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Abstract

Background: Crassulacean acid metabolism (CAM) enhances plant water-use efficiency through an inverse day/night

pattern of stomatal closure/opening that facilitates nocturnal CO2 uptake. CAM has evolved independently in over 35

plant lineages, accounting for ~ 6% of all higher plants. Agave species are highly heat- and drought-tolerant, and have

been domesticated as model CAM crops for beverage, fiber, and biofuel production in semi-arid and arid regions.

However, the genomic basis of evolutionary innovation of CAM in genus Agave is largely unknown.

Results: Using an approach that integrated genomics, gene co-expression networks, comparative genomics and

protein structure analyses, we investigated the molecular evolution of CAM as exemplified in Agave. Comparative

genomics analyses among C3, C4 and CAM species revealed that core metabolic components required for CAM have

ancient genomic origins traceable to non-vascular plants while regulatory proteins required for diel re-programming of

metabolism have a more recent origin shared among C3, C4 and CAM species. We showed that accelerated evolution

of key functional domains in proteins responsible for primary metabolism and signaling, together with a diel re-

programming of the transcription of genes involved in carbon fixation, carbohydrate processing, redox homeostasis,

and circadian control is required for the evolution of CAM in Agave. Furthermore, we highlighted the potential

candidates contributing to the adaptation of CAM functional modules.

Conclusions: This work provides evidence of adaptive evolution of CAM related pathways. We showed that the core

metabolic components required for CAM are shared by non-vascular plants, but regulatory proteins involved in re-

reprogramming of carbon fixation and metabolite transportation appeared more recently. We propose that the

accelerated evolution of key proteins together with a diel re-programming of gene expression were required for CAM

evolution from C3 ancestors in Agave.
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Background
Among the three modes of photosynthesis in higher plants,

the C3 pathway is the most ancient and common, occurring

in approximately 90% of higher plant species. C4 and CAM

photosynthesis, which account for approximately 3 and 6%

of higher plant species, respectively, are evolutionarily de-

rived from C3 photosynthesis and are believed to have

arisen in response to selective pressures imposed by global

reductions in atmospheric CO2 concentration (C4) and

water limitation (CAM) [1, 2]. Both C4 and CAM plants

capture CO2 via an initial carboxylation reaction catalyzed

outside the chloroplast by phosphoenolpyruvate carboxylase

(PEPC), which then subsequently delivers the captured CO2

at increased concentration to ribulose-1,5-bisphosphate

carboxylase/oxygenase (RuBisCO) in the chloroplast. While

C4 operates via a spatial separation of carboxylases in differ-

ent cell types, CAM operates via a temporal day/night sep-

aration of RuBisCO and PEPC with net CO2 uptake shifted

predominantly to the night. Nocturnal CO2 uptake is ac-

companied by an inverse (compared to C3 and C4) day/

night pattern of stomatal closure/opening in CAM that

results in improved water-use efficiency (i.e., CO2 fixed per

molecule of H2O lost) that is six-fold higher than C3 plants

and 3-fold higher than C4 plants under comparable

conditions [3].

Circadian regulation of gene expression has been impli-

cated as a core component in the diel re-programming of

metabolism that distinguishes CAM from C3 and C4 photo-

synthesis [4, 5]. For instance, the nocturnal activation of

PEPC via phosphorylation in CAM plants is catalysed by a

dedicated PEPC kinase (PPCK), the transcript abundance

of which is regulated by the circadian clock [5, 6]. A num-

ber of clock genes which were examined in the facultative

CAM species Mesembryanthemum crystallinum indicated

both conserved and divergent functions of genes encoding

components of the core oscillator and the clock output

pathways in this species [7]. In Opuntia ficus-indica (a con-

stitutive CAM species), a transcriptomics study identified

several genes implicated in the CAM biochemical pathway

and in the circadian clock that displayed a unique 12-h

periodicity [8] different from C3 species like Arabidopsis.

Other work has suggested that the rhythmic expression of

genes required for CAM is a consequence of diel changes

in CAM-defining metabolites, such as malic acid [3]. To-

gether, these studies suggest that modifications to the circa-

dian clock, including both input and output pathways,

might be critical to CAM evolution. Still, how the circadian

clock was integrated within signalling and core biochemical

components of CAM during the evolution of this pathway

remains unestablished. Genome-wide gene expression

profiling in model species has greatly facilitated our

understanding of gene regulatory networks that are relevant

to circadian regulation [9]. In this work, we develop a

genome-wide approach to investigate the evolution of the

core metabolic and regulatory elements of CAM via

cross-species comparisons.

CAM and C4 photosynthesis are thought to have

evolved from C3 ancestors multiple times in response to

limitations in CO2 and water. It has been proposed that

a propensity for frequent mutation or selection of cer-

tain regulatory genes during the early stages of evolution

underpinned adaptations to environmental stress condi-

tions [1]. Several studies in C4 have uncovered positive

selection of key components of photosynthesis [10, 11],

despite the conserved nature of many of these genes.

For example, enzymatic kinetics and structure modelling

of positively-selected residues of RuBisCO subunits in

Flaveria indicated that these key amino acid substitu-

tions were relevant to the functional diversification of C4

[11]. Although little has been characterized in CAM

plants, the systematic analysis of positive selection in

genes implicated in the circadian clock, photosynthesis,

and CAM biochemistry could provide insight to unlock

the mechanism(s) underlying CAM evolution.

Agave species are constitutive CAM species and many

are important economic crops for beverage and fiber pro-

duction [12, 13]. The water conserving properties of CAM

have also highlighted the value of Agave as potential dedi-

cated bioenergy feedstocks in semi-arid regions [14, 15].

