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Die another way — non-apoptotic mechanisms of cell death

Stephen W. G. Tait'*, Gabriel Ichim' and Douglas R. Green?®*

ABSTRACT

Regulated, programmed cell death is crucial for all multicellular
organisms. Cell death is essential in many processes, including
tissue sculpting during embryogenesis, development of the immune
system and destruction of damaged cells. The best-studied form of
programmed cell death is apoptosis, a process that requires
activation of caspase proteases. Recently it has been appreciated
that various non-apoptotic forms of cell death also exist, such as
necroptosis and pyroptosis. These non-apoptotic cell death
modalities can be either triggered independently of apoptosis or
are engaged should apoptosis fail to execute. In this Commentary,
we discuss several regulated non-apoptotic forms of cell death
including necroptosis, autophagic cell death, pyroptosis and
caspase-independent cell death. We outline what we know about
their mechanism, potential roles in vivo and define outstanding
questions. Finally, we review data arguing that the means by which
a cell dies actually matters, focusing our discussion on inflammatory
aspects of cell death.
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Introduction

In all animals, regulated cell death plays key roles in a variety of
biological processes ranging from embryogenesis to immunity.
Too much or too little cell death underpins diverse pathologies,
including cancer, autoimmunity, neurodegeneration and injury.
Generally, the means by which a cell dies can be divided into
passive — occurring as a result of overwhelming damage — or
active, such that the cell itself contributes to its own demise. In
this Commentary, we focus upon active forms of cell death that
constitute cellular suicide and utilise specific molecular
machinery to kill the cell. Unquestionably, apoptosis is the
best-characterised and most evolutionary conserved form of
programmed cell death. Apoptosis requires the activation of
caspase proteases in order to bring about rapid cell death that
displays distinctive morphological and biochemical hallmarks,
and has been reviewed extensively (Green, 2011; Mcllwain et al.,
2013; Parrish et al., 2013; Taylor et al., 2008). Increasing interest
has recently centred upon cell death programmes other than
apoptosis. As we discuss here, non-apoptotic cell death can serve
to back up failed apoptosis or occur independently of apoptosis.
Importantly, the ability to engage non-apoptotic cell death might
provide new opportunities to manipulate cell death in a
therapeutic context — for example, to enable the killing of

'Cancer Research UK Beatson Institute, Institute of Cancer Sciences, University
of Glasgow, Switchback Road, Glasgow G61 1BD, UK. “Department of
Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place,
Memphis, TN 38105, USA.

*Authors for correspondence (stephen.tait@glasgow.ac.uk;
douglas.green@stjude.org)

apoptosis-resistant cancer cells. In this Commentary, we discuss
major forms of non-apoptotic programmed cell death, how they
intersect with one another and their occurrence and roles in vivo,
and we outline outstanding questions. Following this, we ask
whether it really matter how a cell dies. Specifically, we focus on
how the mode of cell death impacts on immunity and
inflammation.

Necroptosis

Various stimuli can engage a non-apoptotic form of cell death called
necroptosis (Degterev et al., 2005). Although morphologically
resembling necrosis, necroptosis differs substantially in that it is a
regulated active type of cell death (Galluzzi et al., 2011; Green
et al., 2011). As discussed below, several stimuli that trigger
apoptosis, under conditions of caspase inhibition, can trigger
necroptosis. Indeed, it remains highly debated whether necroptosis
ever occurs unless caspases are actively inhibited, for example by
virally encoded caspase inhbitors. The recent identification of key
molecules in this process has led to an upsurge in interest in the
fundamental biology and in vivo roles that necroptosis can play. Our
discussion will be restricted to necroptosis that requires the protein
kinase receptor-interacting serine/threonine-protein kinase 3
(RIPK3) (Galluzzi et al., 2012). However, it is important to note
that various RIPK3-independent cell death mechanisms have also
been termed necroptosis, and those should not be confused with our
use of the term here.

