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Abstract Realistic representation of the frequency

dependence of dielectric function of noble metals has a

significant impact on the accuracy of description of their

optical properties and farther applications in plasmonics,

nanoscience, and nanotechnology. Drude-type models suc-

cessfully used in describing material properties of silver, for

gold are known to be not perfect above the threshold energy

at 1.8 eV. We give the improved, simple dielectric function

for gold which accounts for the frequency dependence of

the interband transitions over 1.8 eV and, in addition, for

the finite size effects in gold nanoparticles. On that basis,

we provide the improved characterization of the spectral

performance of gold nanoparticles. Furthermore, we give

the direct size dependence of the resonance frequencies

and total damping rates of localized surface plasmons of

gold nanoparticles (retardation effects are taken into full

account) in diverse dielectric environments. The results

are compared to the data obtained experimentally for

gold monodisperse colloidal nanospheres, as well with the

experimental results of other authors.
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Introduction

Optical properties of matter are consequences of how it

reflect, transmit, and absorb visible light. In many optical

problems, the complex refractive index n of a material is

the basic parameter. The index of refraction is related to the

dielectric function (DF) ε(ω, k) which describes the elec-

tronic interaction of a medium with the incident light wave

of frequency ω and wave vector k. In many problems, the

general form of the dielectric function ε(ω, k) can be sim-

plified to the spatially local function ε(ω, k) = ε(ω) =
n(ω)2 = (n′(ω)+in′′(ω))2 [1, 2]. In optics of metals, strong

frequency dependence of ε(ω) is of basic importance in

shaping their optical and transport properties. Significance

of indexes of refraction noble metals in basic issues and

applications has been a motivation to many experimental

studies intended to increase the accuracy of measurements

of their frequency dependence [3–7].

Optical properties of metal nanoparticles are known to

be entirely different from their bulk counterparts. A major

goal of nanoparticles’ science is to understand this intrinsic

dissimilarity which manifests in observations and measure-

ments. Despite dimensions smaller than the light wave-

length, an electromagnetic (EM) wave is able to probe the

details of nanoparticles structure. Basic optical properties

of small particles can be explained satisfactorily by the

classical EM theory using the bulk-type DF [8].

Noble metal nanoparticles attract great interest because

of their outstanding optical properties which arise from their

ability to resonate with light. Resonant excitation of local-

ized surface plasmons (LSP) on nanoparticles give rise to a

variety of effects, such as frequency-dependent absorption

and scattering which can be tailored by particle dimensions
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[9–15]. Another advantage is the near-field concentration

and enhancement which can be exploited for a variety

of applications such as surface-enhanced Raman scatter-

ing (SERS), colorimetry, high-resolution microscopy, non-

diffraction limited nanoscopic waveguides, or nanophotonic

devices (see [16–21] for reviews). Resonance effects in

nanoscale can be observed even with a necked eye and

were empirically known and utilize since ancient times

for coloring ceramics and glasses. LSP resonance (LSPR)

frequencies depend strongly on nanoparticles shape, size,

composition, and on the refractive index of immediate

environment [11–14, 21–28]. Gradual understanding of the

interaction of metallic nanostructures with light and expla-

nation the physical processes which take place in such

systems allows applying them as a variety of nanosens-

ing modalities [21, 29–36], for photothermal cancer therapy

[37], or in solar cells [38–41].

Currently, there are several numerical methods often

used in predicting the scattering and absorption spec-

tra of single nanoparticles. The set of Mie solutions to

Maxwell’s equations (the Lorenz-Mie theory) is still the

basic one. Originally [42], it described the scattering of

EM plane wave by a homogeneous spherical particle. It

is based on solutions of divergent-free Maxwell’s equa-

tions under the appropriate boundary conditions expressed

in the form of an infinite series of spherical multi-

pole partial waves. Another example of widely used

approach for particles of any shape and limited dimen-

sions is the finite-difference time-domain (FDTD) numer-

ical technique [25, 43–45]. FDTD is an implementation

of Maxwell’s time-dependent equations in partial differ-

ential form which are discretized by a grid mesh (Yee

cells). The existence of scattering particle is defined by

properly assigning the EM constants, including permit-

tivity, permeability, and conductivity over the grid cells.

However, the spectra of nanoparticles with various sizes

which can be predicted using such methods provide only

indirect information on how LSP properties change with

size.

A more convenient direct method to describe LSP prop-

erties, such as resonance frequencies, spectral widths, radia-

tive abilities, and number of modes involved, is to solve the

dispersion relation for the surface localized EM fields [1,

11–15, 46]. Considering such LSP eigenmode problem in

the absence of the incoming light field allowed to find the

explicit size dependence of plasmon resonance frequencies

and plasmon oscillation damping rates and delivers much

more convenient and accurate tool for tailoring the plas-

monic properties of nanoparticles [11–13, 21]. Solving such

LSP eigenmode problem, the multipolar (e.g., dipole and

higher order polarity) plasmon resonance frequencies and

damping rates, with retardation effects taken into account,

can be obtained as a smooth function of the particle radius

for various indexes of refraction for the particle’s environ-

ment (e.g., [21]).

