
Journal o f Intelligent Manufacturing (1994) 5, 33-45

DIDS: rapidly prototyping configuration

design systems

A L A N B A L K A N Y , W I L L I A M P. B I R M I N G H A M , ~ B R U C E
M A X I M , J A Y T. R U N K E L and IRIS D. T O M M E L E I N *

Electrical Engineering and Computer Science Department,* Civil and Environmental
Engineering Department,$ Computer and Information Science Department (Dearborn), The
University of Michigan, Ann Arbor, M1 48109, USA

Received March 1992 and accepted January 1993

The domain independent design system (DIDS) provides a set of tools for rapidly
constructing new configuration design systems from a library of reusable software elements
called mechanisms. A DIDS user begins by creating a model of the problem domain and
the task to be automated. This includes describing a library of parts from which new
artifacts could be configured, optimization and preference criteria, and functionality
constraints. DIDS analyzes this input and automatically builds an operational prototype
system by selecting and combining mechanisms. DIDS' ability to automate this process is
derived from its model of configuration design, which enables reusable mechanisms to be
identified and automatically selected based on a problem's characteristics. The use of
DIDS is illustrated by showing how DIDS solved an elevator-configuration problem.

Keywords: Design, knowledge systems, configuration, mechanisms, "problem-solving
methods, knowledge acquisition, DIDS, UT

1. I n t r o d u c t i o n

Knowledge-based design systems such as R1 (also known
as XCON) (McDermott, 1980), M1 (Birmingham et al.,
1992), VT (Marcus et al., 1987) and SightPlan (Tomme-
lein et al., 1992) have demonstrated the benefits of
automating design tasks where essentially the same
artifact is repeatedly designed with only minor varia-
tions, i.e. specifications vary slightly from design to
design. Variations in design will depend on input spe-
cifications and the selection of parts available in a
particular manufacturing process. Design systems should
therefore take into account manufacturing constraints
and process limitations.

Knowledge systems (KS) have significantly reduced
both the cost and time required to produce a design by
modeling the problem-solving process of humans and
using KS techniques for implementation. In addition,
their systematic encoding of the design process has
reduced the number of errors in a design, and given a
large number of organizations access to the design

0956-5515 © 1994 Chapman & Hall

expertise encoded within them (e.g. Barker and O'Con-
net, 1989).

Although the benefits of these design systems are
great, the cost and level of expertise required to build
them impedes their development for new applications. A
development team, consisting of both domain experts
and knowledge engineers, typically requires several per-
son-years to build a system. Designers require the
assistance of knowledge engineers because they are not

versed in artificial intelligence concepts and techniques.
The long development time results from two factors.
First, designers must communicate all relevant domain
concepts to knowledge engineersl which is a slow and
iterative process. Second, design systems tend to be large
programs that are difficult to construct (Boehm, 1987).
By automating parts of this process, the domain-indepen-
dent design system (DIDS) (Runkel et al., 1992) reduces
the amount of time and expertise required for such
development.

The DIDS model facilitates the rapid development of
systems that perform a restricted form of design called

34 Balkany et al.

configuration (Mittal and Frayman, 1989). Knowing char-
acteristics of this restricted task, and when given domain
and problem descriptions, the DIDS system automatical-
ly configures a design problem-solving method (PSM)
(McDermott, 1988) from a library of reusable software
elements, called mechanisms. The resulting system can
then create designs. DIDS thus enables users with a
limited knowledge of artificial-intelligence techniques to
build systems, because most of these techniques are
encoded in mechanisms and are, therefore, hidden from
the user.

The success of DIDS depends on the development of a
mechanism library which has a manageable size, but
which provides enough elements to cover a significant
percentage of configuration tasks. The authors' research
(Balkany et al., 1993) and the design literature suggest
that a library of reusable mechanisms can be created.
Chandrasekaran (1986) and Tong (1987) have identified
fundamental elements of the design process that are
shared across domains. They have proposed models of
design that place structure on the design process, while
implicitly assuming commonality between design proces-
ses in different domains. Others have demonstrated that
design tools intended for one domain can be ported to
new domains (Langrana et al., 1986; Brown and Chan-
drasekaran, 1987; Maher, 1987; Johnson and Hayes-
Roth, 1988; Birmingham and Tommelein, 1992). These
observations laid the foundation for the development of
DIDS.

This paper is organized as follows. The next section
discusses the DIDS model of the configuration task.
Section 3 describes how design tools are built with DIDS.
Section 4 describes the DIDS mechanism library, and
Section 5 provides an example of how DIDS can be used
to create a knowledge system that solves an elevator-
configuration design problem. Section 6 presents re-
search related to DIDS and Section 7 summarizes the
paper.

2. The DIDS model of configuration design

2.1. Configuration design

The authors' research has emphasized the automation of
configuration-design tasks. Configuration design can be
characterized by the following (adapted from Mittal and
Frayman, 1989):

A designer constructs an artifact given a fixed library of
parts, a set of constraints relating the functionality and
characteristics of these parts, specifications on the arti-
fact's functionality, performance, and cost. The artifact
must obey either rules of interconnection, geometry,
topology, or any combination of the three.
Optionally, a set of preference or optimization criteria can
be given. The artifact conforms to these criteria.

A model of configuration design forms the foundation of
the DIDS approach. The model enables DIDS to provide
support for automating KS development by allowing
DIDS to make inferences using the model's assumptions.
The model also establishes a set of principles that guide
the identification of mechanisms. It identifies the types of
knowledge that must be acquired from the user, the
mechanisms required to automate configuration tasks
and the knowledge-acquisition procedures necessary to
build knowledge-acquisition tools. In addition, the model
identifies, for each knowledge type, mechanism and
knowledge-acquisition procedure, the features of the task
that indicate when it should be used.

2.2. Mechanisms and problem-solving methods

The DIDS model, as well as the system, is based on
the concept of a mechanism. For configuration design,
mechanisms represent the various techniques for auto-
mating the configuration subtasks. Two mechanisms may
automate the same subtask (e.g. part selection or
arrangement), but will differ by the algorithm used or the
types of knowledge used. The model associates with each
mechanism a collection of programming-language state-
ments that implement the mechanism, a set of mechan-
ism-selection features that describe when the mechanism
should be used, a procedure for acquiring the domain
knowledge required for the mechanism to operate and a
description of the mechanism's inputs and outputs. For
example, Fig. 1 shows the pseudo-code and inputs and
outputs for a mechanism that performs part selection.
Examples of the other types of information associated
with mechanisms will be shown later in this section.

