ANNALEN DER PHYSIK. VIERTE FOLGE. BAND 66.

1. Die Austrittswahrscheinlichkeit kolloidaler Teilchen und verwandte Begriffe; von Eberhard Buchwald.

Einleitung.

1. Das Erscheinungsgebiet der Konzentrationsschwankungen stellt uns im wesentlichen vor zwei Probleme: das der Schwankungsgröße und das der Schwankungsgeschwindigkeit. Das erste ist verhältnismäßig einfach zu behandeln und seit langem erledigt; das zweite, weit schwierigere, gelöst zu haben ist eine der letzten Leistungen Smoluchowskis gewesen. Hier spielt der neue Begriff der Wahrscheinlichkeitsnachwirkung — die man auch Wahrscheinlichkeitskoppelung nennen könnte — eine überragende Rolle: zählt man in gleichen Zeitabständen τ die Teilchen, die sich in einem abgegrenzten Volumen v einer kolloidalen Lösung befinden, so folgt bei genügend großem τ aus elementaren Betrachtungen die Beziehung

$$(1) \overline{\Delta^2} = 2 \nu,$$

wo Δ die Differenz auseinander folgender Teilchenzahlen, v die mittlere Teilchenzahl und die Überstreichung Mittelwertsbildung bedeutet. Wählt man aber τ klein genug, so besteht eine gewisse Wahrscheinlichkeit, daß ein einmal mitgezähltes Teilchen sich auch bei der nächsten Beobachtung noch innerhalb v befinde, und diese Wahrscheinlichkeitskoppelung zwischen den einzelnen Zahlenwerten wirkt dahin, daß die Δ im Mittel kleiner werden als im unabhängigen Falle. Auf der rechten Seite von (1) tritt ein echter Bruch P als Faktor hinzu:

$$(2) \overline{\Delta^2} = 2 \nu P$$

und P erweist sich nach der Theorie als die Wahrscheinlichheit, daß ein anfänglich irgendwo in v befindliches Teilchen nach der Zeit τ nicht mehr darin sei.

Die Smoluchowskische Theorie ist an Kolloiden, wenn man von einer älteren Arbeit Svedbergs absieht, die nicht ad hoc angestellt ist und sich für den vorliegenden Zweck z. T. wenig eignet, nur in zwei Mitteilungen Westgrens 1) geprüft worden. Die beiden Mitteilungen unterscheiden sich durch Wir interessieren uns für die zweite Arbeit. die Form von v. wo v ein flacher Kreiszylinder ist, dessen Grundflächen durch Glasplatten gebildet werden, während die Mantelfläche, durch die allein der Teilchenverkehr mit der übrigen Flüssigkeit stattfindet, optisch durch eine kreisförmige Blende im Okular festgelegt ist. Das Prüfverfahren ist in beiden Arbeiten gleich: Δ und ν in (2) werden durch vielhundertmalige Zählung der Teilchen in v ermittelt, und für P wird ein von Smoluchowski errechneter Ausdruck herangezogen²), der im Falle des zylindrischen Volumens die Form hat:

(3)
$$P = e^{-2\alpha} \{ J_0(2i\alpha) - i J_1(2i\alpha) \}.$$

Hierin ist

$$\alpha = \frac{a^2}{4Dt},$$

$$D = \frac{RT}{N} \cdot \frac{1}{6\pi \eta r}$$

 $(J_0$ und J_1 Besselsche Funktionen in der üblichen Bezeichnung, a Radius der Grundflächen des Zylinders, D Diffusionskonstante, t Zeit, R Gaskonstante, T absolute Temperatur, N Loschmidtsche Zahl pro Mol, η Koeffizient der inneren Reibung des Dispersionsmittels, r Teilchenradius). Da alle Größen bekannt oder meßbar sind, ist eine Prüfung der Beziehung (2) möglich. Nach Westgrens Darstellung wird (2) bestätigt.

§ 1. Die Außenwahrscheinlichkeit P.

2. Den Ausgangspunkt des Folgenden bildet das Bestreben, die Smoluchowskische Theorie in Gestalt der Beziehung (2) noch auf eine zweite Weise mit der Erfahrung zu vergleichen:

A. Westgren, Arkiv f. Mat. Svensk. Vet. Ak. 11. Nr. 14. 1916 und 13. Nr. 14. 1918.

²⁾ M. v. Smoluchowski, Physikal. Zeitschr. 17. S. 557. 1916. Gleichung (17).

nämlich auf die ursprüngliche Bedeutung von P zurückzugehen und dem statistisch gefundenen $\overline{A^2}/2\nu$ ein gleichfalls statistisch gewonnenes P gegenüberzustellen, das man findet, indem man häufig beobachtet, ob ein bei t=0 in v befindliches Teilchen sich zur Zeit t außerhalb befindet, und den Bruchteil aller untersuchten Teilchen feststellt, der bei t nicht mehr darin ist. Dieser Bruchteil, eine Funktion von t, ist das gesuchte P.

P wird gelegentlich als Diffusionsfaktor bezeichnet. Wir vermeiden diesen etwas farblosen Ausdruck und nennen P auch nicht Austrittswahrscheinlichkeit, um nicht die Vorstellung zu erwecken, daß es sich um die Wahrscheinlichkeit handele, bis zur Zeit t ausgetreten zu sein. Vielmehr darf das Teilchen bis t beliebig häufig die Grenzfläche durchschritten haben; es kommt nur darauf an, ob es bei t außen ist. Daher werde P die $Au\betaen$ wahrscheinlichkeit genannt.

3. Beobachtet wurde an einem Ultramikroskop mit Kardioidkondensator 1) (Objektiv C, Okular: Kompensationsokular 18) ein in einer Quarzkammer²) befindliches Selenhydrosol, das nach der Vorschrift hergestellt war 3): 100 ccm einer 1·10-3 Mol pro Liter selenige Säure enthaltenden Lösung wird mit 1 ccm 50 proz. Hydrazinhydrat versetzt, etwa eine halbe Stunde lang auf dem Wasserbade erwärmt und mit reinstem Wasser geeignet verdünnt. Die annähernde Gleichförmigkeit dieses Sols kann nach der Westgrenschen Dissertation 4) und seiner Untersuchung über die Gleichförmigkeit von Goldhydrosolen b als sichergestellt angesehen werden. Als die v umgrenzende "Blende" im Okular - eine Blende, die die Teilchenverfolgung innerhalb und außerhalb von v ermöglichen muß — diente ein Tuscheffeck auf einem Deckglase, den man nach einigem Probieren genügend kreisrund herausbekommt. Sein Durchmesser betrug $5,39 \cdot 10^{-2}$ cm, was im Objekt einem Radius des v von

 $a = 1.08 \cdot 10^{-3} \text{ cm}$

entspricht.

¹⁾ H. Siedentopf, Verh. d. D. Phys. Ges. 12. S. 6. 1910.

