
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Dictionary training for sparse representation as
generalization of K‑means clustering

Sahoo, Sujit Kumar; Makur, Anamitra

2013

Sahoo, S. K., & Makur, A. (2013). Dictionary Training for Sparse Representation as
Generalization of K‑Means Clustering. IEEE Signal Processing Letters, 20(6), 587‑590.

https://hdl.handle.net/10356/96655

https://doi.org/10.1109/LSP.2013.2258912

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
[http://dx.doi.org/10.1109/LSP.2013.2258912].

Downloaded on 26 Aug 2022 01:13:17 SGT

IEEE SIGNAL PROCESSING LETTERS, VOL. ., NO. ., 1

Dictionary Training for Sparse Representation as
Generalization of K-means Clustering

Sujit Kumar Sahoo, Member, IEEE and Anamitra Makur, Senior Member, IEEE

Abstract—Recent dictionary training algorithms for sparse
representation like K-SVD, MOD, and their variation are rem-
iniscent of K-means clustering, and this letter investigates such
algorithms from that viewpoint. It shows: though K-SVD is
sequential like K-means, it fails to simplify to K-means by de-
stroying the structure in the sparse coefficients. In contrast, MOD
can be viewed as a parallel generalization of K-means, which
simplifies to K-means without perturbing the sparse coefficients.
Keeping memory usage in mind, we propose an alternative to
MOD; a sequential generalization of K-means (SGK). While
experiments suggest a comparable training performances across
the algorithms, complexity analysis shows MOD and SGK to be
faster under a dimensionality condition.

Index Terms—dictionary training, K-means, K-SVD, MOD.

I. INTRODUCTION

In recent years sparse representation has emerged as a new
tool for signal processing. Given a dictionary D ∈ Rn×K

containing prototype signal-atoms dk ∈ Rn for k = 1, . . . ,K,
the goal of sparse representation is to represent a signal y ∈
Rn as a linear combination of a small number of atoms ŷ =
Dx, where x ∈ RK is the sparse representation vector and
‖x‖0 = m � n (‖.‖0 is `0 norm). Dictionaries that better fit
such a sparsity model, can either be chosen from a prespecified
set of linear transforms (e.g. Fourier, Cosine, Wavelet, etc.) or
can be trained on a set of training signals.

Given a set of signals, a trained D will always produce
a better sparse representation in comparison to traditional
parametric bases. This is because, for a set of training signals
Y = [y1,y2, . . . ,yN], D is trained to minimize the represen-
tation error, E = ‖Y −DX‖2F , where X = [x1,x2, . . . ,xN]

are the sparse representations and ‖A‖F =
√∑

ij Aij
2 is

the Frobenius norm of a matrix A. Noting that the error
minimization depends both on X and D, the solution is
obtained iteratively by alternating between sparse coding (for
X) and dictionary update (for D) as the following.
1) Sparse coding stage: Obtain X(t) for each yi in Y as

∀ixi = arg min
xi

‖yi −D(t)xi‖22 : ‖xi‖0 ≤ mmax (1)

where mmax is the admissible number of coefficients.
2) Dictionary update stage: For the obtained X(t), update D(t)

such that

D(t+1) = arg min
D
‖Y −DX(t)‖2F . (2)

Copyright (c) 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work is funded by the AcRF project RG 27/10. We thank the reviewers
for their useful feedbacks. We also acknowledge M. Aharon and M. Elad for
the reproducibility of K-SVD results.

At present, a sequential dictionary training algorithm called
K-SVD has become a benchmark in dictionary training [1].
This algorithm derives its name from its sequential update of
K atoms using singular value decomposition (SVD), and it
is claimed that K-SVD is advantageous over MOD in terms
of speed and accuracy. The Method of Optimal Direction
(MOD) for frame design is an earlier attempt in the direction
of dictionary training, which updates all the atoms in parallel
as the minimum mean square error (MMSE) solution for given
Y and X(t) [2].