DIDS-generated problem solvers consist of a sequence
of mechanisms called a problem-solving method (PSM),
which is the series of steps used by the system to
automate the configuration task. For example, Fig. 2
shows a PSM generated by DIDS to automate the task
performed by VT, an elevator design system (Marcus et
aI., 1987). The mechanisms are highlighted in bold, and
the outermost WHILE loop defines the loop over which
the problem solver iterates. Mechanisms that execute
conditionally are contained within the IF and WHILE
statements inside the outer WHILE loop.

select-part mechanism
Input: Abstract parts, list of possible parts, applicable constraints
Output: A part, from part list input, that implements the function input without
violating any constraints.
Returns: TRUE if a part was selected.
Pseudo-code: For each part in the part list

test to see if it violates any constraints
if part does not violate any constraints,

then select it and return TRUE
If all parts violate a constraint,

then return FALSE.

Fig. 1. A mechanism for selecting parts.

D I D S : r a p i d l y p r o t o t y p i n g c o n f i g u r a t i o n d e s i g n s y s t e m s 35

initialize_taskqueue(readytasks); //Puts the first part into the queue
WHILE (not_empty_queue(readytasks))
{

//applies compute_spec_values mechanism to each part in the queue
apply_to_queue(compute_spec_value s, readytasks);
get next task(readytasks , action); //Gets the first part in the queue
add_to_design(ds, action); //Adds the part to the design
IF (is_anand_node(act ion))
(

select_all_parts(action, candidates); //selects all of action's children
add_tasks(readytasks, candidates); //and adds them to the queue

}
ELSE IF (is_an or node(action))
{

//selects the subset of actions children that satisfy the constraints
selectcandldate_parts(act ion, candidates);
selectbest_part(candidates, newpart); //selects the part with the least cost
add_task(readytasks, newpart); //adds the part to the queue

};
}

Fig. 2. A problem-solving method.

2.3. Knowledge types

The DIDS model defines the types of knowledge re-
quired to perform configuration design. These types
represent different classes of concepts, which are neces-
sary to automate configuration and are used to form a
conceptual model of the problem domain. They were
identified by studying existing configuration design sys-
tems (Balkany et al . , 1992), and the authors believe that
they are sufficient to represent all the domain knowledge
necessary for configuration tasks.

A knowledge base in the DIDS model is a graph,
where the nodes correspond to domain concepts, and
links represent relationships between them, as is shown
in Fig. 3. The knowledge types define the different types
of nodes in this graph and the possible relationships
between them. Only two knowledge types form nodes in
this graph: 'part' and 'abstract part'. These two types
represent parts that can be used to build an artifact and
the functions that the artifact must perform, respec-
tively.

DIDS-generated systems produce designs by succes-
sively decomposing the abstract parts into lower-level
abstract parts, and by selecting parts to implement

r Elevator]
A t t r i b u t e s

/ ~ ~ t o t a l weight:

Cab] ~ hZl'~{or]-"r'CountorWeigh,
. '1"1 "''' ' 'bu*°s- / | Attribute~

w.o ,]LWOOh, jLWO , •
person capacity: lift required:-qiL, no of plates:

shp motor~llohp motor'l(~2hp mo, oq :
; , ' : : ' t o V o - ::

Fig. 3. A few of the knowledge types in the VT knowledge
base.

low-level functions. The remaining types, which define
the relationships between parts and abstract parts, i.e.
links in the graph, represent knowledge that is used to
guide the search for the best abstract part decomposi-
tions, and the best set of parts that can be used to
implement the abstract parts.

The nine knowledge types are the following:

(1) Parts - the part knowledge type represents the
elements in the part library. Parts are defined by a set of
characteristics, ports and boundaries. Characteristics
define the properties of a part that can be expressed by a
name and a value. The values of characteristics are
defined before problem solving begins and cannot change
during problem solving. The ports of a part define where
it can be connected to other parts. The boundaries of a
part define how the part can be arranged relative to other
parts.

(2) A b s t r a c t par t s - abstract parts represent the func-
tions and subfunctions that the artifact being designed
must perform. Abstract parts are defined by their charac-
teristics, ports, boundaries and specifications. Specifica-
tion values depend upon the design problem being
solved, and therefore their values must be computed
during problem solving.

(3) S u b f u n c t i o n - the subfunction knowledge type

successively decomposes the artifact being designed
along functional lines. It describes the functional rela-
tionship between the parts and abstract parts in the
domain. This relationship describes how abstract parts
may be realized by combining sets of lower-level func-
tions, which may include parts.

(4) R e q u i r e d f u n c t i o n s - parts and abstract parts often
require the functions performed by other parts to support
their operation. This information is contained in the
required-functions knowledge type. Associated with each
function performed by a part is a list of required
functions to support its operation, but which are not
specified by the user.

(5) At t r ibu t e constraints - attribute constraints specify
algebraic relationships between the attributes of parts
and abstract parts that must be maintained. Constraints
enable the problem solver to distinguish acceptable from
unacceptable solutions, and to compute specification
values.

(6) Connec t i on constraints - connection constraints
restrict the set of possible connections that can be made
among the ports of parts and abstract parts. They may
either specify illegal connections, or sets of connections
that have been found to be useful in the past.

(7) A r r a n g e m e n t constraints - arrangement con-
straints restrict how parts can be geometrically or topolo-
gically arranged. They define the (physical) relationships
between the boundaries of parts and abstract parts.

(8) Preference k n o w l e d g e - preference knowledge

36 Balkany et al.

enables a design system to choose between sets of
acceptable design alternatives. Preferences differ from
constraints in that constraints eliminate alternatives,
while preferences rank a set of acceptable alternatives so
that optimal designs can be found.

(9) Task-ordering knowledge - task-ordering know-
ledge describes the most efficient order in which to tackle
subtasks.

The knowledge types define the types of domain
knowledge that must be acquired from a domain expert.
In addition, they act as a set of primitives, which are
used to define the functionality of mechanisms, the
knowledge communicated between mechanisms and the
types of domain knowledge used by the mechanisms. All
mechanisms are defined by the operations that they
perform on the knowledge types; i.e. the inputs and
outputs of mechanisms are knowledge types. For exam-
ple, a mechanism may take an abstract part as input and
output the part that can be used to implement it, or be
given a set of parts and determine the connections
between them.

