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The social amoeba Dictyostelium discoideum is a model organism that is used to

investigate many cellular processes including chemotaxis, cell motility, cell differentiation,

and human disease pathogenesis. While many single-cellular model systems lack

homologs of human disease genes, Dictyostelium’s genome encodes for many genes

that are implicated in human diseases including neurodegenerative diseases. Due to

its short doubling time along with the powerful genetic tools that enable rapid genetic

screening, and the ease of creating knockout cell lines, Dictyostelium is an attractive

model organism for both interrogating the normal function of genes implicated in

neurodegeneration and for determining pathogenic mechanisms that cause disease.

Here we review the literature involving the use of Dictyostelium to interrogate genes

implicated in neurodegeneration and highlight key questions that can be addressed

using Dictyostelium as a model organism.

Keywords: Dictyostelium discoideum, neurodegeneration, model organism, polyglutamine (polyQ) diseases,

Alzheimer’s disease, Parkinson’s disease

INTRODUCTION – MODEL ORGANISMS FOR
NEURODEGENERATIVE DISEASES

As the human population ages, neurodegenerative diseases are becoming increasingly prevalent.
Neurodegenerative diseases are characterized by neuronal dysfunction and degeneration. This
dysfunction and degeneration can be caused by both sporadic and genetic causes, affect different
subsets of neurons, and have varied pathological hallmarks. Neurodegenerative disease progression
inevitably leads to disability and death, and for nearly all these diseases there is a lack of curative
treatments. Therefore, understanding the molecular mechanisms that drive neurodegenerative
diseases is important for developing therapies.

One way to investigate the mechanisms that drive neurodegenerative diseases is by utilizing
model organisms. Neurodegenerative diseases have been studied in a wide variety of model systems
ranging from yeast to non-human primates. Model organisms like yeast, worms, flies, and zebrafish
can be utilized to investigate the basic pathology of neurodegenerative diseases and are useful
models that are inexpensive and easy to genetically manipulate (Miller-Fleming et al., 2008; van
Ham et al., 2009; Gama Sosa et al., 2012; Andrews et al., 2016; Suresh et al., 2018). These models
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are advantageous for determining basic pathophysiological
mechanisms, but lack key aspects of the higher eukaryotes
that can affect disease pathogenesis such as myelination of
neurons and immune function; this means that they do not
fully recapitulate human diseases (Gama Sosa et al., 2012).
Other models include mammalian cell culture including primary
neuronal cultures and induced pluripotent stem cell (iPSC)-
derived neuronal cultures. Primary neuronal cultures and iPSCs
are advantageous because they are more similar to the human
brain than non-mammalian models (Lopes et al., 2017; Slanzi
et al., 2020). However, these models do have some drawbacks
including the fact they are more fetal-like in nature, and thus
may not be an ideal model for age-related neurodegenerative
diseases (Kumar et al., 2018; Slanzi et al., 2020). More complex
model organisms, like rodents and non-human primates, have
more similar neuroanatomy and neurophysiology to the human
brain, and phenotypes associated with various neurodegenerative
diseases can be recapitulated in these models (Emborg, 2017;
Dawson et al., 2018; Suresh et al., 2018). In addition, more
complex models show disease progression with aging, which is
harder to observe in simpler systems with shorter life spans
(Emborg, 2017; Dawson et al., 2018). Rodent and primate
models are also essential for testing the feasibility and safety of
therapeutics prior to clinical trials (Emborg, 2017; Dawson et al.,
2018; Suresh et al., 2018). Therefore, each model organism has
strengths and weaknesses that must be taken into consideration
when investigating neurodegenerative diseases.

One major unanswered question for many neurodegenerative
diseases is: What is the normal function of the proteins that cause
disease? This is an important question because one possibility
is that neurodegenerative diseases are caused by either a loss
of or a toxic gain of protein function. One way to delineate
the normal function of proteins that cause neurodegenerative
diseases is through utilizing non-mammalian model systems.
Many non-mammalian model systems have numerous benefits
including simpler genomes, decreased genetic redundancy, ease
of genetic manipulation, shorter generation times, and scalability
for high throughput genetic and pharmacological studies (van
Ham et al., 2009; Gama Sosa et al., 2012; Bozarro, 2013; Suresh
et al., 2018). These advantages allow for more rapid investigation
into mechanisms that cause neurodegeneration that cannot be
accomplished as easily in mammalian model systems.

While Saccharomyces cerevisiae, Caenorhabditis elegans,
and Drosophila melanogaster are popular non-mammalian
systems for neurodegenerative disease research, Dictyostelium
discoideum (Dictyostelium) is another simple organism that is
useful as a model to investigate mechanisms that cause disease.
Dictyostelium is a soil-dwelling amoeba found throughout
the world. Dictyostelium consumes bacteria, however, when
bacteria are depleted, Dictyostelium undergoes a developmental
cycle transitioning from a unicellular amoeba to a multicellular
fruiting body (Figure 1). This developmental process makes
Dictyostelium an ideal model organism for investigating
numerous biological processes including chemotaxis, cell
differentiation, and tissue formation. In addition to these
cellular processes, Dictyostelium is also a useful model of human
diseases, including neurodegenerative diseases. Surprisingly,

FIGURE 1 | Dictyostelium’s developmental cycle. Under stress conditions

such as starvation, unicellular Dictyostelium emits a cAMP signal causing

individual cells to culminate, forming aggregates after 6 h. After 12 h, the

aggregates begin to form mounds which turn into finger/slug structures

around 16 h. The slug carries the Dictyostelium cells to the top of the forest

floor where it forms a tipped mound around 18 h. After 24 h, a fruiting body

consisting of a spore filled sorus is hoisted by a stalk. Fruiting bodies are then

carried off by wildlife and can germinate and propagate elsewhere.

despite the lack of a nervous system, Dictyostelium’s genome
encodes a number of genes that cause neurodegenerative diseases
(Table 1). This is a substantial increase in genes that cause
neurodegeneration compared to S. cerevisiae, another single-
celled organism commonly utilized for genetic screening and
elucidation of gene function (Table 2). This makes Dictyostelium
a good model organism for identifying the normal function of
genes that cause neurodegeneration and for identifying how
mutations in these genes may disrupt function.

In addition to encoding for genes that cause
neurodegeneration, Dictyostelium also has numerous technical
advantages that make it an advantageous model system. One
of these advantages is that Dictyostelium is typically haploid,
simplifying gene disruption, however, it does have both
sexual and parasexual cycles, enabling the investigation of
gene complementation (Loomis, 1987; Bloomfield et al., 2010;
Bozarro, 2013). In addition,Dictyostelium is inexpensive and easy
to culture, making it an accessible model organism.Dictyostelium
is also advantageous in that as an amoeba it is a single cell type,
reducing the complexity associated with multiple cell types
commonly found with cultured mammalian neurons. Finally,
there are several genetic screening protocols established making
Dictyostelium an attractive model organism for the discovery of
gene function. In addition to these advantageous properties there
are limitations associated with investigating neurodegenerative
diseases. Most notably, Dictyostelium lacks a nervous system and
thus does not have the complexity found in the human brain.
Additionally, neurons are long-lived post-mitotic cells whereas
Dictyostelium are rapidly dividing (Figure 2). However, despite
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TABLE 1 | Human neurodegenerative disease proteins and their Dictyostelium homologs.

