the subject that minimizes the residual between

v and v̂i,

identity(y) = argmin
i

ri(v), (6)

where ri(v) = ||v − v̂i||2.
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Obviously, if the size of the gallery is greater than the fea-

ture dimension, i.e., k > l, Eq.(5) is underdetermined and the

number of possible representations is infinite. This difficulty

can be resolved by imposing a regularization constraint to α,

and then, the solution is given by

α̂ = argmin
α

{||v − Dα||22 + λg(α)}, (7)

where λ is a positive regularization parameter and g(α) is the

regularization function.

Conventionally, l1-norm, g(·) = || · ||1, and squared

l2-norm, g(·) = || · ||22, are two frequently used regulariza-

tion functions. The l1-norm minimization leads to a sparse

solution and is robust to the outlier [41]. However, it is com-

putationally expensive, even with fast implementation, such

as the interior-point method [42] and the dual augmented

Lagrangian method (DALM) [43]. The squared l2-normmin-

imization has the advantage of lower computational cost and

it can achieve competitive classification accuracy compared

with the l1-norm for FR in the image space or the linear

feature space [27], [35]. When the squared l2-norm mini-

mization is used, the solution of Eq.(7) can be analytically

derived as

α̂ =
(

DTD + λI
)−1

DT v . (8)

Let P =
(

DTD + λI
)−1

DT . Clearly, P is independent of v

and can be calculated in advance. Consequently, the compu-

tational complexity will only be proportional to the number

of rows of P for a given deep feature space. This means that

the squared l2-norm minimization has a complexity of O(n).

The linear computational complexity is a preferred property

for realistic FR applications. Hence, we adopt the squared l2-

norm in the proposed DDRC. In addition, as recommended

in [35] and verified by us, the l2-norm ‘‘sparsity’’ ||αi||2 can

also bring some discrimination information for classification.

Therefore, we use ||αi||2 to normalize the residual ri(v) in

Eq.(6).

C. OCCLUSION

In this section, we extend the above proposed DDRC to deal

with occlusion. Suppose the occluded test sample y belongs

to the ith subject. If the impaction of the occlusion on the

deep feature v is small, i.e., the magnitude of ǫ in Eq. (1) is

small, we can treat v approximately as if it stays in �i. On

the contrary, if v is heavily affected by the occlusion, i.e., the

magnitude of ǫ is large, v will move out of �i.

For the latter case, we assume that the deep feature vectors

of the face images associated with the same occlusion pattern

lie in the same deep feature subspace denoted by �oj. Here,

the subscript j is the index of the occlusion pattern. The

subspace associated with the sunglasses occlusion pattern

in Fig. 1 is an example to show the rationality of such assump-

tion (see the explanation in section I).

The occlusion can be regarded as a mapping from the sub-

space � of non-occluded faces to the subspace �oj. Suppose

FIGURE 2. Illustration of the coding coefficients for a non-occluded face
sample (top) and an occluded face sample (bottom). The VGG-Face
network is employed as the deep feature extractor. Instead of the feature
vectors, the corresponding face images are presented for easy
understanding. For the occluded face sample, some atoms of the auxiliary
part have quite large coefficients even comparable to the coefficients
associated with the correct subject in the gallery part. This indicates that
the linear combination of auxiliary atoms effectively represents the
mapping vector introduced by the occlusion.

that the mapping is bijective, then, the relationship between

v0 and v can be written as

v = v0 + Φj(v0), (9)

where Φj(·) is a function related to the mapping of the jth

occlusion pattern.

Let ǫj,i ∈ R
l be the ith mapping vector associated with the

jth occlusion pattern. Actually, ǫj,i is the difference between

the feature vectors of the non-occluded and the occluded faces

associated with the same subject.We observe thatΦj(·) can be

approximately modeled by a linear combination of sufficient

mapping vectors associated with the jth occlusion pattern,

i.e.,

Φj(v0) ≈ Dojβ j, (10)

where Doj = [ǫj,1, . . . , ǫj,qj ] ∈ R
l×qj is the auxiliary dic-

tionary associated with the jth occlusion pattern, which is

formed by stacking all the training mapping vectors, qj is the

number of training mapping vectors, and β j ∈ R
qj the coding

coefficient vector. An example to illustrate the observation is

shown in Fig. 2. We further assume that the approximation of

Eq. (10) is held generically for occluded face images.

