
Did You Ever Have To Make Up Your Mind?
What Notes Users Do When Faced With A Security Decision

Mary Ellen Zurko Charlie Kaufman Katherine Spanbauer Chuck Bassett
IBM Software Group IBM Software Group IBM Software Group IBM Software Group
mzurko@us.ibm.com

Abstract
Designers are often faced with difficult tradeoffs

between easing the user's burden by making security
decisions for them and offering features that ensure that
users can make the security decisions that are right for
them and their environment. Users often do not understand
enough about the impact of a security decision to make an
informed choice. We report on the experience in a 500-
person organization on the security of each user's Lotus
Notes client against unsigned active content. We found that
the default configuration of the majority of users did not
allow unsigned active content to run. However, we found
that when presented with a choice during their work flow,
many of those otherwise secured users would allow
unsigned active content to run. We discuss the features
that are in Lotus Notes that provide security for active
content and that respond to the usability issues from this
study.

1. Introduction

Applications writers and software developers are often
faced with design decisions about what security
mechanisms to provide, how those mechanisms are
presented to the various types of users, and what policies
are possible, are privileged, and are shipped by default
with those mechanisms. Powerful new features can often
present a tradeoff between staying out of the user's way
while they do their work and providing minimal protection
if the features are used maliciously, or making sure that
nothing potentially dangerous happens unless someone on
site (user, administrator) has determined that the specific
situation poses an acceptable risk. Features are often
shipped with settings that allow for either choice, but the
default settings still need to be chosen. For example, in
February 2002, Microsoft spent the month on security
related activities that included changing defaults in
security-related options from open to secured [2].

It's hard to figure out if something is safe or not. For
example, it is convenient for an email message to include
buttons so the recipient can RSVP with a 'yes' or 'no'
response, but a fully general capability to automatically
generate and send email can be used to spread viruses and
compromise the recipient's privacy. The more general
purpose a feature is, the harder it is to determine whether it
is safe. In our example case of sending an email message,
the system can compare the source of the original email
message with the destination of any email it tries to send,
and whether the contents of the email is hard coded or
dynamically generated, as inputs to the decision process,
but there will always be a gray area. If the mail message is
trying to send a message back to its original sender (and
both the address of the original sender and the potential
recipient are verifiable), if the contents of that message is
hard coded, and if the active content in the button has not
accessed any information outside of the originally sent
message, then it is probably safe. Other variations might
also be safe. If the principal is both the current user and the
signed code signer, the operation is probably trustworthy.
Dynamically composed mail messages may be considered
safe if they are displayed to the user before they are sent,
but there can be problems with that as well, such as white
on white font, information that doesn't make sense (bit
level information, encrypted information), and hidden
coded information (steganography).

If the system detects something dangerous, it has a
number of choices. It can ignore the danger and proceed, it
can disallow the action silently, it can disallow the action
and report the failure either to a user or a system
administrator (perhaps via a log file), or it can ask the user
what to do. If the application designer can't write code that
figures out whether an action is proper or improper, he has
to leave open multiple of these options and pass the buck
to the system administrator (who might know, for
example, which sources of instructions should be trusted).
If the system administrator can't figure out what's proper
and manipulate configuration settings to reflect that



judgement, he has to either leave the system unsafe or
dysfunctional, or leave the decision to the user. If the
default setting is unsafe, the system administrator is likely
to leave it that way because it generates no complaints. It
would be highly unusual for the user to have enough
information to determine whether the action is proper or
not. The warning box might as well say "Do you feel
lucky?". Users are likely to feel that if they are being given
an option, then the application designer and system
administrator must have already concluded that it is safe to
proceed. Especially if they are being asked - in effect -
whether they want to do their job unsafely or not do it at
all.

Within that context, this paper discusses the results of a
user study conducted just after the default security setting
on an active content protection mechanism was changed
from “open” to “secured.” The next section discusses that
feature and the short-term impact on development when
the default was changed. Section 3 covers how the user
study was run. Section 4 describes the results of the study,
and discusses the implications and reactions. Section 5
outlines changes in the next release related to the problems
uncovered as a result of securing the defaults, and those
uncovered as a result of running the user study itself.
Section 6 covers related work, and the final section
summarizes all of the conclusions in this paper and
touches on potential future work in this area.