Human Protein Dictyostelium Protein Neurodegenerative

disease

Human Protein Dictyostelium Protein Neurodegenerative

disease

PSEN1 Q54DE8 Alzheimer’s disease HTT Q76P42 Huntington’s disease

PSEN2 Q54ET2

ABCA7 Q8T6J5 CLN1 Q54N35 Neuronal ceroid

lipofucinosis/batten

disease
PLD3 Q54SA1 CLN2 Q55CT0

CD2AP Q54F41 CLN3 Q54F25

BIN1 Q54IA6/ Q54NT2 CLN4 Q54GP6/Q86KX9

INPP5D Q54W40 CLN5 Q553W9

CELF1 Q54EJ3 CLN7 Q8T2G9

PFK P90521 CLN10 O76856

PK Q54RF5

CLU O15818 SACS Q55EK5/Q55EK4/Q55EK6 ARSACS

UCHL1 DJ-1 Q54T48 Q54MG7 Parkinson’s disease PEX1 PEX3 Q54GX5 Q54U86 Infantile refsum disease

ATP13A2 Q54NW5/ Q54 × 63 PEX6 PEX12 Q54CS8 Q54N40

GIGYF2 Q54WZ1 PHYH Q54BP2 Refsum disease

VPS35 Q54C24

EIF4G1 Q553R3 PEX7 Q54WA3

PGK1 Q9GPM4

VPS13C GCH1 Q55FG3 Q94465 VPS13a Q54LB8/Q555C6 Chorea-acanthocytosis

SOD1 Q54G70 Amyotrophic lateral

sclerosis

SMPCD1 Q54C16 Niemann-Pick disease

UBQLN2 Q9NIF3 NPC1 Q551C5/Q9TVK6

KIF5A Q54UC9

CHCHD10 Q54BU1 TSEN2 Q54RX5 Pontocerebellar

hypoplasiaTUBA4A P32255 TSEN34 Q556W4

ANXA11 P24639 TSEN54 Q54ND7

PGK1 Q9GPM4 RARS2 Q558Z0

ATXN2 Q55DE7 Spinocerebellar

ataxia

PDHA1 Q54C70 Pyruvate

dehydrogenase

deficiency
SPTBN2 Q54DR3 DLAT P36413

ATXN10 Q55EI6 PDHB Q86HX0

PPP2R2B Q54Q99

ITPR1 Q9NA13 HEXB P13723/Q54SC9 Sandoff disease

TBP P26355

EEF2 P151122/Q54JV1 HEXA P13723/Q54SC9 Tay-Sachs disease

AFGL2 Q75JS8

ELOVL4 Q55BY4 ERCC6 Q54TY2 Cockayne syndrome

NOP56 Q54MT2

AT2B1 P54678/Q54HG6 ABCA1 Q8T5Z7 Tangier’s disease

VPS13D Q55FG3

SCYL1 Q55GS2 FXN Q54C45 Friedreich’s ataxia

these drawbacks, Dictyostelium has proven to be a useful model
organism for probing the function and dysfunction of proteins
implicated in neurodegenerative diseases.

INVESTIGATING NEURODEGENERATION
WITH DICTYOSTELIUM

Dictyostelium is a powerful model organism for understanding
the underlying function of genes that are implicated in
neurodegeneration. Dictyostelium continues to be utilized to
interrogate the normal function of genes and to determine
how disease-causing mutations alter cellular processes. This
information can then be used to validate that these genes disrupt

similar pathways in neurons and in the mammalian brain. Here
we highlight significant findings in the field of neurodegeneration
made in Dictyostelium and discuss opportunities for further
utilization of Dictyostelium as a model organism to interrogate
neurodegenerative diseases.

Alzheimer’s Disease
Alzheimer’s disease (AD) is the most common neurodegenerative
disease. The pathological hallmarks of AD are the accumulation
of extracellular amyloid-β (Aβ) plaques and intracellular tau
neurofibrillary tangles. Under normal conditions, the amyloid
precursor protein (APP) is processed by β-secretases, such
as β-secretase 1 (BACE1), and γ-secretases to yield APP
C-terminal fragments of different lengths. BACE1 initially
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TABLE 2 | Comparison of neurodegenerative disease genes present in Dictyostelium versus S. cerevisiae.

Neurodegenerative disease Gene Present in

Dictyostelium

Present in

S. cerevisiae

Neurodegenerative

Disease

Gene Present in

Dictyostelium

Present in

S. cerevisiae

Alzheimer’s disease ABCA7 + ARSACS SACS −

PLD3 −

PSEN1 − Neuronal ceroid

lipofucinoses (Batten

diseases)

CLN1 −

PSEN2 − TPP (CLN2) −

CD2AP − CLN3 +

BIN1 − CLN4 −

INPP5D − CLN5 −

CELF1 + CLN7 −

CLN10 +

Parkinson’s disease UCHL1 + Infantile osteopetrosis CLCN7 −

DJ-1 −

ATP13A2 +

GIGYF2 + Infantile refsum disease PEX1 −

VPS35 + PEX3 +

EIF4G1 − PEX6 +

PEX12 +

Amyotrophic lateral sclerosis SOD1 +

KIF5A − PHYH −

CHCHD10 +

TUBA4A + Chorea acanthocytosis VPS13a +

ANXA11 − Niemann Pick diseases SMPD1 −

Huntington’s disease HTT − NPC1 +

Spinocerebellar ataxia ATXN2 − Pontocerebellar

hypoplasia

TSEN2 −

ATXN10 − TSEN34 +

TBP + TSEN54 −

PPP2R2B + RARS2 +

ITPR1 −

AFG3L2 + Pyruvate

dehydrogenase

deficiency

PDHA1 +

ELOVL4 + PDHB +

NOP56 + DLAT +

Spinocerebellar ataxia, X-linked AT2B1 + Sandhoff disease HEXB −

Spinocerebellar ataxia autosomal recessive VPS13D − Tay-Sachs disease HEXA −

SCYL1 +

SPTBN2 − Cockayne syndrome ERCC6 +

EEF2 +

cleaves the N-terminal region of APP, and the γ-secretase
complex cleaves the C-terminal region. Presenilin (PSEN) 1
or 2 serves as the catalytic subunit of γ-secretase and is
involved in processing APP into Aβ peptides (Figure 3A;
De Strooper et al., 1998, 1999; Struhl and Greenwald, 1999;
Wolfe et al., 1999; Esler et al., 2000; Li et al., 2000). Under
normal conditions, the most abundant Aβ peptide is Aβ40,
with very little of the toxic Aβ42 fragment present. However,
in AD there is an alteration of APP cleavage leading to an
increased Aβ42/Aβ40 ratio. This leads to the formation of
Aβ aggregates that are thought to be an initial step in AD
pathogenesis. Because the Aβ42/Aβ40 ratio is increased, and
over 150 missense mutations in PSEN1/2 have been linked to
AD pathogenesis, a large amount of research has investigated
the function of the γ-secretase complex in the context of
AD (De Strooper et al., 2012; Haass et al., 2012; Mucke,
2012). Therefore, model systems that interrogate the γ-secretase

complex and PSENs are useful for understanding the initial steps
of AD pathogenesis.