Initiating necroptosis

The best-characterised inducers of necroptosis are death receptor
ligands, in particular, tumor necrosis factor (TNF). Although
named because of its necrosis-inducing properties, most TNF
research has instead focused upon its pro-inflammatory and
apoptotic functions. It has been known for many years that, in
some cell-types, TNF can also induce a non-apoptotic form of
cell death (subsequently termed necroptosis) (Laster et al., 1988).
It is important to note that, besides TNF, other death-receptor
ligands, such as Fas, have also been shown to induce necroptosis
under conditions of caspase inhibition (Matsumura et al., 2000).
Recently, key molecular components of necroptosis signalling
have been identified; these include the two related kinases RIPK1
and RIPK3 (Cho et al., 2009; He et al., 2009; Holler et al., 2000;
Zhang et al., 2009). RIPK3 is essential for TNF-induced necroptosis,
whereas RIPK1 appears dispensable in some settings (Moujalled
et al., 2013; Upton et al., 2010). Besides necroptosis, RIPK1 also
has a well-established role in mediating both TNF-dependent
nuclear factor kB (NFkB) activation and apoptosis (Ofengeim and
Yuan, 2013). During the initiation of necroptosis, current data
supports a simplified model whereby TNF receptor—ligand binding
indirectly, through the recruitment of the adaptor protein TRADD,
leads to an interaction between RIPK1 and RIPK3 (Moriwaki and
Chan, 2013). RIPK1 and RIPK3 interact through receptor-
interacting protein (RIP) homotypic interaction motifs (RHIM)
present in both proteins. This leads sequentially to the activation of
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RIPK1 and RIPK3 and the formation of a complex called the
necrosome. The formation of the necrosome is highly regulated by
ubiquitylation. In simplistic terms, the ubiquitin ligases cIAP-1 and
cIAP-2 negatively affect its formation by ubiquitylating RIPK-1,
whereas the deubiquitylase CYLD counteracts this and promotes
necrosome formation (Geserick et al., 2009; Wang et al., 2008). In
addition to death-receptor ligands, other stimuli can also trigger
RIPK3-dependent necroptosis, either directly (through adaptors) or
indirectly (e.g. through expression of TNF); these include
engagement of Toll-like receptor (TLR) 3 and TLR-4, T-cell
receptor (TCR) ligation, DNA damage and viral infection (Ch’en
et al., 2008; Feoktistova et al., 2011; He et al., 2011; Tenev et al.,
2011) (Fig. 1). In the case of TLRs, the RHIM-domain-containing
protein TRIF bridges TLRs to RIPK3 activation, whereas the
DNA-binding RHIM-containing protein DAI is required for RIPK3
activation and necroptosis following murine cytomegalovirus
infection (He et al., 2011; Upton et al., 2012). RIPK3 can also be
activated and trigger necroptosis following DNA damage. In this
setting, activation of RIPK3 occurs at a multi-protein complex,
called the ripoptosome, and is dependent upon RIPK1 (Feoktistova
et al., 2011; Tenev et al., 2011). The engagement of cell death by
DNA damage might involve the production of TNF (Biton and
Ashkenazi, 2011) or might occur in a TNF-independent manner
(Tenev et al., 2011). Likewise, TCR-induced RIPK3 activation
also appears to require RIPKI1, but how the TCR initiates
necroptosis is not known (Ch’en et al., 2008).
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Fig. 1. Mechanisms of RIPK3-mediated necroptosis. Various stimuli
including DNA damage, viral infection, engagement of receptors, such as
TCR, TLR or TNFR, lead to RIPK3 activation. Activation of RIPK3 leads to its
oligomerisation and downstream phosphorylation of MLKL. This also results
in mitochondria-dependent ROS production. Upon phosphorylation, MLKL
oligomerises and translocates to the plasma membrane and causes its lysis.
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Executing necroptosis

Following initial activation, the RIPK1-RIPK3 complex propagates
a feed-forward mechanism leading to the formation of large
filamentous structures that share striking biophysical similarities to
B-amyloids (Li et al., 2012) (Fig. 1). Generation of these amyloid
structures is dependent upon RHIM-domain interactions between
the two proteins. Importantly, by simultaneously increasing RIPK3
activity, propagation of these amyloid structures robustly engages
necroptosis. Potentially, modulating the extent of amyloid formation
(and RIPK3 activity) could dictate the pro-killing functions of
RIPK3 versus its non-lethal roles in inflammation (discussed
below). It remains unclear whether similar amyloid structures are
formed (and required) for necroptosis that is engaged by other
stimuli, such as TLRs. Moreover, given the stability of these
proteinaceous structures, they might also contribute to cellular
toxicity even in the absence of RIPK3 activity.

The mechanism by which RIPK3 kinase activity actually
executes cell death has been elusive until recently. The
pseudokinase mixed-lineage kinase domain-like (MLKL) has
been identified as a key downstream factor in RIPK3-dependent
necroptosis; its importance is underscored by the finding that
genetic ablation of MLKL imparts complete resistance to RIPK3-
dependent necroptosis (Murphy et al., 2013; Sun et al., 2012; Wu
et al., 2013; Zhao et al.,, 2012). MLKL does not regulate
necrosome assembly per se but instead is required for RIPK3 to
kill cells, following its binding and phosphorylation by RIPK3.
Importantly, a mutant of MLKL that mimics its active (RIPK3-
phosphorylated) form directly induces cell death, even in RIPK3-
deficient cells — this strongly implies that MLKL is the key
RIPK3 substrate in necroptosis (Murphy et al., 2013).

How necroptosis is executed remains controversial. Various
studies have proposed a role for either reactive oxygen species
(ROS) or rapid depletion of cellular ATP in the execution of
necroptosis (Schulze-Osthoff et al., 1992; Zhang et al., 2009). In
turn, this has implicated mitochondrial dysfunction as a key event
in the necroptotic execution. Supporting this idea, following its
formation, the RIPK3- and MLKL-containing necrosome has been
found to translocate to mitochondrially associated endoplasmic
reticulum (ER) membranes (MAMs), although it remains unclear
whether translocation is required for death (Chen et al., 2013). Two
mitochondrial proteins, PGAMS (a mitochondrial phosphatase)
and Drp-1 (also known as DNMIL, a protein required for
mitochondrial fission) have been suggested as downstream
components of necrosome signalling (Wang et al., 2012).
Following RIPK3-dependent phosphorylation, the short isoform
of PGAMS5 (PGAMSs) activates Drp-1, leading to extensive
mitochondrial fission, ROS production and necroptosis (Wang
et al., 2012). However, the role of ROS in executing necroptosis
remains controversial; several studies have failed to find a
protective effect of ROS scavengers or found that ROS
scavengers can also display off-target protective effects (Festjens
et al., 2006). Our recent study has directly investigated the role of
mitochondria in necroptosis by generating mitochondria-deficient
cells (Tait et al., 2013). Here, we utilised Parkin-mediated
mitophagy to effectively deplete mitochondria. Surprisingly,
although mitochondria-depletion prevents necroptosis-associated
ROS, it has no impact on the kinetics or extent of necroptosis that
is induced either by TNF or by direct activation of RIPK3. As such,
this strongly argues against mitochondria as key effectors in the
execution of necroptosis. Supporting a mitochondria-independent
execution mechanism, recent work has found that MLKL can
permeabilise the plasma membrane (Cai et al., 2014; Chen et al.,
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2014). Following RIPK3-mediated phosphorylation, MLKL
oligomerises and translocates to the plasma membrane leading to
its breakdown. How MLKL permeabilises the plasma membrane is
unclear but this process might require functional interaction with
cationic channels (such as TRPM?7) that allow cation influx (Cai
et al., 2014). Collectively, a key remaining question is whether the
general mechanism of necroptosis execution is conserved between
different cell types and/or following different stimuli. Moreover,
although necroptosis-associated ROS might not be required for
necroptosis, an unexplored question is whether they impact on how
the immune system reacts to a necroptotic cell, as has been
observed for apoptotic cells (Kazama et al., 2008) (Box 1).

