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Recent experiments have shown that a voltage can induce a large deformation in an elastomer of
interpenetrating networks. To understand the observation, this paper describes a model of
interpenetrating networks of long and short chains. As the voltage ramps up, the elastomer may
undergo snap-through instability. The network with long chains fills the space and keeps elastomer
complaint at small to modest deformation. The network with short chains acts as a safety net that
restrains the elastomer from thinning excessively. © 2009 American Institute of Physics.
�doi:10.1063/1.3272685�

Subject to an electric field, a membrane of a dielectric
elastomer reduces thickness and expands area. This mecha-
nism of actuation is being developed for diverse applications,
including soft robots, adaptive optics, and programmable
haptic surfaces.1 Large deformation of actuation has been
achieved in several ways, by using an elastomer with low
modulus and high permittivity,2 by prestretching an
elastomer,3–5 by spraying charge on an electrode-free
elastomer,6 and by using an elastomer of interpenetrating
networks.7,8 A fundamental understanding of these ap-
proaches is important to designing devices, and to dis-
covering alternative ways to achieve large deformation of
actuation.

The basic behavior of the dielectric elastomer is under-
stood in terms of three quantities: the modulus �, the permit-
tivity �, and the electrical breakdown field EB. The electric
field needed to deform an elastomer appreciably is on the
order �� /�, namely 108 V /m, assuming ��105 N /m2 and
��10−11 F /m. This high field brings the elastomer near
electrical breakdown, a mode of failure that may limit the
deformation of actuation. For an elastomer with �� /��EB,
however, the deformation of actuation is often limited by
another mode of failure, electromechanical instability.9

This paper focuses on interpenetrating networks �Fig. 1�.
In experiments,7,8 a membrane of network A swollen with
monomers was held in a state of biaxial stretches, �1� and �2�,
while the monomers were cured to form network B. The
interpenetrating networks had enhanced deformation of ac-
tuation, but the mechanism of this enhancement has been
uncertain, and its full potential unknown. This paper de-
scribes a model of interpenetrating networks of long and
short chains. The network with long chains fills the space
and keeps the elastomer compliant at small to modest defor-
mation. The network with short chains acts as a safety net
that restrains the elastomer from thinning excessively.

The electromechanical instability has been analyzed by
using a model outlined as follows.5,10–16 Let a membrane be
in a state of stretches, �1 and �2 in the plane, and �3 through
the thickness. The membrane is taken to be incompressible,
�1�2�3=1, so that the elastic energy per unit volume is a
function of the in-plane stretches, W��1 ,�2�. For an incom-
pressible solid in a state of stress, superposing a hydrostatic
stress does not change the state of deformation. Conse-

quently, the state of deformation caused by any state of stress
can be represented by that caused by a state of biaxial
stresses. We will use biaxial stresses �1 and �2 in the plane
of the membrane, and set �3=0. The stresses are given by

�1 = �1 � W��1,�2�/��1 − �E2, �1�

�2 = �2 � W��1,�2�/��2 − �E2, �2�

where E is the electric field.
We now analyze a membrane of interpenetrating net-

works. The state of the membrane in Fig. 1�a� is taken to be
the state of reference. Network B is cured when the mem-
brane is stretched to �1� and �2�, called the mismatch
stretches, Fig. 1�b�. When the membrane is stretched to �1
and �2, Fig. 1�c�, network A is stretched relative to the state
of reference by �1

A=�1 and �2
A=�2, and network B is

stretched relative to the state in Fig. 1�b� by �1
B=�1 /�1� and

�2
B=�2 /�2�. The two networks by themselves have the free-

energy functions WA��1
A ,�2

A� and WB��1
B ,�2

B�. Let �A and �B

be the volume fractions of the two networks in the mem-
brane ��A+�B=1�. We neglect any chemical interaction be-
tween the two networks, and represent the free-energy func-
tion of the interpenetrating networks by

W��1,�2� = �AWA��1
A,�2

A� + �BWB��1
B,�2

B� . �3�

A polymeric molecule coils in many configurations due
to thermal energy, and stiffens drastically when pulled near
the full length of the molecule. To represent this stiffening
effect, we adopt a model that represents the molecule by a
freely jointed chain of links,17,18 and represents a network by
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FIG. 1. �Color online� Plan view of a membrane. �a� Initially the membrane
is network A swollen with monomers. �b� The membrane is then held in a
state of biaxial stretches �1� and �2�, while the monomers are cured to form
network B. �c� After the external stresses are removed, the membrane con-
tracts somewhat and preserves a state of stretches �1

p and �2
p. In this pre-

served state, network A is in tension, and network B is in compression.
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the eight-chain model of Arruda and Boyce.19 The free-
energy function of the network is given in a parametric form

W =
kT

�
� �

tanh �
− 1 + log

�

sinh �
� , �4�

	 = �n� 1

tanh �
−

1

�
� , �5�

	 =
1
�3

��1
2 + �2

2 + �3
2�1/2. �6�

Here kT is the temperature in the unit of energy, � the vol-
ume per link, and n the number of links in each chain. Equa-
tions �4�–�6� defines the function W��1 ,�2� using two inter-
mediate parameters: the stretch 	 and the normalized force �
in each chain. In one limit, �→
, the chain approaches the
limiting stretch, 	→�n. In the other limit, �→0, the chain

coils much below the limiting stretch, 	��n, and the model
reduces to W= �kT /6���2 and 	= ��n /3��, which recovers
the neo-Hookean model, with the small-strain shear modulus
�=kT / ��n�.