Interestingly, while Dictyostelium does not encode for a
β-secretase or APP, it does express a divergent form of the
γ-secretase complex. Homologous genes have been identified
in Dictyostelium for all components of the γ-secretase complex
including PSEN1 and PSEN2. To investigate the biological
function of PSEN1 and PSEN2, knockout strains (ps1− and
ps2−, respectively) were developed. ps2− cells had developmental
defects, could not differentiate into pre-stalk cells during the
slug stage, and were unable to sporulate, suggesting that PSEN2
γ-secretase complex activity is required for cell differentiation
(Figure 3B; McMains et al., 2010). This is consistent with the
observation that PSEN γ-secretase activity is involved in neuronal
differentiation (Baumeister, 1999; McMains et al., 2010; van Tijn
et al., 2011). On the other hand, deletion of PSEN1 resulted in
a reduced phagocytic ability, consistent with data in mammalian
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FIGURE 2 | Advantages and limitations of Dictyostelium as a model organism for neurodegenerative diseases. Advantages of using Dictyostelium as a model for

neurodegenerative diseases are listed on the left, and its limitations are listed on the right.

FIGURE 3 | Amyloid precursor protein (APP) processing and phenotypes of Dictyostelium PSEN knockout strains. (A) Processing of APP in human cells begins with

initial cleavage by a β-secretase enzyme, followed by cleavage by presenilin in the γ-secretase complex to produce amyloid-β fragments. (B) Knockout of PSEN2

(ps2-) in Dictyostelium causes impaired ability to differentiate into pre-stalk cells during development and are unable to sporulate compared to wild-type (WT) cells.

(C) Knockout of PSEN1 (ps1-) in Dictyostelium results in smaller cell size and defective phagocytosis compared to WT.

cells that PSENs are present in lysosomal membranes (Figure 3C;
McMains et al., 2010; Myre, 2012). The phenotypic differences
between ps1- and ps2- Dictyostelium cells also strengthen the
hypothesis that there are distinct PSEN γ-secretase complexes

that serve different biological functions (Gu et al., 2004;
Myre, 2012).

In addition to PSEN1 and 2 regulating phagocytosis and
development, respectively, work has also been done to identify
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functions of additional components of the γ-secretase complex
including Aph-1 and nicastrin (Ncstn) (Sharma et al., 2019).
It was identified that Dictyostelium cells lacking Aph-1,
Ncstn, or both PSEN proteins caused a significant decrease
in micropinocytosis, indicating a role for these γ-secretase
components in endocytosis. Deletion of Aph-1 or both PSEN
proteins also caused a decrease in phagosomal proteolysis, an
increase in the rate of autophagosome acidification, a decrease
in the number of but increase in the size of Atg8-positive
structures, and a severe decrease in autophagic flux. These
results suggest that Aph-1 and PSEN1/2 regulate autophagy.
Finally, it was observed that the large Atg-8-positive structures
in Aph-1 and PSEN knockout cells contained high-molecular-
weight ubiquitinated protein, consistent with an impairment in
autophagic degradation. These phenotypes were rescued by the
overexpression of either Dictyostelium or human catalytically
inactive PSEN, consistent with PSENs and the γ-secretase
complex playing non-proteolytic roles in both endocytosis and
autophagy pathways (Sharma et al., 2019).

In addition to identifying the role of the γ-secretase complex
in Dictyostelium biology, it was also found that wild-type
Dictyostelium cells expressing human APP process APP in a
similar manner as human cells, producing both Aβ40 and
Aβ42 fragments. This process is dependent on the γ-secretase
complex, as cells lacking components of the γ-secretase complex
are unable to process APP (McMains et al., 2010). This is an
intriguing observation because Dictyostelium does not encode
for a β-secretase to initiate cleavage, raising the question of
how Dictyostelium initially processes APP. The absence of a
β-secretase should prevent the initial cleavage of APP and halt
further processing. This means that Dictyostelium has a way of
processing APP either without N-terminal cleavage or by another
unknown enzyme that may initiate processing. Identifying how
Dictyostelium initiates APP cleavage may provide novel insight
into currently unknown roles of the γ-secretase complex in
AD. Additionally, due to the ability to perform genetic screens,
Dictyosteliummay be a powerful model organism for identifying
novel modulators of APP processing.

Parkinson’s Disease
Parkinson’s disease (PD) is the second-most prevalent
neurodegenerative disease caused by the loss of dopaminergic
neurons in the substantia nigra. This occurs, at least in part,
due to the formation and accumulation of protein aggregates
called Lewy bodies within the neuron’s cytoplasm. In PD,
neurons have numerous problems including oxidative stress,
mitochondrial dysfunction, synaptic dysfunction, and inhibition
of protein quality control pathways (Cook et al., 2012; Picconi
et al., 2012; Dias et al., 2013; Park et al., 2018). There are many
proteins that have been implicated in PD pathogenesis, but
only α-synuclein, DJ-1, and LRRK2 have been investigated in
Dictyostelium thus far.

α-Synuclein

The α-synuclein protein is highly expressed in the brain,
especially in dopaminergic neurons, and several α-synuclein
mutations have been mapped to familial cases of PD

(Stefanis, 2012). Although Dictyostelium does not encode a
homolog of the α-synuclein gene, one study was performed to
determine the effect of exogenous expression of α-synuclein
in Dictyostelium. Expression of either wild-type or mutant
α-synuclein resulted in impaired phototaxis and thermotaxis,
altered fruiting body morphology, and decreased the rate of
phagocytosis, consistent with a potential role for α-synuclein
in disrupting mitochondrial function in Dictyostelium
(Fernando et al., 2020). However, the addition of mutant
or wild-type α-synuclein increases some or all aspects of
mitochondrial respiration, respectively, which is contrary
to the other mitochondrial phenotypes previously observed
(Fernando et al., 2020). In the future, additional studies
of the effects of α-synuclein expression on mitochondrial
function in Dictyostelium may help clarify α-synuclein’s role in
mitochondrial biology.

In addition to potentially disrupting mitochondrial
function, α-synuclein also affects normal cellular functions
of Dictyostelium, suggesting that it may exert some toxicity on
Dictyostelium. The cause of this toxicity is unknown and further
investigation may shed light on how α-synuclein exerts its
toxicity. The phenotypes observed by expressing both wild-type
and mutant α-synuclein did encompass some of the phenotypes
required for mitochondrial dysfunction, suggesting that
Dictyostelium may have mechanisms to suppress α-synuclein-
induced toxicity. If so, Dictyostelium could be utilized to identify
novel suppressors of mitochondrial dysfunction that could play a
protective role in PD.

DJ-1

Another protein implicated in PD pathogenesis is DJ-1, a small,
dimeric protein that is most highly expressed in cells with
high energy demands, such as neurons. Cells with high energy
demand typically have high levels of reactive oxygen species, and
one function of DJ-1 is to protect cells from oxidative stress
(Wagenfeld et al., 1998; Kinumi et al., 2004; Taira et al., 2004; Kim
et al., 2005; Meulener et al., 2005; Wilson, 2011; Jain et al., 2012;
Ottolini et al., 2013; Batelli et al., 2015; Chunna and Pu, 2017;
Eberhard and Lammert, 2017; Kawate et al., 2017; Kiss et al., 2017;
Smith andWilson, 2017; Catazaro et al., 2018). DJ-1 has also been
implicated to act as a chaperone, modulating the toxicity and
misfolding of both α-synuclein and mutant huntingtin (Batelli
et al., 2008; Wang et al., 2011; Sajjad et al., 2014; Zondler et al.,
2014). There have been many DJ-1 mutations identified in PD,
some of which have been clearly linked to PD pathogenesis by
disrupting DJ-1 dimerization (Wilson et al., 2003; Gorner et al.,
2007; Malgieri and Eliezer, 2008; Ramsey and Giasson, 2010).
While DJ-1 is highly expressed in astrocytes of the frontal cortex
and substantia nigra in both control and PD brains, analysis of PD
brains showed decreased levels of both mRNA and protein across
the entire brain (Bandopadhyay et al., 2004; Kumaran et al.,
2009). Currently, the role of DJ-1 in both healthy and PD cells,
as well as how it contributes to PD pathogenesis, is unknown,
although it has been proposed to be linked to mitochondrial
dysfunction (Repici and Giorgini, 2019).