2. Lotus Notes Execution Control Lists

Lotus Notes is a platform for distributed applications, of
which email and discussion forums are examples. As with
web browsers, there is an expectation that users can visit
and interact with sites (or databases in Notes parlance)
safely, meaning that even if those sites are mismanaged
they cannot corrupt the user's private data or interactions
with other sites. It is useful, however, to be able to use this
mechanism to do unsafe operations, like upgrading
software on the workstation or composing and sending
email messages based on filling out a form. These same
techniques, however, can be used to steal user data or
spread viruses if the application is not trustworthy. With
both Lotus Notes and browsers, this is done with a
combination of local configuration deciding certain
operations should proceed without warnings and pop up
dialogs asking users whether to override the defaults.
Lotus Notes takes advantage of its built in public key
infrastructure to digitally sign potentially dangerous active
content so that trust decisions can be based on who created
it rather than what server it is fetched from. This concept is
particularly powerful in the context of email, where all of
the email comes from the user's mailbox, but trust of its
contents is based on the signature of the sender.

Execution Controls Lists (ECLs) were introduced in
Lotus Notes version R4.5 to provide client-side security
controls for the execution of potentially dangerous active
content in the languages supported by the Notes client:
LotusScript and @ formulas, Java, and Javascript. Active
content in any of those forms can be embedded in either
the design of a database and its documents (the forms), or
in a document instance itself. A Notes signature is attached
to the embedded active content, consisting of a hash of the
active content, the hash signed with the private key of the
person embedding it, and the certificate(s) associating the
private key's corresponding public key with the name of
the signer.

Each Notes client user has a Execution Control List
(ECL). For each of the three active content languages, it
lists the signers to which the user grants active content
permissions, and the permissions granted. For example, in
Figure 1, LotusScript or @ formulas signed by Jane
Done/SoftwareHouse can read and write information in the
database in which the active content is running and access
environment variables. Java and Javascript execution
controls are set and viewed on other panes of the ECL
dialog box. Permissions can be added or removed from
any signing identity, even the ones that are shipped with
permissions, such as Lotus Notes Template
Development/Lotus Notes.

A new user's ECL is initialized in two places. It
includes the entries from the Administrative ECL set on
the user’s home server, which specifies the signers that are
trusted by the site administration. It also includes the
default permissions required by Lotus Notes and Lotus
companion products:

• The "-No Signature-" entry specifies the
permissions given to unsigned active content.

• The "-Default-" entry specifies permissions given
to active content with a signature that can be
verified when the signer does not appear
elsewhere on the user's ECL.

These two entries are the only ones that cannot be
removed from the ECL. The permissions for any entry can
be modified (enabled or disabled).

The Refresh button on a user's ECL updates that ECL
with the current information from the administrative ECL.
Each entry in the administrative ECL is added to the user's
ECL, or overwrites the existing entry on the user's ECL if
an entry with the same name already exists.

When active content running in the Notes client
attempts a protected operation that requires an ECL
permission, such as creating a new document in the current
database, a check for the appropriate permission is made.
If the signer has the permission, the active content
continues running. If it doesn't, the user is prompted with
an Execution Security Alert (ESA) indicating the action
the code is attempting, who signed it, and the permission is
required to complete the operation.



Figure 1: Lotus Notes Execution Control List
In Figure 2, a piece of active content signed by Lotus

Notes Template Development/Lotus Notes (according to a
public key certificate signed by the Notes CA) is calling
the GetProfileField command to get a field from a profile
document in the current database. That operation requires
the "Access to current database" permission. The user can

chose to abort that call (the default), execute the call this
one time, or give the required permission to the signer in
their ECL. The exception is those users who are not
allowed to modify their own ECL (an option specified in
the Administrative ECL) can only choose Abort.

Figure 2: Execution Security Alert (ESA)



In R5.02 IBM began shipping tight defaults on ECLs.
Originally, ECLs were initialized with all permissions
given to the -No Signature- and -Default- entries. Sites
could tighten that default for their users by removing
permissions on those entries in the Administrative ECL.
Not many did. Sites who tried to deploy tight ECL defaults
found problems -- both in the features available for
deployment and in some bugs. Since the initial defaults on
ECLs were open, new features in product development
were tested with them open. Some new features introduced
bugs that would only be noticed when unsigned code was
not allowed to execute. Committing to ship with secure
ECL defaults meant a commitment to rapidly fix the bugs
that appeared as a result of those defaults.