²⁾ H. Siedeutopf, a. a. O. S. 18.

³⁾ A. Gutbier, Zeitschr. f. anorg. Chem. 32. S. 106. 1902.

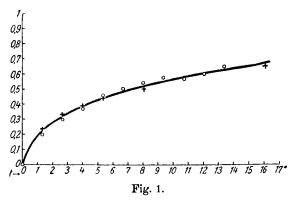
⁴⁾ A. Westgren, Diss. Upsala 1915; vgl. auch Westgren, Zeitschr. f. phys. Chem. 89. S. 63. 1915, bes. S. 68.

⁵⁾ A. Westgren, Zeitschr. f. anorg. u. allg. Chem. 94. S. 193. 1916.

4. Nach dem Schlage eines Metronoms werden in gleichen Zeitabständen τ (1 bis $1^1/_2$ Sekunde) einerseits die Teilchen in v gezählt und aus der Zahlenreihe der Ausdruck $\overline{\Delta^2}/2$ v gebildet, und zwar (unter vielleicht allzu ausgiebiger Verwertung der Reihe, vgl. Nr. 6) für die Zeiten τ , 2τ ... Andererseits werden durch die Verfolgung von einigen hundert Einzelteilchen Aufzeichnungen von folgendem Typus gewonnen:

1 τ	2 τ	3 τ	4 τ	5 τ	6 τ	7 τ	8 τ	9 τ	10 τ
+	+	+	0	+	0	+	0	0	0
	+ = innerhalb von v, $0 = auBerhalb von v.$								

Eine besondere Vorsichtsmaßregel muß getröffen werden, damit man unter den Teilchen, die man bei t=0 in v vorfindet, ohne Willkür nach reinem Zufall das zu verfolgende auswähle. Zu diesem Zwecke wurde vor jeder Teilchenverfolgung blindlings auf ein mit vielen gleichen Kreisen bedecktes Papier getippt und dasjenige Teilchen gewählt, das bei t=0 dem getroffenen Punkt am nächsten war.



5. Tab. 1 faßt eine Beobachtungsreihe von 600 Teilchen zusammen. Von ihnen waren (Reihe 2) im Zeitpunkt 1 $\tau = 1,34$ " 118 nicht in v, im Zeitpunkt 2 τ 179 usw., so daß sich für P (Reihe 3) die Werte $\frac{118}{600} = 0,197$, $\frac{179}{600} = 0,298$ usw. ergeben.

¹⁾ Für bereitwillige Unterstützung bei sämtlichen Beobachtungsreihen bin ich Hrn. stud. Quarder zu Dank verpflichtet.

Die Kreise der Fig. 1 geben graphisch die gefundenen P-Werte. Aus 6000 anscheinend ganz zusammenhanglosen Einzeldaten solch glatte Gesetzmäßigkeit herausspringen zu sehen bildet den Hauptreiz statistischer Messungen.

Tabelle 1. $\tau = 1.34''$

t	Anzahl außerhalb	P	ίχ	ατ
1 t = 1,34''	118	0,197	8,07	10,8
= 2.58	179	0,298	3,44	9,2
$= \begin{array}{c} 3 & t \\ 4,02^{\prime\prime} \end{array}$	223	0,372	2,15	8,6
$ \begin{array}{r} 4 \ t \\ = 5.36^{\prime\prime} \end{array} $	271	0,452	1,41	7,6
$5 \tau = 6.70^{\prime\prime}$	297	0,495	1,14	7,6
$= 8.04^{\prime\prime}$	320	0,533	0,96	7,7
$7 \tau = 9.38^{\prime\prime}$	342	0,570	0,81	7,6
$= \begin{array}{c} 8 & \tau \\ 10,72^{\prime\prime} \end{array}$	344	0,573	0,80	8,6
9 t = 12,06''	365	0,608	0,68	8,2
$10 \tau = 13,40$ "	388	0,645	0 57	7,6
	**			

Reihe 4 der Tab. 1 gibt das nach Gleichung (1) zu P gehörige α , zu entnehmen aus einer von Westgren 1) berechneten Tabelle oder aus den Jahnke-Emde-Tafeln S. 130 ff. Reihe 5 enthält αt , das nach Gleichung (3) konstant gleich $\alpha^2/4D$ sein soll. Diese Konstanz ist von 3τ ab mit aller wünschenswerten Genauigkeit erfüllt; daß der Wert bei 2τ etwas zu hoch ist, ist eine Eigentümlichkeit gerade dieser Versuchsreihe. Dagegen ergibt sich der Wert bei 1τ fast durchweg zu hoch, d. h. P wird hier zu klein gefunden (vgl. Fig. 1). Das dürfte darauf zu schieben sein, daß man bei

¹⁾ A. Westgren, a. a. O. (II. Mitteilung) S. 4/5.

der Auswahl des zu verfolgenden Teilchens doch nicht ganz wahllos verfährt, sondern unbewußt das bequemer liegende, vom Rande weiter entfernte aussucht. Immerhin würde ein Mehr von nur 3 Proz. der Gesamtzahl, bei 1τ außerhalb gezählt, genügen, um den αt -Wert auch für 1τ auf den für die übrigen Zeiten geltenden Mittelwert

$$\alpha t = 8,1$$

herunterzudrücken.

Mit diesem bei sämtlichen Beobachtungsreihen annähernd wiedergefundenen Werte ist die ausgezogene Kurve in Fig. 1 nach Gleichung (3) gezeichnet, und er ist allem folgenden zugrunde gelegt. Aus ihm ergibt sich mit $a = 1,08 \cdot 10^{-3}$ (Nr. 3)

$$D = 3.60 \cdot 10^{-8}$$

und aus Gleichung (5) mit

$$T = 294^{\circ},$$

 $R = 8,315 \cdot 10^{7},$ 1)
 $N = 6,064 \cdot 10^{23},$ 1)
 $\eta = 0,00980$ 2)

der Teilchenradius zu

$$r=60,6 \mu\mu$$

oder, wenn man den hemmenden Einfluß der Grundflächen von v berücksichtigt, der bei deren geringer Entfernung $2\,L=2,\!12\,\mu$ merklich ins Gewicht fällt, und nach der von Westgren 3) korrigierten Formel

$$D = \frac{R T}{N} \frac{1}{6 \pi \eta r \left\{ 1 + \frac{9 r}{16 (L - r)} \ln \frac{L}{r} \right\}}$$

rechnet, zu

$$r=55.4 \mu\mu$$
.

6. Die zu Tab. 1 gehörige Teilchenzählung, bestehend aus 1200 Ziffern

¹⁾ R. Ladenburg, Jahrb. d. Radioakt. u. Elektron. 17. S. 93. 1920.

²⁾ R. Hosking, Phil. Mag. 18. S. 260. 1909; Landolt-Börnstein, 4. Aufl. S. 77.