Suppose there are Q types of occlusion patterns. Since

the occlusion pattern of the test sample is unknown at the

beginning, we concatenate the auxiliary dictionaries of Q
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occlusion patterns to form the auxiliary dictionary for the

proposed DDRC, i.e.,

Do = [Do1,Do2, . . . ,DoQ] ∈ R
l×ko , (11)

where ko =
∑Q

j=1 qj. Then, Φj(v0) can be coded as Φj(v0) ≈

Doβ with β = [β1, β2, . . . ,βQ] ∈ R
ko . Considering Eq. (5)

the dictionary representation of the feature vector of the

non-occluded face, we can model v by

v = Daω + z, (12)

where Da = [D,Do], and ω = [αT , βT ]T

Generally speaking, Da is overcomplete and some kind of

regularization restriction must be imposed on ω to obtain the

unique solution. As discussed in section III-B, the squared

l2-norm is a proper trade-off between the accuracy and the

computational cost. By using the squared l2-norm minimiza-

tion, similar to Eq.(8), ω can be analytically estimated by

ω̂ = Pav, (13)

where ω̂ = [α̂T , β̂
T
]T and Pa =

(

DT
aDa + λI

)−1
DT
a .

After obtaining the estimated coding coefficients ω̂, we can

approximately recover the deep feature vector in the subspace

� for the occluded face as

v0 = v − Doβ̂ (14)

Then, the classification is done by comparing the similarity

of v0 to the feature subspace of the non-occluded faces asso-

ciated with each subject. This can be achieved by replacing

the v in Eq. (6) with the v0 in Eq.(14).

In many situations, if we cannot collect sufficient training

samples and mapping vectors, Eq. (13) might lead to an

overfitting solution. To avoid such problem, we first use the

principal component analysis (PCA) to reduce the dimension-

ality of Da from l × (k + ko) to m × (k + ko), where m < l.

Accordingly, the deep feature v of the test sample should be

first projected onto this m-dimension space.

The implementation details of the proposed DDRC algo-

rithm is summarized in Algorithm 1.

To illustrate the working principle of the proposed DDRC,

Fig. 2 shows the coding coefficients for a non-occluded face

sample and an occluded face sample.

D. GENERATION OF AUXILIARY DICTIONARY

In the proposed DDRC approach, we only assume thatΦj(v0)

is related to the occlusion pattern. This assumption implies

that it is unnecessary to associate the atoms of Do with the

training subjects in the gallery part. Therefore, the auxiliary

dictionary can be generated with the subjects from either

inside or outside the training set.

In general, ǫj,i can be obtained in various ways as long as

they can reflect the mapping from � to �oj. For instance,

let xoj,i be the occluded face sample associated with the jth

occlusion pattern, and xi the non-occluded counterpart of xoj,i
associated with the same subject, which is acquired under the

Algorithm 1 The DDRC Algorithm

1) For each training and testing sample, the CNN is used

to extract the features.

2) Construct the dictionaryDa with the deep features from

the training samples.

3) Employ PCA to reduce the number of rows of Da to m

and project the deep feature v of the test sample onto

the m-dimension space.

4) Normalize the columns of Da to have unit l2-norm.

5) For each test sample y:

a) Normalize v to have unit l2-norm.

b) According to Eq.(12), code v over Da by

ω̂ =
(

DT
aDa + λI

)−1
DT
a v.

c) Compute the residuals with respect to each train-

ing subject by using

ri(v) =
‖v−Diα̂i−Doβ̂‖2

‖α̂i‖2
.

d) Output the identity of y as

identity(y) = argmini{ri(v)}.

same or similar facial expression, head pose, and environment

condition as xoj,i. Then, ǫj,i can be calculated by

ǫj,i = uoj,i − ui, (15)

where uoj,i is the deep feature vector of xoj,i and ui the deep

feature vector of xi. This method is named pair-matching.

However, in many situations, the non-occluded counter-

part may not be collected. Instead, we can use a ’natural’

face image of the same subject as an alternative to xi. We

name this method natural-matching. The ǫj,i generated with

the natural-matching method may contain some information

related to other kinds of variations, such as illumination

changes and facial expressions. This irrelevant information,

as shown in section IV-A1, may undermine the ability of the

auxiliary dictionary to represent the occlusion mapping and

eventually degrade the classification accuracy.