Interconnections between apoptosis and necroptosis

Apoptosis and necroptosis are deeply intertwined; some
apoptosis-inducing stimuli can also initiate necroptosis,
typically when caspase function is inhibited. The best-known
example is TNF, which can engage either apoptosis or
necroptosis. Bifurcation of apoptosis and necroptosis is dictated
by caspase-8 activity; active caspase-8 suppresses necroptosis by
cleaving substrates, including RIPK1, RIPK3 and CYLD (Feng
et al., 2007; O’Donnell et al., 2011; Rébé et al., 2007). Under
conditions of caspase inhibition (by either chemical or genetic
means), TNF can trigger necroptosis in RIPK3-proficient cells. /n
vivo support of this model comes from the finding that embryonic

Box 1. Outstanding questions in non-apoptotic cell death
research

Necroptosis

* How is necroptosis executed, is there a canonical pathway or
are there cell- or stimulus-type differences?

® When does necroptosis occur /n vivo and what are its roles?

* Does necroptosis ever occur without caspase activity being
inhibited?

® Can a method be developed to specifically detect necroptosis /n
vivo?

* Why is necroptosis so interconnected with apoptosis?

Autophagic cell death

® Does autophagic cell death occur in higher vertebrates?

® If so, what are its roles?

* What dictates bifurcation between autophagy as a pro-survival
versus a pro-death mechanism?

Pyroptosis

* How is caspase-1 activity toggled between its pro-inflammatory
and its pro-death function?

®* How is pyroptosis executed and what are the key caspase
substrates?

* What is the role of pyroptosis?

®* How much does caspase-11
independently of caspase-1?

contribute to pyroptosis

Caspase-independent cell death

® Does caspase-independent cell death actually occur /n vivo?

® (Can cells survive mitochondrial outer membrane permeabilisation
and evade CICD?

e Survival of some Bax- and Bak-deficient mice to adulthood
poses several questions:
- Are there Bax- and Bak-independent pathways to MOMP?
- Are there alternative (known or otherwise) cell death

pathways that can substitute for apoptosis?

- Is cell death not always essential for development?

lethality caused by caspase-8 or FADD loss in vivo can be
completely rescued by RIPK3 ablation (Dillon et al., 2012; Kaiser
et al., 2011; Oberst et al., 2011). Biochemical and in vivo data
support a model whereby the ability of caspase-8 to inhibit
necroptosis is dependent upon its heterodimerisation with FLIP —
essentially a catalytically inactive form of caspase-8 (Oberst
et al., 2011). Caspase-8 homodimers engage apoptosis, whereas
caspase-8—FLIP heterodimers suppress necroptosis. It remains
unclear what regulates the different outcomes of caspase-8
homodimer versus caspase-8—FLIP heterodimer activity, but
possibilities include differences in cleavage specificities,
activity or subcellular localisation (Oberst and Green, 2011). In
addition to TNF, caspase-8 activity and FLIP levels are key to
regulating necroptosis that is engaged by other stimuli, including
DNA damage and TLR ligation (Feoktistova et al., 2011; Tenev
et al., 2011). Recent data demonstrates that RIPK3 activity
dictates whether a cell dies through apoptosis or necroptosis.
Interestingly, unlike RIPK3-deficient mice (which are viable and
ostensibly normal), expression of a kinase-inactive form of RIPK3
results in embryonic lethality (Newton et al., 2014). This lethality
can be rescued by simultaneous knockout of either RIPK1 or
caspase-8, arguing that kinase-inactive RIPK3 reverses signals
through RIPK1 to activate caspase-8 and apoptosis. Importantly,
these data formally demonstrate an in vivo requirement for RIPK3
activity in necroptosis. Exactly how RIPK3 is activated to suppress
apoptosis without triggering necroptosis remains unclear, but
these findings have important implications for the therapeutic
application of RIPK3 inhibitors.