³⁾ A. Westgren, a. a. O. (II. Mitteilung) S. 7.

ist durch Tab. 2 wiedergegeben, deren erste Reihe die entscheidende Kombination $\overline{A^2}/2\nu$ angibt, worin $\nu=1,324$ war. Diese Werte sind als Kreuze in Fig. 1 eingezeichnet und passen sich der P-Kurve so gut an, daß man von einer Bestätigung der Smoluchowskischen Beziehung (2) sprechen kann, ebensogut wie bei Westgren.

Tabelle 2. $\tau = 1.34''$

	t - 1,0	, ,	
t	$\overline{\varDelta^2}/2 \nu$	α	a t
$= 1.34^{\prime\prime}$	0,236	5,59	7,5
$= \frac{2\tau}{2,68''}$	0,331	2,75	7,4
$= \frac{3 \iota}{4,02^{\prime\prime}}$	0,390	1,96	7,9
$= 5.36^{\prime\prime}$	0,445	1,46	7,8
$= 8.04^{\prime\prime}$	0,500	1,11	8,9
$= 12 \tau$ $= 16,08^{\prime\prime}$	0,654	0,55	8,8

Doch besteht ein Bedenken: bestimmen wir nach Gleichung (3), in der wir nunmehr P mit unserm $\overline{A^2}/2\nu$ identifizieren, zu den Werten der Reihe 1 (Tab. 2) die α - und die α t-Werte, so ergeben sich die Reihen 2 und 3. α t wird zwar in genügender Übereinstimmung mit Tab. 1 im Mittel zu 8,0 gefunden; die α t-Werte zeigen aber einen Gang, der in dieser Beobachtungsreihe verhältnismäßig wenig ausgesprochen, in den meisten andern aber wiederzufinden ist, bald nach oben, bald nach unten gehend.

Ziehen wir zum Vergleich die vier Westgrenschen Beobachtungsreihen heran, die ihm zur Bestätigung der Smoluchowskischen Theorie dienen¹), so bietet sich das Bild der Tab. 3.

¹⁾ A. Westgren, a. a. O. (II. Mitteilung) S. 11 ff.

t	1. Reihe	2. Reihe	3. Reihe	4. Reihe
1 τ	1,16	3,62	9,96	14,6
2 τ	1,36	4,48	9,55	14,5
3 τ	1,31	5,60	8,73	16,7
4 τ	1,25	5,65	8,82	15,7
5τ	_	6,38	8,30	17.6
7τ	0,90	· ·	· <u>-</u>	_
10 r	0 1)		_	_
berechn. = $\frac{a^2}{4D}$	1,24	4,86	8,27	.19,5

Tabelle 3.
a t (Westgren).

Für die Zeitpunkte 1τ , 2τ ... (wobei τ von Reihe zu Reihe verschieden ist: 1. Reihe $\tau=0.95''$; 2. Reihe $\tau=0.947''$; 3. Reihe $\tau=1.50''$; 4. Reihe $\tau=1.579''$) sind die aus Westgrens Messungen folgenden αt -Werte zusammengestellt; hinzugefügt ist der sich aus $\alpha t=\frac{\alpha^2}{4D}$ ergebende Wert. Der Gang des αt ist in der 1. und 2. Beobachtungsreihe auffallend und auch in der 3. und 4. noch sehr merkbar. Der theoretisch geforderte Wert wird in der 1. und 2. Reihe bei mittleren Zeiten, in der 3. bei großen Zeiten, in der 4. überhaupt nicht erreicht. 2)

Dieser bemerkenswerten Tatsache wird bei Westgren nicht Erwähnung getan. Von ihr Rechenschaft zu geben dürfte unmöglich sein ohne eingehende Kritik der Art und Weise, wie das Beobachtungsmaterial bei Westgren und bei uns in Tab. 2 verwertet wird und wie weit es zulässig ist, es so zu verwerten.³) Darf man z. B. das zu 12τ gehörige \overline{A}^2

¹⁾ Hierbei ist das Westgrensche $\overline{\varDelta^2}/2\nu$ gleich 1 angenommen. Tatsächlich liegt es sogar etwas über 1.

²⁾ Bei den Beobachtungen am eindimensionalen Falle (Westgren a. a. O., I. Mitteilung) ergibt sich der αt entsprechende Ausdruck merklich konstanter.

³⁾ Bemerkungen hierüber verdanke ich Hrn. E. Schrödinger.

durch Zusammenfassung der 1., 13., 25., 37., der 2., 14., 26., 38., der 3., 15., 27. Ablesung berechnen, da doch die Ziffern dieser verschiedenen Teilreihen miteinander gekoppelt sind und man korrekterweise dem $\overline{\Delta^2}$ für 1τ , das aus 1200um 1τ abstehenden Werten gewonnen ist, ein $\overline{\varDelta^z}$ für 12τ gegenüberstellen müßte, das man aus 1200 um 12 r abstehenden Ablesungen gefunden hat? Können nicht bei dieser Verwertung individuelle Eigentümlichkeiten der Reihe, etwa Gruppen von außergewöhnlich verschiedenen oder benachbarten Ziffern, dahin wirken, daß ein systematischer Gang in $\overline{\Delta}^2$ und damit in at vorgetäuscht wird? Denn man kann ebensowohl Eigenheiten ausfindig machen, die, einer Beobachtungsreihe aufgeprägt, bei unserer Rechenmethode mit wachsendem Zeitabstand steigenden Einfluß auf $\overline{\Delta^2}$ gewinnen wie umgekehrt. Der Weg, diese Probleme zu behandeln, erscheint vorgeschrieben, soll aber an dieser Stelle nicht verfolgt werden.1)

\S 2. Die Austrittswahrscheinlichkeit P_2 .

- 7. Vielmehr mögen die Überlegungen des § 1 in der Richtung ausgebaut werden, daß wir der $Au\beta$ enwahrscheinlichkeit P eine Austrittswahrscheinlichkeit P_2 gegenüberstellen, die wir definieren als die Wahrscheinlichkeit für ein irgendwo in v befindliches Teilchen, innerhalb der Zeit t auszutreten. Dabei darf das Teilchen nicht wie bei P das Volumen beliebig verlassen und betreten, sondert scheidet mit dem Augenblicke des ersten Austritts aus der Betrachtung aus.
- 8. Der theoretische Ausdruck für P_2 , der an die Stelle der Beziehung (3) tritt, ist wie dieser aus den Gedankengängen der Diffusionstheorie zu entwickeln. Diffusionstheoretisch gesprochen läßt sich nämlich P auffassen als der "Bruchteil einer anfänglich den Raum v gleichmäßig erfüllenden Substanz, welcher in der Zeit t über dessen Grenzen hinausdiffundieren würde, falls der äußere Raum anfangs von jener Substanz völlig leer wäre". Bei P_2 dagegen haben wir eine v anfänglich gleich-

¹⁾ U. a. hierzu wird die demnächst erscheinende physikalische Doktorarbeit von Hrn. Dr. med. Silberberg Material beibringen.