IV. EXPERIMENTS

In this section, we present experiments on publicly available

databases to demonstrate the performance of the proposed

DDRC. In the experiments, the VGG-Face network with

configuration A [40] is adopted as the deep feature extractor

for the proposed DDRC, because it has a publicly avail-

able pre-trained model and a demonstrated face verification

accuracy close to human vision on the LFW dataset. The

VGG-Face network consists of 16 convolutional layers, 5

max-pooling layers, and 3 fully-connected layers. It takes

color image patch of size 224 × 224 as the input. To satisfy

the input requirement of the VGG-Face network, the face

images are first resized to 224×224, and the grayscale images

are transformed to three-channel pseudo-color images. The

deep feature vector, which has a dimension of 4096, is taken

from the second last fully-connected hidden layer neuron

activations of the VGG-Face network. The implementation

of VGG-Face network used in the experiments is based on
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the MatConvNet [44]. The experiments were conducted on a

computer with an Intel i7 CPU andwithout GPU acceleration.

A. EVALUATION ON AR DATABASE

As adopted in [17], a subset face crops of the AR

database [15], [45] that contains 50 male and 50 female sub-

jects are used for evaluation. For each subject, 26 images are

recorded in two different sessions separated by two weeks.

Each session consists of 13 images with different facial varia-

tions, including illumination changes, expressions, and facial

disguises, as shown in Fig. 1.

1) PERFORMANCE EVALUATION

In this experiment, we divided the 100 subjects into two

subsets, a testing subset consisting of 50 subjects randomly

selected for testing and an occlusion subset consisting of the

remaining 50 subjects (no overlappingwith the testing subset)

for generating the auxiliary dictionary. For each subject in the

testing subset, the seven non-occluded images with illumi-

nation changes and expressions from session 1 were used as

training samples, and the other images from session 1 and all

the images from session 2 were used for testing.

In accordance to the experiment setting in [27], the orig-

inal 165 × 120 color images were converted to 83 × 60

gray scale images. Four algorithms were considered for

comparison in the experiment: VGG-Face network followed

by a softmax classifier (VGG+softmax) [40], sparse rep-

resentation based classification (SRC) [41], Gabor feature

based sparse representation based classification with l1 norm

regularization (GRRC_l1) [27], and the proposed DDRC.

The VGG+softmax method can be regarded as the origi-

nal VGG-Face network with the last two layers (the last

fully-connected layer and softmax prob layer) fine-tuned on

the task-specified dataset.

Before comparing different algorithms, we first studied

the impact of parameter selection on the performance of the

proposed DDRC. The experiments were conducted on the

face images disguised with sunglasses from session 1.

The result is shown in Fig. 3, where the auxiliary dictionary

generated by using all 50 subjects with pair-matchingmethod

includes both sunglasses and scarf occlusion patterns. From

Fig. 3, we can observe that a wide range of λ results in

quite close FR accuracy. This observation indicates that the

proposed DDRC is less sensitive to the variation of λ. We can

also learn that the excessive reduction of the feature vector

dimension by using PCA can dramatically increase the FR

error rate, e.g.around 20% loss in FR rate for the case of 50

comparing to the other cases. This can be attributed to the

loss of important discriminative information for the excessive

reduction.

In Fig.4, four types of auxiliary dictionaries were

studied: pair-matching with sunglasses and scarf occlu-

sion patterns (pair sunglasses+scarf), pair-matching with

sunglasses occlusion pattern (pair sunglasses), natural-

matching with sunglasses and scarf occlusion patterns (natu-

ral sunglasses+scarf), and natural-matching with sunglasses

FIGURE 3. Recognition rate of DDRC with respect to λ for various feature
dimension reductions with PCA for the sunglasses from session 1 on a
subset of the AR database.

FIGURE 4. Recognition rates of the proposed DDRC for the sunglasses
from session 1 on a subset of the AR database versus the number of
subjects in the occlusion dictionary for different generation methods of
the occlusion dictionary.

occlusion pattern (natural sunglasses). For each subject in the

occlusion subset, there are 6 mapping vectors associated with

the sunglasses occlusion pattern and 6 mapping vectors asso-

ciated with the scarf occlusion pattern. Therefore, the number

of atoms in an auxiliary dictionary is proportional to the

number of subjects in the auxiliary. For instance, if the auxil-

iary dictionary involving both sunglasses and scarf occlusion

patterns is generated by using 10 subjects, it will contain 120

atoms. The experiments were conducted with the parameters

m = 250 and λ = 0.05.