In vivo functions of necroptosis

What are the physiological roles of necroptosis? Mice deficient in
RIPK3 or MLKL display no overt phenotype but are protected
from chemically induced pancreatitis — an in vivo model of
inflammation (He et al., 2009; Wu et al., 2013). Recent data has
clearly shown a vital role for RIPK3 during embryogenesis, but
this is only revealed in the absence of caspase-8 or FADD. In
adult mice, disabling the ability of caspase-8 to inhibit RIPK3 (by
either caspase-8 or FLIP deletion) in specific organs also leads to
RIPK3-dependent inflammation and necrosis in the intestine and
skin (Bonnet et al., 2011; Panayotova-Dimitrova et al., 2013;
Weinlich et al., 2013; Welz et al., 2011). Recent studies also
argue that RIPK3 can directly induce inflammation even in the
absence of cell death, thereby complicating direct implication of
RIPK3-dependent necroptosis in any given process (Kang et al.,
2013; Vince et al., 2012). In one study, RIPK3 was found to
activate inflammasome-dependent interleukin (IL)-1 production
and that this required MLKL and PGAMS, downstream mediators
implicated in necroptosis (Kang et al., 2013). A variety of
pathologies have been linked to necroptosis and RIPK3,
especially its role in ischaemic reperfusion injury in various
organs (Linkermann et al., 2013).

Perhaps the best evidenced role for necroptosis in vivo is in the
regulation of viral infection. In contrast to wild-type mice,
infection of RIPK3-null mice with vaccinia virus leads to rapid
lethality (Cho et al., 2009). Co-evolution of viruses and immunity
has been likened to an ‘arms race’ between viruses and the
immune system. Many viruses, in particular large double-
stranded DNA (dsDNA) viruses, such as vaccinia virus, encode
inhibitors of apoptosis (Smith et al., 2013). Pertaining to
necroptosis, potent viral inhibitors of caspase-8 exist, such as
the coxpox-encoded protein CrmA (Ray et al., 1992) and the
herpes-virus-encoded vFLIP proteins (Thome et al., 1997).
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Consequently, it might be that necroptosis evolved as a host back-
up mechanism to trigger cell death in virally infected cells.
Alternatively, viral induction of necroptosis might actually serve
the virus by helping to shut down the host inflammatory response.
Interestingly, CrmA preferentially inhibits caspase-8 homodimers
over caspase-8—FLIP heterodimers, thereby allowing the
inhibition of both caspase-8-regulated apoptosis and necroptosis
(blocked by caspase-8—FLIP) (Oberst et al., 2011). Viral proteins
containing RHIM domains, such as murine cytomegalovirus
(CMV)-encoded VIRA have also been identified — these directly
inhibit necroptosis by competitively disrupting the RHIM-RHIM
interactions that are required for necroptosis (Upton et al., 2012).

Autophagic cell death

Macroautophagy (hereafter called autophagy) is a lysosome-
dependent process that degrades various cargoes varying from
molecules to whole organelles (Mizushima, 2011). During
autophagy, an isolation membrane forms in the cytoplasm,
engulfing cytosolic cargo to create an autophagosome. Mature
autophagosomes fuse with lysosomes leading to a breakdown of
engulfed material, allowing macromolecules to be recycled.
Autophagy is a complex process carried out by dedicated
proteins (called ATG proteins). At the organismal level,
autophagy is crucial to many processes, including development,
immunity and aging (Choi et al., 2013). Autophagy has long been
linked with a form of cell death, called autophagic or type II cell
death (Das et al., 2012). However, with some notable exceptions, in
most instances autophagy appears to be associated with, rather than
actually causing, such cell death. Most often, autophagy is
primarily a pro-survival stress response, for example, it is
engaged under starvation conditions. As such, some conditions
that kill cells are preceded by extensive autophagy that is visible
even in dying cells, leading to the false interpretation that
autophagy contributed to the death of the cell (Kroemer and
Levine, 2008). These points notwithstanding, various reports have
shown that autophagy itself is required for cell death in certain
settings.

Autophagic cell death in non-vertebrates

The cellular slime mould Dictyostelium discoideum does not
undergo apoptotic cell death and therefore represents an ideal
organism in which to study non-apoptotic cell death processes. In
nutrient-replete conditions, Dictyostelium exists as a unicellular
organism; however, following starvation, thousands of cells
aggregate, forming fruiting bodies that support apical spores.
Interestingly, the supporting stalk cells undergo cell death
that can be prevented by genetically inactivating autophagy,
implicating autophagic cell death in this process (Kosta et al.,
2004; Otto et al., 2003).

A pro-death role for autophagy has been also been characterised
in the fruit-fly Drosophila melanogaster. Towards the end of larval
development, various tissues, including the mid-gut and salivary
glands, undergo ordered destruction (Jiang et al., 1997). Although
Drosophila possess intact apoptotic pathways, cellular destruction in
the midgut does not require caspase activity but instead requires
autophagy (Denton et al., 2009). In contrast, both autophagy and
caspase-dependent apoptosis contribute to salivary gland destruction
(Berry and Baehrecke, 2008). Furthermore, upregulation of ATGI is
sufficient to drive cell death in a caspase-independent manner in
the Drosophila salivary gland. Interestingly, recent work has also
found that autophagy contributes to cell death in the nematode
Caenorhabditis elegans (Wang et al., 2013). Deletion of various
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ATG genes (preventing autophagy) inhibits cell death induced by
genotoxic stress in germ cells, and physiological cell death in
various tissues when caspase activity is compromised.