Realistic representation of the frequency dependence of

DFs for metals has a significant impact on the results of

electrodynamics calculations. Gold and silver nanostruc-

tures are most frequently used metals in either nanoscience

or nanotechnology. They stand out due to high optical con-

ductivity and chemical inertness under ambient conditions.

Unfortunately, the models of dielectric function success-

fully used for silver (e.g., [2, 47]), for gold are known

to be not perfect over the threshold energy of 1.8 eV.

This motivated us to develop a better and simple analytical

model of the DF for gold with the special emphasize on its

applicability in plasmonics.

Consequently, the aim of this paper is to provide

the improved analytic DF for gold with minimal num-

ber of parameters (“Dielectric Functions for Bulk Metals:

Extended, Multi-Parameter Models” section) dedicated to

plasmonic applications. Our modeling includes the previ-

ously unsolved problem of how to model the imaginary

part of the DF in a simple analytic form in the frequency

range over the absorption threshold energy at 1.8 eV. The

proposed DF (“Analytically Simple Dielectric Function

for Bulk Gold Accounting for Frequency-Dependent

Interband Transitions” section) reproduces the correspond-

ing experimentally measured real and imaginary parts of the

index of refraction [4] in the energy range up to 3 eV. The

proposed DF can be successfully used for bulk and nanos-

tructured gold. On that basis, we study plasmonic properties

of an exemplary nanostructure which is the gold nanosphere

with size changing from single nanometers up to the large

radii of hundreds nanometers. We give the direct descrip-

tion of the size dependence of LSP resonance frequencies

and damping rates for divers indexes of refraction of dielec-

tric environment (“Size Characterization of LSP Intrinsic

Properties” section) and much improved modeling of spec-

tral scattering and absorption abilities of gold nanoparticles

(“Scattering and Absorption Spectra of Gold Nanospheres”

section). In “Comparison of LSP Resonance Frequencies

with the Experimental Results” section, these results are

compared to the data which we obtained experimentally for

gold colloids, as well with the experimental results of other

authors [10, 48, 49].

Models of Dielectric Function in Optical Issues

Dielectric Function for Bulk Metals—Basic Models

Often used simple analytical form of the DF of metals

results from the Drude-Sommerfeld model of perfect metal
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supplemented by electron relaxation after introducing the

rate γbulk:

εD(ω) = 1 −
ω2

p

ω2 + iγbulkω
, (1)

where ωp is the bulk plasma frequency accounting for the

number density of free electrons. The rate γbulk is pro-

portional to the reciprocal of the mean free time between

electron collisions in a metal. It can be determined from the

electron mean free path l (42 nm for gold [9])as γbulk ∝
vF /l, where vF is the Fermi velocity. We express ω, ωp,

and γbulk in electronvolts for convenience, as usual.

As known, noble metals are not perfect conductors at

optical frequencies. More realistic but still simple Drude-

like model with the effective parameters ωp and γbulk

accounts in addition the contribution of interband transi-

tions to the polarizability by introducing of ε0 [11–14, 44,

50–52]:

εDi(ω) = ε0 −
ω2

p

ω2 + iγbulkω

= ε0 −
ω2

p

ω2 + γ 2
bulk

+ i
ω2

pγbulk

ω(ω2 + γ 2
bulk)

(2)

Such phenomenological model is used as a next step

intended to better representing the frequency dependence of

the experimental indexes of refraction for real metals such

as gold and silver [3–7]. However, the reported effective

parameters ε0, γbulk , and ωp, which are usually claimed to

result from the best fit [5, 44, 51–54] to the experimental

data, are quite different (examples in Table 1 and Fig. 1).

Moreover, the resulting real n′(ω) and imaginary n′′(ω)

parts of the refractive indexes for gold are not perfect in

reproducing the experimental data (lines with circles) for

larger photon energies of the optical range (Fig. 1). This is

also the case of our previous studies of optical properties

of gold nanoparticles [11–14] where the following effec-

tive parameters were accepted: ε0 = 9.84, ωp = 9.010 eV,

γbulk = 0.072 eV. Using of these parameters results in quite

well fit (Fig. 2a, black line) of Re εDi(ω) in the range up

to 2.5 eV to the corresponding experimental values for gold

[4] (line with circles). By turn, Im εDi(ω) deviates strongly

above the threshold energy at 1.8 eV, as shown in Fig. 2b for

all the proposed sets of parameters. For silver in the optical

range, such problem does not exist [47].