Defining mechanisms in this way has two advantages.
First, the mechanisms will be reusable and combinable.
The definition ensures reusability, because it places no
restrictions on the specific domain concepts that must be
supplied, or on the source domain of the concepts. The
only requirement is that the knowledge-type classification
of domain concepts is the same as the inputs to the
mechanism. This guarantees that a mechanism can be
applied to any configuration task where the domain
contains the appropriate knowledge types. The know-
ledge-type definition also ensures the combinability of
mechanisms, since all mechanisms share a common
representation of these types. Therefore, any two
mechanisms that use the same types of knowledge can
share information, and can be easily combined. Second,
this definition makes it clear exactly what knowledge
must be in the knowledge base for each mechanism to
operate. This information can be used to guide the
selection of mechanisms when constructing a problem-
solving me thod , and to guide the construction of a
knowledge-acquisition tool for the method.

The knowledge types provide a significant portion of
the information used by DIDS to select mechanisms.
Most of the information necessary to make mechanism
selections can be determined by analyzing the organiza-
tion of knowledge types in the domain. Selections are
guided by the absence or presence of knowledge types,
and by analyzing the relationships between types. The
possible variations in the knowledge types are called
mechanism-selection features, and are enumerated in the
model. For example, Fig. 4 shows the single/multi-
function selection feature, which measures the possible
variations in abstract-part decompositions. In the first

decomposition, each (abstract) part is a subfunction of
exactly one other abstract part; it forms a tree. In the
second decomposition, each (abstract) part may be the
subfunction of more than one abstract part; it remains a
tree. For the first decomposition, a simple part-selection
mechanism can be used, but for the second one a more
sophisticated mechanism, such as GOPS (Haworth et al.,
1992) must be used.

2.4. Knowledge acquisition

As mentioned previously, the DIDS model associates
with each mechanism a procedure for acquiring the
knowledge used by that mechanism. These procedures,
which are called Mechanisms for Knowledge Acquisition
(MeKA), define a model-based knowledge-acquisition
tool for acquiring the knowledge types used by a
mechanism (Runkel and Birmingham, 1992). MeKAs are
model based because they use the mechanism's assump-
tions concerning the types of knowledge types available
in the domain and the relationships between these
knowledge types to guide knowledge acquisition. For
example, if a mechanism assumes that the domain will
contain an abstract part decomposition as in the example
on the left in Fig. 4, then the MeKA will ensure that all
abstract parts are the subfunction of, at most, one
abstract part. This MeKA is shown in Fig. 5.

A MeKA has four components (Fig. 5) - infer,
present, acquire and verify - which correspond to the
four-step process used to acquire knowledge for a
mechanism. The infer component uses a MeKA-specific
inference procedure to automatically derive the neces-
sary knowledge. The present component of a MeKA acts
as a filter, presenting only the relevant elements of the
knowledge base to the domain expert. The information
displayed provides enough details to give the domain
expert the appropriate context for the knowledge being
requested, without overwhelming the user with the

Single Function Parts

Legend

Abstract ~ Parts ~ Subfunction
Parts

Multi-Function Parts

Fig. 4. Two alternative decompositions of abstract parts.

DIDS: rapidly prototyping configuration design systems 37

Select-Part MeKA:

none Infer:

Present:

Acquire: [Decompose the abstract part D into subfunctions [

Verify: [Warn if an abstract part has more than one parent I

Fig. 5. A MeKA for a mechanism that selects parts.

1 i ii iiiiiii# i i i!ii!iiii il
Fig. 6. Relationship between the constraint network and
mechanisms.

complexities of the knowledge base. The acquire compo-
nent either asks the user to modify the display of the
present component, or asks the user about the portion of
the knowledge base displayed by the present component.

2.5. Constraint network

The last component of the DIDS model, which is called
the constraint network, provides a set of knowledge-
representation constructs and inference techniques to
augment the mechanisms. The network performs prop-
agation and consistency checks over dynamic constraints
(constraints that are only applicable under certain condi-
tions). The network contains a data structure for each of
the knowledge types and makes inferences using these
structures. Mechanisms are built assuming the network
(Fig. 6): they retrieve domain knowledge by querying the
network, use the network inferences to produce their
results and record their results back into the network.

When mechanisms make changes to the network, the
network propagates the effects of these changes and
ensures that none of the constraints are violated. The
network performs a special form of arc consistency
(Mackworth, 1977), called constraint propagation (Suss-
man and Steele, 1980), as the attributes of parts and
abstract parts are assigned values. It uses the constraints
and the known values of the attributes to compute values
of attributes whose values are not known. For example,
Fig. 3 shows a simple constraint between the total_weight
attribute of the elevator abstract part and weight attri-

butes of three other abstract parts: motor, cab and
counterweight. The constraint states that the t o t a l
weight attribute is equal to the sum of the weights of the
motor, cab and counterweight. Whenever three of the
cost attributes are assigned a value, the network auto-
matically computes the value of the fourth.

3. Building systems with DIDS

DIDS automates the KS-development process through
the use of a set of tools based upon its model of
configuration design. These tools assist with development
by helping a user to rapidly combine the model elements.
In this way, DIDS reduces both the amount of time and
the level of expertise required to build systems. DIDS

begins by presenting a task-modeling interface to the
user. The user uses this tool to describe a prototypical
portion of the problem domain in terms of the know-
ledge types. DIDS then analyzes this prototypical do-
main description to determine the mechanism selection
features, which imply the set of mechanisms and MeKAs
required. DIDS combines the mechanisms to form a
PSM for the user's task and a knowledge-acquisition

tool.
It is not expected that DIDS will generate the correct

PSM and knowledge-acquisition tool on the first attempt.
Often a user's prototypical domain description may be
naive or incorrect, leading to incorrect mechanism selec-
tions. Therefore, the DIDS development process is
iterative. When users uncover problems with the PSM or
knowledge-acquisition tool, they revisit the initial task-
modeling interface to modify the domain description.
DIDS then generates both a new PSM and a new
knowledge-acquisition tool. The existing knowledge
base, however, is not lost because of DIDS' standard
representation of the knowledge types. Any knowledge
acquired by previous versions of the knowledge-acquisi-
tion tool is automatically consistent with the knowledge
base generated by the newest version of the knowledge-
acquisition tool. This feature makes DIDS-generated
systems easy to extend and to maintain.

When the needs of a system change, users must simply
revisit the task-modeling tool (discussed below) to de-
scribe how the task has changed. DIDS then automatical-
ly generates a new PSM and knowledge-acquisition tool
to reflect these changes. The new knowledge-acquisition
tool acquires any knowledge required to perform the new
version of the task that is not already contained in the
knowledge base. For example, consider a DIDS-gener-
ated system that selects the set of counterweights re-
quired to meet functionality specified by the user. Now,
in order to extend this design system to determine the
connections between the counterweights, the user visits
the task-modeling tool, and describes the types of connec-

38 B a l k a n y et al.

tion knowledge present in the domain. The addition of
connection knowledge results in a new set of mechanism-
selection features, which cause DIDS to add mechanisms
to the PSM for connecting parts. The new knowledge-
acquisition tool will acquire the necessary connection
knowledge from the user.

