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Dielectric breakdown model for composite materials
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This paper addresses the problem of dielectric breakdown in composite materials. The dielectric breakdown
model was generalized to describe dielectric breakdown patterns in conductor-loaded composites. Conducting
particles are distributed at random in the insulating matrix, and the dielectric breakdown propagates according
to new rules to take into account electrical properties and particle size. Dielectric breakdown patterns are
characterized by their fractal dimensi@nand the parameters of the Weibull distribution. Studies are carried
out as a function of the fraction of conducting inhomogeneifedhe fractal dimensio® of electrical trees
approaches the fractal dimension of a percolation cluster when the fraction of conducting particles approxi-
mates the percolation limit.
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[. INTRODUCTION nisms of breakdown in these materials can be identified.
Some efforts have focused on the breakdown of fuse net-

Polymers are in general insulated materials, with low val-works, while others have concentrated on dielectric break-
ues of electrical conductivity and a low value of dielectric down in networks.
constant. One of the ways to increase electrical conductivity Experimentally, high-density polyethylerieiDPE) com-
is to introduce high electrical conductivity fillers such as posites containing carbon black and titanium dioxide have
metal powders or carbon black in the polymer matrix. Thenrecently been testdd 3]. The results of the dielectric break-
the value of the electrical conductivity of the compound candown test were analyzed by their Weibull distribution, and it
be increased several orders of magnitude depending on thas been concluded that the shape parangtrthe distri-
volume fraction and the dispersion of this second phase ibution may be used to evaluate the dispersion of carbon
the matrix. black agglomerations in HDPE compounding formulations.

When introduced in the polymer, filler particles can adopt HDPE is one of the most widely used materials for the
different types of structures that are sometimes characterizgstoduction of insulators, spacers, and also for coating con-
by a fractal geometrj/1], and a transition from insulating to ducting cables used in electric power distribution networks,
conductive behavior is observed when the filler volume frac-and, in this type of application, the dielectric strength is one
tions are about 25%), depending on the type of fil&k In  of the properties that must be taken into account in order to
compounds with metal powder as a second phase, a percolekeck the ability to withstand high electric fieldst]. On the
tion threshold is experimentally confirmed by a sharp changether hand, the development of formulations containing ad-
in the electrical conductivity. In the case of carbon blackditives to protect polymers against property de¢ey., me-
compounds, this change is not so sharp and a transition fahanical and thermomechanitduring the processing stages
filler volume fractions in the range between 15% and 35% isand/or in servic¢15] is highly desirable technologically, and
expected. This behavior would be the consequence of thim the case of applications in electrical insulation these addi-
filler network formed during the different steps in the mixing tives may impair electrical properties.
procesq 3—7]. Dissado and co-workefd6] studied a narrow size distri-

In the past decades, models of the electrical conductivitypution of irregular aluminum particles blended into power
of filled composites were proposed in the frame of threecable insulation-grade polyethylene. The failure statistics of
classes: the composite medium approach based on Maxwehle loaded polymers were then determined under ac ramped
equation[8], the discrete medium approach based on Kirk-stress. They demonstrated the validity of the percolation
patrick’s ideas[9], and the percolation approach. This lastmodel expression for the characteristic breakdown strength,

approach was analyzed by Pike and Seg@}, who inves- i.e., a reduction in the characteristic value of the applied field
tigated the problem of percolation and conductivity with E with an increasing particle volume fractiqm
computer simulation. In this paper we generalize the dielectric breakdown

This paper addresses the problem of dielectric breakdowmodel (DBM) to describe dielectric breakdown patterns in
in composite materials. Breakdown phenomena inconductor-loaded composites. The DBM was introduced by
conductor-loaded dielectrics have received some attention iNiemeyer, Pietronero, and Wiesmaliv] and assumes that
recent years from the standpoint of percolation theorythe dielectric is homogeneous, i.e., the electrical tree propa-
[11,12. Theoretical efforts have concentrated on lattice mod-gates in a dielectric medium without inhomogeneities. In the
els in an attempt to see whether the basic physical mech®BM, material electrical properties are represented by the

exponentz.
In the present work, conducting particles are distributed at
* Author to whom correspondence should be addressed. Fax: 003andom in the insulating matrix, and the dielectric break-
221 4254642; Email address: eemola@inifta. unlp. edu. ar down propagates according to new rules to take into account
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electrical properties and particle sizes. In this way we extend The probability of dielectric failure is usually determined

the DBM to take into account material inhomogeneities fromas a function of the propagation tinte measured as the

the point of view of electrical properties. number of channels incorporated into the tree; the incorpo-
The extension of the DBM model presented in this papefation of a new channel represents a unit of time.