Such iterative algorithms as above are reminiscent of long-
known K-means clustering used for codebook design (dic-
tionary training) in vector quantization (VQ) [3]. It is an
extreme form of sparse representation, where the dictionary
D is termed as codebook, and the coefficient vector is re-
stricted/constrained to the trivial basis in RK , that is, x = ek
has all 0s except 1 in the kth position. To minimize the
representation error, a VQ codebook is typically trained using
K-means clustering algorithm. It is an iterative process similar
to dictionary training which alternates between finding X and
updating D.
1) Sparse coding (encoding) stage: This stage involves finding
the index k = arg minj ‖yi −D(t)ej‖22, so that the sparse
representation for yi becomes xi = ek. Likewise, the repre-
sentation X(t) for each training signal in Y is obtained. As a
result, Y is partitioned into K clusters, {1 : N} = {R(t)

1 ∪
R

(t)
2 · · ·∪R

(t)
K }, where each cluster R(t)

k = {i : ŷi = D(t)ek}.
2) Dictionary update (codebook design) stage: Due to disjoint
clustering, the global problem in (2) becomes local minimiza-
tion for each individual signal-atom (codeword), d

(t+1)
k =

arg min
dk

∑
i∈R(t)

k

‖yi − dk‖22 = 1

|R(t)
k |

∑
i∈R(t)

k

yi. As a result, it

allows independent update of K atoms sequentially.
In this letter we investigate how K-means clustering may

be generalized to sparse representation. In the next sections,
we elaborate on K-SVD and MOD, and discuss their analogy
to K-means. It is shown that K-SVD in its present form fails
to retain any structured sparsity such as VQ, and as a result
does not simplify to K-means. Use of SVD interferes with
the sparse coding, and also restricts the signal-atoms to unit
norm. In contrast, it is shown that MOD retains any structured
sparsity such as VQ, and simplifies to K-means, hence it may
be claimed as a parallel generalization of K-means clustering.
However, in many practical scenarios sequential algorithms are
desirable to operate with minimum computational resources.
Thus a sequential alternative to MOD is proposed, which is
referred as SGK. In the subsequent sections the computational
complexity is analyzed, and the training performances are

2 IEEE SIGNAL PROCESSING LETTERS, VOL. ., NO. .,

examined experimentally. They suggest, a very much com-
parable training performance across the algorithms, and under
a dimensionality condition MOD takes the least computation
time followed by SGK.

II. K-SVD
In the dictionary update stage, K-SVD breaks the global

minimization problem (2) into K sequential minimization
problems [1]. It considers each column dk in D and its corre-
sponding row of coefficients Xrowk in X. Thus the error term
in (2) may be written as ‖E(t)‖2F = ‖(Y−

∑
j 6=k d

(t)
j X

(t)
rowj)−

d
(t)
k X

(t)
rowk‖2F . The quest is for the dkXrowk which is closest

to E
(t)
k = Y −

∑
j 6=k d

(t)
j X

(t)
rowj ,

{d(t+1)
k , X̂

(t)
rowk} = arg min

dk,Xrowk

‖E(t)
k − dkXrowk‖2F . (3)

In [1] SVD is used to find the closest rank-1 matrix (in Frobe-
nius norm) that approximates E

(t)
k subject to ‖d(t+1)

k ‖2 = 1.
SVD decomposition is done on E

(t)
k = U∆VT . d

(t+1)
k is

taken as the first column of U, and X̂
(t)
rowk is taken as the first

column of V multiplied by the first diagonal element of ∆.
Note that different from (2), both dk and Xrowk are updated

in K-SVD dictionary update stages (apart from updating
Xrowk in the sparse coding stage). Unlike K-means, if each
signal-atom is updated alone, the resulting D(t+1) may di-
verge. This is because there exists a considerable amount of
overlap among X

(t)
rowk’s (clusters Rk), so modifying an atom

affects other atoms. In order to take care of this overlap, before
updating the next atom, both {d(t)

k , X
(t)
rowK} are replaced with

{d(t+1)
k , X̂

(t)
rowK}. The process is repeated for all K atoms.

We should note that K-SVD is an interdependent sequential
update procedure.