The DIDS system consists of five components that
automate the process outlined above: a task modeler, a
mechanism manager, a mechanism library, a code gener-
ator and a knowledge-acquisition-tool generator (Fig. 7).
The functionality of each of these tools is presented
below. It is expected that DIDS users will visit these
tools in the order listed, but since the process is likely to
be iterative, this may not always be the case.

T a s k - m o d e l e r - the task modeler presents to the user a
generic knowledge editor for describing the problem to
be automated in terms of the knowledge types. Unlike
model-based knowledge-acquisition tools, this tool pro-
vides very little support to the user since the system does
not understand, at this point, the problem domain. It
simply provides interfaces that allow the user to describe
some prototypical portion of the knowledge base. The
modeler analyzes the knowledge entered to determine
the mechanism-selection features. DIDS questions the
user directly when these features cannot be inferred.
Once the features have been determined, they are
communicated to the mechanism manager.

M e c h a n i s m m a n a g e r - the mechanism manager selects

the mechanisms and MeKAs required to automate tile
user's task based upon the selection features identified by
the modeler. To facilitate this selection process, each
mechanism in the library is annotated with the set of
features that determine when the mechanism should be
selected (see Fig. 12). The selected mechanisms are
sequenced and connected to form a PSM using a schema

that is also retrieved by matching features. The MeKAs
are sequenced to build a knowledge-acquisition tool by
using a set of heuristics.

G e n e r a t o r s - the code generator and the knowledge-
acquisition-tool generator take the PSM description and
the knowledge-acquisition tool description produced by
the mechanism manager and use them to generate the
source code for the PSM and the knowledge-acquisition
tool. The generators retrieve the code fragments describ-
ing the implementations of both the MeKAs and the
mechanisms from the mechanism library, and combine
them according to the mechanism manager's descrip-
tions.

K n o w l e d g e - a c q u i s i t i o n t o o l - the generated know-
ledge-acquisition tool interviews the user to build a
knowledge base for the PSM. It uses the task model
produced by the task modeler to provide active assist-
ance during the acquisition process. Its assistance in-
cludes completeness and consistency checks, filtered

DIDS

[Task
/ Modeler
[In terviews
[user to

k,,-Idetermine
lavaiIable
IknowIedge
|& task

Domain Knowledge_.,.._ [-

Problem Instance

I Mechanism] [=- ::]
/ Manager ~ M e c h a n i s m I
IPerforms queries [- I Library /
[on mechanism I I I
~llibrary_~ t....__.~_--

MeKAs~ I PSM
Knowledge

Acquisition I I GC°g:tor
Tool Generatol I I I

Knowledge [
Acquisition ToolJ

 n0wledgq

Solution

Design
System

Fig. 7. DIDS and a mechanism library.

presentations that display only the relevant portions of
the knowledge bases, and an agenda mechanism that
controls the order in which knowledge is acquired.

D e s i g n s y s t e m - the design system, when combined
with the knowledge base acquired by the knowledge-
acquisition tool, is a fully operational, domain-specific
knowledge design tool. It presents an interface that
allows a user to enter a problem instance for the system
to solve. The system solves the problem instance by
invoking the mechanisms and using the knowledge in the
knowledge base.

4. DIDS' mechanism library

The heart of DIDS is the mechanism library. The library
must provide sufficient coverage to allow all the con-
figuration-design subtasks to be solved, yet its size cannot
be so large as to be unmanageable. The DIDS model,
specifically the knowledge types and constraint network,
restricts the size of the library while supporting reusabil-
ity. In this section, we show the organization of the
library and provide some examples of mechanisms.

4.1. Mechanisms

Several of the mechanisms and their corresponding
MeKAs in the DIDS system are illustrated in Fig. 8.
Note that the inputs to a mechanism are knowledge
types; a pointer to a specific node in the knowledge base
is also provided to provide context for the mechanism. In
addition, a set of mechanism-selection features is given

D I D S : rapidly prototyping configuration design systems 39

Mechanism
compute spec_values(Node part)
{ For each attribute, att, of part

if att does not have a value then
compute att's value using its formula

}

Task-Selection Features: parts have
attributes

Functional Groue: Design extension

select_all_parts(Node nd, Set& candidates)
{set candidates equal to nd's children in the
functional hierarchy. }

Task-Selecti0n Features: the hierarchy must
contain AND nodes

Functional Gro~!p~ Design extension

select_candidate_parts(Node nd,
Candidates set, Constraints con)
{Get nd's children, in the functional
hierarchy;

For each of child, ch, of nd
if ch satisfies the constraints con on
nd then add ch to candidates;

}

Task-Selection Features: must have
hierarchy

Functional Groun: Design extension

selectbest_part(Set& cand_parts, Node&
best)
{set best equal to the node in the set,
cand_parts, that has the cost attribute with
the smallest value.
)

Task-Selection Features: no restrictions

Functional Group: Design extension

MeKA
compute_spec_values-MeKA(focus)
Knowledee used:

Attributes
Formulas

Inference: none
Prompt:
Prompt("Use the following table to define
the attributes of %s. For each attribute define
either a value or a formula that can be used
to compute the value of the attribute."
get_name(focus));
Verify:
{ for all attributes, art, of focus

ensure that att either has a value
or att has a formula

}
select-best-part-MeKA(focus)
{
} /* no knowledge required */

select-candidate-parts-MeKA(Node focns)
Kn0w!~ige used: Constraints
Present:

present_attributes(focus);
present_attributes(children(focus));

Prompt:
prompt("Enter the constraint used to

select the part %s set.", children(focus));
V ~f~f:
{The constraint acquired constrains the focus
and its children. }

select-best-part-MeKA(Node focus)
Knowledge acouired: Attribute: "Cost"
Inferences: none
Promnt:
prompt("Enter the cost in dollars of the part
%s?", get_name(focus));
verify: {cost is greater than 0};

Fig. 8. A few of the MeKAs and mechanisms in the DIDS
library.

for each mechanism. As more mechanisms are added to

the library, it is possible that these features will be

updated so that new mechanisms can be discriminated

from existing ones. Finally, the mechanism is tagged with

a functional group (described in the next section).

MeKAs are also shown in Fig. 8. Each MeKA specifies

the knowledge to be acquired, the method for acquiring

it (the prompt field), whether the knowledge can be

inferred from knowledge already acquired (the inference

field) and a method for verifying it. This is all the

information needed to construct a model-based know-

ledge-acquisition tool.