Hence, a fundamental understanding of regulatory path-

ways underlying CAM in Agave is critical for efforts di-

rected at engineering this pathway into C3 crops to

improve water-use efficiency [13, 16]. All of the enzymes

required for C4 and CAM appear to be homologs of ances-

tral forms found in C3 species [17], yet the specific genomic

origins and genetic regulation of diel reprogramming of

metabolism that distinguishes CAM from C3 and C4 photo-

synthesis are largely unknown [18]. In this study, we inves-

tigated the molecular evolution of CAM in Agave using an

approach that integrated gene co-expression networks,

comparative genomics, and protein structure analysis. Our

findings demonstrate that 1) core metabolic components

required for CAM have ancient genomic origins traceable

to non-vascular plants, 2) regulatory proteins required for

diel re-programming of metabolism have a more recent ori-

gin shared among C3, C4, and CAM species and 3) acceler-

ated evolution of key proteins together with a diel

re-programming of gene expression were required for the

evolution of CAM in Agave.

Results

CAM physiology and identification of co-expression

modules relevant to CAM

Using the quantitative gene expression data obtained from

the RNA-Seq analysis of 15 tissues, including mature leaf

(sampled at 8 time-points over a diel cycle), young leaf (3

time-points), root, meristem, rhizome, and stem in A.

americana cultivar ‘Marginata’ [14], we created a gene
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co-expression network that was partitioned into 16

co-expression modules, with each displaying distinctive

diel patterns (Fig. 1). Gene ontology (GO) enrichment

analysis identified biological processes over-represented

(p < 0.05) in each of these co-expression modules

(Additional file 1: Figure S1). We characterized the GO

enrichment results together with expression profiles to

identify potential modules for CAM. For example, module

‘M11’, containing 1509 transcripts, was significantly (p <

0.05) associated with CAM-defining nocturnal net CO2

uptake (9 pm – 6 am) (Fig. 1a), and was over-represented

by biological processes relevant to stomatal movement,

carboxylation, and signal transduction (Table 1). Module

M11 contains some key genes involved in CAM metabol-

ism, including PHOSPHOENOLPYRUVATE CARBOXYL-

ASE KINASE 1 (PPCK1), which regulates the temporal

activation of nocturnal CO2 uptake. Since genes within

module M11 are relevant to nocturnal carboxylation and

stomatal movement, we propose that this module provides

a molecular signature for temporal reprogramming of me-

tabolism underpinning CAM.

Orthologous gene groups among CAM, C3 and C4 species

To understand the evolutionary origins and possible

shared trajectories of module M11 and other CAM com-

ponents between different photosynthetic lineages, we

performed comparative genomics analysis of 15 plant spe-

cies, including CAM, C3, C4, and non-vascular plant

(NVP) species (Fig. 2a). Specifically, we identified ortholog

clades through OrthoMCL analysis, such as clade

NVP:C3:CAM:C4, which contains ortholog groups shared

by NVP, C3, CAM, and C4 species, and clade C3:CAM:C4,

which contains ortholog groups shared only by C3, CAM,

and C4 species (Fig. 2b). The genes in the Agave (CAM)

species were distributed mainly in three ortholog clades:

NVP:C3:CAM:C4, C3:CAM:C4, and CAM-only, whereas

the genes found in C4 species were distributed mainly in

four ortholog clades: NVP:C3:CAM:C4, C3:CAM:C4,

C3:C4, and C4-only (Additional file 2: Table S1), indicating

that C4 evolution has one additional major genomic event,

as represented by clade C3:C4, relative to CAM evolution.

Gene ontology enrichment analyses revealed that A.

americana genes in clade NVP:C3:CAM:C4 were

over-represented by biological processes relevant to pri-

mary metabolic processes (Additional file 3: Table S2),

while those in clade C3:CAM:C4 were over-represented by

regulatory processes (Additional file 4: Table S3). Notably,

the core enzymes in C4 and CAM pathways belong to

clade NVP:C3:CAM:C4, whereas the majority of the regu-

latory proteins belong to clade C3:CAM:C4 (Additional file

5: Table S4). Furthermore, genes in the M11 module were

over-represented in the ortholog clade C3:CAM:C4 (Add-

itional file 6: Table S5). Transcription factors were also

over-represented (p < 0.05) in clade C3:CAM:C4, but

under-represented (p < 0.05) in both NVP:C3:CAM:C4,

and CAM-only clades (Fig. 2c). These results indicate that

CAM evolution in Agave required genes that are shared

across C3, C4 and CAM lineages to act as regulatory

agents, whereas the core metabolic CAM machinery pre-

dates the C3-CAM-C4 divergence and is shared by NVP,

C3, CAM, and C4 lineages.

Since the three CAM species (A. americana, A. deserti

and A. tequilana) in this research are closely-related, the

CAM-only ortholog groups may contains two types of

CAM-specific genes: 1) specific to the Agave lineage and

2) conserved CAM-specific genes shared between Agave

and other CAM lineages. To identify the conserved

CAM-specific genes shared between Agave and other

CAM lineages, the Agave genes in the CAM-only ortholog

groups were compared with the protein tribes from the

same 15 plant species as those used for ortholog group

analysis, which were constructed by using TribeMCL [19].

In general, the protein tribes are equivalent to gene fam-

ilies, with each tribe containing multiple ortholog groups.

The A. americana genes in both the CAM-only ortholog

groups and CAM-only tribes were then compared with an

extended list of CAM and non-CAM species using

BLASTp, resulting in the identification of 13 A. americana

genes that have homologs in other three independent

CAM lineages (i.e., Kalanchoë fedtschenkoi, Ananas como-

sus, and Phalaenopsis equestris) but not in 21 non-CAM

species (Additional file 7: Table S6). Some of these

CAM-specific genes displayed variable diel expression pat-

terns (Additional file 8: Figure S2).

Positive selection in CAM evolution

To study protein sequences evolution, we analyzed the

non-synonymous to synonymous substitution ratio (Ka/

Ks) of orthologous gene pairs between A. americana and

three non-CAM species, including two C3 species (Arabi-

dopsis thaliana and Oryza sativa) and one C4 species

(Zea mays). A Ka/Ks ratio greater than 1 indicates positive

selection or an acceleration of protein evolution [20, 21].