²⁾ M. v. Smoluchowski, Physikal. Zeitschr. 17. S. 563. 1916.

mäßig erfüllende Substanz anzunehmen und dem Verschwinden der Teilchen beim Austritt dadurch Rechenschaft zu tragen, daß wir an der Mantelfläche für alle Zeiten die Teilchendichte $\varrho=0$ vorschreiben. Fügen wir hinzu, daß ϱ für r=0 (r Radiusvektor) endlich bleiben muß, so ist das Problem festgelegt und nach der Fourierschen Methode¹) zu lösen.

Hiernach setzen wir als Lösung der Diffusionsgleichung

(7)
$$\varrho = \sum_{n}^{1..\infty} A_n e^{-D \lambda_n^{\mathbf{e}} t} J_0(\lambda_n r)$$

und bestimmen die Konstanten λ_n aus der Rand, die Konstanten A_n aus der Anfangsbedingung. Die Randbedingung verlangt die $\lambda_n a$ (a Volumradius) gleich den Wurzeln z_n der Besselschen Differentialgleichung Oter Ordnung; die A_n findet man, indem man die für t=0 geltende Gleichung

(8)
$$\varrho_0 = \sum_{n=1}^{\infty} A_n J_0 (\lambda_n r)$$

 $(\varrho_0$ konstante Anfangsdichte) mit $r\,J_0(\lambda_n\,r)$ erweitert und von 0 bis a integriert. Unter Zuhilfenahme bekannter Beziehungen ergibt sich

$$A_n = \frac{2 \varrho_0}{\lambda_n J_1(\lambda_n)}$$

(J, Besselsche Funktion 1. Ordnung) und damit

(10)
$$\varrho = \varrho_0 \cdot 2 \sum_{n=1}^{1 \dots \infty} \frac{1}{z_n J_1(x_n)} e^{-\frac{D z_n^2 t}{a^2}} J_0\left(\frac{z_n}{a} r\right).$$

Hieraus findet man als mittlere Dichte $\bar{\varrho}$ zur Zeit t

(11)
$$\bar{\varrho} = \frac{2\pi \int_{0}^{a} \varrho r \, dr}{a^{2}\pi} = 4\varrho_{0} \sum_{n=1}^{1...\infty} \frac{1}{x_{n}^{2}} e^{-\frac{D z_{n}^{2} t}{a^{2}}}$$

 $\bar{\varrho}/\varrho_0$ ist als $Bleibewahrscheinlichkeit \cdot Q_2$ aufzufassen, d. i. als Wahrscheinlichkeit für ein anfangs irgendwo in v befind-

¹⁾ M. Fourier, Analyt. Theorie der Wärme, deutsch von B. Weinstein, 6. Kapitel.

liches Teilchen, bis t das Volumen nicht verlassen zu haben. Das gesuchte P_2 ist gleich $1 - Q_2$:

(12)
$$P_2 = 1 - 4 \sum_{n=1}^{\infty} \frac{1}{\lambda_n^2} e^{-\frac{D z_n^2 t}{a^2}}.$$

Die Wahrscheinlichkeit, zwischen t und t + dt auszutreten, folgt hieraus durch Differentiation nach t:

(13)
$$dP_2 = dt \cdot \frac{4D}{a^2} \sum_{n=0}^{1..\infty} e^{-\frac{Dz_n^c t}{a^2}}.$$

9. Hinzugefügt seien die nach der gleichen Methode für den eindimensionalen Fall berechneten analog gebauten Ausdrücke (die zwischen den Deckgläsern eingeschlossene Flüssigkeit ist dabei optisch durch eine *spalt*förmige Blende im Okular begrenzt)

(10')
$$\varrho = \varrho_0 \frac{4}{\pi} \sum_{n=1}^{1...\infty} \frac{1}{2n-1} e^{-\frac{D[(2n-1)\pi]^2 t}{a^2} \sin \frac{(2n-1)\pi x}{a}}$$
und
$$(12') \quad P_2 = 1 - 8 \sum_{n=1}^{1...\infty} \frac{1}{[(2n-1)\pi]^2} e^{-\frac{D[(2n-1)\pi]^2 t}{a^2}}$$
Spalt

(a Schichtbreite) und die gelegentlich von Smeluchowski¹) für den Fall der Kugel erwähnten

$$\begin{array}{ll} (10'') & \varrho = \varrho_0 \, \frac{2 \, a}{\pi \, r} \, \sum_{n}^{1 \, \dots \, \infty} \frac{(-1)^{n+1}}{n} \, e^{-\frac{D \, n^2 \, \pi^2 \, t}{a^2}} \sin \, \frac{n \, \pi \, r}{a} \\ & \text{und} \\ & (12'') \qquad P_2 = 1 - \frac{6}{\pi^2} \sum_{n}^{1 \, \dots \, \infty} \frac{1}{n^2} \, e^{-\frac{D \, n^2 \, \pi^2 \, t}{a^2}} \\ & (a \, \, \text{Kugelradius}). \end{array} \right\} \, \text{Kugel}$$

1) M. v. Smoluchowski, Wiener Ber. 124 (IIa) S. 339. 1915. Gl. (39) und (40).

Ferner sei für die drei Fälle die wahrscheinliche Aufenthaltsdauer oder Austrittserwartungszeit T_2 nach

$$T_2 = \int_0^\infty \frac{\overline{\varrho}}{\varrho_0} \ dt$$

berechnet 1):

(14) Zylinder:
$$T_2 = \frac{4 a^2}{D} \sum_{n=1}^{\infty} \left(\frac{1}{x_n}\right)^4$$
,

(14') Spalt:
$$T_2 = \frac{8a^2}{D} \sum_{n=1}^{\infty} \left(\frac{1}{(2n-1)n}\right)^4$$
,

(14") Kugel:
$$T_2 = \frac{6a^2}{D} \sum_{n=1}^{1...\infty} \left(\frac{1}{n\pi}\right)^4$$

Schließlich sei der Zusammenhang zwischen P2 und

$$\gamma = \frac{Dt}{a^2}$$

tabellarisch festgelegt (Tab. 4).

Tabelle 4.

γ	$P_{\mathbf{s}}$	γ	P_2	γ	P_2
0,01	0,215	0,10	0,606	0,40	0,932
0,02	0,299	0,12	0,652	0,45	0,949
0,03	0,360	0,14	0,691	0,50	0,061
0,04	0,411	0,16	0,725	0,55	0,971
0,05	0,453	0,18	0,755	0,60	0,979
0,06	0,491	0,20	0,782	0,65	0,984
0,07	0,523	0,25	0,838	0,70	0,988
0,08	0,553	0,30	0,878	0,75	0,991
0,09	0,581	0,35	0,909	0,80	0,993

Der Forderung eines konstanten αt im Falle des P ist jetzt die Forderung eines konstanten γ/t an die Seite zu stellen.