a

b

Fig. 1 a Real and b imaginary parts of the refractive index for gold

resulting from εDi(ω) (2) with the parameters ε0, ωp , γbulk reported

in [11, 44, 52] (solid, dash-dot, and dashed lines correspondingly)

compared with the experimental data [4] (line with circles)

Dielectric Functions for Bulk Metals: Extended,

Multi-Parameter Models

There were several attempts [51, 55–57] to solve the prob-

lem of inaccuracy in modeling the optical properties of

metals within an analytical model of DF in the visible/near-

UV range. These are many-terms models including a large

number of parameters, e.g., in [57] the multiparameter

effective DF gives a good agreement with experimental data

for gold after fitting four Lorentzian terms with 12 fitting

parameters. Another example of a family of analytical mod-

els formulated in terms of so called critical points describing

interband transitions in solids is reported in [51]. The pro-

posed DF reproduces very well the experimental data [4]

with eight fitting parameters. Such multi-term models are

not algebraically simple, what in some issues can be not

comfortable or make such models useless. The example can

be the problem of dispersion relation for the surface local-

ized plasmon fields [11–14]. In such issues, the frequency

Table 1 Some sets of the

parameters ε0, ωp , γbulk of the

dielectric functions εDi(ω)

(Eq. 2) reported in literature

[5] [11] [44] [51] [52] [53] [54]

ε0 1 9.84 9.5 1.53 8.5 1 1

γbulk (eV) 0.026 0.072 0.06909 0.0729 0.0691 0.0184 0.07088

ωp (eV) 9.02 9.01 8.9488 8.55 8.9517 8.55 8.89
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a) b)

Fig. 2 Comparison of the real (a) and (b) imaginary part of the dielec-

tric function for gold resulting from different models. Black dashed

lines: εDi(ω) with parameters ε0 = 9.84, ωp =9.010eV, γ =0.072eV.

Red solid lines: ε(Au)(ω) with the same parameters ε0, ωp and γ

but supplemented by ∆ε(Au)(ω) (shown in the insertion) account-

ing for the frequency dependent interband transitions over 1.8 eV.

Experimental data [4] are presented by the line with circles.

dependence of the DF convolves to the overall complex

frequency dependence of the problem. If DF is too com-

plicated, the problem is too difficult to be solved with the

standard numerical methods.

With aim to simplify the DF for gold, we propose the

improved intuitive Dude-like DF which would describe well

the experimentally measured indexes of refraction [4] up

to 3 eV after including frequency dependence of interband

transitions in gold. This range (Fig. 1) contains the LSP opti-

cal activity of gold nanoparticles [10–14, 48, 49] (see Fig. 4

below).

Frequency-Dependent Interband Transitions in Gold

In order to improve the phenomenological model of the

dielectric function for optical and plasmonic applications

based on the Drude-Sommerfeld model, let us shortly recon-

sider some data from the solid state physics. In particular,

consideration of differences between gold and silver in that

context seems to be very helpful.

It is known that metals exhibit characteristic shininess

as their delocalized electrons are able to absorb and re-

emit photons over a wide range of frequencies. Thus, the

reflectance spectra of most metals are fairly flat and they

appear silvery in color. Metallic properties of gold and sil-

ver atoms result from the valence electrons in the half-filled

s-subshells. In Au, the electronic transition responsible for

absorption is the transition from 5d to 6s level, in Ag it is 4d

→ 5s transition. However, in gold, relativistic effects raise

energy of the 5d orbital and lower the 6s orbital [58] leading

to the shift of absorption from ultraviolet to lower energies

falling in the blue visible range. The relativistic effects in

Ag are smaller than those in heavier Au: the 4d-5s distance

in Ag is much greater; such transitions fall in the ultravio-

let. As a result, the visible light is not absorbed but reflected

equally: silver is silvery.

In bulk metals, the characteristic electronic band struc-

ture are formed with the state energy distribution resulting

from the Pauli exclusion principle. The optical properties of

metals depend on both intraband and interband transitions

between electronic states [59, 60]. The strength of these

transitions is determined by the energy dependent density

of electronic states. In gold (near-) parabolic sp-hybridized

conduction band, formed by lone s-electrons, is crossed

by Fermi surface. Therefore, electrons in sp- band filled

up to EF = 5.53 eV, can move free (or rather quasi-free

due to the electron scattering processes through collisions

with metal ions). Interaction of light with such quasi-free

conduction electrons is well described by εD(ω) (1) for

quasi-free electron gas ([9] and references therein).