also allows us to describe dielectric breakdown patterns by The cumulative probability of failure?(t), of a family of

means Of theil‘ fI’aCtal dimension and by their We|bu” diStl’i- trees generated by Computer Simu|ations Satisfies a two-

bution parameters. o ~ parameter Weibull distributiof22], such as those observed

Sec. lll the new model is introduced. Results are presented in
Sec. IV, and our discussion and conclusions are summarized P(t)=1—exd — (t/a)”], 3)

in Secs. V and VI. . - . . .
where « is the characteristic propagation time agdis a

Il. DIELECTRIC BREAKDOWN MODEL (DBM) shape parameter.

In the DBM[17] the dielectric is represented by a rectan- Ill. COMBINED MODEL (CM)
gular lattice where each site corresponds to a point in the
dielectric. Microscopic examination of electrical tree growth ~ Previous models of dielectric breakdowh7-19 were
shows that branch extension occurs in increments typicallfleveloped for homogeneous materials. We now want to dis-
of 5—10 um, while the interelectrode gap is 1-2 mfag].  cuss the basic aspects that should be taken into account to
This implies that a gap of 100 lattice units will represent theStudy composite materials. These kinds of material could be
experimental situation adequately and, accordingly, 10depresented by a matrix with randomly distributed inhomo-
%100 lattices were employed in this workherefore, the geneities. In a real material the matrix could be represented
separation between nodes represents a distahce PY @ polymer, and the inhomogeneities by carbon black, alu-
=10 wm). The DBM assumes that the tree grows stepwiseMinum, or titanium dioxide, i.e., a highly insulating matrix
starting in an electrode with electric potentig=0, and ~ Surrounding conductor inhomogeneities. _
ending in the counterelectrode whege=1. The discharge In order to build up a model for composite materials, we
structure has zero internal resistance, i.e., at each point of trfould first define some characteristics of inhomogeneities,
structure the electric potential i&=0. The tree channel Such as electrical properties, shape, size, etc.
growth is governed stochastically by the electric field. The AS @ first approximation we assume conducting inhomo-
probability P of a tree channel growth at each site of the9eneities of circular shapgwith a diameter not much less
electrical tree neighborhood is chosen to be proportional to 'an the lengtfL, of a breakdown channetandomly dis-
power 7 of the electric fieldE at such site P<E?). The tnbutgd in a two-dimensional geometry. Note that mhomoj
electric fieldE can be written fromyp, and therefore geneities are centered at the matr|>_< nodeg, and therefore,_ln-

homogeneities do not form equipotential clusters. This
) o (dir k)7 assumption simplifies the calculation of the electric potential
PO, k=i"k)=—""". (D during tree growth.
> (k) In the DBM and according to Eq1), the probabilityP of
breakdown channel growth between two nodes is chosen to
The sum in the denominator refers to all of the possiblebe proportional to a power; of the electric field, and
growth sites {’,k") adjacent to the electrical tree. therefore

The electric field distribution is obtained by solving the
Laplace equation considering that the tree structure has the (d’i’,k’) !
electric potential of the electrodes&0). , o

Breakdown patterns generated by this model have a frac- P(i k—i"k")= i
tal structure that has broadly been dealt with in the literature > ( L-’
[17-21. The fractal structure of the trees is highly depen- :
dent on the value of the exponent where we have explicitly introducetl;, as a breakdown

Experimental and simulated electrical trees can be chaichannel lengti{Note that in the DBM all channels have the
acterized by their fractal dimensid@hand failure probability.  same length.

The fractal dimension is defined from the correlation The extension of the DBM presented in this work intro-
function C(r), which is the quotient of thaveragenumber  duces inhomogeneity characteristics, assigning different
of lattice sites that belong to the tree, divided by the totalprobabilitiesP to the breakdown channel formation, accord-
number of lattice points that can be found within a circle ofing to the conducting characteristics at each site. The situa-
radiusr. The average is performed over the set of circles otjon can be rationalized introducing different values.ofin
radiusr centered on every point of the electrical tree. TheEgq. (4). We note that this modification affects only the prob-
scaling behavior ofC(r) with r is given by the following  ability P assigned to each site adjacent to the electrical tree.