However, there are few matters of concern over the simul-
taneous update of {dk, Xrowk} in (3) using SVD.
1) Loss of sparsity: As there is no sparsity control term
‖X(t)

rowk‖0 in SVD, the least square solution X̂
(t)
rowk may contain

all nonzero entries, which will result in a nonsparse X̂(t).
2) Loss of structure: Similarly, if any structured/constrained
sparsity is used in the sparse coding stage of the dictionary
training, this structure may also not be retained in both the
solutions obtained.
3) Normalized dictionary: The use of SVD limits the usability
of this dictionary training algorithm only to the settings of unit
norm atoms, ‖d(t+1)

k ‖2 = 1.
To address the Loss of sparsity issue, K-SVD restricts

the minimization problem of (3) to only the set of training
signals Y

(t)
k = {yi : X

(t)
rowk(i) 6= 0}. Defining an index set

R
(t)
k = {i : 1 ≤ i ≤ N,X

(t)
rowk(i) 6= 0}, SVD decomposition is

done on only a part of E(t)
k that keeps the columns from this

index set. However, the Loss of structure issue still remains
unaddressed. Let’s take an example of a sparse coder with
additional structure/constraint S(xi),

xi = arg min
xi

{‖yi −D(t)xi‖22 + S(xi)} : ‖xi‖0 ≤ mmax (4)

K-SVD in its present form updates both {dk, Xrowk} us-
ing SVD, which cannot take care of the additional struc-
ture/constraint S(Xrowk). Similarly, it fails to simplify to

K-means for the VQ as elaborated in the next paragraph.
Alongside, the issue of Normalized dictionary brings further
complication to the usability of K-SVD in VQ.

In order to verify K-SVD as a generalization of K-means
clustering, use K-SVD to update the codebook for VQ, where
{d(t+1)

k , X̂
(t)
rowk} is obtained using SVD decomposition. First

thing to note that, use of SVD will result in ‖d(t+1)
k ‖2 = 1

which is not same as the K-means. Secondly, VQ is a binary
structured/constrained sparsity with only 0 and 1 entries. Thus
the SVD decomposition is done on the part of E

(t)
k with

column indices R
(t)
k = {i : 1 ≤ i ≤ N,X

(t)
rowk(i) = 1}. Even

if X̂(t)
rowk on the restricted index set R(t)

k is formed by an oracle
scaling of obtained V from SVD, all of its entries cannot be
guaranteed to be 1. This is a classical example of discussed
Loss of structure issue of K-SVD, which destroys the binary
structure imposed by VQ. Thus, it can be concluded that K-
SVD as presented in [1] is not a generalization of K-means.

III. MOD
In the dictionary update stage, MOD analytically solves

the minimization problem (2) [2]. The quest is for a D
that minimizes the error ‖E(t)‖2F = ‖Y − DX(t)‖2F for the
obtained X(t). Thus taking the derivative of ‖E(t)‖2F with
respect to D, and equating with 0 gives the relationship:
∂
∂D‖E

(t)‖2F = −2(Y −DX(t))X(t)T = 0, leading to [1]

D(t+1) = YX(t)T
(
X(t)X(t)T

)−1
. (5)

In each iteration, MOD obtains X(t) for a given D(t), and
updates D(t+1) using (5). MOD doesn’t require the atoms of
the dictionary to be unit norm. However, if it is required by
the sparse coder, the atoms of D(t+1) may be normalized to
unit norm.

It is interesting to note that MOD is a coder independent
dictionary training algorithm, which can be used for all sparse
representation applications. Let’s take an example of sparse
coder with additional structure/constraint S(xi) as in (4). As
MOD updates D independent of X, the presence of S(X) will
not affect the minimization in (5). Thus, codebook update for
VQ using MOD simplifies to K-means as elaborated in the
next paragraph.

In the case of VQ, Xrowk has all 0 entries except 1s
at the positions i ∈ Rk, that is, when ŷi = Dek. As it
produces disjoint clusters, rows of X will be orthogonal to
each other (∀j 6=kXrowjXrowk

T = 0). This gives us XXT =
diag{|R1|, . . . , |RK |}, where |Rk| is the number of training
signals associated with signal-atom dk. Similarly, it can be
written that YXT =

[∑
i∈R1

yi, . . . ,
∑

i∈RK
yi

]
, because

YXT
rowk =

∑
i∈Rk

yi. Thus the dictionary update of MOD
as in (5) simplifies to the dictionary update of K-means
clustering.