3. The User Study

With the change to shipping secure ECL defaults, any
new users would get them automatically (unless their site
administrator overrode them). The propagation of these
defaults to existing users with the R5 features was more
problematic. We were particularly concerned that as many
users as possible begin running with no permissions given
to unsigned active content as soon as they received the
software update. We ran a pilot study at a small company
that does Notes-related development (which we will call

SoftwareHouse) to find out if tight ECLs could be
deployed properly with R5.02 features.

First, the site Administrative ECL defaults were
secured. Then, a prestigious SoftwareHouse security
maven sent an email announcement to a list that included
everyone in the company. It included a button for
recipients to click in order to tighten their ECLs. The
action of the button caused the the new administrative
defaults to be merged into the user's ECL. The
announcement included an extensive explanation of how
the security of in-house ECLs was being tightened. It also
provided an example of an unsigned Execution Security
Alert, explaining the potential danger it could represent,
and gave instructions about how to handle it safely and to
whom to report it.

Three months later, we used active content in a survey
email to obtain data on the state of ECLs in
SoftwareHouse. The active content is shown in Figure 3.,
and was associated with the Postopen event of the design
(form) of the survey mail message. It creates a mail
message (document) to send. The creation of the document
(Dim doc As New notesdocument (db)) calls a protected
operation, since it accesses the current database. The mail
message is then set to be sent back to the person
conducting the survey (Jane Doe/SoftwareHouse). The
actual sending of the document (doc.send) calls a second
protected operation.

Sub Postopen(Source As Notesuidocument)
On Error Resume Next
Dim current As String
current$ = Time$()
Dim sess As New notessession
Dim db As notesdatabase
Set db = sess.currentdatabase
Dim doc As New notesdocument(db)
doc.SendTo="Jane Doe/SoftwareHouse"
doc.Subject = "I allow unsigned code to execute on my workstation " + current + "; "

+ Time$()
Call doc.send(False)

End Sub

Figure 3: Survey LotusScript Active Content
The mail message has two timestamps in the subject

line. The first is the time taken before the first protected
operation is called. The second time stamp is after that. If
the call to the protected operation does not generate an
alert, the difference in the timestamps will be minimal (0 -
1 seconds). If the call does generate an alert, it will require
user interaction, and the difference in the timestamps will
be 2 seconds or more. If the mail message is sent, and the
timestamps are 2 or more seconds apart, the user must
have chosen "Execute Once" or "Trust Signer" for both
alerts generated by the code. The timestamps are also an
indication of how much thought the user gave to the
question. Figure 4 shows the second alert.

In order to attach active content to the design of a
document, the document had to be sent with its own design

(form), as opposed to using one in the mail database to
which it was going. The form and its active content were
not signed. Therefore, the operations requiring ECL
permissions would be checked against the -No Signature-
entry in the reader's ECL.

Users saw new mail from their colleague Jane
Doe/SoftwareHouse, with the subject "Important
Information". When they opened the email (or when they
selected it with the preview pane that displays message
content enabled), if their ECLs did not allow unsigned
code the ability to access another database, a "-No
Signature-" Execution Security Alert came up, covering up
much of the content of the mail message. Since the mail
message used a vanilla stored form, the top quarter of the
displayed message was missing the Note mail look and



feel of a formatted header section with the sender's name
on the left hand side and the To:, CC:, BCC: and Subject:
fields on the right hand side, in fields. They could move
that dialog, or respond via one of the buttons. If they
glanced down at the bottom edge of the Notes client, they
would have seen the status message "Signed by Jane
Doe/SoftwareHouse on 11/22/1999 02:20:46 PM,

according to /SoftwareHouse". If they responded with
"Execute Once" or "Trust Signer", and if their ECL did not
allow unsigned code to send mail on their behalf, the
second ESA would appear (Figure 4). Dismissing that
dialog in any way finished uncovering the content of the
mail message.

Figure 4: The alert resulting from sending mail from unsigned LotusScript
The text of the mail survey is shown in Figure 5. It
explained the survey and encouraged people who didn’t
allow the unsigned code to execute to send the contact
person mail telling them so, for data gathering purposes
(the Gold Star list). The person who sent the survey was a

SoftwareHouse security person more junior than the one
who had sent the original email with the instructions on
securing ECLs. It went to the same list that had been used
to send the earlier mail message.

