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The domain independent design system (DIDS) provides a set of tools for rapidly 
constructing new configuration design systems from a library of reusable software elements 
called mechanisms. A DIDS user begins by creating a model of the problem domain and 
the task to be automated. This includes describing a library of parts from which new 
artifacts could be configured, optimization and preference criteria, and functionality 
constraints. DIDS analyzes this input and automatically builds an operational prototype 
system by selecting and combining mechanisms. DIDS' ability to automate this process is 
derived from its model of configuration design, which enables reusable mechanisms to be 
identified and automatically selected based on a problem's characteristics. The use of 
DIDS is illustrated by showing how DIDS solved an elevator-configuration problem. 
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1. I n t r o d u c t i o n  

Knowledge-based design systems such as R1 (also known 
as XCON) (McDermott, 1980), M1 (Birmingham et al., 
1992), VT (Marcus et al., 1987) and SightPlan (Tomme- 
lein et al., 1992) have demonstrated the benefits of 
automating design tasks where essentially the same 
artifact is repeatedly designed with only minor varia- 
tions, i.e. specifications vary slightly from design to 
design. Variations in design will depend on input spe- 
cifications and the selection of parts available in a 
particular manufacturing process. Design systems should 
therefore take into account manufacturing constraints 
and process limitations. 

Knowledge systems (KS) have significantly reduced 
both the cost and time required to produce a design by 
modeling the problem-solving process of humans and 
using KS techniques for implementation. In addition, 
their systematic encoding of the design process has 
reduced the number of errors in a design, and given a 
large number of organizations access to the design 
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expertise encoded within them (e.g. Barker and O'Con- 
net, 1989). 

Although the benefits of these design systems are 
great, the cost and level of expertise required to build 
them impedes their development for new applications. A 
development team, consisting of both domain experts 
and knowledge engineers, typically requires several per- 
son-years to build a system. Designers require the 
assistance of knowledge engineers because they are not 

versed in artificial intelligence concepts and techniques. 
The long  development time results from two factors. 
First, designers must communicate all relevant domain 
concepts to knowledge engineersl which is a slow and 
iterative process. Second, design systems tend to be large 
programs that are difficult to construct (Boehm, 1987). 
By automating parts of this process, the domain-indepen- 
dent design system (DIDS) (Runkel et al., 1992) reduces 
the amount of time and expertise required for such 
development. 

The DIDS model facilitates the rapid development of 
systems that perform a restricted form of design called 
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configuration (Mittal and Frayman, 1989). Knowing char- 
acteristics of this restricted task, and when given domain 
and problem descriptions, the DIDS system automatical- 
ly configures a design problem-solving method (PSM) 
(McDermott, 1988) from a library of reusable software 
elements, called mechanisms. The resulting system can 
then create designs. DIDS thus enables users with a 
limited knowledge of artificial-intelligence techniques to 
build systems, because most of these techniques are 
encoded in mechanisms and are, therefore, hidden from 
the user. 

The success of DIDS depends on the development of a 
mechanism library which has a manageable size, but 
which provides enough elements to cover a significant 
percentage of configuration tasks. The authors' research 
(Balkany et al., 1993) and the design literature suggest 
that a library of reusable mechanisms can be created. 
Chandrasekaran (1986) and Tong (1987) have identified 
fundamental elements of the design process that are 
shared across domains. They have proposed models of 
design that place structure on the design process, while 
implicitly assuming commonality between design proces- 
ses in different domains. Others have demonstrated that 
design tools intended for one domain can be ported to 
new domains (Langrana et al., 1986; Brown and Chan- 
drasekaran, 1987; Maher, 1987; Johnson and Hayes- 
Roth, 1988; Birmingham and Tommelein, 1992). These 
observations laid the foundation for the development of 
DIDS. 

This paper is organized as follows. The next section 
discusses the DIDS model of the configuration task. 
Section 3 describes how design tools are built with DIDS. 
Section 4 describes the DIDS mechanism library, and 
Section 5 provides an example of how DIDS can be used 
to create a knowledge system that solves an elevator- 
configuration design problem. Section 6 presents re- 
search related to DIDS and Section 7 summarizes the 
paper. 

2. The DIDS model of configuration design 

2.1. Configuration design 

The authors' research has emphasized the automation of 
configuration-design tasks. Configuration design can be 
characterized by the following (adapted from Mittal and 
Frayman, 1989): 

A designer constructs an artifact given a fixed library of 
parts, a set of constraints relating the functionality and 
characteristics of these parts, specifications on the arti- 
fact's functionality, performance, and cost. The artifact 
must obey either rules of interconnection, geometry, 
topology, or any combination of the three. 
Optionally, a set of preference or optimization criteria can 
be given. The artifact conforms to these criteria. 

A model of configuration design forms the foundation of 
the DIDS approach. The model enables DIDS to provide 
support for automating KS development by allowing 
DIDS to make inferences using the model's assumptions. 
The model also establishes a set of principles that guide 
the identification of mechanisms. It identifies the types of 
knowledge that must be acquired from the user, the 
mechanisms required to automate configuration tasks 
and the knowledge-acquisition procedures necessary to 
build knowledge-acquisition tools. In addition, the model 
identifies, for each knowledge type, mechanism and 
knowledge-acquisition procedure, the features of the task 
that indicate when it should be used. 

2.2. Mechanisms and problem-solving methods 

The DIDS model, as well as the system, is based on 
the concept of a mechanism. For configuration design, 
mechanisms represent the various techniques for auto- 
mating the configuration subtasks. Two mechanisms may 
automate the same subtask (e.g. part selection or 
arrangement), but will differ by the algorithm used or the 
types of knowledge used. The model associates with each 
mechanism a collection of programming-language state- 
ments that implement the mechanism, a set of mechan- 
ism-selection features that describe when the mechanism 
should be used, a procedure for acquiring the domain 
knowledge required for the mechanism to operate and a 
description of the mechanism's inputs and outputs. For 
example, Fig. 1 shows the pseudo-code and inputs and 
outputs for a mechanism that performs part selection. 
Examples of the other types of information associated 
with mechanisms will be shown later in this section. 