We represent both networks by the above free-energy
function, and differentiate the quantities for the two networks
by superscripts A and B. The stresses in the elastomer of
interpenetrating networks are

�1 =
�AkT�A��1

2 − �1
−2�2

−2�

3�A�nA	A

+
�BkT�B���1

B�2 − ��1
B�−2��2

B�−2�

3�B�nB	B
− �E2, �7�

�2 =
�AkT�A��2

2 − �2
−2�1

−2�

3�A�nA	A

+
�BkT�B���2

B�2 − ��2
B�−2��1

B�−2�

3�B�nB	B
− �E2. �8�

In reporting numerical results, we set �A=�B=�, and normal-
ize the stresses by kT /� and the electric field by �kT /���1/2.
These factors take values kT /�=4 MPa and �kT /���1/2	3
�108 V /m, assuming T	300 K, �	4�10−11 F /m and
�	10−27 m3.

After the external stresses are removed, the elastomer
preserves a state of stretches �1

p and �2
p, which can be deter-

mined by setting �1=�2=0 and E=0 in Eqs. �7� and �8�. In
the neo-Hookean limit, we find the preserved stretch in di-
rection 1

�1
p =

��A�A + �B�B��1��2��
2�1/6��A�A + �B�B��2��

−2�1/6

��A�A + �B�B��1��
−2�1/3 .

�9�

The preserved stretch in direction 2 can be obtained by
switching the subscripts 1 and 2. Figure 2 plots a numerical
solution obtained from the Arruda–Boyce model, which
agrees well with the neo-Hookean limit. This agreement is
unsurprising because, in the preserved state, the end-to-end
distances of chains are much below their full lengths.

External stresses can stretch the membrane relative to
the preserved state. This stress-stretch relation can be deter-

mined by setting E=0 in Eqs. �7� and �8�, and is plotted in
Fig. 3�a� for the equal-biaxial state, �1=�2=� and �1=�2
=�. Note that the membrane with �B=0.4 is stiffer than the
membrane of single network B. This result is understood as
follows. In the interpenetrating networks, chains of both net-
works are stressed, and are stiffer than the relaxed chains of
the respective networks. This stress-induced stiffening com-
pensates for the presence of the compliant network A.

Now consider an elastomer under no applied stress, �1
=�2=0, but is subject to a voltage. When the membrane
stretches from the preserved state �1

p=�2
p=�p to the state

�1=�2=�, the thickness of the membrane changes from hp to
h= ��p /��2hp. Consequently, the voltage is given by V=hE
= ��p /��2hpE. This expression, together with Eq. �7�, gives
the voltage as a function of the stretch. In the neo-Hookean
limit, this function can be obtained analytically

FIG. 2. �Color online� The preserved stretch as a function of the volume
fraction of network B.

FIG. 3. �Color online� Stress �a�, voltage �b�, and electric field �c� as func-
tions of the stretch relative to the state of preserved stretch ���=5, nA=40,
and nB=4�.
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V��� = hp��p/��2�−1/2��A�A��2 − �−4� + �B�B���/���2 − ��/���−4� .

�10�

The function V��� rises, reaches a peak at � /�p=21/3, and
then falls. When both networks are represented by the neo-
Hookean model, the interpenetrating networks do not en-
hance the deformation of actuation compared to a membrane
of single network.

For networks of finite chain lengths, the function V��� is
plotted in Fig. 3�b�. The behavior is interpreted by tracing
one curve, say the one labeled by �B=0, as the stretch in-
creases. The voltage rises, reaches a peak and falls, because
the same voltage gives higher electric field when the mem-
brane thins. After falling, the voltage rises again, because the
chains approach the limiting stretches. The shape of the
curve suggests coexistent states at a constant voltage, analo-
gous to coexistent phases at a constant temperature.12 To
simplify the discussion here, we will assume that the mem-
brane is subject to a ramping voltage and, when the voltage
reaches the peak, the membrane undergoes a snap-through
instability, jumping from the peak to the state on the rising
part of the curve; for example, see the arrow plotted for the
curve �B=0. Consequently, as the voltage ramps up, all the
states between the peak and the state on the rising part of the
curve are unreachable.

The snap-through instability itself does not cause failure,
so long as the elastomer jumps to a state below the electrical
breakdown field EB. Figure 3�c� plots the electric field as a
function of the stretch. The solid lines are states reachable
when the voltage ramps up, and the dashed lines are states
unreachable. Also plotted is a horizontal line representing the
electrical breakdown field. In this example, the membrane of
interpenetrating networks exhibits a larger stretch of actua-
tion than either membrane of single network.

In plotting Fig. 3, we have set �1�=�2�=5, nA=40, and
nB=4. The choice of these parameters was guided by the
experiments,7,8 which were guided by the notion that pre-
stresses enhance deformation of actuation. Figure 4 plots the
results by setting �1�=�2�=1, nA=500, and nB=5. By setting
�1�=�2�=1, we have assumed that the interpenetrating net-
works are matched. After the external stresses are removed,
both networks are relaxed, and the preserved stretches are
�1

p=�2
p=1. This example illustrates a principle of operation

that does not rely on prestresses. The network of long chains
fills the space and keeps the elastomer compliant at small to
modest stretches. The network of short chains acts as a
safety net, restraining the elastomer from thinning down
excessively.

In summary, snap-through instability may enable an
elastomer to achieve a large deformation of actuation. This
finding is not restricted to interpenetrating networks. The
limited space here does not permit us to refine the form of
the free energy. In particular, the network A in Fig. 1�a� and
network B in Fig. 1�b� may not be regarded as fully relaxed.
More refined models can relate molecular processes to mac-
roscopic behavior, and aid the discovery of elastomers ca-
pable of even larger deformation of actuation.
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