Subject: Important Information
Dear colleague,
I'm Jane Doe, from the SoftwareHouse security group. In an effort to determine how useful and effective our efforts have
been in asking all of you to tighten up your workstation ECLs, we are collecting data on whether anyone here at
SoftwareHouse still allows unsigned code to automatically execute on their workstation (and whether anyone who doesn't
would still allow unsigned code of dubious origin to execute).
If your workstation ECL is still wide open, you did not see any alerts when you viewed this message, and you have sent
me email telling me that you allow unsigned code to execute on your workstation. If you did see the alerts, and you
allowed unsigned code to execute by pressing the "Execute Once" or "Trust Signer" buttons on those two Execution
Security Alerts, you also sent me that message. If you routinely let hostile code execute in this fashion, the consequences
could have been much worse (such as erasing your hard drive or leaking Product Y development secrets).
If you saw the alerts and aborted the code execution, thank you. You can further help us by sending me (Jane Doe) email
telling me that you did that, allowing me to add you to our Gold Star list of colleagues who practice good ECL hygiene.
Thank you for participating in our study. Feel free to send me any questions or concerns.

Jane Doe

Figure 5: Text of survey message

4. Results and Discussion

4.1. Core Results

Figure 6 (below) shows the results from the first two
days of responses to the survey. There were 543 names on
the SoftwareHouse email list (after discounting the most
obvious duplicate names). The "Other" category includes
bounced deliveries and Out of Office notices. Responses

dribbled in for up to two months after the mail was sent;
they are not included in our discussions of the results.

62% of the people on the email list (334) responded
within two days of the survey. 38% (209) of the potential
recipients didn't respond within those two days. They may
have not read the mail, they may have aborted the active
content but not self-reported as Gold Stares, or they may
have been MIME users. (LotusScript is stripped out of
email sent to people configured to receive MIME). Three
respondents self-reported on this, and there were 10 users
in the SoftwareHouse domain configured this way.



68% of the respondents (227) – or 42% of the survey
population -- did not allow unsigned code to access
another database and send mail on their behalf. 31% of the
respondents (102) did have open ECL defaults. A
minimum of 42% (% of Total Sent with Secure ECL
defaults) and a maximum of 82% (all but the 18% with
verifiable Open ECL defaults) of the survey population
had secure ECL defaults. Note that having secure ECL
defaults does not ensure secure operation (as we discuss
below). For a security configuration that must be explicitly
set by users, the circumstances were close to ”as good as
possible.” A mail message with a button to press had been
sent out previously, and the user population had familiarity
with the technology involved. 28% of the respondents (92)
did not execute the unsigned code on their workstation.

56% of the target population did not execute the unsigned
active content (non-response, Gold Star, and other). This
still leaves a window of 44% of the target population that
did execute unsigned active content, including 18% of the
overall population that does so automatically. 44% of a
target population is a large-enough security hole to do
considerable damage. This is substantially larger than the
18% of the target population that did not even have a base
configuration disallowing the dangerous behavior
(unsigned active content) by default. This indicates that
security mechanisms that can disallow dangerous behavior
based on configuration, without a user override, have a
much greater chance of doing so. Whether they can do so
and still provide competitive and useful features is the
challenge.

% of Total Sent % of Responses % of Secure defaults
Names on list 543
Responses 334 62%
Open ECL defaults 102 18% 31%
Secure ECL defaults 227 42% 68%
Gold Star 92 17% 28% 41%
Clicked and sent 135 25% 40% 59%
Other 5 1% 1%

Figure 6: Data from responses to email survey
Of all the respondents we know of that saw the ESA

(Secure ECL defaults), 59% chose the dialog option that
allowed the unsigned active content to run. So, in this
situation, over half chose expediency over security. Again,
this situation is quite close to “as good as possible” within
the usability limitations of the deployed product. The user
community was experienced in the technology, and had
recently been warned of problems with open ECL defaults.
In addition, virus warnings had for some time been
prevalent in the media.