4.2. Functional organization of the mechanism library

Mechanisms can be selected from the library based on

task features. Guidance, however, for assembling the

mechanisms into a usable PSM is required. Simply

matching inputs and outputs is insufficient, since this

does not consider any notion of function. For example, a

mechanism that adds numbers and one that subtracts

numbers will have the same inputs and outputs.

In studying several configuration tools, a PSM for

I I
Select Design ~ Make Design
Extension I - I Extension

Make Fix

Fig. 9. The configuration-design PSM.

H Select Fix

configuration design has been derived (Balkany et al.,

1992), and is shown in Fig. 9. The PSM assumes that

mechanisms can be partitioned into disjoint functional

groups (select design extension mechanisms, make design

extension mechanisms, select fix mechanisms and make

fix mechanisms). The DIDS model ensures this, since a

mechanism can only perform one operation on a know-

ledge type.

This model can be instantiated for a new design task

by choosing the proper mechanism for each step. The

control-flow relationships between different functions

are already defined. In some cases, one or several steps

can be eliminated. For example, some systems avoid

correcting failure; hence the select fix and make fix

functions can be eliminated.

5. Developing an elevator-design system using DIDS

An example shows how DIDS can be used to develop

knowledge systems. The example further demonstrates

the types of support that DIDS provides during the

knowledge-system development process and the extendi-

bility and maintainability of DIDS-generated systems. It

shows how DIDS was used to construct a system that

automates the VT (vertical transport) (Yost, personal

communication) elevator-design task. Not all compo-

nents of DIDS, however, have been completely im-

plemented, to some of the functionality described in the

previous sections was not available when the VT task

was automated. This discussion presents the anticipated

functionality of the completed DIDS system, not the

functionality of the current prototype.

40 Balkany et al.

5.1. VT problem

The VT task involves designing elevators for high-rise
buildings according to a set of specifications provided by
an architect. The specifications describe the elevator
requirements, such as the number of floors in the
building, the dimensions of the shaft, the distance
between each floor and the maximum capacity of the
elevator. In addition, there are numerous constraints
defining relationships between the elevator components
that must be satisfied by the design. Designers select
parts from a catalog to produce an elevator design that
has low cost, meets the specifications and satisfies the
constraints.

5.2. Task modeling

The designer begins the development process by invok-
ing the task-modeling tool. This tool is used not to build
a complete knowledge base, but to define some repre-
sentative portion of the knowledge base so that mechan-
ism-selection features can be identified. The tool pro-
vides a variety of interfaces that allow the designer to
describe the problem domain using the DIDS model. It is
not necessary for the designer to be aware of the
intricacies of the model because the tool's interfaces
allow the designer to express available knowledge using
familiar notation. For elevator configuration, designers
use schematic drawings of elevators to determine the
necessary dimensions of its components and the forces on
these components. Therefore, the designer selects the
modeling tool's structure-constraint editor to draw
schematics (Fig. 10).

The structure-constraint editor allows the designer to
draw the elevator schematic and to label the objects and
the edges in the diagram. The editor represents the
schematic in the DIDS model by creating an abstract part
for each object in the diagram, and an attribute on the
objects for each of their labeled edges. In addition, the
editor infers constraints between the attributes by analyz-
ing the relationships between the labeled edges in the
diagram. For example, the editor would create abstract
parts for the cab, stile, door opening, safety and cross-
head. The specifications inferred by the editor would
include height specifications for the platform and safety.
The editor will also create a constraint recording that the
sum of the ub-space and cab-height attributes must equal
the sling-ub attribute.

Once the designer has completed the schematics, the
task modeler's hierarchy tool is used to further define the
objects and relationships identified in the schematic
diagram. The designer uses this tool to identify some of
the parts in the part catalog and to relate parts in the
catalog to the abstract parts that they implement. Figure
11 shows a small portion of the hierarchy created by the

stile
length

Crosshead

cab
S

t
i
I door
e opening

i i

platform

safety

safety bg

q¢
crosshead height

\
ub space

slin,
ub

:ab T cab .
qeight J/hePight g

platform height

/~ safety height

Fig. 10. Schematic drawing of elevator from Yost, personal
communication.

- I ~ X ie ' r ' a r chy ' B r o w s ' e r .-. ' ~-JW

It

I mote _3Ohp I

. ~ ~ ° t ° r - - 2 O h p I
otor_1Ohp I

I Elewt°r I I D°or-2ss°-rh I

[Door_ssso_rh]

,ff

Fig. 11. Hierarchy tool showing relationship between abstract
parts and parts.

designer. The abstract-part, part and constraint editors
(not shown) are used to define the characteristics and
specifications of each object in the diagram and the
constraints between them.

The modeler also contains interfaces for acquiring
preference and task-ordering knowledge. The designer
enters a formula into the preference editor expressing
that low-cost parts should be evaluated more favorably
than expensive ones. This preference will be used by the
design system to distinguish between parts that perform
the same function and satisfy the specifications and the
constraints. The designer does not use the task-ordering
editor, indicating that the abstract parts can be designed
in any order.

For the VT task, in addition to not specifying task-
ordering knowledge, the designer does not use any of the

DIDS: rapidly prototyping configuration design systems 41

Mechanism Selection Feature VT's Feature

functions per part l

hierarchy levels 3

required functions none

preference evaluation function

task ordering none

connection constraints none

arrangement constraints none

Fig. 12. Mechanism selection features determined by the
modeler.

modeler's editors that allow the possible connections
between parts - their legal arrangements - to be defined.
This information is not necessary to configure elevators
as parts can only fit together in one way, and their
connections and arrangements are obvious when a
schematic like that of Fig. 10 is available. Given a
consistent set of parts, the workers that assemble eleva-
tors have no trouble combining them to build an eleva-
tor. The difficult task is selecting the set of parts that will
form a working elevator satisfying the specifications and
the constraints while minimizing cost. The design tool
only needs to be concerned with the information neces-
sary to select parts.

Upon completion of the domain description, the desig-
ner tells the modeler to generate a knowledge-acquisition
tool and a design system. The modeler analyzes this
description to determine the mechanism-selection fea-
tures (Fig. 12). The first three features are determined by
analyzing the knowledge acquired by the hierarchy tool.
The functions-per-part feature measures the maximum
number of parents of each part. For the VT task, each
part has one parent in the hierarchy and, therefore, each
part performs exactly one function. The hierarchy-levels
feature measures the number of levels in the hierarchy,
and the required-function feature measures whether or
not the domain contains required-function knowledge.
For VT, there are three levels in the hierarchy and no
required functions.