In other words, minimization of the representation error
of K-means clustering generalizes to MOD when the trivial
basis of VQ is extended to arbitrary sparse representation with
an admissible number of coefficients mmax. However, it is a
parallel update algorithm in contrast to K-means, which may
require more resources (e.g. memory, cache and higher bit
processors) to execute for large K and N .

SAHOO et al.: DICTIONARY TRAINING ALGORITHMS FOR SPARSE REPRESENTATION IN RELATION TO K-MEANS CLUSTERING 3

TABLE I
COMPARISON OF EXECUTION TIME (IN MILLISECOND)

m TK-SVD TK-SVDa TMOD TSGK

3 139.2 12.0 0.52 4.8
4 145.6 13.4 0.61 5.7
5 151.6 15.0 0.71 6.9

IV. A SEQUENTIAL GENERALIZATION OF K-MEANS

Though MOD is suitable for all kind of spare representation
applications, irrespective of constraints on sparse coefficient
and dictionary, it may demand more computational resource
to operate. In contrary, sequential algorithms like K-SVD
and K-means can manage with lesser resources. This leads
naturally to the possibility to generalize K-means sequentially
for general purpose sparse representation application. Thus, we
propose a modification to the problem formulation in (3). If
we keep X

(t)
rowk unchanged, both concerns of loss of sparsity

and loss of structure of X̂(t) will no longer be there. Thus we
pose the sequential update problem as

d
(t+1)
k = arg min

dk

‖E(t)
k − dkX

(t)
rowk‖

2
F . (6)

The solution to (6) can be obtained in the same manner as (5)

d
(t+1)
k = E

(t)
k X

(t)
rowk

T (
X

(t)
rowkX

(t)
rowk

T)−1
. (7)

The overlap among X
(t)
rowk’s (clusters Rk) is taken care of by

replacing d
(t)
k with d

(t+1)
k before updating the next atom in the

sequence. This process is repeated for all K atoms sequentially
similar to K-means. Recall that it is called SGK.

Similar to MOD, SGK does not constrain the signal-atoms
to be unit norm. If required by the sparse coder, all the atoms
can be normalized after updating the entire dictionary. Like
MOD, the update equation of SGK (7) is independent of the
sparse coder, which remains unaffected by the presence of any
additional structure/constraint S(Xrowk) as per the exemplar
coder (4). Thus, codebook update for VQ using SGK simplifies
to K-means as follows.

In the case of VQ, it can be shown that E
(t)
k X

(t)
rowk

T
=

YX
(t)
rowk

T
−
∑

j 6=k d
(t)
j X

(t)
rowjX

(t)
rowk

T
=
∑

i∈R(t)
k

yi because

YX
(t)
rowk

T
=
∑

i∈Rk
yi and ∀j 6=kXrowj

TXrowk = 0. Thus (7)
gives d

(t+1)
k = 1

|R(t)
k |

∑
i∈R(t)

k

yi, which is same as K-means.

V. COMPLEXITY ANALYSIS

We are interested in the complexity analysis of the dictio-
nary update stage alone. In order to compute the complexity,
let’s assume that each training signal of length n has a sparse
representation with m nonzero entries, and Y contains N such
training signals.

In the process of updating dk using K-SVD, we need
2n(m − 1)|R(t)

k | floating point operations (flop) to compute
E

(t)
k = Y −

∑
j 6=k djX

(t)
rowj in the restricted index set R

(t)
k ,

because the columns of the sparse representation matrix
{xi : i ∈ Rk} have only (m − 1) nonzero entries to be
multiplied with dj 6=k. Then performing SVD on n × |R(t)

k |
matrix E

(t)
k requires 2|R(t)

k |n2 + 11n3 flops [4], and |R(t)
k |

flops to compute X̂
(t)
rowk by multiplying the first column of V

with the first diagonal element of ∆. This gives a total of
2n(m− 1)|R(t)

k |+ 2n2|R(t)
k |+ 11n3 + |R(t)

k | flops to update
one atom in D(t). Thus the flops needed for K-SVD will be
the sum over all K atoms,

TK-SVD = 2nm2N + 2mn2N + 11n3K + mN − 2nmN (8)

because X(t) contains
∑

k |R
(t)
k | = Nm nonzero elements.