4.2. Other Issues Affecting Responses

Thirteen of the self-reported Gold Star users (15%)
stated that they moved the ESA dialog aside and read the
email message (Figure 5) before aborting the active
content. While the text of a truly malicious virus would not
make clear that the user should not execute the active
content, often the text of recent virus emails triggers a
cautious response in suspicious minds. Four of the Gold
Stars indicated that they let one alert go and only caught it
on the second. We would have preferred to have the active
content issue only one alert, but it took at least two
protected actions to send a simple email. This is perhaps
more typically indicative of the number of alerts necessary
for a malicious virus to do anything. It also allowed us to
measure whether the unsigned active content was
configured to execute, or whether the user was prompted
before it completed.

One Gold Star reported that he had his mail database
configured to not allow stored forms. Stored forms allow a
document with a design different from the designs in the
database to be placed in the database. The virus sent
required the ability to attach active content to the PostOpen
event of the form (design), and so required the use of
stored forms. The feature to disallow stored forms provides
extra security, since active content that is restricted to
documents (not forms) can only be executed in Notes after
the user takes some explicit action (such as pressing a
button).

Several people complained that they still see many
alerts. This is clearly unacceptable. Seeing many alerts in
the course of a normal workday negates the whole purpose
of having the ECLs in the first place. It encourages people
to press “Trust Signer” or “Execute Once” only slightly
less rapidly than the code would have executed unfettered.
SoftwareHouse was not using a small identifiable set of
signer names, and had no process to keep the
Administrative ECLcurrent. One respondent said that they
had hit trust signer literally hundreds of times after taking
the Administrative ECL update when it was recommended
slightly less than 3 months earlier.

Twelve people reported that they saw the sender's email
message signature information, and so disregarded the
unsigned nature of the alert. The Notes client displays a
message in the message area at the bottom edge of the
client when a signature is found on a document. A better



test would have been to send the unsigned active content in
an unsigned mail message.

4.3. Miscellaneous Other Issues

At least 23 people pressed “Trust Signer” to the first
alert. We know because we received more than one canned
response message from them, since they read the mail
message at least twice. The later ones had a much shorter
time between actions than the first. This means that their
ECLs became more open than they were before the survey.
These users were encouraged to go to their ECLs and
remove any permissions for the "-No Signature-" entry,
and a general notice on the problem was posted in the
SoftwareHouse discussion database. This was an
unfortunate side effect of the survey.

Several people read the email on machines other than
their primary work machine. They had tightened their
ECLs on their workstation, but not, for example, on their
laptop. Others mentioned that they now realized they
needed to update their laptop. One person with open ECLs
pulled the network plug when they realized what was
happening after reading the email, then called to report
their actions to the survey person. Some people were glad
to get the survey and reported that they fixed their ECL
settings. Others were not so happy (we received 4 flames).

A number of people were concerned that they had been
previously unaware of this issue. Several of the more
conscientious recipients were confused about whether they
had done the right thing with the alerts and what their ECL
should look like. Users who had done the right thing or
who had secure ECL settings couldn’t tell and thought they
needed to do something. Exercising the active content
abilities of Notes to take a survey on their use had an
additional the side effect. It made the issues around proper
use of active content more obvious than previous the
requests to press a button to ensure secure defaults.

One non-development person with much outside
exposure asked for more documentation for lay users, and
several other folks asked just what was considered to be
best practices in this situation. Lotus Notes R5.02 featured
a release note on some of these issues, and an article in
Notes.Net, a technical resource for Domino administrators
and designers, discusses how to deploy tighter ECLs [3].
Organizational best practice is to have a signing policy and
a limited and identifiable set of identities for signing. IBM
follows this practice. Groups developing third-party
applications to run on Lotus Notes find it difficult to
adhere to this discipline during internal development
cycles.

Although the survey and subsequent discussions
emphasized default settings for the LotusScript and
@command portion of active content security, several
recipients asked about the Java and Javascript ECL

settings. The Javascript ECL allows “Default” and “No
signature” entries full access to windows and URLs from
the same host. This is because the Notes client can also be
used as a web browser, but there is no standard for signing
Javascript on the web. These defaults match default
browser settings. In the Notes client, they can be reset by
the user or by the site administrator via the Administrative
ECL.

5. Recent Enhancements

Many of the issues with ECL use raised in this study
and by Lotus Notes customers fall into two categories:
getting the user's ECL to cover normal and acceptable use,
and tracking and limiting the opportunities for users to
make security decisions that they do not understand in the
first place.

In the currently shipping version stream, the Refresh
button in the ECL dialog box was added in R5.0.5 to
provide a single consistent mechanism for users to refresh
their ECLs (with the proper instruction). Previously, a
button or similar mechanism would need to be coded into a
mail message or other database document with the
@RefreshECL command.