Ka/Ks analysis identified a set of 160 Agave genes that had

protein sequence regions with Ka/Ks ratio greater than

one, as compared with orthologous genes in the three

non-CAM species (Additional file 9: Table S7), indicating

that these genes experienced accelerated amino acid sub-

stitutions during the divergence between CAM and

non-CAM species. The functionally annotated genes in

this set included genes involved in circadian clock, starch

and sugar metabolism, and decarboxylation (Additional

file 10: Table S8). Importantly, we identified 94 Agave

genes that had protein sequence regions with Ka/Ks ratio

greater than 1, as compared with orthologous genes in the

two C3 species, but not the orthologs in the C4 plant

(Additional file 11: Table S9). The functionally annotated

genes in this 94-gene set include PPCK1 (Fig. 3a, c, and e),
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a core regulator of nocturnal carboxylation, and PsI-D2

(Additional file 11: Table S9), which encodes a component

of photosystem I essential for photosynthesis [22] and a

chloroplast beta-amylase (CT-BMY).

To further consolidate the results of positive selection

analysis based on Ka/Ks ratio, codon-based site analysis

was performed to identify specific amino acid sites under

positive selection. Out of the 94 genes that were revealed

Fig. 1 Temporal expression of CAM and gene co-expression modules in Agave americana. a Diel expression pattern of selected co-expression

modules in mature leaf, as identified from network analysis of RNA-Seq data with relevance to CAM physiology. The black and white bars indicate

nighttime and daytime, respectively. b Diel expression pattern of other modules in mature leaf with distinct profiles. c Expression pattern in

young leaves sampled at 3 time points and non-leaf tissues sampled at one time point (9 am). The number in the parentheses is the number of

transcripts in each individual module
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Table 1 Biological processes over-represented (p < 0.02) in the co-expression module M11

GO ID GO Term Corrected P-Value

GO:0009738 Abscisic acid-activated signaling pathway 4.2E-08

GO:0016311 Dephosphorylation 6.2E-08

GO:0071215 Cellular response to abscisic acid stimulus 9.0E-08

GO:0009737 Response to abscisic acid 9.3E-08

GO:0097306 Cellular response to alcohol 5.1E-07

GO:0071396 Cellular response to lipid 6.6E-07

GO:0006470 Protein dephosphorylation 7.0E-07

GO:0097305 Response to alcohol 7.8E-07

GO:0009611 Response to wounding 4.6E-06

GO:0009745 Sucrose mediated signaling 4.8E-04

GO:0009753 Response to jasmonic acid 6.3E-04

GO:0019722 Calcium-mediated signaling 1.7E-03

GO:0009788 Negative regulation of abscisic acid-activated signaling pathway 1.8E-03

GO:1901420 Negative regulation of response to alcohol 1.8E-03

GO:0009694 Jasmonic acid metabolic process 2.5E-03

GO:1901419 Regulation of response to alcohol 2.6E-03

GO:0009787 Regulation of abscisic acid-activated signaling pathway 2.6E-03

GO:0009968 Negative regulation of signal transduction 2.7E-03

GO:0010648 Negative regulation of cell communication 2.7E-03

GO:0023057 Negative regulation of signaling 2.7E-03

GO:0019856 Pyrimidine nucleobase biosynthetic process 2.7E-03

GO:0010224 Response to UV-B 5.0E-03

GO:0019932 Second-messenger-mediated signaling 6.0E-03

GO:0010243 Response to organonitrogen compound 6.1E-03

GO:0006835 Dicarboxylic acid transport 6.3E-03

GO:0009875 Pollen-pistil interaction 6.3E-03

GO:0010200 Response to chitin 6.5E-03

GO:0009695 Jasmonic acid biosynthetic process 7.0E-03

GO:0006206 Pyrimidine nucleobase metabolic process 7.4E-03

GO:0006984 ER-nucleus signaling pathway 8.1E-03

GO:0071324 Cellular response to disaccharide stimulus 8.3E-03

GO:0071329 Cellular response to sucrose stimulus 8.3E-03

GO:0042538 Hyperosmotic salinity response 9.6E-03

GO:0030968 Endoplasmic reticulum unfolded protein response 1.1E-02

GO:0015743 Malate transport 1.2E-02

GO:0034620 Cellular response to unfolded protein 1.3E-02

GO:0035967 Cellular response to topologically incorrect protein 1.3E-02

GO:0010118 Stomatal movement 1.3E-02

GO:0006986 Response to unfolded protein 1.3E-02

GO:0048544 Recognition of pollen 1.5E-02

GO:0008037 Cell recognition 1.6E-02

GO:0009827 Plant-type cell wall modification 1.8E-02

GO:0015740 C4-dicarboxylate transport 1.9E-02
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to experience positive selection by Ka/Ks ratio analysis

(Additional file 11: Table S9), 64 genes were shown to

carry at least one positively selected site, with posterior

probabilities > 80% (Additional file 12: Table S10). We

found 2 sites in PPCK1 (K42, N73) and 1 site in

CT-BMY (E24) were supported by positive selection

analysis based on both random effects likelihood (REL)

and Fast, Unconstrained Bayesian AppRoximation

(FUBAR) models (Table 2). Our 3-D protein structural

modeling revealed that the positive-selection regions

(sites) occur in important functional domains. The re-

gions with Ka/Ks ratio > 1 of PPCK1 were located in the

N-terminal domains responsible for ATP-binding (Fig.

3b and d), and K42 and N73 were likely involved in the

activation of kinase (Fig. 3g). The positively selected re-

gions of CT-BMY are responsible for substrate binding

(Additional file 13: Figure S3). The clade C3:CAM:C4

was over-represented (p < 0.0001) by Agave genes with

Ka/Ks ratio > 1 in the Agave-Arabidopsis gene pair com-

parison (Fig. 2d). Together, these results indicate that ac-

celerated amino acid substitution has played a key role

in the modification of proteins required for the light and

carbon processing reactions of photosynthesis, as well as

regulatory and signaling pathways in Agave.