Dictyostelium’s genome encodes a homolog of DJ-1 that
has been utilized to investigate its normal biological role
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(Chen et al., 2017). In Dictyostelium, DJ-1 is located in the
cytoplasm, and deletion of DJ-1 results in growth defects,
but not mitochondrial dysfunction (Chen et al., 2017). While
deletion of DJ-1 did not result in a mitochondrial phenotype,
transient knockdown of DJ-1 slightly increased mitochondrial
respiration whereas overexpression of DJ-1 inhibited respiration
(Chen et al., 2017). The conflicting results between the DJ-
1 knockout and transient knockdown strains could be due to
genetic compensation that may occur in the knockout but not in
the knockdown (El-Brolosy and Stainier, 2017). The conflicting
findings between deletion of DJ-1 versus knockdown of DJ-1
suggest further work is warranted to understand the potential role
of DJ-1 in regulating mitochondrial function in Dictyostelium.

A follow-up study decided to investigate the function of DJ-
1 under oxidative stress conditions, as it could differ compared
to normal cellular conditions (Chen et al., 2021). Oxidative
stress on wild-type Dictyostelium cells resulted in inhibition
of mitochondrial respiration and impairment of phagocytosis
in an AMPK-dependent manner, which worsens during DJ-1
knockdown. Oxidative stress in combination with DJ-1 loss also
leads to worsened defects in phototaxis, morphogenesis, and
growth, also in an AMPK-dependent manner. These phenotypes
all coincide with the Dictyostelium model of mitochondrial
dysfunction. These data suggest therefore that the presence of
DJ-1 in its oxidized form is protective of effects caused by
oxidative stress and AMPK hyperactivity (Chen et al., 2021).
Further studies should be performed to better understand the
role of DJ-1 in both normal and oxidative conditions. Once the
role of DJ-1 is well defined in Dictyostelium, this model system
would be a powerful tool to interrogate dysfunction caused by
known PD pathways and could increase our understanding of
how mutations in DJ-1 result in PD pathology.

Leucine-Rich Repeat Kinase 2

Leucine-rich repeat kinase 2 (LRRK2) is a commonly mutated
gene in both sporadic and inherited forms of PD. LRRK2 encodes
a large protein with GTPase, kinase, and scaffolding domains
(Bosgraaf and van Haastert, 2003). It is a member of the Roco
protein family, having Roc (Ras of complex) and COR (C-
terminus of Roc) domains, along with a leucine-rich repeat (LRR)
at its N-terminus (Rui et al., 2018). LRRK2 is a cytoplasmic
protein that associates with intracellular membranes, such as the
endoplasmic reticulum, and vesicular structures (Hatano et al.,
2007; Alegre-Abarrategui et al., 2009). LRRK2 is expressed in
many tissues, but it is highly expressed in dopaminergic neurons
of the mammalian brain (Biskup et al., 2006; Galter et al., 2006;
Higashi et al., 2007). In PD, LRRK2 kinase activity is often
increased, which in turn has many downstream effects including
impaired dopamine neurotransmission, dopaminergic neuronal
cell death, protein synthesis and degradation defects, increased
inflammatory response, and oxidative damage (Liou et al., 2008;
Carballo-Carbajal et al., 2010; Chen et al., 2012; Maekawa et al.,
2016; Rui et al., 2018). Therefore, understanding the cellular
pathways that regulate LRRK2’s kinase activity is warranted.

Roco proteins were originally discovered in Dictyostelium,
and eleven Roco proteins have been identified in Dictyostelium,
whereas only four have been identified in vertebrates, including

humans (Bosgraaf et al., 2002; Bosgraaf and van Haastert,
2003). The Roco4 protein in Dictyostelium has the same domain
architecture as LRRK2 (Kortholt et al., 2012). In Dictyostelium,
Roco4’s Roc domain is essential for kinase activity, while the
CORdomain functions for protein dimerization. Pointmutations
within the Roco4 Roc or kinase domains inactivate it but do not
lead to loss of GTP-binding (Kortholt et al., 2012). Furthermore,
PD-related mutations in Roco4 revealed correlating decreases
in GTPase activity and increasing kinase activity except for
L1180T (LRRK2 I2020T), which shows reduced kinase activity
like its LRRK2 counterpart (Jaleel et al., 2007; Ohta et al.,
2010; Kortholt et al., 2012). Functionally, deletion of Roco4 or
LRRK2 or expression of mutant forms of LRRK2 inDictyostelium
and in human macrophages indirectly leads to mitochondrial
dysfunction (Rosenbusch et al., 2021). Therefore, Roco4 is an
attractive candidate for investigating the role of LRRK2 in normal
physiology and in PD. While Roco4 is similar architecturally to
LRRK2, it has not been confirmed as a true homolog of LRRK2.
Further work must be done to determine if Roco4 and LRRK2
are homologs. One way to do this would be attempting to rescue
a Roco4 Dictyostelium knockout with LRRK2. If the knockout
phenotypes are alleviated, this would suggest similar cellular roles
for both Roco4 and LRRK2.

Huntington’s Disease
Huntington’s disease (HD) is caused by the expansion of a
CAG trinucleotide repeat in the coding region of the huntingtin
(Htt) gene. This CAG expansion is then translated into a
polyglutamine (polyQ) tract in the huntingtin protein. Long
polyQ tracts (>35Q) result in the misfolding and aggregation of
the huntingtin protein. This aggregation process is thought to
be one of the mechanisms that lead to disease pathogenesis. In
addition to aggregation, both loss of normal huntingtin function
and toxic gain of function have been proposed to contribute
to toxicity (Ross, 1995; Perutz, 1999; Imarisio et al., 2008).
Therefore, understanding the function of the huntingtin protein
is important for understanding how polyQ tract expansion causes
defects in huntingtin function resulting in HD pathogenesis. One
way the normal function of the huntingtin protein has been
investigated is by using model organisms. Htt has homologs in
many model systems including mice, zebrafish, Drosophila, and
Dictyostelium. Studies in these organisms suggest that huntingtin
plays an important role in development (Duyao et al., 1995; Nasir
et al., 1995; Zeitlin et al., 1995; Lumsden et al., 2007; Zhang
et al., 2009). Therefore,Dictyostelium provides an excellent model
organism to interrogate huntingtin function.