Interband transitions are known to give an additive con-

tribution to the dielectric function [9, 61] in some spectral

frequency ranges. In gold, these transitions are closely

related with electrons located in bands lying from 1 to 3 eV

below the Fermi energy EF . Interband contributions depend

on the location of the critical points, i.e., singularities, in the

density of states which occur near symmetry points in the

Brillouin zone. Near these points, so-called Van Hove sin-

gularities, the Fermi surface is deformed with respect to the

spherical free electron surface. The large density of states

in these regions is responsible for interband absorption and

emission in the visible range. In gold, the interband transi-

tions from the top of the d band to states just above EF in

the conduction band occur with the threshold at EL = 2.4 eV

in the visible range (below λ = 516.6 nm—blue light). Gold

appears yellow because it absorbs blue light more than other

colors of the visible spectrum. The reflected light is there-

fore lacking in blue compared to the incident white light

what results in the yellowish tint, which is called the golden.

The additional interband transition is due to the excitations

of electrons from the 5d-band to unoccupied states in the

6sp-band above EF with the interband gap EX = 1.8 eV

(light wavelength below λ = 688.8 nm—red light). The

electromagnetic radiation of a wavelength in the vicinity of

600 nm is seen by a human as yellow.

Analytically Simple Dielectric Function for Bulk Gold

Accounting for Frequency-Dependent Interband

Transitions

In the simplest models of the dielectric function, the inter-

band transitions are taken into account (2) by introducing

the constant ε0 instead of 1 for ideal free-electron met-

als. However, in gold, the strong frequency dependence

of these transitions is not taken into account. It is the

expected reason of why the applicability of Im εDi(ω) =
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ω2
pγbulk/ω(ω2+γ 2

bulk) (2) starts to deteriorate below 1.8 eV

and breaks down over the second, more important thresh-

old at about EL = 2.4 eV. Consequently, our intuitive idea

of accounting for these effects in the amended dielectric

function ε(Au)(ω) is to modify εDi(ω) by adding a simple,

frequency dependent correction which could describe the

interband transitions with the thresholds at EX =1.8eV and

EL =2.4 eV. Inaccuracy in reproducing the experimental

data by Im εDi(ω) above 1.8eV (see Fig. 2) suggests, that

such frequency dependent correction ∆ε(Au)(ω) should be

added to Im εDi(ω):

Im ε(Au)(ω) =
ω2

pγbulk

ω(ω2 + γbulk
2)

+ ∆ε(Au)(ω). (3)

The frequency-dependent contribution of the interband tran-

sitions in gold we describe with a single, logistic function of

two parameters: A and ∆:

∆ε(Au)(ω) =
A

1 + exp(−(ω − ωc)/∆)
. (4)

∆ε(Au)(ω) starts at the lower asymptote at the zero level

(see the inset in Fig. 2), and increases from ω ≈1.6 eV, a

little below the accepted lover energy gap of the interband

transitions at EX = 1.8 eV. It continues the fast increase

crossing the central frequency ω = ωc ≈ EL = 2.4 eV

(the second energy gap of the interbad transitions). Farther

it tends to the higher asymptote A = 5.6. Parameters A and

∆ = 0.17 eV were chosen to reflect frequency dependence of

the DF derived from the experimental data [4] in the range

from 1eV to 3eV. We let Re εDi(ω) unaffected:

Re ε(Au)(ω) = Re εDi(ω) = ε0 −
ω2

p

ω2 + γ 2
bulk

. (5)

So, the proposed form of ε(Au)(ω) for gold in optical and

plasmonic applications, which includes the correction due

to the frequency-dependent interband transitions is:

ε(Au)(ω) = εDi(ω) + i∆ε(Au)(ω). (6)

with ∆ε(Au)(ω) approaching zero for ω below EX = 1.8 eV.

Figure 2 shows that ε(Au)(ω) (6) reproduces well the exper-

imental data derived from [4] (see Fig. 2) in the studied

frequency range and that the appropriateness of ε(Au)(ω)

is much better than that of εDi(ω). Noteworthy, in com-

parison with the models discussed in “Dielectric Func-

tions for Bulk Metals: Extended, Multi-Parameter Models”

section, applying ε(Au)(ω), we significantly reduced the

number of terms and free parameters.

Dielectric Function for Gold Nanoparticles Accounting

for Frequency Dependent Interband Transitions

and Finite Size Effects

Description of plasmons in nanosized noble metals through

its local bulk DF fails dramatically when the particle size is

smaller or comparable to the mean free path of conduction

electrons [62]. In bulk metals, the collision time 1/γbulk is

proportional to the electron mean free path, which at room

temperatures for gold is equal to 42 nm [63]. When the mean

free path becomes comparable or larger than a dimension

of a particle, the effective collision time in such particles is

greatly reduced. To account for this nonlocal effect near the

metal interface, the additional phenomenological relaxation

term CvF /R is added to the relaxation rate γbulk [11–14, 62,

64–68]. vF is the Fermi velocity (vF = 1.4 ·106 m/s), and C

is the theory dependent quantity [64]. We accept the value

C = 0.33 for gold nanoparticles, according to [69] and [66].