Autophagic cell death in higher eukaryotes

Although in vivo evidence is lacking, there are several examples
of cell death occurring in vitro in an autophagy-dependent
manner in higher eukaryotes. Often autophagic cell death is only
revealed in the absence of apoptotic pathways. For example, cells
deficient in Bax and Bak (also known as Bak1), which are unable
to initiate mitochondrial-dependent apoptosis, can undergo death
in a manner dependent upon the key autophagy proteins Beclin-1
and ATGS (Shimizu et al., 2004). L929 cells have been reported
to undergo cell death that is dependent upon Beclin-1 and ATG7
in response to inhibition of caspase-8 (Yu et al., 2004). However,
rather than directly executing death, autophagy increases ROS to
cytotoxic levels by degrading catalase following caspase
inhibition (Yu et al., 2006). Along similar lines, and of possible
clinical importance, inhibition of caspase-10 has recently been
found to induce autophagy-dependent cell death in multiple
myeloma (Lamy et al., 2013). In some instances, even in the
presence of intact apoptosis, cell death in vitro has been shown to
depend upon autophagy. For example, Beclin-1 overexpression
can kill cells in an autophagy-dependent manner because it can be
blocked by knockdown of ATGS (Pattingre et al., 2005).
Accordingly, a cell-permeating Beclin-1-derived peptide has
recently been found to induce cell death — termed autosis — in an
autophagy-dependent but apoptosis- and necroptosis-independent
manner (Liu et al., 2013).

Cell death induced by the tumor suppressor p53 can similarly
require autophagy and is induced by p53-dependent upregulation
of a lysosomal protein called DRAM (Crighton et al., 2006).
However, at least in the case of DRAM (and perhaps following
Beclin-1 upregulation), the requirement for autophagy in cell
death seems to be to initiate apoptosis, rather than execute death
itself. Interestingly, in some settings, oncogenic H-Ras"'? can
induce autophagic cell death that displays no hallmarks of
apoptosis nor a requirement for downstream apoptotic signalling
components (Elgendy et al., 2011). Because knockdown of
various autophagy components blocks this event, allowing
clonogenic survival, this type of death might also represent
‘true’ autophagic death.

Interplay between autophagy and other cell death pathways

Similar to necroptosis, there are numerous interconnections
between autophagy and other cell death processes. As discussed
above, caspases can actively suppress necroptosis. Autophagy has
also been shown to directly inhibit necroptosis by degrading the
kinase RIPK1 (Bray et al., 2012). In that study, chemical
initiation of autophagy, while inhibiting its completion, led to
robust RIPK1- and RIPK3-dependent necroptosis. In addition to
preventing RIPK1 degradation, inhibiting autophagy has been
found to generate mitochondrial ROS that appeared to be required
for necroptosis in this setting (Fig. 2). Along similar lines, a
recent study has found that the BCL-2 inhibitor Obatoclax (also
called GX15-070) can induce autophagy that is required for
necroptosis (Basit et al., 2013) (Fig. 2). How Obatoclax
stimulates autophagy remains unclear; Obatoclax can have off-
target effects and its pro-autophagic function does not appear to
be through antagonizing BCL-2 function. Obatoclax-induced
necroptosis is dependent upon autophagosomal recruitment of
FADD with subsequent binding and activation of RIPK1 leading
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Fig. 2. Interplay between autophagy and necroptosis. Upregulation of
autophagy by Obatoclax can lead to FADD recruitment to autophagosomal
membranes and RIPK3 activation resulting in necroptosis (upper part).
Conversely, upregulation of autophagy can also lead to RIPK1 degradation
and inhibition of necroptosis (lower part). Stimulation of autophagy, but
inhibiting its completion, leads to RIPK1 stabilisation and ROS production,
both of which contribute to the induction of necroptosis.

to RIPK3 activation and necroptosis. An untested possibility is
that FADD might be recruited to the autophagosomal membrane
by ATGS, because both have previously been found to interact
with one another (Pyo et al., 2005).

Substantial crosstalk also exists between apoptosis and
autophagy (Fig. 3). The archetypal and best-known example is
Beclin-1, a key component of the autophagy initiation machinery.
Beclin-1 was originally identified as a BCL-2-binding protein
(Liang et al., 1998). Accordingly, anti-apoptotic proteins of the
BCL-2 family can inhibit autophagy through direct binding of
Beclin-1. Beclin-1 possesses a BH3-only domain (present in pro-
apoptotic BH3-only proteins) that is required for its interaction
with anti-apoptotic BCL-2 proteins (Fig. 3). Rather puzzlingly,
although BCL-2 can inhibit autophagy, Beclin-1 does not appear
to inhibit the anti-apoptotic function of BCL-2 (Ciechomska
et al., 2009). The reasons are unclear but might be due to
relatively low affinity of Beclin-1 for BCL-2 relative to other
BH3-only proteins. Supporting an anti-autophagic role for BCL-2
proteins, BH3-only proteins or compounds that mimic them (so-
called BH3 mimetics) can also induce autophagy by displacing
Beclin-1 from BCL-2 (Maiuri et al., 2007). The BH3-only protein
Bim has also been found to neutralize Beclin-1 by sequestering it
onto microtubules (Luo et al., 2012).