L

equation: As indicated in Fig. 1L; is written as
C(r)=Cor® 2, ) L
. . . Li = LO_ __v (5)
whereD is the fractal dimension. q;
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FIG. 1. This figure represents the dielectric breakdown model in & =it

a composite material. Large circles represent conducting particles.
The black circles are already incorporated in the electrical tree, FIG. 2. Electrical trees grown in composite materials with an
whereas the white circles are not. increasing fractiomp of conducting particlesia) p=0 is an electri-
cal tree such as those simulated in Rg20,22. Electrical trees in
(b)—(d) were simulated with SCNIEq. (6)], with a fraction of con-

where g; (i=1,2,3) is a parameter taking three different ducting particlesp=0.15, 0.45, and 0.60, respectively.

values:
(1) aj=a;—c, for a channel connecting the electrical
tree with a lattice point nonoccupied with a conducting par-

ticle. Th'i prclcegs IS equwalent' to the DEﬂ'e e Sec. ) . tions we assume that both of them are roughly equal, and as
(2) aj=a,=2 if the channel is connecting a conducting _ . ST T
a first approximatiorP,=P,=1.

particle that belongs to the electrical tree with a lattice point, Therefore we come to the followina simplified combined
or an electrical tree nodéhat is not a conducting partigle model (SCM): 9 P
with a conducting particle that does not belong to the elec- (i K - ite of th | . tri
trical tree(see sitesC andD in Fig. 1). We emphasize that (i",k’) is a site of the polymeric matrix,
we are considering conducting particles with a diameter not
much less thai..

(3) a;=as=1 if the channel is connecting two conqluctlng as in the DBM[see Eq(1)], but if (i’ k") is occupied by a
particles, where one of them belongs to the electrical tree : ; !

. . conducting particle, then:

Note that this channel is very short.

Therefore, in our model, tree growth is still governed P(i k—i’ k')=1. 6.2)
stochastically by the electric field, as in the DBM, with a ' ’

probability P given by Eq.(4), but with L; given by the According to Eq(6), sites {’,k’), which are occupied by

probabilities will now be much smaller than those in cases
(i) and(iv) (P, andP,). To simplify the numerical simula-

P(irk_ﬂ,!kl):x((ﬁi’,k’)nl (61)

following: _ _ ~a conducting particle, are incorporated with probability 1
(i) If (i,k) and (',k") are sites of the polymeric matriX, nto the electrical tree. We also assume that the incorporation

Li=Lo. ) o of such particles is instantaneous, i.e., they are not counted in
(ii) If (i,k) is an electrical tree node and if in’(k'),  the propagation timé¢, measured as the number of channels

there is a conducting particle; =Ly/a,=Lq/2. incorporated into the tree. Thus, if in a step of tree growth

(i) If in (i k) there is a conducting particle and (k') is  sjtes ¢’ k') are adjacent to the structure and occupied by
a site of the polymeric matrix,;=Lo/a,=Lo/2. (iv) If i conducting particles, they are incorporated simultaneous and

(i,k) and in ('k’) there are conducting particles,;  instantaneously into the electrical tree.

=(az-1/ag)Lo. Thus in this combined modeR depends In the following section we will compare results obtained
not only on the electric field, but also on the conductingfrom both CM and SCM according to E¢), for different
characteristic of the site. fractionsp of conducting particles.

We now perform an extension to the previous model, in-
troducing some simplifying assumptioris. is equal toL /2
either in casesii) or (iii ). However, from the physical view-
point there is no justification to assume different probabilities We will now present a study of electrical trees simulated
whether the channel begins in a conducting particle or notwith the model developed in the preceding section. The de-
We are in favor to assume, as an extension of the previousendence of their fractal dimension and propagation times on
model, that probabilities in cas€g and (iii) (namedP, and  the conducting particle fraction will be studied. We will be-
P3, respectively are equal, i.e.P3=P;. Also, in fact, these gin with results obtained with the SCM, E¢), and then

IV. RESULTS
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FIG. 3. Normalized cumulative probability of propagation times Fraction of conducting particles (p)

calculated from a set of 100 electrical trees by employing SCM, EQ. £ 5. Dependence of the fractal dimensidron the fraction
(6). Time is measured as the number of bonds incorporated in thgf conducting particlesp, calculated from a set of 100 electrical
tree. Parameter values employed werel andp=0.45. trees by employing SCM, Ed6).