Der Wert für die Kugel schon bei Smoluchowski a. a. O. Gl. (42).

10. Die experimentelle Prüfung der abgeleiteten Beziehungen wird mit der Stoppuhr in der Weise durchgeführt, daß bei t=0 eins der in v befindlichen Teilchen nach Zufall ausgewählt (vgl. Nr. 4) und der Zeitpunkt seines ersten Austritts gestoppt wird. Diese Beobachtung wird häufig wiederholt, und von jeder gefundenen Zahl werden 0,2" als persönliche Gleichung abgezogen. Dann wird eine Beobachtungsreihe

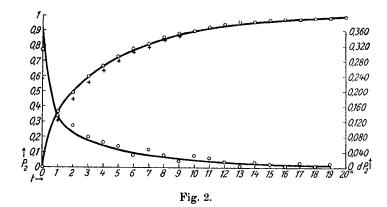
-			1 - 1					
1	2	3	4	5	6	7	8	9 _
t	Ausgetret. während $t \cdots t + 1$	dP ₂ exper.	dP_2 theoret.	Aus- getreten bis t	P_{2} exper.	P_2 theoret.	P ₂ exper. korr.	$\frac{\gamma}{t}$ exper.
0"	216	0,309	0,364	0	0	0	0	_
1′′	96	0,137	0,133	216	0,309	0,364	0,364	0,022
$2^{\prime\prime}$	77	0,110	0,091	312	0,446	0,497	0,490	0,024
$3^{\prime\prime}$	54	0,077	0,071	389	0,556	0,588	0,591	0,027
4′′	45	0,064	0,057	443	0,633	0,659	0,663	0,028
5′′	38	0,054	0,047	488	0,697	0,716	0,721	0,029
$6^{\prime\prime}$	24	0,034	0,039	526	0,751	0,763	0,771	0,029
7''	32	0,046	0,033	550	0,786	0,802	0,803	0,029
8"	20	0,029	0,027	582	0,831	0,835	0,844	0,030
$9^{\prime\prime}$	13	0,019	0,022	602	0,860	0,862	0,870	0,031
10"	. 20	0,029	0,019	615	0,879	0,884	0,887	0,031
11''	15	0,021	0,016	635	0,907	0,903	0,913	0,031
12''	10	0,014	0,013	650	0,929	0,919	0,933	0,033
$13^{\prime\prime}$	• 1	0,001	0,011	660	0,943	0,932	0,946	0,033
14''	7	0,010	0,009	661	0,944	0,943	0,947	0,031
$15^{\prime\prime}$	5	0,007	0,007	668	0,954	0,952	0,956	0,031
16''	2	0,003	0,007	673	0,961	0,959	0,963	0,031
$17^{\prime\prime}$	6	0,009	0,006	675	0,964	0,966	0,966	0,030
$18^{\prime\prime}$	2	0,003	0,005	681	0,973	0,972	0,974	0,031
19''	4	0,006	0,004	683	0,976	0,977	0,977	0,031
2 0″	_	_	ļ — 1	687	0,981	0,981	0,983	0,031

Tabelle 5.

nach dem Schema der Tab. 5 verwertet. Hier ist für die Zeiten t=0", 1", ... 19" in Spalte 2 angegeben, wie viele unter 700 Teilchen zwischen $t\ldots t+d\,t$ ausgetreten sind, und Division durch 700 führt zu den $d\,P_2$ -Werten der Spalte 3. Diese $d\,P_2$ -Werte sind in der unteren Hälfte der Fig. 2 (Ordinatenbezifferung am rechten Rande) eingezeichnet.

Theoretisch ergeben sich aus Gleichung (12) (Gleichung (13) ist wegen des großen Wertes dt=1 zur Berechnung nicht geeignet) mit dem aus Nr. 5 bekannten Werte $\frac{a^2}{4D}=8,1$ die

 $d\,P_2$ -Werte der Spalte 4 oder die ausgezogene untere Kurve in Fig. 2. Die Übereinstimmung ist befriedigend; nur der erste Punkt liegt merklich zu tief: die Zahl der zwischen t=0 und t=1 Ausgetretenen ist zu klein gefunden — derselbe Mangel der Beobachtung wie in Nr. 5 und in derselben Weise zu begründen.



11. In der dP_2 -Darstellung bewirkt dieser Fehler im ersten Zeitintervalle nur das Herausfallen eines Punktes. Er macht sich aber, wenn auch mit abnehmendem Einfluß, für den ganzen Kurvenverlauf bemerkbar, wenn wir zu P_2 selbst übergehen (Spalte 6). Hier sind die P_2 -Werte verzeichnet, die aus Spalte 5 (Anzahl der bis t ausgetretenen) folgen; in Spalte 7 finden sich die aus Gleichung (12) berechneten theoretischen Werte. Graphisch ist in Fig. 2 die Spalte 6 durch die Kreuze 1), Spalte 7 durch die ausgezogene obere Kurve wiedergegeben. In der Tat werden auf Grund des ersten auch die übrigen experimentellen Punkte zu tief gefunden.

Jedoch läßt sich zeigen, daß eine Korrektur am ersten Beobachtungspunkt Experiment und Theorie zur Deckung bringt. Nimmt man nämlich an, man hätte in der ersten Sekunde statt $d\,P_2=0.309$ das theoretisch geforderte 0.364 beobachtet, so entspräche das 255 ausgetretenen Teilchen statt 216. Wir

Die Kreuze sind nur für kleine Zeiten gezeichnet; für die größeren fallen sie praktisch mit den gleich zu besprechenden Kreisen zusammen.

schreiben diese Anzahl dem ersten Intervall zu und haben, da dann auf alle übrigen statt 484 nur 445 Teilchen kommen, für jedes Intervall die Zahl der ausgetretenen mit $\frac{445}{484}$ zu multiplizieren, um dieselben relativen Zahlen zu behalten, wie sie der Versuch gibt. Hierdurch wird einerseits die dP_2 -Kurve durch ein wenn auch unbedeutendes Herunterrücken aller Punkte verbessert; andererseits erscheint die so korrigierte experimentelle P_2 -Kurve (Spalte 8 der Tab. 5, Kreise an der oberen Kurve Fig. 2) jetzt im besten Einklange mit der Theorie.

Als Kriterium für die Übereinstimmung von Versuch und Rechnung ist auch die Konstanz der experimentellen γ/t -Werte anzusehen (vgl. Nr. 9). Bestimmt man mit Hilfe von Tab. 4 zu dem experimentellen P_2 die zugehörigen γ/t , so findet man die Zahlen Spalte 9. Wie vorauszusehen, macht sich die Fehlbeobachtung im ersten Zeitintervall hier dadurch bemerkbar, daß die γ/t allmählich zu einem konstanten Werte von rund 0,031 ansteigen, den sie in der neunten Sekunde erreichen. Geht man jedoch von den korrigierten P_2 -Werten aus, so ist die Konstanz des γ/t von vornherein gewahrt. Denn an Stelle der ersten acht Werte treten die folgenden:

Dieser γ/t -Wert verträgt sich bestens mit dem $\alpha t = 8,1$ der Gleichung (6). Denn hiernach muß sein

$$\frac{\gamma}{t} = \frac{D}{a^2} = \frac{1}{4\alpha t} = \frac{1}{32.4} = 0.031$$
.