Autophagy or autophagy proteins can also influence apoptosis.
Non-canonical conjugation of the ubiquitin-like protein ATG12
to ATG3 has been found to inhibit apoptosis by upregulating anti-
apoptotic BCL-XL (Radoshevich et al., 2010). Furthermore, the
unconjugated form of ATG12 mimics BH3-only proteins and can
neutralize anti-apoptotic BCL-2 function (Radoshevich et al.,
2010). Moreover, calpain-mediated cleavage of ATGS leads to
the generation of pro-apoptotic cleavage products that display
BH3-protein-like properties (Yousefi et al., 2006).

During the degradation phase of apoptosis, various key
autophagy, proteins including Beclin-1 and ATG4, are cleaved
by caspases (Betin and Lane, 2009; Luo and Rubinsztein, 2010)
(Fig. 3). Consequently, autophagy is suppressed as the cell

Q
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Autophagy Apoptosis L
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BIM-mediated Beclin-1
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Beclin-1 and ATG4
cleavage

Calpains

Fig. 3. Interplay between autophagy and apoptosis. BCL-2 sequesters
Beclin-1, thereby inhibiting autophagy that can be reversed by BH3 mimetics.
Furthermore, Bim can sequester Beclin-1 onto microtubules, which also
inhibits autophagy (shown on the left). In contrast, ATG12 conjugation to
ATG3 enhances BCL-XL expression, thereby inhibiting apoptosis.
Unconjugated ATG12 can act in a manner like BH3-only proteins and induce
mitochondrial-dependent apoptosis. Calpain-mediated cleavage of ATG5
results in the liberation of a proapoptotic fragment of ATG5 that leads to
mitochondrial outer membrane permeabilisation and cell death. In addition,
caspase-mediated cleavage of autophagy proteins inhibits autophagy
(shown on the right).

undergoes apoptosis. Although perhaps not determining whether
the cell dies or not, shutting down autophagy possibly might
influence how the immune system responds to the dying cell (Box

1.

Pyroptosis

Pyroptosis is a caspase-dependent form of programmed cell death
that differs in many respects from apoptosis. Unlike apoptosis, it
depends on the activation of caspase-1 (Hersh et al., 1999; Miao
et al., 2010) or caspase-11 (caspase-5 in humans) (Kayagaki
etal., 2011). As the name suggests, pyroptosis is an inflammatory
type of cell death. The best-described function for caspase-1 is its
key role in the processing of inactive IL-f3 and IL-18 into mature
inflammatory cytokines. Although it is required for cytokine
maturation, caspase-1 can also trigger cell death in some
circumstances (Bergsbaken et al., 2009). Here, we discuss the
molecular basis of pyroptosis, its effects and possible roles in
vivo.

Pyroptosis initiation and execution

Execution of pyroptosis markedly differs from apoptosis both at
the biochemical and morphological level. Caspase-1 itself is
primarily defined as a pro-inflammatory caspase and is not
required for apoptosis to occur. Although caspase-1 can in some
instances initiate apoptosis, caspase-1-driven pyroptosis does not
lead to cleavage of substrates of typical caspases, such as PARP1
or ICAD (also known as DFFA). Furthermore, mitochondrial
permeabilisation typically does not occur during pyroptosis.
Instead, pyroptosis is associated with cell swelling and rapid
plasma membrane lysis. In response to bacterial infection or
toxins, plasma membrane pores have been found to form in a
caspase-1-dependent manner leading to swelling and osmotic
lysis (Fink and Cookson, 2006). Interestingly, similar to
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apoptosis, nuclear DNA undergoes extensive fragmentation;
although the underlying mechanism of DNA fragmentation
during pyroptosis remains elusive, it does not appear to involve
CAD, the DNase activated by apoptotic caspases (Bergsbaken
and Cookson, 2007; Fink et al., 2008; Fink and Cookson, 2006).
Irrespective of its pro-inflammatory or pro-death functions,
caspase-1 is activated at complexes termed inflammasomes that
are formed in response to detection of diverse molecules,
including bacterial toxins and viral RNA (Henao-Mejia et al.,
2012). Upon assembly, inflammasomes activate caspase-1
by inducing its dimerization. However, how active caspase-1
kills a cell remains a complete mystery — to date no key substrates
have been identified that would account for a rapid pyroptotic
event.

In vivo functions of pyroptosis

By various strategies, bacterial and viral pathogens can subvert
caspase-1-mediated IL-13 and IL-18 processing, thereby
dampening the host inflammatory response and facilitating
infection (Bergsbaken et al., 2009). Although purely
speculative, pyroptosis might represent a host strategy to
subversion of caspase-1 activation by re-directing its activity
towards killing the cell as opposed to solely generating pro-
inflammatory cytokines. Priming of host macrophages by
invading microbes or prior activation of macrophages sensitises
them to pyroptosis, at least in part, by upregulating components
of the caspase-1 activation machinery. This suggests that the level
of active caspase-1 might define whether inflammation or death is
engaged. Finally, although pyroptosis might indeed be pro-
inflammatory, it is unclear what advantage (in terms of
inflammation) this would provide over and above the role of
caspase-1 in IL-1B and IL-18 maturation. Perhaps the main
function of pyroptosis is simply to control infection by killing the
host cell. Alternatively, it is possible that pyroptosis is required
for the release of the mature, inflammatory cytokines.