DIDS-generated problem solvers consist of a sequence 
of mechanisms called a problem-solving method (PSM), 
which is the series of steps used by the system to 
automate the configuration task. For example, Fig. 2 
shows a PSM generated by DIDS to automate the task 
performed by VT, an elevator design system (Marcus et 
aI., 1987). The mechanisms are highlighted in bold, and 
the outermost WHILE loop defines the loop over which 
the problem solver iterates. Mechanisms that execute 
conditionally are contained within the IF and WHILE 
statements inside the outer WHILE loop. 

select-part mechanism 
Input: Abstract parts, list of possible parts, applicable constraints 
Output: A part, from part list input, that implements the function input without 
violating any constraints. 
Returns: TRUE if a part was selected. 
Pseudo-code: For each part in the part list 

test to see if it violates any constraints 
if part does not violate any constraints, 

then select it and return TRUE 
If all parts violate a constraint, 

then return FALSE. 

Fig. 1. A mechanism for selecting parts. 
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initialize_taskqueue(readytasks); //Puts the first part into the queue 
WHILE (not_empty_queue(readytasks)) 
{ 

//applies compute_spec_values mechanism to each part in the queue 
apply_to_queue(compute_spec_value s, readytasks); 
get next task(readytasks ,  action); //Gets the first part in the queue 
add_to_design(ds, action); //Adds the part to the design 
IF ( is_anand_node(act ion))  
( 

select_all_parts(action, candidates); //selects all of action's children 
add_tasks(readytasks, candidates); //and adds them to the queue 

} 
ELSE IF (is_an or node(action)) 
{ 

//selects the subset of actions children that satisfy the constraints 
selectcandldate_parts(act ion,  candidates); 
selectbest_part(candidates,  newpart); //selects the part with the least cost 
add_task(readytasks, newpart); //adds the part to the queue 

}; 
} 

Fig. 2. A problem-solving method. 

2.3. Knowledge  types 

The DIDS model defines the types of knowledge re- 
quired to perform configuration design. These types 
represent different classes of concepts, which are neces- 
sary to automate configuration and are used to form a 
conceptual model of the problem domain. They were 
identified by studying existing configuration design sys- 
tems (Balkany et al . ,  1992), and the authors believe that 
they are sufficient to represent all the domain knowledge 
necessary for configuration tasks. 

A knowledge base in the DIDS model is a graph, 
where the nodes correspond to domain concepts, and 
links represent relationships between them, as is shown 
in Fig. 3. The knowledge types define the different types 
of nodes in this graph and the possible relationships 
between them. Only two knowledge types form nodes in 
this graph: 'part' and 'abstract part'. These two types 
represent parts that can be used to build an artifact and 
the functions that the artifact must perform, respec- 
tively. 

DIDS-generated systems produce designs by succes- 
sively decomposing the abstract parts into lower-level 
abstract parts, and by selecting parts to implement 
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Fig. 3. A few of the knowledge types in the VT knowledge 
base. 

low-level functions. The remaining types, which define 
the relationships between parts and abstract parts, i.e. 
links in the graph, represent knowledge that is used to 
guide the search for the best abstract part decomposi- 
tions, and the best set of parts that can be used to 
implement the abstract parts. 

The nine knowledge types are the following: 

(1) Parts  - the part knowledge type represents the 
elements in the part library. Parts are defined by a set of 
characteristics, ports and boundaries. Characteristics 
define the properties of a part that can be expressed by a 
name and a value. The values of characteristics are 
defined before problem solving begins and cannot change 
during problem solving. The ports of a part define where 
it can be connected to other parts. The boundaries of a 
part define how the part can be arranged relative to other 
parts. 

(2) A b s t r a c t  par t s  - abstract parts represent the func- 
tions and subfunctions that the artifact being designed 
must perform. Abstract parts are defined by their charac- 
teristics, ports, boundaries and specifications. Specifica- 
tion values depend upon the design problem being 
solved, and therefore their values must be computed 
during problem solving. 

(3) S u b f u n c t i o n  - the subfunction knowledge type 

successively decomposes the artifact being designed 
along functional lines. It describes the functional rela- 
tionship between the parts and abstract parts in the 
domain. This relationship describes how abstract parts 
may be realized by combining sets of lower-level func- 
tions, which may include parts. 

(4) R e q u i r e d  f u n c t i o n s  - parts and abstract parts often 
require the functions performed by other parts to support 
their operation. This information is contained in the 
required-functions knowledge type. Associated with each 
function performed by a part is a list of required 
functions to support its operation, but which are not 
specified by the user. 

(5) At t r ibu t e  constraints  - attribute constraints specify 
algebraic relationships between the attributes of parts 
and abstract parts that must be maintained. Constraints 
enable the problem solver to distinguish acceptable from 
unacceptable solutions, and to compute specification 
values. 

(6) Connec t i on  constraints  - connection constraints 
restrict the set of possible connections that can be made 
among the ports of parts and abstract parts. They may 
either specify illegal connections, or sets of connections 
that have been found to be useful in the past. 

(7) A r r a n g e m e n t  constraints  - arrangement con- 
straints restrict how parts can be geometrically or topolo- 
gically arranged. They define the (physical) relationships 
between the boundaries of parts and abstract parts. 

(8) Preference  k n o w l e d g e  - preference knowledge 
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enables a design system to choose between sets of 
acceptable design alternatives. Preferences differ from 
constraints in that constraints eliminate alternatives, 
while preferences rank a set of acceptable alternatives so 
that optimal designs can be found. 