The remaining features define the properties of the
other knowledge types. The preference feature describes
the types of preference knowledge supplied by the
domain expert. As mentioned above, the domain expert
supplied an evaluation function ranking low-cost parts
over expensive ones. Finally, the user failed to enter any
connection or arrangement constraints and task-ordering
knowledge, so these features have no value.

5.3. Generating a KS

The mechanism manager receives the selection features
from the modeling tool, and uses them to build a PSM.
The manager begins with a schema, like the one shown

in Fig. 9. It selects a mechanism for each functional
group in the schema by finding the mechanism whose
selection features most closely match those identified by
the modeling tool. These mechanisms are then combined
in the order specified by the schema.

The knowledge-acquisition generator builds a know-
ledge-acquisition tool for these mechanisms by retrieving
the MeKAs for each mechanism from the library. The
MeKAs are combined using a set of predetermined
heuristics that order the invocation of the MeKAs
according to the way designers feel comfortable describ-
ing configuration knowledge. A more detailed discussion
of the knowledge-acquisition-tool generation process is
given in Runkel and Birmingham (1992).

The PSM and knowledge-acquisition tool descriptions
are then passed to the generators, which combine the
mechanism and MeKA code segments resulting in a PSM

and a knowledge-acquisition tool.

5.4. Knowledge acquisition

After the design tool has been generated, the designer
begins the most time-consuming part of the development
process: knowledge acquisition. The designer uses the
knowledge-acquisition tool to build a knowledge base
describing all the knowledge necessary to design eleva-
tors. The knowledge-acquisition tool, unlike the task-
modeling tool, has been tailored by DIDS to acquire
knowledge about elevators and provides active assistance
during the acquisition process.

The knowledge-acquisition tool begins by acquiring the
part library and the relationships between the parts.
First, the designer must list each part in the library and
define its attributes. Next, the tool invokes its first two
MeKAs to present interfaces, which are similar to the
modeling tool's structured-constraint editor and hierar-
chy tool, for defining the abstract parts and their
relationships to the parts. Figure 5 depicts the MeKA
used to define the relationship between abstract parts
and parts. During task modeling, the designer used these
interfaces to describe only a small portion of the domain
knowledge. Now t h e designer is encouraged to be
exhaustive. The designer uses these interfaces until all
elevator functions have been enumerated and all parts
that implement them have been defined.

The MeKAs continuously monitor the designer's do-
main description to ensure that it matches the mechan-
ism-selection features. In this example, the MeKAs
ensure that the hierarchy remains three levels deep, no
required functions are specified and all parts perform
exactly one function. This enforcement is necessary
because the mechanisms were selected based on these
features, and may not work properly if the knowledge
base does not have them. If the designer needs to violate
these restrictions, however, the task-modeling tool can

42 Balkany et al.

simply be invoked again to make the necessary changes
to the knowledge base. This will result in a new set of
features and a different PSM.

Next, the add-part MeKA is invoked to acquire both
the preference knowledge and the constraints necessary
to select parts. The MeKA acquires a cost attribute for
each part if the designer has not already supplied one
and acquires, for each abstract part, a set of constraints
that can be used to select among the parts that

implement it. Since the add-part mechanism selects parts
by looking at constraints that relate the specifications of
an abstract part to the characteristics of its child parts,
the MeKA acquires this type of constraint. In addition,
the MeKA acquires constraints that can be used to
calculate values of the specifications from the specifica-
tions of other abstract parts and the design requirements.

The knowledge-acquisition process, in contrast to the
way in which it has been described here, is iterative.
Often the knowledge acquired by one MeKA will cause
the designer to extend or modify the knowledge acquired
by a previously invoked MeKA. The designer has the
option at any point during knowledge acquisition to
invoke the MeKA of choice to fix some portion of the
knowledge base. In addition, the knowledge-acquisition
tool may invoke a MeKA when it spots an inconsistency
in the knowledge base, to encourage the designer to

remove it.
Once the knowledge-acquisition process is complete,

the MeKAs translate the knowledge base into the
constraint network. This is a simple transformation that
converts the knowledge-type representation used by the
knowledge-acquisition tool to the knowledge-type repre-
sentation used by the mechanisms. The constraint net-
work is then combined with the PSM to produce a KS
capable of automating the VT task.

5.5 Running the system

The DIDS-generated system is evaluated by running it on
a variety of test cases (including input specifications for a
design and a designed artifact that meets those specifica-
tions, which is the expected output of the KS). Typically,
these runs uncover areas where the knowledge base is
incomplete or incorrect and then, the knowledge-ac-

quisition tool is invoked to make the changes. If neces-
sary, the designer can revisit the task modeler to make
more drastic changes to the structure of the knowledge
base. Once the system has been thoroughly tested, it can
be used to produce working elevator designs.

5.6. Extending the system

The DIDS-generated design system is easy to extend and
to maintain. For example, the knowledge-acquisition tool
can easily be used to update the knowledge base as the

parts and their functionality change over time. In addi-
tion, DIDS can be used to extend the system when the
nature of the design task changes. For example, assume
that a new set of elevator controller hardware becomes
available. Previously, several controller modules were
used, each one applicable in a different situation. Now, a
few general-purpose modules can be integrated in a
variety of ways. The functionality of the controller is not
only determined by which modules are selected, but by
how the modules are connected. The system must not
only select the appropriate set of modules but determine
how to connect them together.

To make this addition to the DIDS-generated system,
the designer simply revisits the task-modeling tool to
describe a few of the new modules, their ports and the
possible connections between them. This knowledge
might take the form of sets of legal module connections,
or a set of connection constraints describing illegal
module connections. This additional knowledge results in
several new selection features, which cause the mechan-
ism manager to add to the PSM new mechanisms that
connect parts. In addition, MeKAs that acquire the
connection knowledge are added to the knowledge-
acquisition tool.

Since all DIDS-generated systems share the same set
of knowledge types, most of the previous knowledge
base can be reused. The old controller modules must be
removed, the new ones defined and the knowledge
necessary to connect the modules acquired by invoking
the new MeKAs. The rest of the knowledge base can be
reused without any modifications. Once the designer has
used the knowledge-acquisition tool to make the neces-
sary modifications to the knowledge base, the new KS is
ready for testing.

6. Related work

This section compares DIDS to two classes of systems.
The first class of systems automates programming in
general, and the second class of systems facilitates the
construction of knowledge systems.