In Dictyostelium the huntingtin protein has similar features to
that of human huntingtin (Chisholm et al., 2006; Myre, 2012).
Interestingly, unlike human huntingtin,Dictyostelium huntingtin
does not have a polyQ tract encoded in exon 1. However, it does
have a short (∼19Q) polyQ tract further along in its amino acid
sequence that is composed of mostly CAA trinucleotide repeats
rather than CAG (Insall, 2005; Myre et al., 2011). Because the
polyQ tract is not in a similar position as in humans, and because
Dictyostelium has a repeat-rich genome/proteome, it is unclear
if this polyQ tract plays a similar role to the polyQ tract found
in the human huntingtin protein. To elucidate the function of
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Dictyostelium’s huntingtin protein,Htt- cells were generated.Htt-
cells are viable but have many subtle phenotypes, suggesting
that huntingtin is involved in multiple cellular processes (Myre
et al., 2011). Htt- cells placed in a low ionic strength phosphate
buffer became round and lacked membrane extensions due to a
reduction in F-actin. This is consistent with mammalian studies
showing that huntingtin regulates neurological processes like
actin-rich dendritic spine formation and membrane branching
and explains defective actin remodeling in HD patient cells
(Ferrante et al., 1991; Dent et al., 2011; Munsie et al., 2011;
Myre et al., 2011). Htt- cells cultured in the absence of
exogenous Ca2+ cannot initiate cAMP-induced Ca2+ transients,
thus impairing cAMP relaying and chemotaxis. This suggests a
role for huntingtin inDictyostelium chemotaxis and development
(Myre et al., 2011). Htt- cells also failed to populate the pre-
spore region of the slug and therefore did not develop into spores,
indicating a need for huntingtin to make viable spores, consistent
with huntingtin regulating cell fate during development (Myre
et al., 2011). This data supports other vertebrate studies where
similar cell fate defects have been observed in the absence of
huntingtin (Reiner et al., 2001; Henshall et al., 2009). The research
performed in Dictyostelium on huntingtin further supports
vertebrate research that huntingtin is a multifunctional protein
involved in many cellular processes. Because the huntingtin
protein in Dictyostelium does not contain a polyglutamine tract
it could be an interesting model system to probe the functional
role of polyQ. It would be interesting to determine the effects
that a normal or expanded polyQ tract in exon 1 of Dictyostelium
huntingtin would have in wild-type or Htt- Dictyostelium cells.
It would also be interesting to determine if human huntingtin
with either a normal or expanded polyQ tract would rescue the
phenotypes of Htt- Dictyostelium cells. Future studies such as
these could allow us to better understand similarities between
huntingtin homologs as well as help delineate differences in
huntingtin’s function in its expanded form.

Neuronal Ceroid Lipofuscinosis (Batten
Disease)
Neuronal ceroid lipofuscinosis (NCL), or Batten Disease,
encompasses a growing class of debilitating neurodegenerative
lysosomal storage diseases. NCLs are also the most common
neurodegenerative diseases seen in children (Mole and Cotman,
2015). These diseases are caused by the accumulation of ceroid
lipopigments in the lysosomes, along with many NCL-associated
proteins (Jalanko and Braulke, 2009). There are thirteen ceroid
lipofuscinosis neuronal (CLN) genes/proteins implicated in this
class of diseases, with mutations in different genes giving way to
different NCLs. Despite their role in NCLs, the normal functions
of CLN proteins remain unclear.

CLN3

CLN3 is one of 13 proteins that when mutated cause
NCL. Mutations in the CLN3 gene cause the most common
subclass of NCLs, juvenile NCL (JNCL) (International Batten
Disease Consortium, 1995). The CLN3 gene encodes for
the CLN3 protein, a transmembrane protein that localizes
to lysosomes, endosomes, and potentially other subcellular

membranes (Cotman and Staropoli, 2012; Uusi-Rauva et al.,
2012; Kollmann et al., 2013). While CLN3’s precise function is
unknown it has been implicated in several cellular processes
including lysosomal pH homeostasis, endocytic trafficking, and
autophagy (Pearce et al., 1999; Holopainen et al., 2001; Gachet
et al., 2005; Cao et al., 2006; Getty and Pearce, 2011).

Dictyostelium’s genome has a homolog forCLN3 (Cln3), which
was used as a model to understand its normal function (Huber
et al., 2014). InDictyostelium, deletion ofCln3 results in increased
proliferation during vegetative growth. This increase in growth
is caused by altered levels of secretory proteins that regulate
proliferation signaling. RNAseq revealed that Cln3 mRNA levels
dramatically increase during mid-development. Consistent with
a role for Cln3 at mid-development, cln3− cells showed faster
slug formation, increased slug migration, and accelerated fruiting
body formation, suggesting that Cln3 plays a role in regulating
the speed of development (Figure 4A; Rot et al., 2009; Huber
et al., 2014). Ca2+ chelation was found to restore developmental
timing to the rate of WT cells and suppresses abnormal slug
migration, indicating that Cln3 also regulates Ca2+-dependent
developmental events (Huber et al., 2014).

While cln3− cells have accelerated fruiting body formation,
cln3− cells also have a delay in streaming and aggregation
due to reduced cell-cell adhesion (Huber et al., 2017). Further
investigation into this phenotype determined that Cln3 localizes
to the contractile vacuole network and colocalizes with the
Golgi marker wheat germ agglutinin. This suggests that Cln3
is involved in both conventional and unconventional secretory
pathways during development. Mass spectrometry of wild-type
versus cln3− Dictyostelium cells revealed that the most affected
proteins in cln3− cells were involved in endocytosis, vesicle-
mediated transport, proteolysis, and metabolism, supporting
the hypothesis that Cln3 plays a role in secretory pathways
(Huber, 2017). Cln3 has also been implicated in Dictyostelium’s
osmoregulation, and osmoregulatory defects have been observed
in mammalian cell models of Batten disease (Stein et al.,
2010; Getty et al., 2013; Tecedor et al., 2013; Mathavarajah
et al., 2018). Under hypotonic stress, cln3− cells show
defects in cytokinesis, have reduced viability and impaired
spore integrity. Under hypertonic stress, cln3− cells also have
reduced viability and development is inhibited (Mathavarajah
et al., 2018). This indicates Cln3 plays an important role
in osmoregulation.

Finally, RNAseq analysis of cln3− Dictyostelium cells unveiled
over 1,000 genes that are differentially expressed during
Dictyostelium starvation, including many homologs of NCL
genes. Loss of Cln3 alters the expression and activity of lysosomal
enzymes, increases lysosomal pH, and alters nitric oxide
homeostasis (Huber and Mathavarajah, 2019). Upregulation of
the Dictyostelium homolog of tripeptidyl peptidase 1 (Tpp1)
was also observed, in addition to a correlating increase in Tpp1
enzyme activity (Mathavarajah et al., 2018). Autofluorescent
storage bodies were observed in starving Dictyostelium cells,
which were also found in starving tpp1- cells, linking Cln3
function to Tpp1 activity (Phillips and Gomer, 2015; Huber and
Mathavarajah, 2019). Because Cln3 has conserved function in
Dictyostelium and human cells, further studies are warranted to
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FIGURE 4 | Dictyostelium phenotypes of Cln knockout strains. (A) Knockout of Cln3 (cln3−) in Dictyostelium leads to an increase in vegetative growth as well as

faster slug formation, migration, and fruiting body formation. (B) Cln5 knockout (cln5−) results in an increase in autophagosome formation and ubiquitination of

proteins, indicating upregulated autophagic activity. (C) Dictyostelium ddTpp1 normally cleaves a synthetic human substrate of human TPP1 (i), but in tpp1- cells,

cleavage of the substrate is greatly reduced (ii).

fully understand Cln3 function and to determine how mutations
in Cln3 result in disease.