(9) Task-ordering knowledge - task-ordering know- 
ledge describes the most efficient order in which to tackle 
subtasks. 

The knowledge types define the types of domain 
knowledge that must be acquired from a domain expert. 
In addition, they act as a set of primitives, which are 
used to define the functionality of mechanisms, the 
knowledge communicated between mechanisms and the 
types of domain knowledge used by the mechanisms. All 
mechanisms are defined by the operations that they 
perform on the knowledge types; i.e. the inputs and 
outputs of mechanisms are knowledge types. For exam- 
ple, a mechanism may take an abstract part as input and 
output the part that can be used to implement it, or be 
given a set of parts and determine the connections 
between them. 

Defining mechanisms in this way has two advantages. 
First, the mechanisms will be reusable and combinable. 
The definition ensures reusability, because it places no 
restrictions on the specific domain concepts that must be 
supplied, or on the source domain of the concepts. The 
only requirement is that the knowledge-type classification 
of domain concepts is the same as the inputs to the 
mechanism. This guarantees that a mechanism can be 
applied to any configuration task where the domain 
contains the appropriate knowledge types. The know- 
ledge-type definition also ensures the combinability of 
mechanisms, since all mechanisms share a common 
representation of these types. Therefore, any two 
mechanisms that use the same types of knowledge can 
share information, and can be easily combined. Second, 
this definition makes it clear exactly what knowledge 
must be in the knowledge base for each mechanism to 
operate. This information can be used to guide the 
selection of mechanisms when constructing a problem- 
solving me thod ,  and to guide the construction of a 
knowledge-acquisition tool for the method. 

The knowledge types provide a significant portion of 
the information used by DIDS to select mechanisms. 
Most of the information necessary to make mechanism 
selections can be determined by analyzing the organiza- 
tion of knowledge types in the domain. Selections are 
guided by the absence or presence of knowledge types, 
and by analyzing the relationships between types. The 
possible variations in the knowledge types are called 
mechanism-selection features, and are enumerated in the 
model. For example, Fig. 4 shows the single/multi- 
function selection feature, which measures the possible 
variations in abstract-part decompositions. In the first 

decomposition, each (abstract) part is a subfunction of 
exactly one other abstract part; it forms a tree. In the 
second decomposition, each (abstract) part may be the 
subfunction of more than one abstract part; it remains a 
tree. For the first decomposition, a simple part-selection 
mechanism can be used, but for the second one a more 
sophisticated mechanism, such as GOPS (Haworth et al., 
1992) must be used. 

2.4. Knowledge acquisition 

As mentioned previously, the DIDS model associates 
with each mechanism a procedure for acquiring the 
knowledge used by that mechanism. These procedures, 
which are called Mechanisms for Knowledge Acquisition 
(MeKA), define a model-based knowledge-acquisition 
tool for acquiring the knowledge types used by a 
mechanism (Runkel and Birmingham, 1992). MeKAs are 
model based because they use the mechanism's assump- 
tions concerning the types of knowledge types available 
in the domain and the relationships between these 
knowledge types to guide knowledge acquisition. For 
example, if a mechanism assumes that the domain will 
contain an abstract part decomposition as in the example 
on the left in Fig. 4, then the MeKA will ensure that all 
abstract parts are the subfunction of, at most, one 
abstract part. This MeKA is shown in Fig. 5. 

A MeKA has four components (Fig. 5) - infer, 
present, acquire and verify - which correspond to the 
four-step process used to acquire knowledge for a 
mechanism. The infer component uses a MeKA-specific 
inference procedure to automatically derive the neces- 
sary knowledge. The present component of a MeKA acts 
as a filter, presenting only the relevant elements of the 
knowledge base to the domain expert. The information 
displayed provides enough details to give the domain 
expert the appropriate context for the knowledge being 
requested, without overwhelming the user with the 

Single Function Parts 

Legend 

Abstract ~ Parts ~ Subfunction 
Parts 

Multi-Function Parts 

Fig. 4. Two alternative decompositions of abstract parts. 
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Select-Part MeKA: 

none Infer: 

Present: 

Acquire: [ Decompose the abstract part D into subfunctions [ 

Verify: [ Warn if an abstract part has more than one parent I 

Fig. 5. A MeKA for a mechanism that selects parts. 
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Fig. 6. Relationship between the constraint network and 
mechanisms. 

complexities of the knowledge base. The acquire compo- 
nent either asks the user to modify the display of the 
present component, or asks the user about the portion of 
the knowledge base displayed by the present component. 

2.5. Constraint network 

The last component of the DIDS model, which is called 
the constraint network, provides a set of knowledge- 
representation constructs and inference techniques to 
augment the mechanisms. The network performs prop- 
agation and consistency checks over dynamic constraints 
(constraints that are only applicable under certain condi- 
tions). The network contains a data structure for each of 
the knowledge types and makes inferences using these 
structures. Mechanisms are built assuming the network 
(Fig. 6): they retrieve domain knowledge by querying the 
network, use the network inferences to produce their 
results and record their results back into the network. 

When mechanisms make changes to the network, the 
network propagates the effects of these changes and 
ensures that none of the constraints are violated. The 
network performs a special form of arc consistency 
(Mackworth, 1977), called constraint propagation (Suss- 
man and Steele, 1980), as the attributes of parts and 
abstract parts are assigned values. It uses the constraints 
and the known values of the attributes to compute values 
of attributes whose values are not known. For example, 
Fig. 3 shows a simple constraint between the total_weight 
attribute of the elevator abstract part and weight attri- 

butes of three other abstract parts: motor, cab and 
counterweight. The constraint states that the t o t a l  
weight attribute is equal to the sum of the weights of the 
motor, cab and counterweight. Whenever three of the 
cost attributes are assigned a value, the network auto- 
matically computes the value of the fourth. 