From Fig. 4, we can see that the more subjects that are used

to generate the auxiliary dictionary, the higher the recognition

rate that can be achieved. Furthermore, we can observe that

the scarf occlusion pattern, if it is included in the auxiliary

dictionary, can slightly improve the FR accuracy for the face

images occluded with sunglasses. That may be because some

responses in the deep feature space are shared by these two
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TABLE 1. Recognition rates(%) on the AR database with disguise.

occlusion patterns and the more information related to the

occlusion pattern the auxiliary dictionary involves, the better

representation of the occlusion pattern the auxiliary dictio-

nary can achieve. On the contrary, if the information unre-

lated to the occlusion is involved in the auxiliary dictionary,

the representation ability of the auxiliary dictionary can be

hurt. For instance, the natural-matchingmethod, which intro-

duces more information about the illumination change, facial

expressions etc. into the auxiliary dictionary, shows worse

performance than the corresponding pair-matching method.

Therefore, in the following experiments on the AR database,

the pair-matching method is used to generate the auxiliary

dictionary and both sunglasses and scarf occlusion patterns

are included in the auxiliary dictionary.

The performance comparison of different algorithms is

presented in Table 1. For the proposed DDRC, the auxiliary

dictionary, consisting of 600 atoms, was generated with all

50 subjects in the occlusion subset and m and λ were set

to 250 and 0.05, respectively. For the GRRC_l1, the source

codes were provided by the authors and the default setting for

the AR database was used. For the SRC, we implement the

error constrained model with the same error tolerance as in

their original paper [41], i.e., ǫ = 0.05. To better understand

the performance improvement of the proposed DDRC with

respect to facial variations, we separately list the FR rate

results for sunglasses disguise in session 1, sunglasses dis-

guise in session 2, scarf disguise in session 1, scarf disguise

in session2, and non-occlusion case in session 2.

In Table 1, it is evident that the proposed DDRC achieves

the highest FR rates in all five testing scenarios. In compar-

ison with the VGG+softmax method for the ‘‘Sunglasses’’

scenarios, the proposed DDRC has at least 19.3% increase in

FR rate. We can also find that the VGG+softmax achieves

the second highest recognition rates (98% and 96%) for the

two cases of scarf occlusion. The reason might be that the

discriminative features captured by the VGG-Face network

are less related to the jaw and mouth than the other parts

of the face. We should note that even for such high FR

rates, the proposed DDRC can effectively increase the FR

accuracy as well. These results demonstrate that the proposed

DDRC can effectively handle the occlusion and significantly

improve the FR accuracy of the original network under the

occlusion scenarios.

In addition, we can observe that the same perfect FR

rates on the non-occlusion testing subset from session 2 are

achieved by both the DDRC and VGG+softmax. This is

TABLE 2. Single-sample FR rates(%) on the AR database.

because the dictionary representation classifier can effec-

tively discriminate the linear subspace in deep feature space.

This result shows that the proposed DDRC is a generic

approach for both occlusion and non-occlusion scenarios.

2) SINGLE-SAMPLE FR

There is a situation frequently confronted in practical appli-

cations that only one training sample per subject can be pro-

vided, such as recognizing individuals based on their ID card

photos. To address this problem, we evaluated the robustness

of the DDRC with one training sample per subject in this

section.

In order to make a fair comparison, we adopted the exper-

iment setting in [18], i.e., the testing subset consists of 80

randomly selected subjects from the AR database, the occlu-

sion subset consists of the remaining 20 subjects, the natu-

ral image for each subject from session 1 was used as the

training sample, and the other 12 images for each subject

from session 1 were selected for testing. The pair-matching

method with all the 20 subjects in the occlusion subset is

used to generate the occlusion dictionary for the DDRC. Both

sunglasses and scarf occlusion patterns were included in the

auxiliary dictionary such that the auxiliary dictionary has the

same number of atoms as that in [18], i.e., 240 atoms. The

feature dimension m and the regularization parameter λ were

set to 320 and 0.35 for the proposed DDRC, respectively. The

proposed DDRC with a single training sample per subject is

named asDDRC_SS in the following experiments. In Table 2,

the results of the SRC and ESRC are reported from the

original paper [18]. Except for the SRC and ESRC, all other

methods listed in Table 2 adopt the same converted images as

in section IV-A1.