After including this correction to εDi(ω), ε(Au)(ω) (6) is

modified by the radius R if the nanosphere is sufficiently

small:

ε(Au)(ω, R) = εDi(ω, R) + i∆ε(Au)(ω), (7)

where:

εDi(ω, R) = ε0 −
ω2

p

ω2 + i
(

γbulk + C vF

R

)

ω
. (8)

∆ε(Au)(ω) is given by Eq. 4. Let us note that surface scat-

tering modifies strongly εDi(ω, R) and so ε(Au)(ω, R) for

relatively small radii only (see, e.g., [13]).

Size Characterization of LSP Intrinsic Properties

The Dispersion Relation for LSP Waves

The dispersion relation for LSP waves results from diver-

gent free Maxwell equations [1, 11–14, 46] reduced to the

Helmholtz homogeneous wave equations. Their vectorial

solutions in two homogeneous regions inside and outside

the sphere are expressed as a sum of infinite series of spher-

ical multipole partial waves l, according to formalism of

Mie scattering theory. However, the problem is formulated

in absence of external, incoming light wave. The continu-

ity relations at r = R for the tangential components of

the transverse magnetic (TM) EM modes (with nonvanish-

ing electric field component normal to the interface) lead to

non-trivial solutions when:
√

εin(ω, R) · ξ ′
l (kout (ω) · R) · ψl(kin(ω, R) · R) +

−
√

εout · ξl(kout (ω) · R) · ψ ′
l (kin(ω, R) · R) = 0, (9)

where kin(ω, R) =
√

εin(ω, R) · ω/�c, and kout (ω) =√
εout · ω/�c are the wave vectors inside the sphere, and in
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the sphere surroundings, respectively, εin(ω, R) and εout are

DFs of the metal sphere and of the dielectric environment,

respectively. The complex ψl(z), ξl(z) are Riccati-Bessel

spherical functions (of complex arguments) which can be

expressed by the Bessel Jl+1/2(z), Hankel H
(1)
l+1/2(z), and

Neuman Nl+1/2(z) cylindrical functions of the half order,

and c is the speed of light. The corresponding equations

for the transverse electric (TE) mode has no solution for

Re εin(ω, R) < 0, as in the local case [1].

Solutions of the dispersion relation (9) depend strongly

on the form of DFs for the particle and its surroundings and

exist only for the complex frequencies ω′
l(R) + iω′′

l (R) of

the surface TM modes l on a sphere of radius R [11–14, 46,

47]. The oscillation frequencies ω′
l(R) of the surface local-

ized fields (plasmon modes) and the damping rates |ω′′
l (R)|

of these oscillations (ω′′
l (R) < 0) can be found numerically

for known DFs εin(ω, R) and εout for successive R. Let us

stress, that the form of the function εin(ω, R) strongly influ-

ences the resulting ω′
l(R) and ω′′

l (R) dependencies due to

specific interplay of frequency dependence of all involved

functions; εin(ω, R) convolves to the overall dependence of

the complex ψl(z), ξl(z) functions of frequency dependent

(complex) arguments. In fact, εin(ω, R) in the dispersion

relation (9) should be in the analytic form. It can not be

replaced by its numerical values when looking for roots of

Eq. 9. Proper ω′
l(R) and ω′′

l (R) dependencies can be found

only with the realistic model of εin(ω, R).

LSP Resonance Frequencies and Damping Rates

as a Function of Radius

Let us stress that not only LSP resonance frequencies but

also both ω′
l(R) and ω′′

l (R) are necessary to understand and

control the spectral performance of nanoparticles and the

manner it changes with the radius R. The damping of plas-

mon mode oscillations (described by |ω′′
l (R)|) consist of the

radiative and dissipative damping processes with the size

dependent contributions. Plasmon modes characterized by

small radiative damping are optically inactive. Increasing

contribution of the radiative damping to the total plasmon

damping leads to suppression of the dissipative channel

by the increasing radiative processes for larger R and l

[13]. The plasmon resonance takes place when the optically

active plasmon mode l (l = 1, 2, 3...) is excited by EM field

of frequency ω = ω′
l(R). Excited plasmon oscillations are

damped with the corresponding damping rates |ω′′
l (R)|.

Figure 3 illustrate the ω′
l(R) and |ω′′

l (R)| dependencies

calculated with the dielectric function εin(ω, R) resulting

from different models (see Eqs. 2 and 7): εin(ω, R) =
εDi(ω, R)—dashed lines, and εin(ω, R) = ε(Au)(ω, R) -

solid lines, for gold nanospheres with R changing from 1nm

to 1000 nm for modes l starting from the dipole mode with

l = 1 up to l = 5. Here, nout = √
εout =1.33 (water).

Black lines (solid and dashed correspondingly) represent

the dipole resonance frequencies ω′
l=1 resulting from both

models of DF.