3. Building systems with DIDS 

DIDS automates the KS-development process through 
the use of a set of tools based upon its model of 
configuration design. These tools assist with development 
by helping a user to rapidly combine the model elements. 
In this way, DIDS reduces both the amount of time and 
the level of expertise required to build systems. DIDS 

begins by presenting a task-modeling interface to the 
user. The user uses this tool to describe a prototypical 
portion of the problem domain in terms of the know- 
ledge types. DIDS then analyzes this prototypical do- 
main description to determine the mechanism selection 
features, which imply the set of mechanisms and MeKAs 
required. DIDS combines the mechanisms to form a 
PSM for the user's task and a knowledge-acquisition 

tool. 
It is not expected that DIDS will generate the correct 

PSM and knowledge-acquisition tool on the first attempt. 
Often a user's prototypical domain description may be 
naive or incorrect, leading to incorrect mechanism selec- 
tions. Therefore, the DIDS development process is 
iterative. When users uncover problems with the PSM or 
knowledge-acquisition tool, they revisit the initial task- 
modeling interface to modify the domain description. 
DIDS then generates both a new PSM and a new 
knowledge-acquisition tool. The existing knowledge 
base, however, is not lost because of DIDS' standard 
representation of the knowledge types. Any knowledge 
acquired by previous versions of the knowledge-acquisi- 
tion tool is automatically consistent with the knowledge 
base generated by the newest version of the knowledge- 
acquisition tool. This feature makes DIDS-generated 
systems easy to extend and to maintain. 

When the needs of a system change, users must simply 
revisit the task-modeling tool (discussed below) to de- 
scribe how the task has changed. DIDS then automatical- 
ly generates a new PSM and knowledge-acquisition tool 
to reflect these changes. The new knowledge-acquisition 
tool acquires any knowledge required to perform the new 
version of the task that is not already contained in the 
knowledge base. For example, consider a DIDS-gener- 
ated system that selects the set of counterweights re- 
quired to meet functionality specified by the user. Now, 
in order to extend this design system to determine the 
connections between the counterweights, the user visits 
the task-modeling tool, and describes the types of connec- 
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tion knowledge present in the domain. The addition of 
connection knowledge results in a new set of mechanism- 
selection features, which cause DIDS to add mechanisms 
to the PSM for connecting parts. The new knowledge- 
acquisition tool will acquire the necessary connection 
knowledge from the user. 

The DIDS system consists of five components that 
automate the process outlined above: a task modeler, a 
mechanism manager, a mechanism library, a code gener- 
ator and a knowledge-acquisition-tool generator (Fig. 7). 
The functionality of each of these tools is presented 
below. It is expected that DIDS users will visit these 
tools in the order listed, but since the process is likely to 
be iterative, this may not always be the case. 

T a s k - m o d e l e r  - the task modeler presents to the user a 
generic knowledge editor for describing the problem to 
be automated in terms of the knowledge types. Unlike 
model-based knowledge-acquisition tools, this tool pro- 
vides very little support to the user since the system does 
not understand, at this point, the problem domain. It 
simply provides interfaces that allow the user to describe 
some prototypical portion of the knowledge base. The 
modeler analyzes the knowledge entered to determine 
the mechanism-selection features. DIDS questions the 
user directly when these features cannot be inferred. 
Once the features have been determined, they are 
communicated to the mechanism manager. 

M e c h a n i s m  m a n a g e r  - the mechanism manager selects 

the mechanisms and MeKAs required to automate tile 
user's task based upon the selection features identified by 
the modeler. To facilitate this selection process, each 
mechanism in the library is annotated with the set of 
features that determine when the mechanism should be 
selected (see Fig. 12). The selected mechanisms are 
sequenced and connected to form a PSM using a schema 

that is also retrieved by matching features. The MeKAs 
are sequenced to build a knowledge-acquisition tool by 
using a set of heuristics. 

G e n e r a t o r s  - the code generator and the knowledge- 
acquisition-tool generator take the PSM description and 
the knowledge-acquisition tool description produced by 
the mechanism manager and use them to generate the 
source code for the PSM and the knowledge-acquisition 
tool. The generators retrieve the code fragments describ- 
ing the implementations of both the MeKAs and the 
mechanisms from the mechanism library, and combine 
them according to the mechanism manager's descrip- 
tions. 

K n o w l e d g e - a c q u i s i t i o n  t o o l  - the generated know- 
ledge-acquisition tool interviews the user to build a 
knowledge base for the PSM. It uses the task model 
produced by the task modeler to provide active assist- 
ance during the acquisition process. Its assistance in- 
cludes completeness and consistency checks, filtered 
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Fig. 7. DIDS and a mechanism library. 

presentations that display only the relevant portions of 
the knowledge bases, and an agenda mechanism that 
controls the order in which knowledge is acquired. 

D e s i g n  s y s t e m  - the design system, when combined 
with the knowledge base acquired by the knowledge- 
acquisition tool, is a fully operational, domain-specific 
knowledge design tool. It presents an interface that 
allows a user to enter a problem instance for the system 
to solve. The system solves the problem instance by 
invoking the mechanisms and using the knowledge in the 
knowledge base. 

4. DIDS' mechanism library 

The heart of DIDS is the mechanism library. The library 
must provide sufficient coverage to allow all the con- 
figuration-design subtasks to be solved, yet its size cannot 
be so large as to be unmanageable. The DIDS model, 
specifically the knowledge types and constraint network, 
restricts the size of the library while supporting reusabil- 
ity. In this section, we show the organization of the 
library and provide some examples of mechanisms. 