Caspase-independent cell death

Pro-apoptotic triggers that cause mitochondrial outer membrane
permeabilisation (MOMP) also engage cell death even in the absence
of caspase activity — so called caspase-independent cell death
(Tait and Green, 2008). As such, mitochondrial permeabilisation is
often viewed as a ‘point-of-no-return’. Caspase-independent cell
death (CICD) clearly shares similarities to apoptosis (namely
mitochondrial permeabilisation) but is distinct morphologically,
biochemically and kinetically. Additionally, it is likely that
the mode of CICD varies between cell types, in contrast to
canonical mitochondrial-dependent apoptosis. Below, we discuss
how mitochondrial permeabilisation causes CICD, how cells might
evade CICD and its occurrence and role in vivo.

Executing or evading CICD

Two opposing models argue that mitochondrial permeabilisation
can either actively cause CICD or that cells die owing to loss of
mitochondrial function. An active role for mitochondria has been
proposed through the release of toxic proteins, such as AIF,
endonuclease G (endoG) or HtrA2/Omi from the mitochondrial
intermembrane space, leading to death in a caspase-independent
manner (Fig. 4). However, definitive proof that these proteins
mediate CICD is lacking and cells devoid of these proteins do not
display increased resistance towards CICD (Bahi et al., 2006;
Jones et al., 2003). Moreover, the release of proteins, such as AIF
or endoG, from the mitochondria appears to actually require
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caspase activity, thereby precluding their role in CICD (Arnoult
et al., 2003; Munoz-Pinedo et al., 2006).

Alternatively, CICD might occur as a result of progressive loss
of mitochondrial function. In agreement with this model,
following mitochondrial permeabilisation, there is a rapid loss
in the activity of respiratory complexes I and IV (Lartigue et al.,
2009). Exactly why these complexes lose function is unclear but
it might be due to degradation of one or several subunits of these
multi-protein complexes. Post-mitochondrial permeabilisation-
dependent cleavage of TIM23, a crucial subunit of the
mitochondrial inner membrane translocase complex, and
degradation of cytochrome c¢ also contributes to breakdown of
mitochondrial function (Goemans et al., 2008; Ferraro et al.,
2008) (Fig. 4).

A third possibility encompasses both active and loss-of-
function roles for mitochondria in promoting CICD. Reversal of
mitochondrial F,F; ATPase function, leading to ATP hydrolysis,
as occurs following MOMP, actually consumes ATP in order to
maintain mitochondrial membrane potential. Mitochondria might
therefore act as an ATP sink, contributing to ATP depletion and
therefore accelerating CICD. In support of an active role for
mitochondria, cells depleted of mitochondria can survive for at
least 4 days, which typically is longer than the normal kinetics of
CICD (Narendra et al., 2008; Tait et al., 2013).

Although often a death sentence, cells can sometimes survive
mitochondrial permeabilisation in the absence of caspase activity.
Survival under these conditions might have physiological functions,
for example, by promoting the life-long survival of post-mitotic
cells. Indeed, certain types of neurons and cardiomyocytes do not
effectively engage caspase activity following MOMP and can
survive mitochondrial permeabilisation (Deshmukh and Johnson,
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Fig. 4. Mechanism of mitochondrial permeabilisation-mediated
caspase-independent cell death. Following mitochondrial outer membrane
permeabilisation, various intermembrane-space proteins such as Smac,
HtrA2/Omi and cytochrome ¢ are released into the cytoplasm. Some of
these, such as AIF and endoG, might actively kill the cell in a caspase-
independent manner. Over time, mitochondrial functions also decline
following outer membrane permeabilisation. This dysfunction includes a loss
of mitochondrial protein import due to cleavage of TIM23 and degradation of
cytochrome c. Collectively, these events lead to progressive loss of
respiratory chain function (complex | to IV) and reduced mitochondrial
membrane potential (A¥,,). Ultimately, this leads to bioenergetic crisis and
cell death.
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1998; Martinou et al., 1999; Vaughn and Deshmukh, 2008; Wright
et al., 2007).

In some circumstances, cells can undergo MOMP and even
proliferate, provided caspase activity is inhibited (Colell et al.,
2007). This has potentially important consequences for cancer
cells that display defects in the activation of caspases. How can a
cell survive the catastrophic consequences of engaging MOMP?
Various hurdles must be passed; perhaps most importantly, cells
must generate a healthy population of mitochondria. Recently, we
have found that mitochondrial permeabilisation can be
incomplete, in that some mitochondria remain intact (Tait et al.,
2010). These mitochondria repopulate the cell thereby enabling
cell survival. The outcome of the mitochondrial pathway of
apoptosis can also be promoted by autophagy, although the
underlying reasons for this are unclear. In the absence of caspase
activity, apoptotic mitochondrial permeabilisation is associated
with enhanced autophagy through upregulation of ATG12 (Colell
et al., 2007). In this context, autophagy acts as a pro-survival
mechanism, allowing cells to overcome the bioenergetic crisis
that mitochondrial permeabilisation enforces (Colell et al., 2007).
The cytoprotective role of autophagy is probably multifaceted,
but likely one additional key function is to remove permeabilised
mitochondria. Finally, compensatory mechanisms for the failing
bioenergetic function of mitochondria must exist. In line with
this, GAPDH has been found to protect cells from CICD in a
manner that is, in part, dependent upon its glycolytic function
(Colell et al., 2007).