Für die wahrscheinliche Aufenthaltsdauer berechnen wir nach Gleichung (14)

$$(16')$$
 $T_{2 \, \text{theoret.}} = 3.81''$,

während die 700 Teilchenbeobachtungen Tab. 5

$$(16) T_{2 \, \text{exper.}} = 4.33''$$

ergeben. An anderen Tagen wurden Zahlen gefunden, die dem theoretischen Werte näher lagen. In unserem Fall ist der Unterschied wieder durch die zu geringe Zahl von Teilchen kurzer Aufenthaltszeit (0 bis 1 Sekunde) bedingt.

\S 3. Die Austrittswahrscheinlichkeit P_1 .

12. Man unterscheidet seit Smoluchowski zwischen der $durchschnittlichen(T_1)$ und der wahrscheinlichen Erwartungszeit (T_2) eines statistischen Ereignisses. Denkt man sich auf der Zeitachse die Zeitpunkte markiert, in denen das Ereignis eintritt, so ist T, der Mittelwert der Zeitstrecken zwischen dem Zeitpunkt eines Ereignisses und dem Zeitpunkte des nächsten Ereignisses, während, um T2 zu finden, der Mittelwert der Zeiten zwischen jedem Punkte der Zeitachse und dem des nächsten Ereignisses zu bilden ist. Sind die Ereignisse nach dem Zufall verteilt, so ist $T_1 = T_2$: es dauert z. B. beim Würfelspiel im Mittel ebensolange bis zur nächsten Sechs, gleichgültig ob ich alle Sechsen (T1) oder alle Würfe (T2) zum Ausgangspunkt der zu mittelnden Zeitstrecken nehme. Anders wenn zwischen den Ereignissen eine Wahrscheinlichkeitsnachwirkung besteht. wie etwa — um ein Beispiel von Smoluchowski¹) zu nennen zwischen den Durchstoßungen einer in einem Gase gedachten Kugeloberfläche durch ein und dasselbe Gasteilchen. Ist keine Durchstoßung da, so ist im Mittel auch verhältnismäßig lange keine zu erwarten. Ist das Teilchen aber gerade durch die Oberfläche gegangen, so geht es infolge seiner Zickzackbahn vermutlich in .rascher Folge noch mehrere Male durch die Oberfläche. In solchen Fällen können T_1 und T_2 von ganz verschiedener Größenordnung sein.

Ein Beispiel aus dem täglichen Leben wäre die Verteilung der Zeitpunkte, in denen ein Mensch die Bahnhofsperre durchschreitet: lockere Schwarmbildung vor Abgang, dichte nach Ankunft eines Zuges. Vom Zeitlichen aufs Räumliche übergehend, könnte man in einem gaserfüllten Raume zwischen dem durchschnittlichen und dem wahrscheinlichen Abstand bis zur nächsten Molekel unterscheiden. Unter normalen Verhältnissen wären beide gleich, bei der Clusterbildung in der Nähe des kritischen Punktes nicht mehr.

Wir sind in der Lage, beide Begriffe einander rechnerisch und experimentell gegenüberzustellen, wenn wir dem § 2, der

M. v. Smoluchowski, Wiener Ber. 124 (IIa). S. 339, 359 ff
 1915.

sich auf eine beliebige Anfangslage des Teilchens bezog, also hinsichtlich des Austrittsereignisses die wahrscheinliche Erwartungszeit T_2 lieferte (daher bei uns der Index 2 vor dem Index 1), Betrachtungen über die durchschnittliche Erwartungszeit T_1 hinzufügen, d. i. über die Zeit, die im Mittel von einem Eintritt in das Volumen v bis zum nächsten Austritt verstreicht. Dazu haben wir von der Austrittswahrscheinlichkeit P_1 auszugehen als der Wahrscheinlichkeit für ein die Mantelfläche des Volumens durchstoßendes Teilchen, innerhalb der nächsten t Sehunden die Mantelfläche wieder zu durchstoßen.

13. Aufangslage des Teilchens auf der Mantellinie bedeutet im Sinne der Diffusionstheorie: die Mantellinie ist die Ausgangsstelle der diffundierenden Substanz. Ausscheiden des Teilchens beim nächsten Durchstoßen der Mantellinie aber bedeutet als Bedingung für die Mantellinie $\varrho=0$. Beiden Bedingungen zugleich ist nicht zu genügen; denn dann müßte jedes Teilchen beim Auftreten augenblicklich verschwinden, und es käme überhaupt keine Diffusion zustande. Auch ist man, um die Versuche darzustellen, genötigt eine empirische "physiologische" Konstante einzuführen, da man ein Teilchen nur dann als durch die Randlinie eingetreten wertet, wenn es bereits eine gewisse Entfernung δ in das Volumen hinein zurückgelegt hat. Danach ist als Anfangslage der diffundierenden Teilchen eine Kreislinie vom Radius

$$A = a - \delta$$

anzusehen.¹) Die in Nr. 3 gegebenen Daten lassen erwarten, daß Δ von der Größenordnung $\frac{9}{10}$ des Volumradius a sein muß.

Es liegt also das Problem vor, eine Lösung der ebenen Diffusionsgleichung mit der Anfangsbedingung

$$\varrho = \varrho'$$
 für $\Delta \dots \Delta + dr$

und den Randbedingungen

$$\varrho = 0$$
 für $r = a$,
 ϱ endlich für $r = 0$

Vgl. hierzu eine gleichzeitig in der Physikal. Zeitschr. erscheinende Arbeit.

zu finden. Die Rechnung gestaltet sich folgendermaßen. Wir setzen die Lösung (7) an, finden die $\lambda_n a$ wieder als Wurzeln z_n der Besselschen Differentialgleichung Oter Ordnung und für die A_n

$$A_n = \frac{\int\limits_0^a \varrho' \, r \, J_0 \left(\lambda_n \, r \right) \, dr}{\int\limits_0^a r \, J_0^2 \left(\lambda_n \, r \right) \, dr} \cdot$$