4.1. Mechanisms 

Several of the mechanisms and their corresponding 
MeKAs in the DIDS system are illustrated in Fig. 8. 
Note that the inputs to a mechanism are knowledge 
types; a pointer to a specific node in the knowledge base 
is also provided to provide context for the mechanism. In 
addition, a set of mechanism-selection features is given 
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Mechanism 
compute spec_values(Node part ) 
{ For each attribute, att, of part 

if att does not have a value then 
compute att's value using its formula 

} 

Task-Selection Features: parts have 
attributes 

Functional Groue: Design extension 

select_all_parts(Node nd, Set& candidates) 
{set candidates equal to nd's children in the 
functional hierarchy. } 

Task-Selecti0n Features: the hierarchy must 
contain AND nodes 

Functional Gro~!p~ Design extension 

select_candidate_parts(Node nd, 
Candidates set, Constraints con) 
{Get nd's children, in the functional 
hierarchy; 

For each of child, ch, of nd 
if ch satisfies the constraints con on 
nd then add ch to candidates; 

} 

Task-Selection Features: must have 
hierarchy 

Functional Groun: Design extension 

selectbest_part(Set& cand_parts, Node& 
best) 
{set best equal to the node in the set, 
cand_parts, that has the cost attribute with 
the smallest value. 
) 

Task-Selection Features: no restrictions 

Functional Group: Design extension 

MeKA 
compute_spec_values-MeKA(focus) 
Knowledee used: 

Attributes 
Formulas 

Inference: none 
Prompt: 
Prompt("Use the following table to define 
the attributes of %s. For each attribute define 
either a value or a formula that can be used 
to compute the value of the attribute." 
get_name(focus)); 
Verify: 
{ for all attributes, art, of focus 

ensure that att either has a value 
or att has a formula 

} 
select-best-part-MeKA(focus) 
{ 
} /* no knowledge required */ 

select-candidate-parts-MeKA(Node focns) 
Kn0w!~ige used: Constraints 
Present: 

present_attributes(focus); 
present_attributes(children(focus)); 

Prompt: 
prompt("Enter the constraint used to 

select the part %s set.", children(focus)); 
V ~f~f: 
{The constraint acquired constrains the focus 
and its children. } 

select-best-part-MeKA(Node focus) 
Knowledge acouired: Attribute: "Cost" 
Inferences: none 
Promnt: 
prompt("Enter the cost in dollars of the part 
%s?", get_name(focus)); 
verify: {cost is greater than 0}; 

Fig. 8. A few of the MeKAs and mechanisms in the DIDS 
library. 

for each mechanism. As more mechanisms are added to 

the library, it is possible that these features will be 

updated so that new mechanisms can be discriminated 

from existing ones. Finally, the mechanism is tagged with 

a functional group (described in the next section). 

MeKAs are also shown in Fig. 8. Each MeKA specifies 

the knowledge to be acquired, the method for acquiring 

it (the prompt field), whether the knowledge can be 

inferred from knowledge already acquired (the inference 

field) and a method for verifying it. This is all the 

information needed to construct a model-based know- 

ledge-acquisition tool. 

4.2. Functional organization of  the mechanism library 

Mechanisms can be selected from the library based on 

task features. Guidance, however, for assembling the 

mechanisms into a usable PSM is required. Simply 

matching inputs and outputs is insufficient, since this 

does not consider any notion of function. For example, a 

mechanism that adds numbers and one that subtracts 

numbers will have the same inputs and outputs. 

In studying several configuration tools, a PSM for 

I I 
Select Design ~ Make Design 
Extension I - I  Extension 

Make Fix 

Fig. 9. The configuration-design PSM. 

H Select Fix 

configuration design has been derived (Balkany et al., 

1992), and is shown in Fig. 9. The PSM assumes that 

mechanisms can be partitioned into disjoint functional 

groups (select design extension mechanisms, make design 

extension mechanisms, select fix mechanisms and make 

fix mechanisms). The DIDS model ensures this, since a 

mechanism can only perform one operation on a know- 

ledge type. 

This model can be instantiated for a new design task 

by choosing the proper mechanism for each step. The 

control-flow relationships between different functions 

are already defined. In some cases, one or several steps 

can be eliminated. For example, some systems avoid 

correcting failure; hence the select fix and make fix 

functions can be eliminated. 

5. Developing an elevator-design system using DIDS 

An example shows how DIDS can be used to develop 

knowledge systems. The example further demonstrates 

the types of support that DIDS provides during the 

knowledge-system development process and the extendi- 

bility and maintainability of DIDS-generated systems. It 

shows how DIDS was used to construct a system that 

automates the VT (vertical transport) (Yost, personal 

communication) elevator-design task. Not all compo- 

nents of DIDS, however, have been completely im- 

plemented, to some of the functionality described in the 

previous sections was not available when the VT task 

was automated. This discussion presents the anticipated 

functionality of the completed DIDS system, not the 

functionality of the current prototype. 
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5.1. VT problem 

The VT task involves designing elevators for high-rise 
buildings according to a set of specifications provided by 
an architect. The specifications describe the elevator 
requirements, such as the number of floors in the 
building, the dimensions of the shaft, the distance 
between each floor and the maximum capacity of the 
elevator. In addition, there are numerous constraints 
defining relationships between the elevator components 
that must be satisfied by the design. Designers select 
parts from a catalog to produce an elevator design that 
has low cost, meets the specifications and satisfies the 
constraints. 

5.2.  Task modeling 

The designer begins the development process by invok- 
ing the task-modeling tool. This tool is used not to build 
a complete knowledge base, but to define some repre- 
sentative portion of the knowledge base so that mechan- 
ism-selection features can be identified. The tool pro- 
vides a variety of interfaces that allow the designer to 
describe the problem domain using the DIDS model. It is 
not necessary for the designer to be aware of the 
intricacies of the model because the tool's interfaces 
allow the designer to express available knowledge using 
familiar notation. For elevator configuration, designers 
use schematic drawings of elevators to determine the 
necessary dimensions of its components and the forces on 
these components. Therefore, the designer selects the 
modeling tool's structure-constraint editor to draw 
schematics (Fig. 10). 