Diel re-programming of gene expression between CAM

and C3
To further examine the molecular basis of the diel

re-programming of metabolism that underpins CAM,

we performed a comparative analysis of time-course ex-

pression data between A. americana (CAM) and Arabi-

dopsis thaliana (C3). We identified two clusters of Agave

genes that exhibited shifts in day/night patterns of abun-

dance relative to the corresponding orthologous genes in

Arabidopsis. One cluster, containing 22 genes, showed a

morning-to-night shift with alternative peak expression

at night and morning between Agave and Arabidopsis,

respectively (Fig. 4a). This gene set was over-represented

(p < 0.05) by co-expression modules M01 and M11

(Table 3), with M11as the aforementioned molecular

marker for CAM-associated nocturnal gene expression.

Among the 22 genes showing the morning-to-night

Fig. 2 Comparative analysis of protein sequences among CAM and non-CAM plant species. a Plant species used in comparative genomics

analysis. b Ortholog groups in 15 plant species as identified by OrthoMCL. Number of ortholog groups is listed in each of the ortholog clades.

c Percent of ortholog clade were predicted to be transcription factors in Agave americana. “a” and “b” indicate that the transcription factors are

over-represented (p < 0.05) and under-represented (p < 0.05), respectively. d Percent of ortholog clade undergoing positive selection (i.e.,

nonsynonymous to synonymous substitution ratio (Ka/Ks) > 1, as calculated from Agave-Arabidopsis gene pairs with a sliding window of 50 amino

acids). “*” indicates that the ortholog clade was over-represented (p < 0.0001) by Agave genes with Ka/Ks ratio greater than 1. Clade

NVP:C3:CAM:C4 is shared by NVP, C3, CAM, and C4; NVP:C3:CAM shared only by NVP, C3, and CAM; C3:CAM:C4 shared only by C3, CAM, and C4;

C3:CAM shared only by C3 and CAM; and CAM-only is specific to CAM species
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shift, 8 encode proteins with unknown function; the 14

annotated genes have functions related to circadian

clock, photosynthetic electron transport, malate trans-

port, stomatal movement, and redox homeostasis (Add-

itional file 14: Table S11). The other cluster, containing

20 genes, showed an afternoon-to-night shift, with alter-

nate peak expression during late night and afternoon in

Agave and Arabidopsis, respectively (Fig. 4b). This gene

set was over-represented by co-expression modules M06

(p < 0.05) and M13 (p < 0.01) (Table 3), both of which

showed positive association with gene expression in ma-

ture leaves around midnight (Fig. 1b), suggesting that

the genes in these two modules are involved in CAM re-

lated processes during the night. Among the 20 genes

Fig. 3 Positive selection region in phosphoenolpyruvate carboxylase kinase (PPCK1). a Ka/Ks profile of Agave americana (Aa) versus

Arabidopsis thaliana (At); b superimposed structures in Aa and At, with the positive selection region highlighted; (c) Ka/Ks profile of Aa

versus Oryza sativa (Os); d superimposed structures in Aa and Os, with the positive selection region highlighted; e Ka/Ks profile of Aa

versus Zea mays (Zm); f superimposed structures in Aa and Zm. An ATP substrate that may bind to the Aa PPCK1 is marked by an arrow.

The proteins are colored in grey for Aa, blue for At, green for Os and red for Zm. g A snapshot of PPCK1 (Aam048341) structure model

revealing the positive selected sites. The PPCK1 model bound with an ATP substrate (blue surface) is after a 1-us MD simulation. K42

(codon 124, at the C-end of β3) and N73 (codon219, at the N-end of β4) are located at the two strands connecting to the αC helix, the

orientation of which is known to be involved in the activation of the kinase

Table 2 The positively selected sites of PPCK1 and CT-BMY under models from HYPHY (REL, FUBAR). The sites were listed as

positively selected sites if they had a posterior probability greater than 80%

Codon(FUBAR) α β β-α Posterior Prob β > α Emp. Bayes Factor PSRF Neff

PPCK1 124* 0.81 2.82 2.01 0.83 10.81 1.00 1292.65

219* 0.81 2.71 1.90 0.82 10.27 1.00 1327.29

CT-BMY 73* 0.60 1.93 1.34 0.83 15.97 1.01 491.79

Codon(REL) E[dS] E[dN] Normalized E[dN-dS] Posterior Probability Bayes Factor

PPCK1 124* 0.96 3.43 2.47 0.95 307.87

219* 0.97 3.41 2.44 0.94 268.09

267 1.07 3.31 2.24 0.90 155.82

273 1.06 3.32 2.25 0.90 165.39

275 1.09 3.14 2.05 0.85 97.75

276 1.07 2.85 1.78 0.77 58.35

CT-BMY 73* 0.94 0.85 −0.0961 0.75 52.6

The * sites indicated they were identified by both models
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showing the afternoon-to-night shift, 7 encode proteins

with unknown function; 13 have known functions re-

lated to signaling, sugar metabolism and light processing

(Additional file 15: Table S12). In concern of multiple

copies of Agave and Arabidopsis genes in an ortholog

group, we assessed each ortholog group containing

abovementioned genes in Fig. 4, and found 23 ortholog

groups containing two genes, with a one-to-one relation-

ship between Agave and Arabidopsis. We evaluated the

phylogeny and diel expression pattern for ortholog

groups with a total of more than two Agave and Arabi-

dopsis genes, and found that the expression patterns of

Agave genes in comparison with their orthologs in

Arabidopsis displayed differential day-night patterns

(Additional file 16: Figure S4 and Additional file 17:

Figure S5), suggesting a functional diversification of gene

family members between C3 and CAM plants.

Comparison of circadian clock pathway between CAM

and C3
We compared the diel expression pattern of genes impli-

cated in signal input to the clock (e.g., PHOT2, Phototro-

pin-2), clock oscillation (e.g., CCA1, Circadian Clock

Associated 1; TOC1, TIMING OF CAB EXPRESSION1),

and regulatory output from the clock (e.g., RVE1, RE-

VEILLE 1) between Agave (CAM) and Arabidopsis (C3).