Though SVD gives the closest rank-1 approximation, this
step makes K-SVD very slow. Thus in [5] an approximation
algorithm is proposed to replace the SVD step, which makes
it faster. In approximate K-SVD, (3) is approximately deter-
mined in two steps: 1) d(t+1)

k = E
(t)
k X

(t)
rowk

T
/‖E(t)

k X
(t)
rowk

T
‖2;

2) X̂(t)
rowk = d

(t+1)
k

T
E

(t)
k . Thus we need n(2|R(t)

k | − 1) opera-

tions to compute E
(t)
k X

(t)
rowk

T
, approximately 3n operations to

normalize the atom, and |R(t)
k |(2n−1) operations to compute

E
(t)
k

T
d
(t+1)
k . Including 2n(m−1)|R(t)

k | operations to compute
E

(t)
k , it needs a total of 2n(m + 1)|R(t)

k | + 2n − |R(t)
k |

flops to update one atom in D(t). Thus the flops needed for
approximate K-SVD will be the sum over all K atoms,

TK-SVDa = 2nm2N + 2nmN + 2nK −mN (9)

The number of operations required for solving (5) can be
derived in the case of MOD. It is known that X(t) is sparse
and contains only N.m nonzero entries. Thus, the cumulative
number of operations required to perform the multiplication
YX(t)T will sum up to 2nmN − nK. Likewise, X(t)X(t)T

will need 2m2N −K2 operations. X(t)X(t)T is a symmetric
positive definite matrix1, thus Cholesky factorization can be
used to solve the linear inverse problem (5). Cholesky factor-
ization factors A ∈ RK×K as A = LLT in K3

3 operations, and
for solving the linear inverse problem for n vectors it needs
2nK2 operations, which sum up to 2nK2 + 1

3K
3 operations

[4]. Thus the total flop count for MOD will be

TMOD = 2nmN + 2m2N + 2nK2 +
K3

3
− nK −K2. (10)

Similarly, for SGK we need 2n(m− 1)|R(t)
k | operations to

compute E
(t)
k , n(2|R(t)

k |−1) operations are needed to compute

E
(t)
k X

(t)
rowk

T
, approximately 2|R(t)

k | − 1 operations are needed

to compute X
(t)
rowkX

(t)
rowk

T
, and n operations are needed for

the division. This gives a total of 2nm|R(t)
k | + 2|R(t)

k | − 1
operations needed to update one atom in D(t). Thus the total
flops required for SGK will be the sum over all K atoms,

TSGK = 2nm2N + 2mN −K. (11)

The complexity expressions give a sense that MOD is the
least complex, which contains only 3rd order terms. However
for a fair comparison, let’s express all the variables in terms
of K. In general, the signal dimension n = O(K), and
the number of training samples N = O(K1+a), where
a ≥ 0. Therefore, a condition for minimum complexity may

1X(t)X(t)T can be positive semi definite if any atom from D(t) is
completely unused. In that case we can remove those atoms from D(t) and
the corresponding row from the sparse representation matrix.

4 IEEE SIGNAL PROCESSING LETTERS, VOL. ., NO. .,

TABLE II
AVERAGE NO. OF ATOMS RETRIEVED BY DICTIONARY TRAINING

10 dB 20 dB 30 dB No Noise
K-SVD 37.14 46.14 46.74 47.10

m = 3
K-SVDa 37.76 45.68 46.04 46.42

MOD 36.54 45.50 46.86 46.48
SGK 36.78 46.16 46.46 46.48

K-SVD 18.10 46.50 47.60 47.36

m = 4
K-SVDa 16.92 45.48 46.60 46.56

MOD 17.90 45.70 46.54 46.78
SGK 17.80 46.06 46.94 46.78

K-SVD 00.94 45.40 46.38 46.64

m = 5
K-SVDa 00.76 45.12 46.96 46.94

MOD 01.22 45.88 46.26 47.12
SGK 00.82 45.82 46.68 46.80

be derived by taking sparsity m = O(Kb). It can be found
that min TK-SVD = O(K4), and min TMOD = O(K3), whereas
∀b≥0 TK-SVDa = TSGK = O(K2+2b+a). Thus MOD remains
least complex as long as b ≥ 0.5(1−a), and this dimensional-
ity condition is very likely in practical situations. Therefore it
can safely be stated, TMOD ≤ TSGK < TK-SVDa � TK-SVD.
Alongside, the execution time of all algorithms in Matlab
environment2 is compared in Table I, for n = 20,K =
50, N = 1500, and various m, which agrees with the above
analysis. It also reflects that being a parallel update procedure,
MOD’s execution time reduces by a factor of O(K).