The structure-constraint editor allows the designer to 
draw the elevator schematic and to label the objects and 
the edges in the diagram. The editor represents the 
schematic in the DIDS model by creating an abstract part 
for each object in the diagram, and an attribute on the 
objects for each of their labeled edges. In addition, the 
editor infers constraints between the attributes by analyz- 
ing the relationships between the labeled edges in the 
diagram. For example, the editor would create abstract 
parts for the cab, stile, door opening, safety and cross- 
head. The specifications inferred by the editor would 
include height specifications for the platform and safety. 
The editor will also create a constraint recording that the 
sum of the ub-space and cab-height attributes must equal 
the sling-ub attribute. 

Once the designer has completed the schematics, the 
task modeler's hierarchy tool is used to further define the 
objects and relationships identified in the schematic 
diagram. The designer uses this tool to identify some of 
the parts in the part catalog and to relate parts in the 
catalog to the abstract parts that they implement. Figure 
11 shows a small portion of the hierarchy created by the 
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Fig. 10. Schematic drawing of elevator from Yost, personal 
communication. 
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Fig. 11. Hierarchy tool showing relationship between abstract 
parts and parts. 

designer. The abstract-part, part and constraint editors 
(not shown) are used to define the characteristics and 
specifications of each object in the diagram and the 
constraints between them. 

The modeler also contains interfaces for acquiring 
preference and task-ordering knowledge. The designer 
enters a formula into the preference editor expressing 
that low-cost parts should be evaluated more favorably 
than expensive ones. This preference will be used by the 
design system to distinguish between parts that perform 
the same function and satisfy the specifications and the 
constraints. The designer does not use the task-ordering 
editor, indicating that the abstract parts can be designed 
in any order. 

For the VT task, in addition to not specifying task- 
ordering knowledge, the designer does not use any of the 
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Mechanism Selection Feature VT's Feature 

functions per part l 

hierarchy levels 3 

required functions none 

preference evaluation function 

task ordering none 

connection constraints none 

arrangement constraints none 

Fig. 12. Mechanism selection features determined by the 
modeler. 

modeler's editors that allow the possible connections 
between parts - their legal arrangements - to be defined. 
This information is not necessary to configure elevators 
as parts can only fit together in one way, and their 
connections and arrangements are obvious when a 
schematic like that of Fig. 10 is available. Given a 
consistent set of parts, the workers that assemble eleva- 
tors have no trouble combining them to build an eleva- 
tor. The difficult task is selecting the set of parts that will 
form a working elevator satisfying the specifications and 
the constraints while minimizing cost. The design tool 
only needs to be concerned with the information neces- 
sary to select parts. 

Upon completion of the domain description, the desig- 
ner tells the modeler to generate a knowledge-acquisition 
tool and a design system. The modeler analyzes this 
description to determine the mechanism-selection fea- 
tures (Fig. 12). The first three features are determined by 
analyzing the knowledge acquired by the hierarchy tool. 
The functions-per-part feature measures the maximum 
number of parents of each part. For the VT task, each 
part has one parent in the hierarchy and, therefore, each 
part performs exactly one function. The hierarchy-levels 
feature measures the number of levels in the hierarchy, 
and the required-function feature measures whether or 
not the domain contains required-function knowledge. 
For VT, there are three levels in the hierarchy and no 
required functions. 

The remaining features define the properties of the 
other knowledge types. The preference feature describes 
the types of preference knowledge supplied by the 
domain expert. As mentioned above, the domain expert 
supplied an evaluation function ranking low-cost parts 
over expensive ones. Finally, the user failed to enter any 
connection or arrangement constraints and task-ordering 
knowledge, so these features have no value. 

5.3. Generating a KS 

The mechanism manager receives the selection features 
from the modeling tool, and uses them to build a PSM. 
The manager begins with a schema, like the one shown 

in Fig. 9. It selects a mechanism for each functional 
group in the schema by finding the mechanism whose 
selection features most closely match those identified by 
the modeling tool. These mechanisms are then combined 
in the order specified by the schema. 

The knowledge-acquisition generator builds a know- 
ledge-acquisition tool for these mechanisms by retrieving 
the MeKAs for each mechanism from the library. The 
MeKAs are combined using a set of predetermined 
heuristics that order the invocation of the MeKAs 
according to the way designers feel comfortable describ- 
ing configuration knowledge. A more detailed discussion 
of the knowledge-acquisition-tool generation process is 
given in Runkel and Birmingham (1992). 

The PSM and knowledge-acquisition tool descriptions 
are then passed to the generators, which combine the 
mechanism and MeKA code segments resulting in a PSM 

and a knowledge-acquisition tool. 

5.4. Knowledge acquisition 

After the design tool has been generated, the designer 
begins the most time-consuming part of the development 
process: knowledge acquisition. The designer uses the 
knowledge-acquisition tool to build a knowledge base 
describing all the knowledge necessary to design eleva- 
tors. The knowledge-acquisition tool, unlike the task- 
modeling tool, has been tailored by DIDS to acquire 
knowledge about elevators and provides active assistance 
during the acquisition process. 

The knowledge-acquisition tool begins by acquiring the 
part library and the relationships between the parts. 
First, the designer must list each part in the library and 
define its attributes. Next, the tool invokes its first two 
MeKAs to present interfaces, which are similar to the 
modeling tool's structured-constraint editor and hierar- 
chy tool, for defining the abstract parts and their 
relationships to the parts. Figure 5 depicts the MeKA 
used to define the relationship between abstract parts 
and parts. During task modeling, the designer used these 
interfaces to describe only a small portion of the domain 
knowledge. Now t h e  designer is encouraged to be 
exhaustive. The designer uses these interfaces until all 
elevator functions have been enumerated and all parts 
that implement them have been defined. 