All known genes implicated in input to the clock and

the central clock oscillator showed similar diel expres-

sion patterns between Agave and Arabidopsis. However,

RVE1 exhibited patterns of peak transcript abundance

that were substantially out of phase between CAM and

C3, with the peak expression of RVE1 occurring at mid-

night in Agave and morning in Arabidopsis (Fig. 5 and

Fig. 6a; Additional file 18: Table S13). These comparative

analyses support the concept that the multiple

Fig. 4 Diel shift in gene expression pattern between Agave americana and Arabidopsis thaliana. a Morning-to-night shift with peak expression

during morning in Arabidopsis and during night in Agave. b Afternoon-to-night shift with peak expression during afternoon in Arabidopsis and

during late night in Agave. See gene annotation in Additional file 14: Table S11 and Additional file 15: Table S12
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independent evolutionary origins of CAM exploited an

existing C3 multi-gene loop oscillator similar to that in

Arabidopsis thaliana, and diel re-programming of me-

tabolism was achieved via changes to genes like RVE1

that link metabolic output to the clock.

Discussion
Regulatory genes are critical for C3-to-CAM evolution

The distribution of CAM plants in diverse phylogenetic

lineages indicates CAM has evolved from C3 via conver-

gent evolution [23]. This wide-spread convergent evolu-

tion could lead to a hypothesis that C3-to-CAM evolution

is relatively easy, not requiring whole-genome-scale

changes. In support of this hypothesis, the results in this

study indicate that CAM evolution required genes that

are shared across C3, C4, and CAM lineages to act as regu-

latory agents, whereas the core metabolic CAM machin-

ery predates the CAM-C4 divergence and is shared by

NVP, C3, CAM, and C4 lineages. The data presented here

have shown that genes encoding enzymes required for C3

and C4 carboxylation, decarboxylation, and carbohydrate

processing, as well as membrane transporters required for

intercellular trafficking of metabolites required for CAM,

were present across all the plant lineages examined. Thus,

comparative analysis of protein sequences revealed that

the core metabolic CAM machinery predates the

CAM-C4 divergence and is shared by non-vascular plants

(NVP), C3, CAM, and C4 lineages. Such data is also con-

sistent with recent reports that PEPC had shared origins

in C4 and CAM lineages before the divergence of these

two pathways from a C3 progenitor [24].

As a means of focusing in on the evolution of the regula-

tory components required for the diel re-programming of

metabolism that defines CAM, gene co-expression network

analysis was used to reveal modules with distinctive diel

patterns of abundance. One gene module in particular, des-

ignated M11, was identified as providing a molecular signa-

ture for the temporal re-programming of metabolism

underpinning CAM. Gene module M11, showed abundant

expression in mature leaves at night and contained PPCK1,

which regulates the temporal activation of nocturnal CO2

uptake by PEPC [25, 26]. Module M11 was also

over-represented by biological processes relevant to stoma-

tal movement and signal transduction. In particular, gene

ontology terms related to the ABA signaling pathway were

significantly enriched in M11 (Table 1). Such genes are

commonly known for their key roles in stomatal regulation

and responses to stress [27]. It is also noteworthy that

Table 3 Distribution of gene co-expression modules in the gene sets with positive selection and diel shift in gene expression

pattern, respectively, in Agave americana. Gene set 1a includes Agave genes with Ka/Ks ratio greater than one in the Agave-

Arabidopsis, Agave-Oryza and Agave-Zea orthologous gene pairs. Gene set 1b includes Agave genes with Ka/Ks ratio greater than one

in Agave-Arabidopsis and Agave-Oryza but not Agave-Zea pairs. Gene sets 2a and 2b includes Agave genes with morning-to-night

shift and afternoon-to-night shift, respectively, in expression pattern as compared with the orthologous genes in Arabidopsis. The

numbers represent the observed and expected (in parentheses) number of genes

Co-expression module Gene set 1a Gene set 1b Gene set 2a Gene set 2b

M01 14 (27) 17 (16) 10 (4)* 5 (4)

M02 13 (7)* 4 (4) 2 (1) 0 (1)

M03 16 (7) ** 10 (4)* 0 (1) 0 (1)

M04 1 (5) 0 (3) 0 (1) 0 (1)

M05 0 (4) 0 (2) 1 (1) 0 (1)

M06 1 (4) 1 (2) 0 (1) 3 (1)*

M07 5 (10) 1 (6) 1 (1) 2 (1)

M08 2 (2) 0 (1) 0 (0) 0 (0)

M09 1 (9) 2 (5) 0 (1) 1 (1)

M10 49 (28)** 23 (16) 0 (4) 0 (4)

M11 5 (5) 2 (3) 4 (1)* 0 (1)

M12 0 (3) 0 (2) 0 (0) 0 (0)

M13 3 (11) 2 (6) 3 (2) 10 (1)**

M14 2 (8) 2 (5) 0 (1) 0 (1)

M15 0 (2) 1 (1) 0 (0) 0 (0)

M16 1 (2) 1 (1) 1 (0) 0 (0)

Non-module 47 (25)** 28 (15)* 0 (4) 0 (3)

Total 160 94 22 21

*Overrepresentation (FDR adjusted p-value< 0.05, cumulative Poisson distribution) of co-expression modules in each category. **Overrepresentation (FDR adjusted

p-value< 0.01, cumulative Poisson distribution) of co-expression modules in each category
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sucrose and jasmonic acid signaling pathways were also

enriched in M11, suggesting the involvement of hormones

and/or metabolites in the regulation of nocturnal CO2 up-

take in CAM. The genes in M11, along with multiple tran-

scription factors, were over-represented in the ortholog

clades shared across C3, C4 and the Agave/CAM lineages.