CLN5

Another protein implicated in NCLs is CLN5. Mutations in
CLN5 have been linked to late infantile, juvenile, and adult
NCLs (Pineda-Trujillo et al., 2005; Cannelli et al., 2007; Xin
et al., 2010; Mancini et al., 2015; Simonati et al., 2017). CLN5
localizes to the lysosomalmatrix and extracellular space and alters
numerous processes including neurogenesis, synaptic recycling,
and autophagy (Isosomppi et al., 2002; von Schantz et al., 2008;
Schmiedt et al., 2012; Larkin et al., 2013; Moharir et al., 2013;
Fabritius et al., 2014; Hughes et al., 2014; Cárcel-Trullols et al.,
2015; De Silva et al., 2015; Best et al., 2017; Jules et al., 2017;
Leinonen et al., 2017; Uusi-Rauva et al., 2017). However, the
precise function of CLN5 and its role in NCLs is unknown.

Similar to Cln3, Dictyostelium also expresses a homolog of
CLN5 (Cln5). Cln5 localizes to the ER, and both Dictyostelium
Cln5 and exogenous human CLN5 have glycoside hydrolase
activity in Dictyostelium cells. Immunoprecipitation and mass
spectrometry identified numerous Cln5 interactors, many of
which are implicated in NCLs. Some of these interactors include
cathepsin D, tripeptidyl peptidase 1, and CDC48 (Huber and
Mathavarajah, 2018). Further investigation of Cln5 was found
that cln5−- cells have reduced cell proliferation, cytokinesis,

viability, folic acid-mediated endocytosis, and growth in
nutrient-limited media. cln5− cells develop more rapidly than
wild-type cells (McLaren et al., 2021). cln5− cells also exhibit
impaired spore morphology, germination, and viability. At a
cellular level deletion of cln5 results in an increased number
of autophagosomes and ubiquitinated proteins, consistent with
increased autophagic activity (Figure 4B). Development in the
presence of an autophagy inhibitor impaired the formation
of developmental structures, including reduction in slug size
(McLaren et al., 2021). These data suggest that Cln5 plays
a similar role in both Dictyostelium and human biology and
may play a role in autophagy. Further work using Cln5 in
Dictyostelium, including introducing pathogenic NCLmutations,
may contribute to better understanding the native function
of CLN5 and NCL pathogenesis. These studies could also be
expanded into mammalian systems to confirm the findings in
Dictyostelium and facilitate therapeutic avenues for NCLs.

Tripeptidyl Peptidase 1

Another subclass of NCL, late infantile NCL (LINCL), is
caused primarily by mutations in tripeptidyl peptidase 1
(TPP1, also known as CLN2), a lysosomal peptidase (Sleat
et al., 1997). TPP1 cleaves tripeptides of the N-terminus of
proteins with optimal peptidase activity occurring at pH 3.5
(Vines and Warburton, 1998; Sohar et al., 1999). However, its
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in vivo substrates and physiological function are unknown
(Phillips and Gomer, 2015). Studies in LINCL fibroblasts revealed
that the lysosomal TPP1’s activity is dramatically reduced
compared to fibroblasts from unaffected individuals (Vines and
Warburton, 1999). While TPP1 is conserved among vertebrates,
there are no homologs of TPP1 found among most invertebrate
model organisms such asDrosophila, C. elegans, and S. cerevisiae,
limiting the utilization of these model organisms in investigating
TPP1 function (Wlodawer et al., 2003; Phillips and Gomer, 2015).

Unlike other lower eukaryotes, Dictyostelium does possess
a homolog of TPP1, ddTpp1. Deletion of ddTpp1 results in
a reduced, but not a complete loss of, the ability to cleave a
synthetic substrate of human TPP1 (Figure 4C). Both ddTpp1
and human TPP1 localize to the lysosome when expressed in
Dictyostelium. tpp1- cells display normal vegetative growth but
undergo development more rapidly than wild-type cells. Once
developed, the fruiting bodies also have a reduced number of
spores. Starved tpp1- cells form intracellular auto-fluorescent
bodies analogous to those found in patients lacking TPP1, and
tpp1- cells starved of amino acids are smaller in size and have
reduced viability, indicating defects in autophagy. Finally, in
the presence of chloroquine (a lysosome-perturbing compound),
tpp1- cells have a highly impaired developmental cycle (Phillips
and Gomer, 2015). These data point to ddTpp1 playing roles
in both autophagy and Dictyostelium’s developmental cycle.
Consistent with this, inhibition of autophagy by treating cells
with the target of rapamycin (TOR) complex inhibitor rapamycin
or by knocking down the upstream activator of the TOR
complex Ras homology enriched in brain (RHEB) results in the
same phenotypes observed in tpp1- cells (Smith et al., 2019).
Furthermore, overexpression of RHEB rescues these defects,
suggesting that TOR signaling could be responsible for tpp1-
phenotypes (Smith et al., 2019). It is important to note that
knocking out ddTpp1 does not cause a complete loss of substrate
cleavage (Phillips and Gomer, 2015). This suggests that there may
be other proteases or peptidases present in Dictyostelium that
could be substituted for ddTPP1. If so, this could mean there may
be compensatory cleavage mechanisms in human cells as well.
In the future it would be interesting to identify other proteases
that can cleave TPP1 substrates inDictyostelium. Identification of
other proteins that can cleave TPP1 substrates may lead to novel
ideas to guide the design of LINCL therapies in the future.

Hirano Bodies
Hirano bodies are cytoplasmic protein aggregates that have
crystalloid fine rod structures (Cartier et al., 1985; Hirano,
1994). They contain numerous different proteins such as actin,
actin-binding proteins, microtubule-associated proteins, tau,
C-terminal fragments of APP, and neurofilaments (Hirano, 1994).
These inclusions are seen preferentially in the neuronal processes
of patients of many neurodegenerative diseases including AD,
parkinsonism-dementia, amyotrophic lateral sclerosis (ALS),
Creutzfeldt-Jacob disease, and Pick’s disease (Cartier et al., 1985;
Hirano, 1994). However, Hirano bodies have also been found
in other cell types such as glia, peripheral nerve axons, and
extraocular muscles of the eyes (Tomanaga, 1983). While Hirano
bodies are associated with neurodegenerative diseases, Hirano

bodies also form as a function of age and can be found in
the brain of aged people without neurodegenerative diseases
(Gibson and Tomlinson, 1997).

Dictyostelium does not naturally form Hirano bodies,
however, it has been used to model them. A model of Hirano
bodies was created in Dictyostelium using the Dictyostelium
actin crosslinking protein called the 34-kDa protein (Maselli
et al., 2002). By expressing the C-terminal fragment of the
34-kDa protein (CT) in Dictyostelium, the formation of para-
crystalline inclusions resembling Hirano bodies was observed.
These structures contain ordered assemblies of CT, F-actin,
myosin II, cofilin, and α-actinin, typical of human Hirano bodies.
Developmental studies performed on Dictyostelium expressing
CT found that development was delayed by 6 h. In addition
to Dictyostelium, expressing CT in multiple mammalian cell
systems induced the same F-actin rearrangement and Hirano
body formation (Maselli et al., 2002). This indicates that
Dictyostelium and mammalian cells use similar pathways to
form Hirano bodies. The delay in Dictyostelium development
in the presence of CT also suggests that CT causes cellular
defects. Further characterization of the Dictyostelium model of
Hirano bodies revealed that Hirano bodies can be cleared from
the cell through both the autophagy and ubiquitin-proteasome
degradation pathways (Kim et al., 2009). Additionally, mass
spectrometry performed on partially purified Hirano bodies
from Dictyostelium identified numerous proteins involved,
including proteins involved with the cytoskeleton (Dong et al.,
2016). Of these, four proteins were further investigated in the
context of model Hirano bodies: profilin, actin-related protein
(Arp) 2/3, vasodilator-stimulated phosphoprotein (VASP), and
Wiskott-Aldrich Syndrome protein and scar homolog (WASH).
Hirano bodies were unable to form under Arp2/3 inhibition
and in cells lacking VASP or HSPC300, a protein involved
in the WAVE (Wiskott-Aldrich Syndrome protein family
verprolin-homologous protein) complex and activator of Arp2/3.
This suggests that Hirano bodies require de novo actin
polymerization to form in Dictyostelium (Dong et al., 2016).
Because Dictyostelium can be used as an inducible model of
Hirano bodies by expression of CT, it can be useful for further
characterization of Hirano bodies as well as observation of long-
term effects Hirano bodies may have on cellular functions. These
studies can also be validated in mammalian systems expressing
CT to help us better understand how Hirano bodies form and the
effects they have on cellular processes.