continue with the results derived from the CM. Finally, a A comparison of the fractal dimension of electrical trees
comparison of results obtained from the CM and the SCMsimulated with either SCM or CMFigs. 5 and 7, respec-
will be performed. tively) shows that there is a remarkable agreement in
Figure 2 shows four electrical trees simulated on latticegshe fractal dimension of electrical trees in the interval
with growing concentratiop of conducting particles angg  0<p<0.3.
=1. The propagation time of these electrical trees also fol-
lows a Weibull distribution like those grown on lattices with V. DISCUSSION
p=0, see Ref[21] and references therein. Figure 3 shows
the dependence of the cumulative probability of failure,
P(t), on the propagation timeof a set of 100 electrical trees
grown with the set of parameteps=0.45 andn=1. The
Weibull distribution parameters and3, see Eq(3), depend
on the concentration of conducting particlesand on the
parametern (see Fig. 4 It is interesting to point out that
shape parameteg® decreases monotonically by increasing

To understand the dependence of the fractal dimerision
of electrical trees on the fractiop of conducting particles
(see Figs. 5 and)7we will resort to some elements from the
percolation theory.

As particles are randomly added to the lattice, nearest
neighbor particles will form clusters as in the percolation
model. The size of clusters grows by increasing the fraction
therefore asp—p., the Weibull distribution is narrowed p of conducting particle.s. Thgrefore, for a sufficiently_large

value ofp, the cluster size will be of the order of the inter-

arounda. electrode gap. This cluster size limit is known as iegco-
Electrical trees are characterized by their fractal dimen; gap.

sionD obtained by a log-log plot of their average correlationiﬁgonrggiztsetrcllzsggrpsei\;;oslig?enstcv?,[?]r¥h'; Ifsre\llll:fi!) knoivigr:t'at
function C(r) versusr [see Eq.(2)]. Figure 5 shows the duct?n articles as follows: »
dependence of fractal dimensibnon the set of parameteps 9p '

and 7. In for p<

The corresponding results obtained from CM are shown ;E) P=Pe
in Figs. 6 and 7. In Fig. 6 we show the Weibull parameters Necy P for p=p, (7)
and B8 as a function ofp and #. In Fig. 7 we show the P for p>p.,

dependence of the fractal dimensibn(of a set of 100 elec-
trical treeg on the fraction of conducting particles p for dif- where p. is a critical concentration. Ip<<p., there exist

ferent values of the parameter only clusters of finite size, whereas pE=p. there exists a
1400
1200 P——
1000 *}"f§ FIG. 4. Dependence of the
800 _*:;4 Weibull distribution parametera
o q=5 (characteristic timpand 8 (shape
600 3 facton on the fraction of conduct-
400 6 ing particles,p, calculated from a
200 4 set of 100 electrical trees by em-
o 21 ploying SCM, Eq.(6).
T T T T T T U 0 T T T T T T
0 0.1 . 02 03 9.4 0:5 06 07 0 01 02 03 04 05 06 07
Fraction of conducting particles (p) Fraction of conducting particles (p)
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1000 - on=2 o =2 FIG. 6. Dependence of the
800 4 iﬁ:i :2:2 Weibull distribution parameters

o =5 > ; <-n=5 (characteristic timeand 8 (shape
600 - 3 facton on the fraction of conduct-
400 + ing particles,p, calculated from a
200 4 set of 100 electrical trees by em-

ploying CM.
0 . . . . : . 0 ; . ; . . .
0 01 02 03 04 05 06 07 0 01 02 03 04 05 06 07

Fraction of conducting particles (p) Fraction of conducting particles (p)

cluster that bridges the interelectrode gap. The percolation (1) An electrical tree is simulated using the dielectric

limit observed in our simulations with a matrix size 100 breakdown mode(Sec. I) with a given» value.

X 100 wasp.=(0.59+0.01), in remarkable agreement with  (2) A fraction p of conducting particles is then “randomly

the values found in the literatuf@3], whereas the percola- added” to the lattice employed to perform the simulation.

tion dimension of the clusters was, = (1.89+0.03). Figure (3) Those clusters of conducting particles that are nearest

8 shows the dependence of percolation probabikip) neighbors to the electrical tree are added {sée particle®\

(i.e., the fraction of percolating clustersn the fractionp of  andC in Fig. 1).

conducting particles. The critical fractign, was estimated (4) Once step(3) is fulfilled, the correlation function of

by adjustingP(p) to the functionG(p) defined as follows: this “new” electrical tree is determined. For evepyvalue
investigated, 100 simulations were performed. From the cor-
relation functionC(r) a fractal dimensiorD is evaluated.

G(p)= p—a (8) The procedure described in stefi3—(4) is repeated for
(pe)“+p” every n value investigated, the results obtained are shown in
Fig. 9.