Therefore, it can be hypothesized that a limited number of

key regulators can drive the C3-to-CAM transition. To test

this hypothesis, future studies should focus on detailed

functional characterization of the transcription factors in

module M11, which belong to the ortholog clade shared

across C3, C4, and CAM lineages. Such approaches will be

critical for accelerating efforts designed to engineer CAM

into C3 crops [13, 16].

Regulation of stomatal movement is critical for CAM

evolution

The altered night/day opening/closing of stomata is a core

feature of CAM which requires coordination between

mesophyll and guard cells [28]. Genes related to stomatal

movement were found to be enriched in module M11,

alongside genes relevant for nocturnal carboxylation

(Table 1). Guard cell inward-rectifying K+ channel AKT2

plays an important role in light-induced stomatal opening

in Arabidopsis [29]. Our analysis revealed that the peak

expression of AKT2 was shifted to the night in Agave

(CAM), as compared with day-time peak expression in

Arabidopsis (C3) (Fig. 4a; Fig. 6b), suggesting that AKT2 is

involved in nocturnal stomatal opening in Agave. In terms

of determining the signals that might be responsible for

shifting the timing of AKT2 expression in CAM, it has

been suggested that photosynthetic metabolism in the

mesophyll cells could contribute to the regulation of guard

Fig. 5 Diel gene expression pattern of circadian system genes in

Agave americana and Arabidopsis thaliana. In the circular heatmaps,

the outer and inner rings represent Agave americana and Arabidopsis

thaliana, respectively. The black and white half-circles inside the

circular heatmaps indicate night-time and day-time, respectively. Full

gene names are listed in Additional file 18: Table S13

Fig. 6 Functionally annotated Agave genes showing positive

selection and diel rewiring of expression pattern relative to C3
plants. a Genes involved in circadian clock. A gene involved in

stomatal opening. c Genes involved in carboxylation, malate

transport, decarboxylation, and starch/sugar metabolism. d Genes

involved in photosynthetic electron transport chain. Red circles

indicate positive selection. Green circles indicate morning-to-night

shift in peak gene expression. Yellow circles indicate afternoon-to-

night shift in peak gene expression. AGP16, Arabinogalactan protein

16; AKT2, Arabidopsis Shaker family K+ channels 2/3; CT-BMY,

Chloroplast Beta-Amylase; ELF3, Early Flowering 3; GAUT7,

Galacturonosyltransferase 7; LHY, Late Elongated Hypocotyl; LUX,

Phytoclock 1; PPCK1, Phosphoenlpyruvate Carboxylase Kinase 1;

PPDK-RP, Pyruvate orthophosphate dikinase regulatory protein; SS2,

Starch Synthase 2; TDT, Tonoplast Dicarboxylate Transporter
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cell function [30]. Interactions between mesophyll photo-

synthesis and guard cell regulation have been revealed in

many non-CAM species [31]. In particular, signals driven

by sugar and malate content in the mesophyll appear to

have central roles in controlling stomatal aperture [31]. In

C3 plants, malate metabolism in the mesophyll and malate

transport from mesophyll to guard cells has been shown

to play a central role in regulating stomatal responses over

the day/night cycle [16]. By analogy, it can be hypothe-

sized that in CAM plants, the diel turnover and transport

of malate across the vacuolar tonoplast membrane will

play a critical role in stomatal regulation [16]. In Arabi-

dopsis, tonoplast dicarboxylate transporter (TDT) imports

malate into the vacuoles [32]. In Agave, the peak expres-

sion of TDT was shifted to the night, as compared to peak

expression during the day in Arabidopsis (Fig. 4a; Fig. 6c),

implying that the Agave TDT is responsible for the trans-

port of malate into the vacuole during the dark period. Fu-

ture molecular genetic experiments are needed to confirm

the function of AKT2 and TDT, and consequently shed

new light on identifying signals which integrate carboxyl-

ation processes with stomatal movement in CAM.

Diversification of circadian clock genes in CAM

Our results suggest that circadian shifts in gene tran-

scription underpin the CAM-defining diel patterns of

stomatal conductance, malate transport, carbohydrate

processing and supply, and demand for ATP and redu-

cing power in Agave. The circadian clock has been pro-

posed to control the extensive re-synchronization of

metabolism that distinguishes CAM from C3 and C4

photosynthesis [4]. Circadian rhythms are ubiquitous in

eukaryotes and many features of the circadian clock are

conserved across plant lineages [33]. Genes in the circa-

dian system have been well-studied in Arabidopsis and

can be divided into three functional groups: signal input

(e.g., PHOT2), clock oscillation (e.g., CCA1, TOC1), and

regulatory output (e.g., RVE1) [34]. We identified homo-

logs in Agave (CAM plant) for all the known clock genes

in Arabidopsis (C3) and found that the diel expression

patterns of all the clock genes are conserved between

CAM and C3, except for RVE1 (a Myb-like transcription

factor) in the output subset (Fig. 5), suggesting that C3

and CAM plants share the same core circadian oscilla-

tor, with diversification occurring in the regulatory out-

put from the core clock, such as RVE1. It was previously

reported that RVE1 integrates the circadian clock and

auxin pathways to coordinate plant growth with changes

in environmental time cues in Arabidopsis [35]. Here we

hypothesize that RVE1 is a key a node from which the

C3 and CAM clock diverge and rewiring the diel expres-

sion of RVE1 is one of the necessary steps to switch

from C3 to CAM.

Besides expression analysis, changes in the protein se-

quences of circadian clock components may also contribute

to the diversification of clock functions. We performed 3D

structural modeling to understand the function of protein

domains containing sites of positive selection (reflected by

Ka/Ks ratio > 1). Our structure-modeling revealed charac-

teristics of positive-selection in the intrinsically disordered

protein regions in some circadian clock proteins (Additional

file 19: Figure S6). It has become clear that a certain protein

may not have a well-defined and compactly folded

three-dimensional (3D) structure under physiological condi-

tions and such proteins are often termed natively unfolded

protein [36] or an intrinsically disordered protein (IDP)

[37]. Many intrinsically disordered protein regions (IDPRs)

have been known to carry out important biological func-

tions [38]. The clock proteins Late Elongated Hypocotyl

(LHY), Early Flowering 3 (ELF3), and Lux Arrhythmo

(LUX) play key roles in the plant circadian oscillation [39].