Domino 6 provides administrators with full control over
updating client ECLs. Domino 6 administrative policies
provide a mechanism to associate specific types of
administrative information with individual users or groups
of users. Security sub-policies let administrators define any
number of named administrative ECLs, and associate them
with different groups of users. An ECL policy consists of a
reference to a fine-grained administrative ECL and an
update policy. The update policy specifies both a
frequency and a mode. The frequency of updating the
user's ECL from their administrative ECL is either never,
once daily, or when the administrative ECL has changed.
The update mode offers the choice to refresh the user's
ECL by merging in the administrative ECL (as described
in Section 2), or to replace the user's ECL with the
administrative ECL. The policy for updating a user's ECL
is checked when that user authenticates to their home
server, which contains their administrative ECL. These
features ensure that user's ECL will stay in sync with the
organizational policy in the administrative ECL.
Administrators still have the challenge of ensuring that the
administrative ECLs cover normal and acceptable cases.
Giving in-house active content developers a separate
namespace for them to use when signing active content
that is distributed throughout the company is the most
tractable policy. ECLs stay up to date with a single entry
of the form "*/Signers/SoftwareHouse". Developers with
the skills to sign code can easily change between their
configured personal identity to the a trusted signing
identity to re-sign the final version before sharing it by
using the Notes "Switch ID" menu command and



authenticating against the second ID file. They can use
Change Location to change their email address, if that is
also needed.

Each administrative ECL contains a flag indicating
whether or not client ECLs based on it can be changed by
the user. Users who are not expected to run active content
from sources not listed on their administrative ECL can
have this flag set. If they receive malicious active content
from an untrusted source, it will not be executed. If they
receive useful active content from a source that they'd like
to trust, they have to request that their administrator make
the change to their administrative ECL.

The Notes 6 client logs ECL information, including any
ECL alerts displayed to the user (and the user's choice of

action) and any changes to the ECL. Figure 7 contains
some example messages. Administrators can harvest this
information to see what changes are necessary to make to
the administrative ECLs, to gather information about users'
behavior and to troubleshoot potential issues. Notes 6 also
includes a new Multi-User feature that makes using Notes
from multiple machines (such as home and work, or a
laptop) a much more consistent experience. The users'
personal changes to their configuration information, such
as ECLs, is replicated for them from their client machine
to their home servers. These changes are then replicated
back down to the user's client when the user accesses the
server from a different client installation.

01/09/2002 12:01:47 AM ECL Modification: CN=Lotus Notes Template Development/O=Lotus Notes
was granted the right: Access to current database.(Using Workstation)
01/09/2002 12:01:47 AM ECL Alert Result: Code signed by CN=Lotus Notes Template
Development/O=Lotus Notes was allowed to execute with the right: Access to current database.
01/09/2002 12:01:47 AM ECL Alert Details: DB Title: CDB, DB Path:
c:\Lotus\Notes\Data\mail\cbassett.nsf, Design Note Type: Form, Design Note Title: Memo; Memo, Design
Note ID: 2DE, ESA Description: NotesDatabase.GetProfileDocument Signature Status: No error.

Figure 7: Client ECL log

In addition to the features added to make ECLs more
manageable and minimize the user interactions with them,
several informational and design changes were made that
make ECLs more usable. Figure 8 shows the Notes 6
layout of an execution security alert. Additional text
explains the reason for the alert. The signer's identity is
more prominent. The options are worded in a way that is
easier to understand. It avoids the use of the term "Abort",
which one test subject said sounded quite unpleasant; not
like protection at all. The power user is given a "More
Info" button. It provides extra information that is useful in
the case of behavior that is suspected to be a bug.

Sometimes the features that are missing are as
important as those that are present. Years ago, Lotus Notes
had the ability to tunnel its rich mail format over the
Internet when it knew the recipient was capable of
processing it (by encapsulating and decapsulating at
gateways). This feature was removed to prevent the more
dangerous forms of active content attacks coming from
outside. While it would be desirable to restore that
functionality, this study provides evidence that it is not yet
safe to do so.

6. Related Work

We are not aware of any other work that studies or
evaluates the usability of active content security features.