From Table 2, we can observe that, even with insufficient

occlusion samples, DDRC_SS achieves the best FR accuracy

(over 90%) in all the testing scenarios. For the scenarios

with occlusion (‘‘Disguise’’ and ‘‘Disguise+Illumination’’),

at least 10% increase in FR rate is achieved when com-

pared to all the other methods. In comparison with the

VGG+softmax method, the proposed DDRC achieves 14%

and 20.6% increase in FR rate for the ‘‘Disguise’’ and

‘‘Disguise+Illumination’’ scenarios, respectively.

The VGG+softmax and the proposed DDRC both have

nearly perfect FR accuracy for the testing scenarios of

‘‘expression’’ and ‘‘illumination’’. This indicates that the

VGG-Face deep feature space is more discriminative than the
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FIGURE 5. Examples of a subject of the pose subset of the FERET
database (top row) and block occlusion with block size of 43 × 43 on the
center of each sample (bottom row).

image space. Because of this property, it is unnecessary for

the DDRC to handle the facial variation that is not a result

of the occlusion or corruption. Consequently, less work is

needed by the DDRC_SS to generate the auxiliary dictionary

than by the ESRC, because only the occlusion images need

to be collected. The results again demonstrate that the pro-

posed DDRC is a generic approach for both occlusion and

non-occlusion scenarios.

B. EVALUATION ON FERET POSE DATABASE

In addition to illumination change and expressions, another

situation frequently encountered in real face images is the

head pose variation. To evaluate the performance on head

pose variation, the pose subset of the FERET database [46]

was selected, which includes 194 subjects (about 7 images

each). This subset is composed of the images marked with

’ba’,’bd’,’be’,’bf’,’bg’,’bj’, and ’bk’ for natural, pose varia-

tions of +25◦, +15◦, −15◦, and −25◦, expression and illu-

mination, respectively. These images were cropped to the

size of 80 × 80. Some example images of a subject are

shown in Fig.5. Since the original pose subset of the FERET

database does not have the variation caused by occlusion,

we simulated the block occlusion by replacing a square block

centered on each resized original image with an unrelated

image. Four different sizes of the block occlusion were con-

sidered in the simulation, 25×25, 35×35, 43×43, and 50×50

corresponding to occlusion ratios of 9.7%, 19.1%, 28.9% and

39.1%, respectively. The block occlusion examples with the

block size of 43 × 43 are shown in Fig.5.

In the experiments, 150 subjects randomly drawn from

all 194 subjects were used for testing and constructing the

gallery, and the other 44 subjects were used to generate the

auxiliary dictionary for the proposed methods. The perfor-

mance on different ratios of block occlusion are tested sepa-

rately and the results are listed in Table 3. The ’ba’, ’bk’ and

’bj’ images of each subject from the original non-occlusion

subset are chosen as the training samples (except for the

DDRC_SS, which only employs the ’ba’ image as the training

sample). The GRRC_l1 used the same setting as in [27]. The

parameters of the proposed DDRC and DDRC_SS are set to

m = 600 and λ = 0.5. The auxiliary dictionary is generated

with the pair-matching method from the 44 subjects.

The evaluation results are listed in Table 3, from which

we can see that, for the occlusion ratio less than around

30%, the proposed DDRC and DDRC_SS achieves the best

performance in FR rate. Even with the block occlusion of

TABLE 3. Recognition rates(%) on the FERET database with block
occlusion.

28.9%, the proposed DDRC can reach an FR rate close to

90%. However, for the extremely large size of occlusion,

e.g.50× 50, the occlusion cannot be recovered effectively by

the proposed DDRC and the FR rate dropped dramatically.

We can also note that for the block occlusion of small size,

e.g.25 × 25, the VGG+softmax achieves similar high FR

rate to the proposed DDRC. This indicates that the block

occlusion of small size may not map the deep feature vector

out of the subspace associated with non-occlusion faces of the

subject. The recognition performance on the non-occlusion

images is also evaluated for the proposed DDRC and a 100%

accuracy was observed. So we do not list the result in Table 5.