The Ka/Ks profile of each of these circadian rhythm pro-

teins showed multiple positive selection regions with signifi-

cant fluctuations in Agave (data not shown). Interestingly,

these proteins were found to exhibit a high ratio of IDPRs

with high PONDR scores (Additional file 20: Table S14).

The IDPRs of the clock proteins may lead to high flexibility

in both structure and function, which in turn, could favor

novel interactions with nucleic acids and/or other proteins.

Further molecular genetics studies are needed to gain dee-

per understanding of the functions encoded in the apparent

disordered state of these clock proteins and their role in the

evolution of CAM.

CAM-specific genes and evolution

Multiple lineages of CAM photosynthesis plants have

evolved independently from C3 photosynthesis ancestors

[13, 40]. Recently, a comparative study using four genera

in subfamily Agavoideae with CAM, weak CAM and C3,

has suggested that gene family analysis together with ex-

pression profiling is informative in understanding the di-

vergence of CAM [41]. However, a broader sampling of

diverse CAM lineages is still necessary. It can be hypoth-

esized that there are two types of CAM-specific genes:

1) lineage-specific CAM genes shared by multiple closely

related-species (e.g., Agave spp.) and 2) conserved

CAM-specific genes shared by multiple independent lin-

eages of CAM plants. To test this hypothesis, it would

be useful in the future to expand this work by including

several independently evolved CAM lineages in order to

separate evolutionary phenomena unique to the CAM

Agave from ones shared by different CAM lineages.

Conclusions

Evidence is presented that the genetic components of core

CAM machinery in Agave have an ancient origin traceable

to non-vascular plant lineages, and that regulatory proteins,
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which are shared between C3, CAM, and C4 species, were

essential to the C3-to-CAM transition. The evolution of

CAM in Agave from C3 photosynthesis also required posi-

tive selection in protein sequences of enzymes and trans-

porters implicated in metabolism and signaling associated

with CAM, as well as diel re-programming of gene expres-

sion related to key biological processes, such as circadian

rhythms, redox homeostasis, and carbohydrate metabolism

(Fig. 6). These results provide a set of new candidate genes

for engineering increased water-use efficiency in crop

plants experiencing water-limiting conditions via synthetic

biology approaches.

Methods

Representative protein model per locus in Agave species

The transcript sequences of A. americana [14] (Additional

file 21) were first filtered by CD-HIT-EST [42, 43] with a

sequence identity threshold of 0.98 and the alignment

coverage for the shorter sequence set as 0.5. This was an

optimal setting based on the test with various combina-

tions of sequence identity (0.90, 0.91, …, 1.0), and the

alignment coverage for the shorter sequence (0.4, 0.5, …,

0.8), using the Arabidopsis genome annotation (TAIR10).

To assign the representative protein model per locus with

high-confidence, the protein sequences corresponding to

the representative transcript sequences in A. americana,

obtained from CD-HIT-EST clustering, as well as the

non-redundant representative protein models of A. deserti

and A. tequilana [44], were mapped onto the aforemen-

tioned draft genome assembly of A. tequilana using BLAT

[45] with a minimum coverage (i.e., minimum fraction of

query that must be aligned) of 60% and a minimum iden-

tity of 90%. Only the “best match” position was selected as

the genomic location for each query protein sequence. If

multiple proteins mapped to the overlapping genome lo-

cations and they shared significant sequence similarity, as

determined by BLASTp [46, 47] with E-value cutoff of

1e-5, the longest protein sequence was selected as the rep-

resentative protein model for the gene locus, resulting in

55,451, 31,761, and 31,799 representative protein se-

quences in A. americana, A. deserti and A. tequilana, re-

spectively (Additional files 22, 23 and 24).

Comparative analysis of protein sequences

The protein sequences of 15 plant species, including the

aforementioned representative protein sequences in three

CAM species of Agave (Agave americana, A. deserti and A.

tequilana), and 12 non-CAM plant species downloaded

from public databases, which included three non-vascular

plant species Chlamydomonas reinhardtii (www.Phytozo-

me.net; Phytozome v9.0), Physcomitrella patens (Phyto-

zome v9.0), Selaginella moellendorffii (Phytozome v9.0);

three C4 plant species Sorghum bicolor (Phytozome v9.0),

Setaria italica (Phytozome v9.0) and Zea mays (Phytozome

v9.0); three C3 monocot plant species Brachypodium dis-

tachyon (Phytozome v9.0e), Oryza sativa (Phytozome v9.0),

and Musa acuminata (version 1; http://banana-genome.cir-

ad.fr); three C3 dicot species Arabidopsis thaliana (v10;

www.Arabidopsis.org), Populus trichocarpa (Phytozome

v9.0), and Solanum tuberosum (DM_v3.4; potatogenomics.-

plantbiology.msu.edu). The longest protein sequence was

selected in case of multiple transcripts annotated for one

gene locus. The ortholog groups (OGs) were constructed

using OrthoMCL [48] with default parameters (a BLASTp

E-value cutoff of 1e-5 and percent match cutoff of 50%).