Comparison of ω′
l(R) and |ω′′

l (R)| resulting from the

standard εDi(ω, R) and the new ε(Au)(ω, R) DFs (see

Fig. 3a) reveals strong impact of the model of DF applied

to EM calculations, as expected. Application of ε(Au)(ω, R)

results in an important modification of resonance frequen-

cies ω′
l(R) which are shifted by ∼0.15 eV towards smaller

frequencies. In the optical range, their size dependence vs

R is weaker (less than 30 % for the dipole mode). Such EM

modeling reveals also the red shift of the LSP resonance fre-

quencies with the decreasing R in the smallest particle range

(see the inset in Fig. 3a) in addition to the red shift with

increasing R (due to EM retardation) for larger size ranges.

The total damping rates |ω′′
l (R)| of plasmon modes

l are even more strongly affected (see Fig. 3b) by the

model of DF (and the effects included in that mod-

elling). To understand what are the underlying phenomena,

let us notice that in the case of simplest model of DF

(εD(ω), Eq. 2), |ω′′
l (R)| start to increase from the value

γbulk/2 ([13]) which is the nonradiative plasmon damp-

ing rate common for all modes in the smallest particle

range (Fig. 3b dashed lines). After applying εDi(ω) (2)

in calculations, |ω′′
l (R)| are modified by the finite size

a b

Fig. 3 Comparison of (a) LSP resonance frequencies ω′
l(R) and (b)

damping rates ω′′
l (R) calculated vs radius for different models of

the dielectric function; dashed lines: for εDi(ω, R); solid lines: for

ε(Au)(ω, R) accounting for contribution of the frequency-dependent

interband transitions over 1.8eV. nout =1.33 (water). Horizontal short-

dashed lines (a) show the lower frequency limits: of the optical range

(red line at 1.65 eV) and of the measured indexes of refraction [4]

(black line at 0.64 eV (see Fig. 1)
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effect (see “Dielectric Function for Gold Nanoparticles

Accounting for Frequency Dependent Interband Transitions

and Finite Size Effects” section) in the smallest nanosphere

range, as presented in Fig. 3b (dashed lines). In that range,

|ω′′
l (R)| decrease with increasing R. Farther strong increase

of |ω′′
l (R)| is due to the increasing radiative damping. 2|ω′′

l |
defines the spectral widths of maxima in the corresponding

spectra (see, e.g., [10, 12, 13]). However, existence of such

narrow plasmon resonances as those resulting from applying

εD(ω) or εDi(ω) is not confirmed experimentally. Fortu-

nately, application of the realistic DF for gold (7) solves

this problem. As shown in Fig. 3b (solid lines), application

of ε(Au)(ω, R) augments |ω′′
l (R)| by the order of magni-

tude giving the realistic spectral widths for l = 1 (the

experimental data exist only for the dipole mode [10]).

Both the plasmon resonance oscillation frequencies

ω′
l(R) and damping rates |ω′′

l (R)| characterize the intrinsic

plasmonic properties of gold nanospheres of any size. These

properties are reflected in the spectra of light scattered

or absorbed by such particle derived from Mie scattering

theory.

The plasmon resonance frequencies ω′
l(R) and damping

rates |ω′′
l (R)| are very sensitive to refractive index of sur-

rounding medium (nout = √
εout ), what can be used in

many applications (see, e.g., [21]). Figure 4 demonstrates

this effect for nout = 1.33 (water) and nout = 1.5 (immerse

oil). The resonance frequencies ω′
l(R) (Fig. 4a) undergo red

shift with increasing nout . The corresponding damping rates

a b

Fig. 4 Comparison of (a) LSP resonance frequencies ω′
l(R) and

(b) damping rates ω′′
l (R) calculated vs radius for gold nanospheres

immersed in water (nout = 1.33, solid lines) and in oil (nout = 1.5,

dot-dashed lines). Calculations are performed using ε(Au)(ω, R) (7).

Horizontal short-dashed lines (a) show the lower frequency limit: of

the optical range (red line at 1.65 eV) and of the measured indexes of

refraction [4] (black line at 0.64 eV (see Fig. 1))

|ω′′
l (R)| are shifted toward higher or lower value, depending

on the size range which change with l, as demonstrated in

Fig. 4b.