C. EVALUATION ON CelebA DATABASE

This experiment is designed to evaluate the performance of

the proposed DDRC on a large-scale database. The CelebA

database [47] is adopted in the experiment, since it is a

large-scale face database containing large variations of pose,

expression, and illumination etc. Because the training dataset

of CelebA is originally used to train the CNNs, we only use

the test dataset and part of the validation dataset of CelebA

for evaluation. In the experiment, due to few occluded faces

in the original CelebA dataset, the synthesized occluded faces

are used for evaluation.

The test dataset of CelebA consists of 1, 000 subjects with

19, 963 images. We partitioned the test dataset of CelebA

near equally into two parts with randomly drawn method:

the training set and testing set. Each part consists of around

10, 000 images. Since three subjects have only 1 image each,

we put them into the training set to make sure that each

identity has at least one training sample. In total, the training

set and testing set cover 1, 000 and 997 subjects, respectively.

The training set is used to build the gallery dictionary and the

testing set is employed to synthesize the occluded test face

images. From the validation dataset of CelebA, we randomly

selected 20 identities each with randomly drawn 20 images

to construct the auxiliary dictionary. Two occlusion patches

shown in Fig.6 are used to contaminate the face images on

the center.

Only the VGG+softmax and proposed DDRC were eval-

uated, because the methods based on the image space or

linear transform of image space and single-sample based

method do not suit to handle a large-scale dataset with large

variation. In the experiment, we crop the face in each image
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FIGURE 6. Occlusion patches and example with images various occlusion
ratios for the test dataset of the CelebA database.

TABLE 4. Recognition rates(%) on the test dataset of CelebA database
with block occlusion.

with the size of 128 × 128 first and for the occluded face

image, the occlusion patch is superimposed at the center

of the face image. Four occlusion ratios were tested, 0%

(non-occlusion), 4.98%, 10%, and 14.7%. The examples of

occluded face crops with various occlusion ratios are shown

in Fig.6.

For the proposed DDRC, the gallery dictionary is con-

structed with all the face images of the training set. The

auxiliary dictionary includes all 4 occlusion ratios and are

constructed with the pair-matching. The parameters of the

proposed DDRC are set as m = 1000 and λ = 0.05. For

the VGG+softmax, the softmax classifier is trained using the

training set.

The experimental results are listed in Table 4. From the

results, we can observe that the proposed DDRC significantly

improves the FR rate for the occluded face images (13.3%

increase in FR rate for 14.7%occlusion).We also note that the

proposed DDRC is slightly worse than the VGG+softmax for

the non-occlusion case. We reevaluate the proposed DDRC

without PCA for the non-occlusion case and observe that

the FR rate reaches 92.3%. Therefore, the slightly low FR

rate at non-occlusion case is caused by the PCA dimension

reduction.

D. COMPUTATIONAL COMPLEXITY

The computational cost of the proposed DDRCmainly lies in

the calculation of the deep features. The maximum time cost

for the feature extraction is less than 0.4 seconds per image.

The step 5b of Algorithm 1 has a computational complexity

of O(n) with respect to the number of the rows of Pa (see

the analysis in section III-B). The step 5c of Algorithm 1 is

proportional to the number of the columns of D for a given

deep feature space. Since the number of the rows of Pa is

larger than the number of the columns of D, given the dimen-

sionality of the deep feature, the 5-th step of Algorithm 1

has a computational complexity less than O(2n). Therefore,

the proposed DDRC is a computationally efficient approach

and suitable for real-time large-scale applications.

In the above experiments, for the largest size of Pa, i.e., the

Pa used for the proposed DDRC method in section IV-C,

the computational time of the 5-th step of Algorithm 1 is

around 16ms per test image and is irrelevant to the test image.

V. CONCLUSION

In this paper, we have proposed an effective method to

alleviate the occlusion effect in deep feature space for FR.

The proposed DDRC is generic to the FR of both occluded

and non-occluded face images. In addition, the experiments

show that the proposed DDRC can well handle the FR with

a single training sample per subject for simple application

scenarios. From the computational complexity analysis and

the experiments, we demonstrate that the proposed DDRC is

a promising real-time algorithm for practical FR applications.

The weakness of the proposed method lies in the assump-

tion that the occlusion pattern of the testing face is included in

the auxiliary dictionary. However, in many face recognition

applications, the major types of the occlusion patterns are

limited. As a result, the proposed method can effectively

boost the performance of the FR in practical applications. In

the future, we will improve the design of the auxiliary dic-

tionary to handle the occlusion patterns outside the auxiliary

dictionary.
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