Also, the protein sequences used for ortholog analysis were

clustered into tribes using TRIBE-MCL [19], with a

BLASTp E-value cutoff of 1e-5 and an inflation value of

1.5. To identify conserved CAM-specific genes, the A.

americana genes in both the CAM-only ortholog groups

and CAM-only tribes were then compared with an ex-

tended list of three independent CAM lineages and 21

non-CAM species using BLASTp [46, 47] with an E-value

cutoff of 1e-5. The three independent CAM lineages are

Kalanchoë fedtschenkoi [49], Ananas comosus [50] and

Phalaenopsis equestris [51]. The 21 non-CAM species are

Amborella trichopoda (PLAZA 3.0 [52]; available at http://

bioinformatics.psb.ugent.be/plaza/), Arabidopsis thaliana

(PLAZA 3.0), Beta vulgaris (PLAZA 3.0), Brachypodium

distachyon (PLAZA 3.0), Carica papaya (PLAZA 3.0), Cit-

rus sinensis (PLAZA 3.0), Eucalyptus grandis (PLAZA 3.0),

Fragaria vesca (PLAZA 3.0), Medicago truncatula (PLAZA

3.0), Mimulus guttatus (PLAZA 3.0), Musa acuminata

(PLAZA 3.0), Oryza sativa (PLAZA 3.0), Populus tricho-

carpa (PLAZA 3.0), Prunus persica (PLAZA 3.0), Setaria

italica (PLAZA 3.0), Solanum lycopersicum (PLAZA 3.0),

Solanum tuberosum (PLAZA 3.0), Sorghum bicolor

(PLAZA 3.0), Theobroma cacao (PLAZA 3.0),Vitis vinifera

(PLAZA 3.0), Zea may (PLAZA 3.0).

Co-expression network

A total of 47,677 transcripts that were detected in at

least 4 of the 15 samples, with an average expression

level of 5 RPKM or higher (Additional file 25), were uti-

lized to construct a weighted gene co-expression net-

work using the R package WGCNA [53]. The gene

expression data were log2 transformed. The dynamic

tree-cut algorithm was used to identify co-expression

modules with a minimum module size of 30 and a

height cut of 0.25.

Comparative analysis of gene expression patterns

between CAM and C3 plants

The Arabidopsis–Agave orthologous gene pairs were

identified through the combination of both OrthoMCL

strategies and the reciprocal best hits (RBH) based on

BLASTp with an E-value cutoff of 1e-5. The diurnal ex-

pression data for Arabidopsis thaliana were obtained
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from Mockler et al. (2007) [9]. Both Arabidopsis and

Agave plants were grown under a photoperiod of 12 h

light:12 h dark cycle. The Arabidopsis expression data

were collected at 0, 4, 8, 12, 16, 20, and 24 h, whereas

the Agave data were collected at 0, 3, 6, 9, 12, 15, 18,

and 21 h after the start of the light period [14]. The

cubic interpolation algorithm implemented in Matlab

(Mathworks, Inc.) was used to simulate the gene expres-

sion levels at additional time points, so that both

time-course data sets consisted of the same time points:

0, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, and 21 h after the start

of the light period. The gene expression data were nor-

malized by Z score transformation. The hierarchical

clustering of gene expression was performed using the

Bioinformatics Toolbox in Matlab (Mathworks, Inc.).

Gene ontology analysis

Whole-genome GO term annotation was performed using

Blast2GO with a BLASTp E-value hit filter of 1 × 10–6, an

annotation cutoff value of 55, and GO weight of 5. GO en-

richment analysis for the ortholog clades was performed

using BiNGO [54]. In addition, GO enrichment analysis

was performed on each of the 16 co-expression modules

using ClueGO [55] to interpret functionally grouped gene

ontology annotation networks. The right-sided hypergeo-

metric enrichment test was performed at a medium net-

work specificity selection, and p-value correction was

performed using the Benjamini-Hochberg method. The

selected GO tree levels were a minimum of 3 and a max-

imum of 8, while each cluster was set to a minimum of

between 3 and 4% genes. The GO term grouping setting

was selected to minimize GO term redundancy, and the

highest significance term enriched was used as the repre-

sentative term for each functional cluster. The GO terms

with p-values less than or equal to 0.05 were considered

significantly enriched.

Annotation of pathway and transcription factors

Pathway annotation for the protein sequences was per-

formed on the KEGG Automatic Annotation Server

KAAS [56], using the BBH (bi-directional best hit)

method to assign orthologs. Transcription factors were

identified from the protein sequences using the online

tool PlantTFcat [57].

Nonsynonymous (Ka) to synonymous (Ks) substitution

ratio and positively selected sites

The orthologous gene pairs between two species were

identified through the combination of both Best Recip-

rocal Hits (BRH) and OrthoMCL strategies. The coding

sequences were aligned using PAL2NAL [58], guided by

protein sequence alignment generated by MAFFT (linsi;

version 7.045b) [59], and gaps in the alignment were re-

moved. The gapless coding sequence alignments were

used for Ka/Ks ratio calculation using the Bioinformatics

Toolbox in Matlab (Mathworks, Inc.) with a 50-codon

sliding window. For identifying positively selected sites,

coding sequences from Arabidopsis, maize, rice and

Agave were aligned by Translatorx [60] using the standa-

lone script. The HyPhy package were used to identify

positively selected sites as described [61], and the tests

of FUBAR and REL models as implemented in Data-

monkey webserver were used with default settings [62].

Since we used a sliding window to study the regions of

protein with positive selection, we calculated the prob-

abilities of Ka/Ks positive regions to a null hypothesis

that Ka/Ks equals to one by one-sided t-test, as de-

scribed by Schmid and Yang (2008) [63].

Protein structure modeling

Protein structure models were built using the iterative

threading assembly refinement (I-TASSER, version 3.0)

methods [64]. The structure-based annotation tool COFAC-

TOR [65] was adopted to predict the potential function and

the cofactor binding site of the models. Disordered region(s)

were analyzed using the PONDR VL-XT program [66–68].

Phylogenetic tree construction

The multiple sequence alignment of protein sequences was

created using MAFFT [59]. The phylogenetic tree was con-

structed from the protein sequence alignment using the

Neighbor-Joining method [69] implemented in MEGA7

[70], with the percentage of replicate trees calculated by the

bootstrap test (100 replicates). For trees with three se-

quences, no bootstrap value was given due to the lack of

phylogeny tests of branch. All ambiguous positions were re-

moved for each sequence pair.
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