The MeKAs continuously monitor the designer's do- 
main description to ensure that it matches the mechan- 
ism-selection features. In this example, the MeKAs 
ensure that the hierarchy remains three levels deep, no 
required functions are specified and all parts perform 
exactly one function. This enforcement is necessary 
because the mechanisms were selected based on these 
features, and may not work properly if the knowledge 
base does not have them. If the designer needs to violate 
these restrictions, however, the task-modeling tool can 
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simply be invoked again to make the necessary changes 
to the knowledge base. This will result in a new set of 
features and a different PSM. 

Next, the add-part MeKA is invoked to acquire both 
the preference knowledge and the constraints necessary 
to select parts. The MeKA acquires a cost attribute for 
each part if the designer has not already supplied one 
and acquires, for each abstract part, a set of constraints 
that can be used to select among the parts that 

implement it. Since the add-part mechanism selects parts 
by looking at constraints that relate the specifications of 
an abstract part to the characteristics of its child parts, 
the MeKA acquires this type of constraint. In addition, 
the MeKA acquires constraints that can be used to 
calculate values of the specifications from the specifica- 
tions of other abstract parts and the design requirements. 

The knowledge-acquisition process, in contrast to the 
way in which it has been described here, is iterative. 
Often the knowledge acquired by one MeKA will cause 
the designer to extend or modify the knowledge acquired 
by a previously invoked MeKA. The designer has the 
option at any point during knowledge acquisition to 
invoke the MeKA of choice to fix some portion of the 
knowledge base. In addition, the knowledge-acquisition 
tool may invoke a MeKA when it spots an inconsistency 
in the knowledge base, to encourage the designer to 

remove it. 
Once the knowledge-acquisition process is complete, 

the MeKAs translate the knowledge base into the 
constraint network. This is a simple transformation that 
converts the knowledge-type representation used by the 
knowledge-acquisition tool to the knowledge-type repre- 
sentation used by the mechanisms. The constraint net- 
work is then combined with the PSM to produce a KS 
capable of automating the VT task. 

5.5 Running the system 

The DIDS-generated system is evaluated by running it on 
a variety of test cases (including input specifications for a 
design and a designed artifact that meets those specifica- 
tions, which is the expected output of the KS). Typically, 
these runs uncover areas where the knowledge base is 
incomplete or incorrect and then, the knowledge-ac- 

quisition tool is invoked to make the changes. If neces- 
sary, the designer can revisit the task modeler to make 
more drastic changes to the structure of the knowledge 
base. Once the system has been thoroughly tested, it can 
be used to produce working elevator designs. 

5.6. Extending the system 

The DIDS-generated design system is easy to extend and 
to maintain. For example, the knowledge-acquisition tool 
can easily be used to update the knowledge base as the 

parts and their functionality change over time. In addi- 
tion, DIDS can be used to extend the system when the 
nature of the design task changes. For example, assume 
that a new set of elevator controller hardware becomes 
available. Previously, several controller modules were 
used, each one applicable in a different situation. Now, a 
few general-purpose modules can be integrated in a 
variety of ways. The functionality of the controller is not 
only determined by which modules are selected, but by 
how the modules are connected. The system must not 
only select the appropriate set of modules but determine 
how to connect them together. 

To make this addition to the DIDS-generated system, 
the designer simply revisits the task-modeling tool to 
describe a few of the new modules, their ports and the 
possible connections between them. This knowledge 
might take the form of sets of legal module connections, 
or a set of connection constraints describing illegal 
module connections. This additional knowledge results in 
several new selection features, which cause the mechan- 
ism manager to add to the PSM new mechanisms that 
connect parts. In addition, MeKAs that acquire the 
connection knowledge are added to the knowledge- 
acquisition tool. 

Since all DIDS-generated systems share the same set 
of knowledge types, most of the previous knowledge 
base can be reused. The old controller modules must be 
removed, the new ones defined and the knowledge 
necessary to connect the modules acquired by invoking 
the new MeKAs. The rest of the knowledge base can be 
reused without any modifications. Once the designer has 
used the knowledge-acquisition tool to make the neces- 
sary modifications to the knowledge base, the new KS is 
ready for testing. 

6. Related work 

This section compares DIDS to two classes of systems. 
The first class of systems automates programming in 
general, and the second class of systems facilitates the 
construction of knowledge systems. 

6.1. Automatic programming 

The programmer's apprentice (PA) (Rich and Waters, 
1988), an assistant to a software engineer, facilitates 
program development using reusable components in all 
phases of the software-development process. These com- 
ponents, called cliches, represent commonly used com- 
binations of programming elements. The PA, which 
contains clich6s that represent familiar specification, 
design and implementation constructs, develops software 
by using inspection methods. During inspection, the PA 
helps the user to recognize clich6s in the specifications 
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and to choose between the lower-level clich6s that 
implement the specification. In contrast, DIDS, which is 
restricted to configuration tasks, completely automates 
code generation by analyzing a user's prototypical do- 
main description. In addition, DIDS uses a propose-and- 
revise methodology for system development whereas the 
PA, which has a rich representation for the behavior of 
clich6s, supports a refinement methodology. 

Draco (Neighbors, 1984) automates software develop- 
ment by reusing software components. Draco not only 
supports the reuse of code, but also the reuse of analysis 
and design information. Draco libraries contain domains 
for which the typical problem statements and imple- 
mentation alternatives are known. Users develop new 
systems by describing requirements in terms of known 
domains. This allows the analyses and the designs 
developed for some domains to be reused on a new 
problem. Instead of mapping a known solution to a new 
problem, DIDS' mechanisms can be recombined to cover 
a greater range of problems. DIDS also reuses analysis 
and design information; in DIDS, these take the form of 
mechanism selection features that indicate when each 
mechanism should be reused. 