Das im Nenner stehende Integral ist bekannt gleich

$$\frac{a^2}{2} J_1^2(\lambda_n a);$$

das im Zähler stehende reduziert sich, wenn wir die Dichte ϱ_0 einführen, die bei anfänglicher *Gleich*verteilung der vorhandenen Gesamtmasse herrschen würde, auf

$$\varrho_0 \frac{n^2}{2} J_0(\lambda_n \Delta).$$

Damit wird

(17)
$$\varrho = \varrho_0 \sum_{n=0}^{\infty} \frac{J_0\left(z_n \frac{\Delta}{a}\right)}{J_1^2 (z_n)} e^{-\frac{D z_n t}{a^2}} J_0\left(z_n \frac{r}{a}\right),$$

also die mittlere Dichte \overline{\rho} zur Zeit t:

$$\bar{\varrho} = \frac{2\pi \int_{0}^{a} \varrho \, r \, dr}{a^{2}\pi} = 2\,\varrho_{0} \sum_{n=1}^{\infty} \frac{J_{0}\left(x_{n} \frac{A}{a}\right)}{x_{n} J_{1}\left(x_{n}\right)} \, e^{-\frac{Dz_{n}^{2}t}{a^{2}}}$$

Wie in Nr. 8 ist $1 - \frac{\bar{q}}{q_0}$ als die gesuchte Austrittswahrscheinlichkeit P_1 aufzufassen:

(18)
$$P_{1} = 1 - 2 \sum_{n=0}^{\infty} \frac{J_{0}\left(x_{n} \frac{A}{a}\right)}{x_{n} J_{1}\left(x_{n}\right)} e^{-\frac{D z_{n}^{2} t}{a^{2}}}$$

und für die durchschnittliche Aufenthaltsdauer oder Austrittserwartungszeit T_1 ergibt sich

(19)
$$T_{1} = \int_{0}^{\infty} \frac{\tilde{\varrho}}{\varrho_{0}} dt = \frac{2a^{2}}{\tilde{D}} \sum_{n}^{1...\infty} \frac{J_{0}\left(x_{n} \frac{\Delta}{u}\right)}{z_{n}^{3} J_{1}(z_{n})}$$

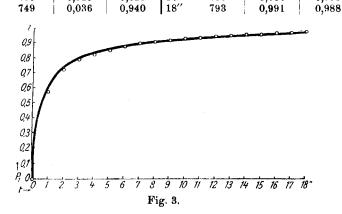
14. Bei den Versuchen wird mit der Stoppuhr die Zeit des Eintritts und des nächsten Austritts bestimmt, von der gefundenen Zeitdifferenz aber im Gegensatz zu Nr. 10 keine persönliche Gleichung abgezogen. Tab. 6 gibt eine Beobachtungsreihe von 800 Teilchen. Die Auzahl der bis t (Spalte 1) ausgetretenen Teilchen ist in Spalte 2 angegeben; durch Division mit 800 folgen die experimentellen P_1 -Werte der Spalte 3, in Fig. 3 durch Kreise dargestellt. Die beste Übereinstimmung mit der Theorie ergibt sich, wenn man in Gleichung (18)

$$\frac{\Delta}{a} = 0.86$$

setzt, eine empirische Konstante von der vermuteten Größenordnung, auf deren Zahlenwert kein sonderliches Gewicht zu

Ausgetret. Ausgetret. t $P_{1 \text{ exper.}}$ $P_{1 ext{ theoret.}}$ $P_{\mathfrak{l}}$ exper. $P_{ exttt{1 theoret.}}$ his t bis t 1" 10" 458 0,573 0,619 761 0,951 0,950 $2^{\prime\prime}$ 11" 577 0,721 0,749 765 0,956 0.958 $3^{\prime\prime}$ 0,810 $12^{\prime\prime}$ 773 0,966 0,965 635 0,794 4′′ 13" 0,970 664 0,830 0,849 777 0,971 5" 14" 692 0.865 0.876 782 0.978 0.9756′′ $15^{\prime\prime}$ 715 0,894 0,897 783 0,979 0,979 7" 16" 0,914 0,915 0,985 0,982 731 788 8′′ 17" 740 0,925 0,929 790 0,987 0,985 9′′

Tabelle 6.



legen ist. Hieraus folgen die Werte $P_{1 \text{ theoret.}}$ der Tab. 6, Spalte 4, und der Kurvenzug in Fig. 3. Wieder liegen die beobachteten Punkte anfänglich etwas zu tief, doch genügt es

wieder, wie man sich leicht überzeugt, den Fehler im 1"-Werte nach dem in Nr. 11 vorgeschlagenen Verfahren auszumerzen, um auch die ersten fünf Punkte auf die Kurve zu verlegen. Von t = 6" ab ist ohnedies die Übereinstimmung erstaunlich.

Für die durchschnittliche Aufenthaltsdauer liefert die Beobachtungsreihe

$$(20) T_{1 \text{ exper.}} = 2.27''.$$

Nach Fig. 3 ist vorauszusehen, daß der theoretische Wert nur wenig kleiner ist. Er folgt aus Gleichung (19) zu

(20')
$$\begin{cases} T_{1 \text{ theoret.}} = 64.8 \ (0.02559 + 0.00447 + 0.00156 + \dots) \\ = 2.11'' \end{cases}$$

Wichtig ist der Vergleich des experimentellen T_1 (Gleichung (20)) mit dem experimentellen T_2 der Gleichung (16). Im Versuch dürfte damit zum ersten Male der Unterschied beider Begriffe zahlenmäßig dargelegt sein. Die Werte unterscheiden sich rund um den Faktor 2. Eine für diesen Zweck geschicktere Wahl der Volumgröße und des abbildenden Systems, vielleicht auch größere Übung, lassen aber den Δ/a -Wert so viel näher an 1 herankommen, daß T_1/T_2 von kleinerer Größenordnung als 1 wird. Maßgebend dafür ist, daß mit dem an 1 heranrückenden Δ/a alle Zähler in der Summe Gleichung (19) verkleinert werden.

\S 4. Die Außenwahrscheinlichkeit P'.

15. Um die vier vorhandenen Möglichkeiten zu erschöpfen, werde noch die Wahrscheinlichkeit definiert, daß ein in v eintretendes Teilchen sich t Sekunden später nicht in v befinde (Außenwahrscheinlichkeit P'). Sie hat mit P_1 die Anfangslage am Rande gemein, mit P die Zulässigkeit beliebigen Einund Austritts. Nach Nr. 13 ersetzen wir die Anfangslage am Rande durch eine um δ vom Rande, d. h. um $\Delta = a - \delta$ vom Mittelpunkt entfernte. Die Wahrscheinlichkeit, sich zur Zeit t in dem vom Mittelpunkt um R entfernten Flächenelement $R dR d\varphi$ aufzuhalten, dessen Abstand vom Ausgangspunkt ϱ sei, ist

$$\frac{1}{4\pi Dt} e^{-\frac{\varrho^2}{4Dt}} R dR d\varphi = \frac{1}{4\pi Dt} e^{-\frac{R^2 + A^2 - 2R A \cos \varphi}{4Dt}} R dR d\varphi,$$

und die gesuchte Außenwahrscheinlichkeit folgt durch Integration zu

$$P' = \frac{e^{-\frac{A^2}{4Dt}}}{2\pi Dt} \int_{a}^{\infty} \int_{0}^{\pi} e^{-\frac{R^2}{4Dt}} e^{-\frac{2RA\cos\varphi}{4Dt}} R dR d\varphi$$

oder mit den Abkürzungen (4) und

$$\frac{\Delta^2}{4Dt} = \varepsilon$$

und unter Benützung der Beziehung

$$J_0(z) = \frac{1}{\pi} \int_0^{\pi} e^{iz\cos\varphi} d\varphi$$

zu

(21)
$$P' = 2e^{-\epsilon^2} \int_{V_{\overline{a}}}^{\infty} J_0(2ix\sqrt{\epsilon}) e^{-x^2} x dx.$$

Das Integral, bei den Grenzen 0 und ∞ eine wohlbekannte e-Funktion¹), dürfte bei den angegebenen Grenzen eine Transzendente für sich darstellen, so daß wir am einfachsten graphisch integrieren.