In the SCM, described by Ed6), when a growing elec- We learn f_rom Fig. 9 that for rather Iow_values (4]
trical tree incorporates a conducting particle, it will also in- <0-3) there is a remarkable agreement with the results

corporate all their conducting particle nearest neighbors, sed!0Wn in Figs. 5(CM) and 7 (SCM). Agreement between
particlesA andB in Fig. 1. From Figs. 5 and 7 we learn that _these flgures is also observed y\{hen the fraction of conduct-
the fractal dimension of our simulated electrical trees obeydd particles approaches the critical valpg.

the expected percolation behavior when the fraction of con-

ducting particles approaches the critical fractmn VI. CONCLUSIONS

To investigate the dependence of the fractal dimenBion In this paper, we generalized the DBM to describe dielec-

of electrical trees on the fraction of conducting particles N ic breakdown patterns in conductor-loaded composites.

the I|m|tp 0 (see Figs. 5 and)7we stu_dy how strong the Conducting particles are distributed at random in the insulat-
perturbation produced by the conducting particles on the . . )

: 4 X ing matrix, and the dielectric breakdown propagates accord-
electrical tree structure is. The following procedure was. : . )
applied ing to new rules to take into account electrical properties and

particle size.

2.0 : 1.0
1.9 -O-n:[ -D—11=2 —A—n=3 .

= i “-n=4 O+n=>5 -
a1 4 . £ 038 -
§171 3
2 1.6 - 3
c [<]
= 0.6 1
g 1.5 g
S 1.4 - 2
® 8 04
§ 1.3 : 3
=121 : E
11 g = 0.2 1 pe =059
— &
1-0 T T T T T T T l /
0 0.1 02 03 04 05 06 07 0.0 © 0000 ‘ ‘ ‘ ‘
Fraction of conducting particles (p) 040 045 050 055 0.60 0.65 0.70 0.75 0.80
p
FIG. 7. Dependence of the fractal dimensidron the fraction
of conducting particlesp, calculated from a set of 100 electrical FIG. 8. Probability of percolation on a 180QL00 lattice. Circles
trees by employing CM with parameter valuag=1/2 and az represent the simulation results. The continuous curve is an adjust-
=100/99. ment of the simulation performed with the functi@{p), Eqg. (8).
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2.0 g The fractal dimensio® of electrical trees approaches the
1.9 - fractal dimension of a percolation cluster when the fraction
of conducting particles approaches the percolation limit
—p. (Figs. 5 and ¥, independent of the; value employed
to perform the simulation.
In addition, if p<<0.3, conducting particles do not signifi-
cantly affect electrical tree growth, from the standpoint of
' their fractal dimension, see Figs. 5, 7, and 9.
=504 Finally, the two approaches named SCM and CM show a
: remarkable agreement, see Figs. 5 and 7. Additional studies
continuously changin@s; in the CM, as well as incorporat-
6 o4 02 03 04 05 06 07 ing a distribution of values of to simulate particles of
Fraction of conducting particles (p) different sizes, are in progress. Also, although stochastic
models are useful for a qualitative description of breakdown
processes, they leave unanswered questions concerning the
origin and growth of the dielectric breakdown. In this sense,

Fractal dimension (D)
e I . e e
N Wwh oo N
1 1 1 1 1 b 1

FIG. 9. Dependence of the fractal dimensibron the fraction
of conducting particlesy, when electrical trees are simulated by the
procedure indicated in the Discussion sectisae step$1)—(4)].

This figure should be compared with Figs. 5 and 7. work is being done in order to develop more deterministic
models at the Universities of Leicester, Buenos Aires, and La
Dielectric breakdown patterns are characterized by theiP lata.

fractal dimension and the parameters of Weibull distribution.
Studies are carried out as a function of the fraction of con-
ducting inhomogeneities. This research project was financially supported by the
A reduction in the characteristic propagation timeis  Consejo Nacional de Investigaciones Ciéicais y Tenicas,
observed when the fractiop of conducting particles is in- the Comisim de Investigaciones Ciefitas de la Provincia
creasedFigs. 4 and & This reduction is particularly notice- de Buenos Aires, and by the Universidades Nacionales de La
able whenp=1. Consequently, as the fraction of conductingPlata and Buenos AireJNLP and UBA. G.S. and F.P.
particles andy are increased3 (Weibull shape parameter wish to express their gratitude to the UBA for financial sup-
and its dispersion are smallgigs. 4 and & Therefore, as;  port. E.E.M. acknowledges the useful discussions held with
is increased, the breakdown time distribution become#®rofessor L. A. Dissado, University of Leicester, United
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