6.1. Automatic programming

The programmer's apprentice (PA) (Rich and Waters,
1988), an assistant to a software engineer, facilitates
program development using reusable components in all
phases of the software-development process. These com-
ponents, called cliches, represent commonly used com-
binations of programming elements. The PA, which
contains clich6s that represent familiar specification,
design and implementation constructs, develops software
by using inspection methods. During inspection, the PA
helps the user to recognize clich6s in the specifications

DIDS: rapidly prototyping configuration design systems 43

and to choose between the lower-level clich6s that
implement the specification. In contrast, DIDS, which is
restricted to configuration tasks, completely automates
code generation by analyzing a user's prototypical do-
main description. In addition, DIDS uses a propose-and-
revise methodology for system development whereas the
PA, which has a rich representation for the behavior of
clich6s, supports a refinement methodology.

Draco (Neighbors, 1984) automates software develop-
ment by reusing software components. Draco not only
supports the reuse of code, but also the reuse of analysis
and design information. Draco libraries contain domains
for which the typical problem statements and imple-
mentation alternatives are known. Users develop new
systems by describing requirements in terms of known
domains. This allows the analyses and the designs
developed for some domains to be reused on a new
problem. Instead of mapping a known solution to a new
problem, DIDS' mechanisms can be recombined to cover
a greater range of problems. DIDS also reuses analysis
and design information; in DIDS, these take the form of
mechanism selection features that indicate when each
mechanism should be reused.

6.2. KS development aids

Klinker et al. (1990) propose to build systems by combin-
ing mechanisms, in a way similar to DIDS. The approach
differs in that their system is geared towards non-
programmers, the analysis of user's tasks is an integral
part of system generation and the task type is not
restricted. This makes it difficult to determine a priori
the types of knowledge and the set of mechanisms
required to construct systems. Instead, they have de-
veloped a shared vocabulary of task activities that can be
used to describe tasks in domain-independent terms. The
system analyzes the user's task, and helps to describe it
in terms of the shared vocabulary. Each activity in the
shared vocabulary is associated with a set of mechanisms
that can be used to implement it. The shared vocabulary
helps to make mechanisms usable, i.e. understandable by
users, and reusable.

Neches et al. (1991) propose to build new knowledge
systems through knowledge sharing. This involves build-
ing tools that enable the knowledge base of one system
to be used by another, and facilitate the communica-
tion between knowledge systems. A standard knowledge-
representation system, a standard knowledge-base query
language, a standard concept ontology and\a standard
language for expressing knowledge form the heart of this
approach. DIDS has the most in common with the
standard concept ontology, since the mechanism and
PSM libraries can be viewed as ontologies of problem-
solving components. The philisophy of DIDS, however,
differs significantly from the other parts of the Neches et

al. approach. DIDS supports the reuse of fundamental
software components by identifying mechanisms shared
across domains instead of reusing existing knowledge
bases. We believe the task-specific bias of most know-
ledge bases makes their reuse difficult.

Protege II (Puerta et al., 1991), a system similar to
DIDS, generalizes the capabilities of Protege (Musen,
1989) and combines them with a mechanism-based
model. Protege II contains a library of tasks and a library
of mechanisms. A mechanism's description includes a
description of the data used by the mechanism and links
to tasks, which are used to suggest the mechanisms
capable of performing a task. Once the mechanisms have
been selected, Protege II generates a knowledge-acquisi-
tion tool by looking at the data required by each
mechanism. A weaker model of expertise distinguishes
Protege II from DIDS since the set of mechanisms, the
types of data operated upon by mechanisms and a
procedure for identifying mechanisms have not been
established.

DIDS can also be compared to design programming
languages. The authors' work is aimed at understanding
how design systems operate, namely the way in which
they solve their particular problems. What makes these
systems different is the design knowledge they use, and
the domains in which they operate. Thus, the authors'
work is significantly different from those developing
languages for constructing design systems, such as DSPL
(Brown and Chandrasekaran, 1989), Edesyn (Maher,
1987) and DESCRIBE (Mittal and Araya, 1987). These
languages provide programming constructs to easily cap-
ture design knowledge for specific tasks. All three,
however, work at a different abstraction level than the
mechanisms described in this paper. Furthermore, they
provide simpler, albeit potentially more general, oper-
ators (mechanisms) than are assumed by the authors'
models. In fact, the mechanisms described here could be
implemented in any of these languages, as they could in
more traditional programming languages.

CGEN (Birmingham and Siewiorek, 1989), a know-
ledge-acquisition tool for computer-design systems, and
SALT (Marcus, 1988), the knowledge-acquisition tool
for the VT system, embody many of the ideas that will be
present in DIDS-generated knowledge-acquisition tools.
Both CGEN and SALT play an active role during
knowledge acquisition by detecting inconsistencies and
missing knowledge. We believe that the strong model of
mechanisms and knowledge forming the foundation of
DIDS will enable DIDS-generated knowledge-acquisi-
tion tools to have these features. CGEN and SALT,
however, were built to support a particular PSM. Thus,
they have limited applicability. DIDS removes these
limitations and incorporates VT, mechanisms and PSM
in its libraries.

Chandrasekaran proposes a model of design based

44 B al kany et al.

solely on the concept of generic tasks, (Chandrasekaran,
1986, 1990). Generic tasks decompose design tasks
hierarchically. Each task is defined by its position in the
hierarchy, the method used to perform it, and the
knowledge, both declarative and control, required to
perform the task. Generic tasks have three principal
weaknesses, which are shared with DIDS, but to a lesser
degree. DIDS' model of configuration design, which is
grounded in a careful study of configuration systems,
helps to reduce these problems. First, the generic-task
model does not establish which tasks are generic.
Second, the design system's task may not decompose
neatly into a disjoint set of high-level generic tasks even
though there may exist a set of lower-level tasks that
could implement the system. For example, it is possible
that a design system might first perform half of the
classification generic task, then do a critiquing task and
then finish the classification. Finally, the separate imple-
mentation of each generic task requires an environment
to integrate and to allow communication between tasks.
Also, a system implemented using generi c tasks may
contain multiple copies of the same piece of knowledge,
since the knowledge used by two generic tasks may
overlap. The environment must ensure that the know-
ledge contained in different generic tasks is consistent.

7. Summary

The craftsmanship required for developing knowledge
design systems has hampered the widespread use of this
technology. For a cogent task, such as configuration
design, craftsmanship can be replaced by partial automa-
tion. Accordingly, the DIDS model for rapidly creating
configuration design systems was developed.

DIDS is based on the idea of reusability of knowledge
structures and mechanisms. By utilizing an integrating
framework, mechanisms and knowledge structures can
be quickly applied to new application domains. Furth-
ermore, these systems can be assembled without detailed
programming knowledge. The DIDS approach was de-
monstrated in this paper on an elevator-design problem,
which is relatively large (hundreds of constraints and
parts). We have recently used the DIDS approach on a
number of other problems, the largest being a computer
configuration task, that has over 10 000 constraints and
over 1500 components.