16. Beobachtungen. Eine elektromagnetische Vorrichtung gestattet, das Metronom im Augenblicke des Teilcheneintritts auszulösen. Sie ist so eingestellt — was sich mit einfachen Mitteln recht genau erreichen läßt —, daß der erste Schlag um $\tau - 0.2''$ (0,2" persönliche Gleichung) nach dem Auslösen und die weiteren je im Abstande τ folgen. Bei jedem Schlage wird nach dem Schema in Nr. 4 die Teilchenlage vermerkt. Tab. 7, an 920 Teilchen gewonnen, bedarf als Gegenstück zu Tab. 1 keiner weiteren Erläuterung. Die theoretischen Werte sind unter Benützung der Andingschen²) Tafeln nach Gleichung (21) berechnet. Aus naheliegenden Gründen bestimmt man praktisch besser die zugehörige Innenwahrscheinlichkeit

¹⁾ Vgl. z. B. N. Nielsen, Handbuch der Theorie der Zylinderfunktionen. S. 185. Leipzig 1904.

²⁾ E. Anding, Sechsstellige Zahlen der Besselschen Funktionen imaginären Argumentes. Leipzig 1911.

Tabelle 7.

 $\tau = 1,32''$.

t	Anzahl außerhalb	P'exper.	P'_theoret.
= 1.7 $= 1.32''$	428	0,465	0,483
$= 2 \mathfrak{r} = 2,64^{\prime\prime}$	488	0,531	0,538
$= 3.96^{\prime\prime}$	507	0,551	0,565
$= 5,28^{\prime\prime}$	522	0,568	0,588
$= \begin{array}{c} 5 \ \mathfrak{r} \\ 6,60^{\prime\prime} \end{array}$	555	0,604	0,609
$= 7,92^{\prime\prime}$	587	0,638	0,6 30
$= 9,24^{\prime\prime}$	604	0,657.	0,649
$8\tau = 10,56''$	608	0,662	0,665
9t = 11,88''	661	0,719	0,682
=13,20''	660	0,718	0,698

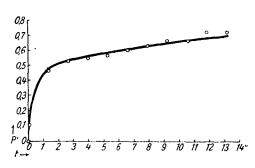


Fig. 4.

Q'=1-P'; die empirische Konstante, die den genauesten Anschluß der Formel an die Beobachtungen gibt, ist in diesem Falle

$$\frac{\Delta}{a}=0.95.$$

Der Unterschied gegen das $\frac{d}{a} = 0.86$ in Nr. 14 ist ohne wesentliche Bedeutung; die Hauptsache ist die gute Wiedergabe der experimentellen Werte (Kreise in Fig. 4) durch die ausgezogene Kurve. Um sie richtig zu bewerten, achte man darauf, wie verschieden die vier untersuchten Kurven (Figg. 1 bis 4) trotz ihres gemeinsamen Anfangs und Endes verlaufen.

Zusammenfassung.

- § 1. Die Wahrscheinlichkeit dafür, daß ein anfänglich irgendwo in dem abgegrenzten Volumen v eines Sols befindliches kolloidales Teilchen nach Ablauf der Zeit t nicht in v sei (Außenwahrscheinlichkeit P), wird an einem Selenhydrosol für ein zylindrisches Volumen und für verschiedene Zeiten durch Verfolgung zahlreicher Einzelteilchen bestimmt. Unter denselben Versuchsbedingungen wird in äquidistanten Zeitpunkten festgestellt, wie viele Teilchen sich in v befinden und aus der so gewonnenen statistischen Reihe der Ausdruck $\overline{A^2}/2v$ gebildet $\overline{A^2}$ mittleres Differenzenquadrat aufeinanderfolgender Zählungen, v mittlere Teilchenzahl). Die von der Smoluchowskischen Theorie der Wahrscheinlichkeitsnachwirkung geforderte Gleichheit von P und $\overline{A^2}/2v$ wird im wesentlichen bestätigt; eine systematische Abweichung wird aufgedeckt.
- In § 2 wird wie in § 1 beliebige Anfangslage des Teilchens in v angenommen und nach der Wahrscheinlichkeit gefragt, daß das Teilchen bis zur Zeit t ausgetreten sei, wobei im Gegensatz zu § 1 der erste Austritt das Teilchen aus der weiteren Betrachtung ausscheiden läßt. Die so definierte Austrittswahrscheinlichkeit P_2 wird berechnet, die Rechnung durch den Versuch bestätigt. Aus P_2 folgt ein Wert für die wahrscheinliche Aufenthaltsdauer oder Austrittserwartungszeit T_2 .
- § 3. Wie bei allen Ereignissen, die nicht rein nach dem Zufall, sondern unter Schwarmbildung über die Zeitachse verteilt sind, ist von der wahrscheinlichen Austrittserwartungszeit T_2 die durchschnittliche T_1 zu unterscheiden. Der Ausdruck hierfür folgt aus dem für die Austritts

wahrscheinlichkeit P_1 , das ist die Wahrscheinlichkeit, daß ein in v eintretendes Teilchen v bis zur Zeit t wieder verlassen habe. Gleichungen für P_1 und T_1 werden hergeleitet und am Versuch geprüft, die Verschiedenheit von T_1 und T_2 festgestellt.

§ 4. Der Vollständigkeit halber wird neben PP_1P_2 die Außenwahrscheinlichkeit P' theoretisch und experimentell untersucht. Es ist die Wahrscheinlichkeit, daß ein Teilchen t Sekunden nach seinem Eintritt in v sich nicht darin befinde.

Mein besonderer Dank gebührt Hrn. A. Eucken, der mir mit großer Liebenswürdigkeit alle benötigten Apparate im Physikalisch-chemischen Institut der Technischen Hochschule Breslau zur Verfügung gestellt hat.

Breslau, Physikalisches Institut der Universität, Juli 1921.

(Eingegangen 26. Juli 1921.)