6.2. KS development aids 

Klinker et al. (1990) propose to build systems by combin- 
ing mechanisms, in a way similar to DIDS. The approach 
differs in that their system is geared towards non- 
programmers, the analysis of user's tasks is an integral 
part of system generation and the task type is not 
restricted. This makes it difficult to determine a priori 
the types of knowledge and the set of mechanisms 
required to construct systems. Instead, they have de- 
veloped a shared vocabulary of task activities that can be 
used to describe tasks in domain-independent terms. The 
system analyzes the user's task, and helps to describe it 
in terms of the shared vocabulary. Each activity in the 
shared vocabulary is associated with a set of mechanisms 
that can be used to implement it. The shared vocabulary 
helps to make mechanisms usable, i.e. understandable by 
users, and reusable. 

Neches et al. (1991) propose to build new knowledge 
systems through knowledge sharing. This involves build- 
ing tools that enable the knowledge base of one system 
to be used by another, and facilitate the communica- 
tion between knowledge systems. A standard knowledge- 
representation system, a standard knowledge-base query 
language, a standard concept ontology and\a standard 
language for expressing knowledge form the heart of this 
approach. DIDS has the most in common with the 
standard concept ontology, since the mechanism and 
PSM libraries can be viewed as ontologies of problem- 
solving components. The philisophy of DIDS, however, 
differs significantly from the other parts of the Neches et 

al. approach. DIDS supports the reuse of fundamental 
software components by identifying mechanisms shared 
across domains instead of reusing existing knowledge 
bases. We believe the task-specific bias of most know- 
ledge bases makes their reuse difficult. 

Protege II (Puerta et al., 1991), a system similar to 
DIDS, generalizes the capabilities of Protege (Musen, 
1989) and combines them with a mechanism-based 
model. Protege II contains a library of tasks and a library 
of mechanisms. A mechanism's description includes a 
description of the data used by the mechanism and links 
to tasks, which are used to suggest the mechanisms 
capable of performing a task. Once the mechanisms have 
been selected, Protege II generates a knowledge-acquisi- 
tion tool by looking at the data required by each 
mechanism. A weaker model of expertise distinguishes 
Protege II from DIDS since the set of mechanisms, the 
types of data operated upon by mechanisms and a 
procedure for identifying mechanisms have not been 
established. 

DIDS can also be compared to design programming 
languages. The authors' work is aimed at understanding 
how design systems operate, namely the way in which 
they solve their particular problems. What makes these 
systems different is the design knowledge they use, and 
the domains in which they operate. Thus, the authors' 
work is significantly different from those developing 
languages for constructing design systems, such as DSPL 
(Brown and Chandrasekaran, 1989), Edesyn (Maher, 
1987) and DESCRIBE (Mittal and Araya, 1987). These 
languages provide programming constructs to easily cap- 
ture design knowledge for specific tasks. All three, 
however, work at a different abstraction level than the 
mechanisms described in this paper. Furthermore, they 
provide simpler, albeit potentially more general, oper- 
ators (mechanisms) than are assumed by the authors' 
models. In fact, the mechanisms described here could be 
implemented in any of these languages, as they could in 
more traditional programming languages. 

CGEN (Birmingham and Siewiorek, 1989), a know- 
ledge-acquisition tool for computer-design systems, and 
SALT (Marcus, 1988), the knowledge-acquisition tool 
for the VT system, embody many of the ideas that will be 
present in DIDS-generated knowledge-acquisition tools. 
Both CGEN and SALT play an active role during 
knowledge acquisition by detecting inconsistencies and 
missing knowledge. We believe that the strong model of 
mechanisms and knowledge forming the foundation of 
DIDS will enable DIDS-generated knowledge-acquisi- 
tion tools to have these features. CGEN and SALT, 
however, were built to support a particular PSM. Thus, 
they have limited applicability. DIDS removes these 
limitations and incorporates VT, mechanisms and PSM 
in its libraries. 

Chandrasekaran proposes a model of design based 
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solely on the concept of generic tasks, (Chandrasekaran, 
1986, 1990). Generic tasks decompose design tasks 
hierarchically. Each task is defined by its position in the 
hierarchy, the method used to perform it, and the 
knowledge, both declarative and control, required to 
perform the task. Generic tasks have three principal 
weaknesses, which are shared with DIDS, but to a lesser 
degree. DIDS' model of configuration design, which is 
grounded in a careful study of configuration systems, 
helps to reduce these problems. First, the generic-task 
model does not establish which tasks are generic. 
Second, the design system's task may not decompose 
neatly into a disjoint set of high-level generic tasks even 
though there may exist a set of lower-level tasks that 
could implement the system. For example, it is possible 
that a design system might first perform half of the 
classification generic task, then do a critiquing task and 
then finish the classification. Finally, the separate imple- 
mentation of each generic task requires an environment 
to integrate and to allow communication between tasks. 
Also, a system implemented using generi c tasks may 
contain multiple copies of the same piece of knowledge, 
since the knowledge used by two generic tasks may 
overlap. The environment must ensure that the know- 
ledge contained in different generic tasks is consistent. 

7. Summary 

The craftsmanship required for developing knowledge 
design systems has hampered the widespread use of this 
technology. For a cogent task, such as configuration 
design, craftsmanship can be replaced by partial automa- 
tion. Accordingly, the DIDS model for rapidly creating 
configuration design systems was developed. 

DIDS is based on the idea of reusability of knowledge 
structures and mechanisms. By utilizing an integrating 
framework, mechanisms and knowledge structures can 
be quickly applied to new application domains. Furth- 
ermore, these systems can be assembled without detailed 
programming knowledge. The DIDS approach was de- 
monstrated in this paper on an elevator-design problem, 
which is relatively large (hundreds of constraints and 
parts). We have recently used the DIDS approach on a 
number of other problems, the largest being a computer 
configuration task, that has over 10 000 constraints and 
over 1500 components. 
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