Scattering and Absorption Spectra of Gold

Nanospheres

One of the most frequently used quantities for describing

the spectral properties of spherical particles illuminated by a

plane wave are the corresponding cross-sections calculated

from Mie theory [8, 42, 70]. The extinction Cext , absorption

Cabs , and scattering Cscat cross-sections are expressed by

series expansion of the involved fields into partial waves:

Cscat =
2π

k2
out

∞
∑

l=1

(2l + 1)(|al |2 + |bl |2), (10)

Cext =
2π

k2
out

∞
∑

l=1

(2l + 1)Re
(

a2
l + b2

l

)

, (11)

Cabs = Cext − Cscat , (12)

with the coefficients al and bl :

al =
mψl(mx)ψ ′

l (x) − ψl(x)ψ ′
l (mx)

mψl(mx)ξ ′
l (x) − ξl(x)ψ ′

l (mx)
, (13a)

bl =
ψl(mx)ψ ′

l (x) − mψl(x)ψ ′
l (mx)

ψl(mx)ξ ′
l (x) − mξl(x)ψ ′

l (mx)
. (13b)

x = 2πR/λ is the size parameter, λ is the wavelength

of the incident light wave in vacuum, m = nin/nout . Spec-

tral properties of metal nanosphere described by Cext (ω),

Cabs(ω) and Cscat (ω) are dominated by plasmon reso-

nances (often expected to point the intrinsic value of LSPR

at ω′
l(R)) which manifest in the corresponding spectra in

different manner. The spectral position of the maxima,

their number, heights, and bandwidths change with R. Mie

predictions concerning the spectral characteristics of gold

nanoparticles are dramatically dependent on the model of

its DF (see Fig. 5). The absorption (red lines) and scatter-

ing spectra (black lines) calculated with ε(Au)(ω, R) (solid

lines) and εDi(ω, R) (dashed lines) for gold nanospheres of

radius R = 5 nm (Fig. 5a) and R = 50 nm (Fig. 5b) are

presented for comparison.

In case of a small nanosphere (R = 5 nm), absorption

dominates over scattering, as illustrated in Fig. 5a: Cscat (ω)

is negligible in comparison with Cabs(ω) in the whole opti-

cal range. Cabs(ω) calculated with ε(Au)(ω, R) (solid red

line) becomes spectrally broader and is shifted towards

smaller ω compared to the predictions using εDi(ω, R)
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(dashed red line) in qualitative agreement with the predicted

shift ∆ω′
l=1 of the dipole plasmon resonance frequencies

ω′
l=1(R) (see Fig. 3). However, the position of the peak

in Cabs(ω) calculated with ε(Au)(ω, R) does not coincide

with the dipole plasmon resonance frequency ω′
l=1 (verti-

cal solid line) obtained from the dispersion relation (9) for

the surface localized fields. In case of applying εDi(ω, R)

in calculations, position of the peak in Cabs(ω) (shown with

the red dashed line) coincides with ω′
l=1 (vertical dashed

line) in small (Fig. 5a) and large (Fig. 5b) nanospheres.

The shift ∆ω′
l is due to the fact, that we included the

frequency-dependent interband transitions in the model of

ε(Au).

Absorption of light by larger gold sphere with radius

R = 50 nm, (Fig. 5b, solid red line) is less efficient than scat-

tering (solid black line). Absorption and scattering peaks

are spectrally shifted in respect to each other. The scattering

peak coincides with ω′
l=1(R) resulting from the dispersion

relation (9) for the surface localized fields. Both absorption

and scattering spectra calculated with ε(Au)(ω, R) (solid

lines) are qualitatively and quantitatively different if com-

pared with those calculated for εDi(ω, R) (dashed lines).

One can conclude that in gold nanoparticles (after accept-

ing ε(Au)(ω, R) (7), the peak in computed scattering spectra

better reflect the spectral position of the dipole LSP res-

onances than the peak in absorption spectra. For silver

nanoparticles well described by εDi(ω, R), it is opposite:

the peaks in absorption spectra better reproduce the spectral

manifestation of LSP resonances.

a b

Fig. 5 Comparison of the absorption Cabs (red lines) and scatter-

ing Cscat (black lines) cross sections calculated for different models

of the dielectric function; dashed lines: for εDi(ω, R); solid lines:

for ε(Au)(ω, R) for gold nanospheres with the radius (a) R = 5 nm

and (b) R = 50 nm embedded in water. Vertical solid and dashed

lines show correspondingly the position of LSP resonance frequencies

ω′
l(R) resulting from the dispersion relation (9) for both models of the

dielectric function

3D maps in Fig. 6 summarize spectral performance

of gold nanoparticles as a function of R. It illustrates

spectral efficiencies Qabs(ω, R) = Cabs(ω, R)/πR2 and

Qscat (ω, R) = Cscat (ω, R)/πR2 of gold nanoparticles

in the frequency range from 0.64 eV up to 3 eV, where

ε(Au)(ω, R) have been proven to realistically describe the

interaction of light with gold nanoparticles. The input

parameters are ε(Au)(ω, R) (7) and nout =1. In particu-

lar, Fig. 6 shows that the maximal efficiency of absorption

falls in different spectral and size ranges than the maximal

efficiency of scattering.

Comparison of LSP Resonance Frequencies

with the Experimental Results

Figure 7 shows the comparison of experimental data with

predictions for ω′
l=1(R) (solid and dashed lines) derived

from dispersion relation (9). Solid line shows ω′
l=1(R)

calculated for εin(ω, R) = ε(Au)(ω, R) (7) and dashed

line—for εDi(ω, R) (8) respectively.