In vivo occurrence and roles of CICD
Similar to other forms of non-apoptotic cell death, effective
means to detect CICD in vivo is lacking. Comparative
morphological analysis of interdigital cell death between wild-
type and mice that lack Apafl (and are therefore unable to
activate caspases and trigger apoptosis) suggests that up 10% of
cells in wild-type mice undergo CICD, implying that CICD might
be a significant mode of cell death in vivo (Chautan et al., 1999).
Bax and Bak are required for MOMP and their combined deletion
often leads to early embryonic lethality at embryonic day (E)7
(Wei et al., 2001). In contrast, deletion of Apafl leads to postnatal
lethality, arguing that CICD can substitute for mitochondrial-
dependent apoptosis, at least during embryonic development
(Cecconi et al., 1998; Yoshida et al., 1998). In higher vertebrates,
CICD might also form an effective tumour suppressor mechanism
by killing cells that have disabled caspase function. Consequently,
inhibition of apoptosis and CICD might be expected to promote
tumorigenesis. Indeed, in some settings, disabling caspase
activation downstream of MOMP can promote cancer;
presumably these cells can also subvert CICD (Schmitt et al.,
2002). Moreover, inhibition of CICD has been found to impart
chemotherapeutic resistance to malignant cells in vitro and
therefore provides a possible site of therapeutic intervention.
Mice that are deficient in activating caspases downstream of
MOMP sometimes display forebrain outgrowth (Miura, 2012).
This has often been taken as evidence that loss of caspase
activation post-MOMP results in neuronal survival during
development. However, a recent study has demonstrated that,
during brain development, apoptosis serves to cull cells that
produce the morphogen FGF. In the absence of caspase activity,
these cells survive, at least temporarily, and continuously produce
FGF leading to forebrain outgrowth (Nonomura et al., 2013).
Whether this represents an effect of cell survival or the outcome
of delayed cell death (through CICD) remains unclear.

Does it matter how a cell dies?

We would answer a resounding ‘yes’ to this question for many
reasons. For reasons of brevity, we will focus our discussion upon
how the type of cell death impacts upon inflammation.

Various molecules in our cells are pro-inflammatory if they are
released from cells. Collectively referred to as damage-associated
molecular patterns (DAMPs) or alarmins, they serve to activate
neighbouring macrophages and dendritic cells through TLR
signalling and other mechanisms (Kono and Rock, 2008).
Importantly, DAMP release and recognition might help alert
the immune system to a cell-death-inducing pathogen, but if
triggered inappropriately it can also have deleterious effects,
including autoimmunity. Importantly, both the extent and type of
cell death represent major means of regulating DAMP release.
Apoptosis is generally considered non- or even anti-
inflammatory, and minimises DAMP release by various
mechanisms, although this is not always the case (Green et al.,
2009). Firstly, as a cell undergoes apoptosis, components of the
dying cell are packaged into plasma-membrane-bound vesicles
called apoptotic bodies, thereby minimising DAMP release. In an
apoptotic cell, caspase-dependent processes also generate ‘find-
me’ signals to attract phagocytic cells and ‘eat-me’ signals to
facilitate recognition and engulfment of the apoptotic cell by
phagocytes (Ravichandran, 2011). Consequently, apoptotic cells
are efficiently cleared in vivo. In the absence of being
phagocytosed, apoptotic cells undergo secondary necrosis and
lyse; however, even in this situation they might fail to stimulate
an inflammatory response. This has led to the proposal that rather
than being required for cell death, caspases serve to inactivate
DAMPs (Martin et al., 2012). Various data support this idea, in
that caspases — either by direct cleavage or indirectly — have been
shown to inactivate various DAMPs, including HMGBI1 and IL-
33 (Kazama et al., 2008; Liithi et al., 2009). However, contrasting
with this viewpoint, recent data has shown that apoptotic cells can
indeed be inflammatory if they are not phagocytosed in a timely
manner (Juncadella et al., 2013). Other studies have found that
during apoptosis, exposure of calreticulin or autophagy-
dependent release of ATP leads to an immunogenic response to
apoptotic cells (Michaud et al., 2011; Obeid et al., 2007).

In contrast, necrotic cells are generally pro-inflammatory. As
discussed above, pyroptosis is a pro-inflammatory form of cell
death and necroptosis might be as well. In both cases, cell death
coincides with cell swelling and plasma membrane rupture. The
predicted effect of CICD is less clear; mice deficient in Apafl
(and therefore unable to activate mitochondrial-dependent
apoptosis) that survive to adulthood do not display overt signs
of inflammatory disease, which is at odds with the anti-
inflammatory action of caspases (Honarpour et al., 2000).
Possibly, the lack of such a phenotype is due to anti-
inflammatory compensatory mechanisms that are elicited during
embryonic development, such as Apafl-independent caspase
activation and/or phagocytosis of cells undergoing CICD prior to
lysis.

Conclusion and future directions

We have highlighted four non-apoptotic mechanisms of
programmed cell death, discussed their mechanisms and
possible roles in vivo. Clearly, one of the biggest challenges is
to develop definitive approaches to detect non-apoptotic cell
death in vivo. Moreover, the study of processes such as RIPK3-
dependent necroptosis is hampered by additional non-cytotoxic
effects of key factors involved in the process. Further
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understanding of the basic mechanisms of execution should
allow differing effects to be dissected. Non-apoptotic forms
of programmed cell death might be major contributors to
physiological cell death in both apoptosis-proficient and
-deficient settings. As such, beyond being solely of academic
interest, understanding how cells kill themselves in a caspase-
independent manner might allow us to therapeutically
manipulate it in various processes including cancer and
autoimmune disease.
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