Mitochondrial Dysfunction
Mitochondria perform critical functions including metabolism
and ATP production, reduction-oxidation control, and free-
radical scavenging (Reddy, 2007, 2009). Because the brain has
a high energy demand, mitochondrial function is critical to
neuronal health (Han et al., 2021).Mitochondrial dysfunction has
been observed inmany neurodegenerative diseases including AD,
PD, and ALS; however, it is unclear if mitochondrial dysfunction
is a cause or byproduct of neurodegenerative diseases (Reddy
and Beal, 2005; Manczak et al., 2006; Viscomi et al., 2016;
Onyango et al., 2017; Pearce et al., 2019). In many familial
neurodegenerative disease cases, mutant proteins such as Aβ in
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AD, parkin, DJ-1, and α-synuclein in PD, huntingtin in HD,
and superoxide dismutase 1 (SOD1) in ALS can localize to
the mitochondria. This has been suggested to cause a decrease
in ATP production as well as an increase in free radical
production, leading to degeneration (Beal, 2005; Reddy and Beal,
2008; Reddy, 2009). In PD, there are numerous mitochondrial
genes mutated in familial cases that correspond to dysfunction
including DJ-1, LRRK2, PRKN, PINK1, and HTRA2 (Kalinderi
et al., 2016; Narendra, 2016; Pearce et al., 2019; Han et al.,
2021). However, it is still largely unknown if and how mutations
in neurodegenerative proteins exert toxicity on mitochondria.
Aging also contributes to changes observed in mitochondrial
function. Over time, defects in mitochondrial DNA accumulate
and results in increased production of reactive oxygen species,
which are ultimately involved in late-onset diseases and cell death
(Swerdlow andKhan, 2004; Beal, 2005; Lin and Beal, 2006; Reddy,
2008; Reddy and Beal, 2008). However, why some individuals are
more susceptible to late-onset neurodegenerative diseases than
others is still unknown.

Dictyostelium mitochondrial pathways are similar to those
of most eukaryotes and have many homologous proteins to
mammalian mitochondrial proteins. Importantly, the oxidative
phosphorylation pathway is the same between Dictyostelium
and mammalian systems (Pearce et al., 2019). This makes
Dictyostelium an attractive model for studying mitochondrial
toxicity of proteins implicated in mitochondrial dysfunction in
neurodegenerative diseases.Dictyostelium is a well-studiedmodel
of mitochondrial dysfunction. In Dictyostelium, mitochondrial
dysfunction is defined by specific phenotypes including impaired
phototaxis and thermotaxis, growth defects in axenic medium
(pinocytosis) and on bacterial lawns (phagocytosis), chronic
activation of AMP kinase, shorter and thicker stalks due to
increased cell differentiation into pre-stalk cells, and altered
ability to transition from growth to development (Bokko et al.,
2007; Francione et al., 2011).Dictyostelium can therefore be easily
used to investigate neurodegenerative disease proteins in the
context of mitochondrial dysfunction. Dictyostelium encodes for
many homologs of neurodegenerative disease proteins implicated
in mitochondrial dysfunction, meaning they can be easily
mutated or deleted to study their effects on mitochondria, such
as with DJ-1 (Chen et al., 2017, 2021). However, there are some
neurodegenerative disease proteins that do not have homologs in
Dictyostelium, in which case these proteins can be introduced into
Dictyostelium and their effects observed, such as with α-synuclein
(Fernando et al., 2020). Overall, Dictyostelium provides a simple
and useful model for studying the effects of neurodegenerative
disease proteins on mitochondrial function.

HOMOLOGOUS NEURODEGENERATIVE
DISEASE GENES AND PROTEINS NOT
YET STUDIED IN DICTYOSTELIUM

In addition to the studies discussed above, there are over
50 homologous neurodegenerative disease genes expressed
in Dictyostelium (Table 1). Investigation of these genes in
Dictyostelium will likely uncover novel aspects of their function.

While Dictyostelium does not contain a complex nervous system
that will uncover all aspects of their functions, it does have a more
simplified genome that may result in decreased layers of genetic
redundancy, unveiling novel aspects of gene function that may
be missed in more complex organisms. Additionally, due to its
larger genome, Dictyostelium expresses approximately 30 more
neurodegenerative disease proteins than S. cerevisiae, allowing
for investigation of the role of these proteins in a single-celled
organism (Table 2).

Of the genes previously mentioned, PSEN1, PSEN2, DJ-
1, HTT, CLN3, CLN5, and TPP1 (CLN2) are present in
Dictyostelium but not S. cerevisiae. There are also four other
AD-related genes, one other PD-related gene, and three other
NCL-related genes expressed in Dictyostelium that have yet
to be investigated in Dictyostelium. In addition, many other
neurodegenerative diseases have the potential to be studied using
Dictyostelium as a model organism. For example, Dictyostelium
expresses genes implicated in ALS and some spinocerebellar
ataxias. Dictyostelium also has homologous genes involved
in other rare neurodegenerative diseases including Niemann-
Pick, Refsum, and Tay-Sachs diseases, among others (Table 2).
Notably, these genes are not expressed in S. cerevisiae, making
Dictyostelium an advantageous single-cell model for studying
the functions of these proteins. Dictyostelium can be utilized
to learn about both normal and mutant functions of these
proteins and consequently interrogate the pathways involved in
the pathogenesis of their respective diseases.