Fig. 6 3D plots illustrating the efficiency of a absorption Qabs(ω, R)

and b scattering Qscat (ω, R) of gold nanospheres as predicted by Mie

theory with ε(Au)(ω, R) and nout =1
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Experimental data in Fig. 7 show spectral positions of

peaks determined from the experimental spectra of mono-

disperse or single gold nanospheres as a function of radius

R embedded in water (Fig. 7a) or in immerse oil (Fig. 7b).

Peak positions determined from the absorption spectra

comes from [48] (open squares), [71] (open circles and

triangles), this work (closed spheres), and those from the

scattering spectra of single nanoparticles comes from [10]

(closed triangles).

Our experimental results marked with closed circles in

Fig. 7a are taken for commercial unconjugated gold col-

loids, produced by BBI (British BioCell International) sup-

plied in water with concentration from 5.6 · 109 particles/ml

(for 100 nm spheres) to 5.7 · 1012 particles/ml (for 10 nm

spheres). The particles are citrate stabilized with a net neg-

ative surface charge. Absorption spectra of gold colloid

were gathered in transmission detection mode using USB

2.0 Fiber Optic Spectrometer (USB 4000 Ocean Optics,

B. V.). The source light was focused by fiber optic taper

(FOCON).

Figure 7 shows that the peaks (ascribed to dipole res-

onance) obtained from the experimental absorption and

scattering spectra are quite similar: their difference is not

a

b

Fig. 7 Comparison of the dipole resonance frequencies derived from

the experimental data [10, 48, 71] and from the present work (closed

circles) for gold nanosphere embedded (a) in water (nout = 1.33) and

(b) in immerse oil (nout = 1.5) with ω′
l=1(R) calculated for different

models of the dielectric function; dashed lines: for εDi(ω, R); solid

lines: for ε(Au)(ω, R)

larger than the experimental and model-dependent errors,

when using εDi(ω, R) for deconvolving the peak positions

from the experimental spectra. As demonstrated in Fig. 5b

(dashed black and red line), the absorption and scatter-

ing peaks lye very nearby. Let us note that the spectral

peak positions of the experimental spectra are very sensi-

tive to impurities in the composition of both the nanospheres

and environment. Minor modification in the composition

of nanosphere/environment material affects the indexes of

refraction (DFs) and results in red/blue shift of LSP peak

position. To reduce these effect, nanospheres serving for

accurate LSP size characterization are usually chemically

stabilized and possess a thin coat with the refractive index

other then nanosphere material. This fact is an additional

reason in a small discrepancy between the LSPR fre-

quencies derived from the experimental spectra and the

numerically predicted ω′
l=1(R) (Figs. 4 and 7).

Figure 7 shows also that ω′
l=1(R) calculated for

εin(ω, R) = ε(Au)(ω, R) describes much better size depen-

dence of the experimental data than ω′
l=1(R) calculated for

εDi(ω, R).

Conclusions

The existing analytical models of the dielectric function suc-

cessfully used in describing plasmonic properties of silver,

for gold are known to be not perfect over the threshold

energy of 1.8 eV, especially in its imaginary part. The

reason is that analytical simple models of the dielectric

function, which are often used in practice, account for the

interband transition contribution to the polarizability by a

constant which improves the Drude model of perfect met-

als. However, in gold, the interband transitions occur with

the thresholds in visible range and display strong frequency

dependence. This is the reason why the applicability of

Im εDi(ω) = ω2
pγbulk/ω(ω2 + γ 2

bulk) (Eq. (2)) breaks down

starting from about 1.8 eV and collapses over 2.4 eV. We

give the improved, but still simple analytic Dude-like DF

which describes well the experimental data of [4] in the

energy range up to 3 eV. This is the range of plasmonic

activity of gold nanoparticles [10–14, 48, 49] of sizes from

single nanometers up to the radius of hundreds of nanome-

ters. The derived dielectric functions ε(Au)(ω) (3) for bulk

gold is adapted for gold nanospheres ε(Au)(ω, R) (7) by tak-

ing into account the finite size effect. Such functions used in

electrodynamic calculations allow more accurate prediction

of many optical phenomena involving bulk and nanoscaled

gold.

In particular, we found realistic multipolar plasmon

resonance frequencies and plasmon damping rates for gold

spheres by solving the dispersion relation for surface localized
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EM waves and compared these predictions with the

data extracted from the experimental spectra measured

for gold colloidal monodisperse nanospheres. We also

included the experimental results of other authors [10, 48,

71] and proved much better applicability of our electrody-

namic modelling with the derived dielectric function in the

description of absorption, extinction, and scattering spec-

tra of gold nanospheres with various radii. In particular, our

data describe much better the size dependence of multipolar

LSP resonance frequencies and total dumping rates.
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