Alma Whitten's bibliography on human factors in
computer security [4] lists a number of references in the
field. Just as our work evaluates how usable Notes ECLs

are, [6] evaluates the usability of PGP encryption. It
performs a case study of PGP 5.0 to determine whether it
could be used by cryptography novices to achieve effective
electronic mail security. A cognitive walkthrough analysis
found a number of flaws, and laboratory user tests showed
that the majority of subjects could not sign and encrypt a
message in 90 minutes. The tests in [6] are more controlled
and will therefore be easier to compare to other controlled
tests. Our work is a field study, providing richness of
feedback, but lacking the same level of control.

[8] applied user-centered design principles [7] to an
authorization service for distributed systems. Contextual
usability testing provided a rich picture of a security
administrator's job. Formal usability testing provided
direction on simplifying some features and making others
more self-explanatory. Our work is closer to contextual
usability than formal usability studies, since it occurred in
the field, not in the lab. It does not provide the same
concentrated detail that contextual interviews provide, but
it does provide information over a much broader
population than formal, structured lab usability testing.

[1] and [5] look at the socio-technical system of
password choice and management. [1] provides
suggestions for how to better inform users about password
security, while [5] looks at the persuasive power of
mechanisms, policies, tutorials, training and discourse.
Some of our observed user reactions give indications about
the socio-technical system of active content security, and
may be useful in indicating future directions for study.



Figure 8: Notes 6 Execution Security Alert

The Notes ECL features we tested can be compared to
the features in browsers to control the execution of active
content. With version 5.5 of IE and continued in version 6,
it is possible to designate active content sources, web sites,
into several security zones. There are currently four of
those; Internet, Local intranet, Trusted sites, and Restricted
Sites. Security for each of these zones can be configured to
one of the four templates, called High, Medium, Medium-
low, or Low, or it can be customized in detail, starting with
one of these templates. IE allows the user to configure
whether to disable, enable, or prompt on the downloading
of signed and unsigned ActiveX controls, as well as
running ActiveX controls and plug in, and scripting
ActiveX controls (marked safe or not marked safe). There
are no finer grained permissions based on operation within
these categories. It also allows the user to configure
whether to enable, disable, or prompt when running
unsigned or signed Java content, with a fine grained
permission list based on Java 2. The Local Intranet zone
defaults to Medium-low, which is the same as Medium
without prompts. The prompts for code that cannot be
signed lack the feature of allowing the user to change the
behavior or zone for a site in the context of receiving the
prompt (through that dialog). In addition, when a site has

panes from multiple sources, it is difficult or impossible to
determine the source of the script from the prompt. Users
can choose to trust new publisher certificates in context,
and revoke that trust later. They cannot chose to revoke the
trust in certificates that are shipped trusted by IE. The
Trusted zone is convenient for adding sites the user
commonly visits and is familiar with. Some sites are not
usable without allowing active content to run, so the user
must trust them in order to use them. The Restricted zone
takes some attention from the user to make use of. To
minimize annoying prompts, regularly visited sites or ad
sites that don't need active content to provide the features
of interest to the user can be placed here. It is not clear
how an administrator would configure the defaults for their
site.

Netscape Communicator 4.73 allows the simpler
options of enabling or disabling Java or Javascript.

7. Future Work and Conclusions

One area for future work is consideration of the
appropriate granularity of permissions for what types of
signed active content can be run. One "yes" should not
give away everything forever. However, the finer



granularity is more confusing to users, and gives them less
context and information to base a decision on. We believe
that a two tiered level of granularity, similar to Domino
ACL access levels and discrete permissions within those
levels, would provide a starting point. Large grained levels
such as "ability to read anything I can read" would make
sense to many users. Allowing sites to customize the
permissions within levels, or even define new levels, can
provide administrators with desirable control, and users
with still more meaningful granularity.

Since the study was a field study and not a controlled
study, it raises a number of questions about what
conditions affect the process of users deciding on their
course of action when faced with a security-related choice.
How would the results have differed if the users had not
been warned of the problem several months in advance?
How would the results have differed if the majority of the
users were encountering the security choice for the first
time? How would the results have differed after an actual
outbreak of malicious active content from the same source
application as the one we tested? A more scientific study
could also vary how dire the warnings were. If the
warnings got more and more dire, would users become
concerned at a certain stage and choose not to execute
potentially dangerous active content? Or would the
warnings have to be extremely dire immediately to cause
users concern? There seems to be very little work on
allowing users to recover from a wrong decision. What
effect would such features have, both on user actions and
on the resulting security of the system? Studies involving
multiple companies and different interfaces would also add
a great deal of information to this area.