VI. SYNTHETIC EXPERIMENT

Similar to [1], we apply K-SVD, approximate K-SVD,
MOD and the sequential generalization on synthetic signals
to test how well they recover the original dictionary that
generated the signal. A random matrix D (later referred as
generating dictionary) of size 20× 50 is generated with i.i.d.
uniformly distributed entries. As K-SVD can only operate on
a normalized dictionary, each column is normalized to unit `2
norm. Then 1500 training signals {yi}1500i=1 of dimension 20 are
produced, each created by a linear combination of m atoms at
random locations with i.i.d. coefficients. White Gaussian noise
is added to the resulting signals so that each training signal
has the same signal to noise ratio (SNR).

In all the algorithms, the dictionaries are initialized with
the same set of training signals. As per the suitability of K-
SVD, an unconstrained sparse coding is done using orthogonal
matching pursuit (OMP), which produces best m-term approx-
imation for each signal [6]. All dictionary training algorithms
are iterated 9m2 times for sparsity level m.

The trained dictionaries are compared against the known
generating dictionary in the same way as in [1]. The mean
number of atoms retrieved over 50 trials are computed for each
algorithm at different sparsity levels m = 3, 4, 5 with additive
noise SNR = 10, 20, 30,∞ dB. The results are tabulated
in Table II, which shows marginal difference among all the
algorithms. In order to show convergence of the algorithms,
the average number of atoms retrieved after each iteration is
shown in Fig. 1 for one of the SNR from Table II. Given their
comparable performance but differing complexity, it may be

2Matlab was running on a 64 bit OS with 8GB memory and 3.1GHz CPU.

Fig. 1. Average number of atoms retrieved after each iteration for different
values of m at SNR = 30 dB

concluded that MOD is the better choice for dictionary training
unless sequential update becomes essential, in which case the
sequential generalization should be chosen. Both MOD and
SGK can be used in all sparse representation applications
irrespective of constraints on dictionary and sparse coder.

VII. DISCUSSION

Existing dictionary training algorithms MOD, K-SVD, and
approximate K-SVD are presented in line with K-means
clustering for VQ. It is shown that MOD simplifies to K-
means, while K-SVD fails to simplify due to its principle
of updating. As MOD does not need to update the sparse
representation vector during dictionary update stage, it is
compatible to any structured/constrained sparsity model such
as K-means. However, since MOD is not sequential, a se-
quential generalization to K-means is proposed that avoids
the difficulties of K-SVD. Computational complexity for all
algorithms are derived, and MOD is shown to be the least
complex followed by SGK under a dimensionality condition,
which is true for many practical application. Experimental
results show that all the algorithms are performing equally
well with marginal differences. Thus, MOD being the fastest
among all, remains the dictionary training algorithm of choice
for any kind of sparse representation. However, if sequential
update becomes essential, SGK should be chosen.

REFERENCES

[1] M. Aharon, M. Elad, and A. Bruckstein, “k -svd: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Processing, vol. 54, no. 11, pp. 4311–4322, November
2006.

[2] K. Engan, S. O. Aase, and J. H. Husøy, “Multi-frame compression: theory
and design,” Signal Processing, vol. 80, no. 10, pp. 2121 – 2140, 2000.

[3] A. Gersho and R. M. Gray, Vector quantization and signal compression.
Norwell, MA, USA: Kluwer Academic Publishers, 1991.

[4] B. N. Datta, Numerical Linear Algebra and Applications, Second Edition.
SIAM, 2010.

[5] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient Implementation of
the K-SVD Algorithm using Batch Orthogonal Matching Pursuit,” Tech.
Rep., Apr. 2008.

[6] J. Tropp and A. Gilbert, “Signal recovery from random measurements via
orthogonal matching pursuit,” Information Theory, IEEE Transactions on,
vol. 53, no. 12, pp. 4655 –4666, dec. 2007.