THE POLYGLUTAMINE DISEASES AND
DICTYOSTELIUM’S

POLYGLUTAMINE/ASPARAGINE-RICH
PROTEOME

One unique aspect of Dictyostelium’s genome is that it has a
remarkably large number of single sequence repeats (SSRs).
Interestingly, many of these SSRs are present in protein-coding
regions of genes, resulting in Dictyostelium encoding nearly
10,000 homopolymeric amino acid tracts. Surprisingly, there are
homopolymeric tracts for every amino acid except tryptophan,
with asparagine (N) and glutamine (Q) being the most abundant
repeats (Eichinger et al., 2005). This is surprising because polyQ
tracts cause a class of nine neurodegenerative diseases and
Dictyostelium naturally encodes long polyQ repeats that are well
beyond the disease threshold of ∼40 glutamines (Eichinger et al.,
2005; Santarriaga et al., 2015). In addition to long polyQ repeats,
there are numerous Dictyostelium proteins that have Q/N-rich
sequences and are described as prion-like (Malinovska et al.,
2015). Prions are proteins that can misfold and subsequently
become transmissible. Other cells can then be infected by the
transmission of misfolded prions, and this can impress the
misfolded conformation on the normal proteins, causing prion
diseases (Hope et al., 1986; Come et al., 1993; Cohen et al.,
1994; Gajdusek, 1996; Harris, 1999; Bolton and Bendheim,
2007). Yeast has been commonly used as a model to study
prion diseases as it expresses several prion proteins that are
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transmissible after misfolding (Liebman and Chernoff, 2012).
The sequences of yeast prion proteins are Q/N-rich, making
them more prone to misfolding and aggregation (Balch et al.,
2008; Alberti et al., 2009; Halfmann et al., 2010, 2012). Prion-
like sequences are also found in some aggregation-prone human
neurodegenerative disease proteins (Gitler and Shorter, 2011;
King et al., 2012; Kim et al., 2013). Surprisingly, Q/N-rich
sequences naturally encoded in Dictyostelium do not aggregate,
and it is unknown whether these Dictyostelium proteins share
prion biology (Malinovska et al., 2015).

To date, only a few studies have investigated the roles that
proteins with long amino acid tracts serve in Dictyostelium
biology. Gene ontology annotation of the polyN and polyQ
proteins revealed these repeats are enriched in protein kinases,
lipid kinases, transcription factors, RNA helicases, and mRNA
binding proteins associated with the spliceosome (Eichinger et al.,
2005). Further bioinformatic analysis and gene ontology on
proteins in Dictyostelium with Q/N-rich, prion-like sequences
revealed that these sequences are linked to both proteinase K-like
domains and RNA-binding domains (Malinovska et al., 2015).
Prion-like domains were also found to be enriched in proteins
associated with DNA/RNA interactions, protein modification,
and signaling processes. It was concluded that these Q/N-
rich sequences are not randomly occurring, but rather are
conserved within the same protein families across Dictyostelid
species (Malinovska et al., 2015). This suggests that the polyQ/N
proteins may serve important biological functions related
to DNA replication, transcription, and protein modification.
However, research regarding the roles of homopolymeric
repeats in Dictyostelium has not been readily pursued and the
functions these polyQ/N proteins play are still largely unknown.
It is intriguing that these proteins could be functional in
Dictyostelium, and therefore future studies should be dedicated
to learning more about the purpose of these proteins in
Dictyostelium biology.

DICTYOSTELIUM IS NATURALLY
RESISTANT TO POLYGLUTAMINE
AGGREGATION

In addition to glutamine-rich regions forming prions, proteins
with long polyQ tracts (>35Q) also cause a class of nine
neurodegenerative diseases called the polyQ diseases. In these
diseases, polyQ tracts within the coding region of specific
genes become expanded resulting in aggregation-prone proteins
that are neurotoxic. This led to the question: Is Dictyostelium
naturally resistant to polyQ aggregation? Interestingly, unlike
other model organisms, Dictyostelium is resistant to aggregation
of mutant huntingtin exon 1 with 103 glutamines (Figure 5;
Malinovska et al., 2015; Santarriaga et al., 2015). This is surprising
because this fragment is highly aggregation-prone in other model
organisms (DiFiglia et al., 1997; Li and Li, 1998; Krobitsch
and Lindquist, 2000; Meriin et al., 2002; Santarriaga et al.,
2015). To begin understanding how Dictyostelium resists protein
aggregation a restriction enzyme mediated integration (REMI)
screen was utilized to identify genes that are necessary for

FIGURE 5 | Dictyostelium is resistant to polyglutamine aggregation.

Expression of an exogenous, pathogenic GFP-tagged mutant huntingtin exon

1 protein with an expanded polyglutamine tract yields the formation of

polyglutamine puncta in the cells of most model organisms, indicating protein

aggregation (left). In Dictyostelium, however, the mutant huntingtin protein

remains diffuse throughout the cell, indicating that the protein remains soluble

(right).

suppressing polyQ aggregation in Dictyostelium. This screen
identified one gene that encodes for serine-rich chaperone
protein 1 (SRCP1). Interestingly, SRCP1 is both necessary for
suppressing polyglutamine aggregation in Dictyostelium and
sufficient to suppress polyQ aggregation in other organisms
(Santarriaga et al., 2018). One caveat of this screen was that
it did not approach genome-wide coverage and additional
suppressors of polyQ aggregation in Dictyostelium likely exist.
The development of novel screening pipelines will enable
genome-wide coverage in future screens, fully elucidating the
genes that are essential for suppressing polyQ aggregation in
Dictyostelium (Williams et al., 2021).

Dictyostelium’s resistance to polyQ aggregation raises many
questions about how protein quality control pathways are
regulated in Dictyostelium. In the future, studies investigating
Dictyostelium’s response to various stressors are warranted
and may identify novel aspects that regulate protein quality
control. Initial work has identified heat shock protein 101
(Hsp101) as a key suppressor of polyQ aggregation during
heat stress (Malinovska et al., 2015). However, the proteins
and pathways that are necessary for suppressing protein
aggregation during various states of stress in Dictyostelium
are unknown. Identification of novel aspects of Dictyostelium
protein quality control may lead to new insights into how
Dictyostelium maintains proteostasis of its repeat-rich proteome
during cellular stress.

Finally, understanding how Dictyostelium resists polyQ
aggregation may lead to the development of novel therapeutics
to treat neurodegenerative diseases. Toward this end, it was
found that in addition to polyQ, SRCP1 can also suppress
aggregation of superoxide dismutase 1 (SOD1) in human cells.
Furthermore, SRCP1 was packaged in adeno-associated virus 9
(AAV9) and injected into the cortex of a mouse model of ALS.
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Expression of SOD1 in this mouse model resulted in decreased
SOD1 aggregation in the cortex, however, it did not result in
an increase in lifespan (Luecke et al., 2021). In the future, it
will be important to deliver SRCP1 directly to affected neuronal
populations to determine if SRCP1 provides neuroprotective
properties in models of neurodegeneration.

CONCLUSION

Neurodegenerative diseases are incurable diseases with few
treatment options. In many neurodegenerative diseases, the
proteins that are mutated or accumulate have unknown
functions. Simple model organisms including Dictyostelium
discoideum provide a platform to investigate the normal function
of these proteins and to perform genetic screens to identify
genes that modulate their functions. Because Dictyostelium is
a simple model organism with a single cellular stage and
encodes for numerous proteins implicated in neurodegenerative
diseases, it is useful for understanding the normal function
of these proteins and for identifying pathways that are
disrupted in disease states. For example, knockout screens
can easily be employed to determine the functions of the
many homologous neurodegenerative disease proteins expressed
in Dictyostelium. Additionally, the introduction of normal
and mutant neurodegenerative disease genes not encoded
for in Dictyostelium’s genome could also serve to identify
protein functions and toxicity as well as cellular pathways

affected. Dictyostelium may also be used to identify novel
protein interactors with neurodegenerative disease proteins.
Another important observation that must be further studied
is Dictyostelium’s resistance to protein aggregation. Elucidating
Dictyostelium’s proteostatic pathways could allow us to observe
how Dictyostelium evolutionarily overcame the obstacle of
protein aggregation. In the future, Dictyostelium can continue
to serve as a simple, yet powerful, model to investigate
neurodegenerative diseases and expand our knowledge to
treat these diseases.
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