Acknowledgements

This work was funded, in part, by a gift from Digital
Equipment Corporation and by the National Science
Foundation Grant MIPS-905781. The opinions expressed
in this paper are those of the authors, and do not

necessarily reflect those of Digital Equipment Corpora-
tion or NSF. Manjote Haworth was instrumental in
developing the constraint network.

References

Balkany, A., Birmingham, W. P. and Tommelein, I. D. (1993)
An analysis of several design tools. Artificial Intelligence in
Engineering, Design, and Manufacturing, 7(1), 1-17.

Barker, V. and O'Conner, D. (1989) Expert systems for
configuration at Digital: XCON and beyond. Communica-
tions of the ACM, March.

Birmingham, W. P. and Diewiorek, D. (1989) Automated
knowledge acquisition for a computer synthesis system.

Birmingham, W. P. and Tommelein, I. D. (1992) Towards a
domain-independent synthesis system, in Knowledge Aided
Design, Green, M. (ed.), Academic Press, London.

Birmingham, W. P., Gupta, A. and Siewiorek, D. (1992)
Automating the Design of Computer Systems: The Micon
Project, Jones and Barlett, Boston.

Boehm, B. W. (1987) Improving software productivity. Com-
puter, September, 20(9), 43-57.

Brown, D. and Chandrasekaran, B. (1987) Design Problem
Solving - Knowledge Structures and Control Strategies,
Morgan Kaufmann, San Mateo, CA.

Brown, D. C. and Chandrasekaran, B. (1989) Design Problem
Solving: Knowledge Structures and Control Strategies, Mor-
gan Kaufmann, Pitman Publishing, London.

Chandrasekaran, B. (1986) Generic tasks in knowledge-based
reasoning: high-level building blocks for expert system
design. AI Magazine, Fall.

Chandrasekaran, B. (1990) Design problem solving: a task
analysis. AI Magazine, Winter.

Dechter, R. and Pearl, J. (1987) Network-based heuristics for
constraint satisfaction problems. Artificial Intelligence,
34(1), 1-38.

Doyle, J. (1979) A truth maintenance system. Artificial Intelli-
gence, 12, 231-272.

Johnson, M. V. Jr and Hayes-Roth, B. (1988) Learning to
solve problems by analogy, Report No. KSL-88-01, Stan-
ford University, Department of Computer Science, Know-
ledge Systems Laboratory.

Haworth, M. S., Birmingham, W. P. and Haworth, D. E.
(1992) Optimal part selection, CSE-TR-127-92, University
of Michigan, Computer Science and Electrical Engineering
Division.

Klinker, G., Bhola, C., Dallemagne, G., Marques, D. and
McDermott, J. (1990) Usable and reusable programming
constructs, in Proceedings of the 5th Knowledge Acquisition
Workshop, AAAI.

Langrana, N., Mitchell, T. and Ramachandran, N. (1986)
Progress towards a knowledge-based aid for mechanical
design, in Symposium on Integrated and Intelligent Manu-
facturing, The American Society of Manufacturing En-
gineers.

Mackworth, A. K. (1977) Consistency in networks of relations.
Artificial Intelligence, 8(1), 99-118.

Maher, M. L. (1987) Engineering design synthesis: a domain
independent representation. AI EDAM, March.

DIDS: rapidly prototyping configuration design systems 45

Marcus, S. (ed.) (1988) Automating Knowledge Acquisition for
Expert Systems, Kluwer, Boston.

Marcus, S., Stout, J. and McDermott, J. (1987) VT: an expert
elevator designer that uses knowledge-based backtracking.
AI Magazine, Winter.

McDermott, J. (1980) RI: a rule-based configurer of computer
systems, No. CMU-CS-80-119, Department of Computer
Science, Carnegie Mellon University.

McDermott, J. (1988) Preliminary steps towards a taxonomy of
problem-solving methods, in Automating Knowledge Ac-
quisition for Expert Systems, Marcus, S. (ed.), Kluwer,
Boston.

Mittal, S. and Araya, A. (1987) A knowledge-based framework
for design, in Proceedings of the 5th National Conference
on AI, pp. 856-865.

Mittal, S. and Frayman, F. (1989) Towards a generic model of
configuration tasks, in Proceedings of the llth HCAI,
August, pp 1395-1401

Musen, M. (1989) Automated Generation of Model-Based
Knowledge-Acquisition Tools, Morgan Kaufmann, San
Mateo, CA.

Neehes, R., Fikes, R., Finin, T., Gruber, T., Patil, R.,
Senator, T. and Swartout, W. (1991) Enabling technology
for knowledge sharing. AI Magazine, 12(3), 3656.

Neighbors, J. (1984) The Draco approach to constructing
software from reusable components. IEEE Transactions on
Software Engineering, September.

Newell, A. (1981) The knowledge level. AI Magazine,
Summer.

Puerta, A. R., Egar, J. W., Tu, S. W. and Musen, M. A.
(1992) A multiple method knowledge-acquisition shell for
the automatic generation of knowledge-acquisition tools.
Knowledge Acquisition, 4(2), 171-196.

Rich, C. and Waters, R. (1988) Programmer's apprentice:
research overview. IEEE Computer, November.

Rosenblatt, A. and Watson, G. (eds) (1991) Concurrent
engineering. IEEE Spectrum, July, 22.

Runkel, J. T. and Birmingham, W. P. (1992) Knowledge
acquisition in the small, in Proceedings of the AAAI
Knowledge Acquisition for Knowledge-based Systems
Workshop, Banff, October.

Runkel, J. T., Birmingham, W. P., Dart, T. P., Maxim, B. R.
and Tommelein, I. D. (1992) Domain independent design
system: environment for rapid prototyping of configuration
design systems, in Proceedings of the 2nd International
Conference on Artificial Intelligence in Design, AID 92,
22-25 June, Pittsburgh, PA, Gero, J. S. (eds), Kiuwer,
Dordrecht, pp. 21-40.

Sussman, G. J. and Steele, G. L. Jr (1980) CONSTRAINTS -
a language for expressing almost-hierarchical descriptions.
Artificial Intelligence, 14, 1-39.

Tommelein, I. D., Levitt, R. E. and Hayes-Roth, B. (1992)
SightPlan model for site layout. Journal of Construction
Engineering and Management, 118(4), 749-766.

Tong, C. (1987) Towards an engineering science of knowledge-
based design. Artificial Intelligence in Engineering, 2(3).