More research is needed in shielding users from having
to make security-related decisions while still providing
them with rich and flexible features. The Web-based client
for Domino mail and calendaring, iNotes Web Access,
filters and strips potentially harmful active content on the
server side. Extensions to that might report the filtered
active content to an operator, allowing the operator to
vouch for it. User choices could be more constrained in
more potentially dangerous situations. For example,
Execution Security Alerts could be configured to not allow
the user to execute the action if there is no signature
information available, or if the signature is from a name
not listed on the ECL or from a foreign domain (or from a
domain not on a list of trusted domains).

The study occurred during the period of time when a
product that was being shipped was changing its defaults
on controlling active content from open to secured. When
we enabled secure defaults in the development group at
IBM, we initially found that some features placed in the
product by groups other than the security group caused
deployment problems for the secured active content
default. Once all developers and testers were running with
secured defaults, problems that arose between newly-

developed features and secured configurations were found
earlier and by the developers making the changes (who
were in the best position to fix those problems). This
argues for some stage of all development activities
proceeding with the most tightly-secured configurations.

In this paper we detailed the features currently shipping
and soon to be shipping in Lotus Notes that are used to
protect users from potentially harmful active content in
Notes databases (including their email database). We
described the features available to administrators to
configure user's active content security settings, the
features available to users to view and modify them, and
the interactions users are faced with when untrusted active
content attempts to execute in their Notes client.

Our study shows that the majority of the users involved
will take an explicit and straightforward one-time action to
secure their electronic work environment when requested
to, and directed by, a trustworthy colleague. When their
work flow is interrupted with a security dialog, just under
half of that same user population will make a choice that is
unsafe, even after being instructed in the safe course of
action 3 months earlier by the same trustworthy colleague.

The study makes it clear that the common software
practice of warning users of danger but letting them click
on something to proceed anyway is not going to provide
adequate security unless the either the user community or
security-related interfaces undergo some radical sea
change. This change may include education, or better and
more pertinent information from the software. The more
frequently security warnings appear in everyday use, the
more users will learn to click "OK" without thinking or
even remembering that they have done so. False alarms
should be treated as serious security vulnerabilities instead
of acceptable irritants. Until we are able to write software
applications that can better tell the difference between safe
and unsafe, taking the "safe" option should be made
routine by both the culture and the software, and taking the
"unsafe" option should be audited and reviewed.

8. Acknowledgements

This study would not have been possible without the
time, skills, and experience of Chuck Bassett, and without
the support of management in SoftwareHouse. We also
thank Amy Smith for her editorial assistance.

9. References

[1] Anne Adams and Martina Angela Sasse. Users Are
Not The Enemy: Why users compromise security
mechanisms and how to take remedial measures.
Communications of the ACM, 42 (12), pp. 40-46
December 1999.



[2] CNET, Gates memo: "We can and must do better".
http://news.com.com/2009-1001-817210.html?legacy=cnet

[3] Amy E. Smith (with Charlie Kaufman, Chuck
Bassett and Mary Ellen Zurko). Staying Alert with
Execution Control Lists.
http://notes.net/today.nsf/f01245ebfc115aaf8525661a006b
86b9/3a9da544637a69b2852568310078b649?OpenDocum
ent.

[4] Whitten, Alma. References for Human Factors in
Computer Security.
http://www.sims.berkeley.edu/~alma/biblio.html.

[5] Dirk Weirich and Martina Angela Sasse. Pretty
Good Persuasion: A First Step towards Effective Password

Security in the Real World. Proceedings of New Security
Paradigms Workshop, September 2001.

[6] Alma Whitten and J.D. Tygar, Why Johnny Can't
Encrypt: A Usability Evaluation of PGP 5.0. Proceedings
of the 8th USENIX Security Symposium, August 1999.

[7] Mary Ellen Zurko and Richard T. Simon, User-
Centered Security. New Security Paradigms Workshop,
1996.

[8] Mary Ellen Zurko, Richard T. Simon and Tom
Sanfilippo, A User-Centered, Modular Authorization
Service Built on an RBAC Foundation. Proceedings of
IEEE Security and Privacy, 1999.




