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Dielectric function of amorphous tantalum oxide from the far infrared
to the deep ultraviolet spectral region measured
by spectroscopic ellipsometry
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University of Nebraska, Lincoln, Nebraska 68588-0511
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F. Frost
Institut für Oberflächenmodifizierung Leipzig e.V., Permoserstr. 15, 04318 Leipzig, Germany

~Received 21 January 2000; accepted for publication 3 August 2000!

Amorphous tantalum oxide thin films were deposited by reactive rf magnetron sputtering onto@001#
silicon substrates. Growth temperature, oxygen partial pressure, and total gas pressure have been
varied to obtain thin films with different densities. The thin films were analyzed by glancing
angle-of-incidence x-ray diffraction, atomic force microscopy, and variable angle-of-incidence
spectroscopic ellipsometry in the near infrared to vacuum ultraviolet spectral region for photon
energies fromE51 to 8.5 eV, and in the infrared region fromE50.03 to 1 eV. We present the
dielectric function of amorphous tantalum oxide obtained by line shape analysis of the experimental
ellipsometric data over the range fromE50.03 to 8.5 eV~40 mm–145 nm!. In the infrared spectral
region the ellipsometric data were analyzed using Lorentzian line shapes for each absorption mode
observed in the spectra. Amorphous tantalum oxide optical properties in the near infrared to vacuum
ultraviolet spectral region were extracted by using a Kim and Garland parameter algorithm@C. C.
Kim et al., Phys. Rev. B45, 11 749~1992!# in order to model the absorption due to the fundamental
band gap of the material. We consider thin film porosity, and therefore analyzed the experimental
ellipsometric data by an effective medium approach. We obtain information on the tantalum oxide
optical properties, a percentage of void fraction, and film thickness. The ‘‘optical’’ percentage of
void fractions corresponds to surface roughness measured by atomic force microscopy and depends
on deposition parameters. ©2000 American Institute of Physics.@S0021-8979~00!05821-7#

I. INTRODUCTION

Sputtered thin-film materials are widely used for optical
applications in high-quality antireflection coatings or optical
filters. Tantalum oxide has large refractive index values, and
low extinction coefficients over a wide spectral range. Tan-
talum oxide thin films are therefore of high interest for opti-
cal devices, and can be used as a high refractive index ma-
terial in multilayer interference filters,1 as antireflection
coatings for solar cells,1,2 or in optical wave guides.3

Thin films of tantalum oxide are also employed as an
ion conductor in electrochromic devices.4,5 Known as a ma-
terial with high static dielectric constant and with good
electrical insulating properties, tantalum oxide has the
potential for microelectronic applications as a capacitor and
gate material, thereby replacing silicon dioxide in
metal–insulator–metal6–11 or metal–insulator–semicon-
ductor6–10,12–17structures as well as in large-scale integrated
circuits for dynamic random access memories.6

Sputter-deposited thin films tend to show film porosity,
which affects electrical or optical properties. Sample aging

due to moisture incorporation followed by chemical degra-
dation may decrease the electrical resistance, and increase
light scattering at rough interfaces. The film porosity, i.e., the
film microstructure, depends mostly on growth conditions.
Prior to application of sputter-deposited films it is necessary
to understand the relation between microstructure, growth
conditions, and resulting electrical and optical properties. A
through optical study of such microstructure related effects
was shown previously for magnetron sputtered boron nitride
thin films18–21

Tantalum oxide films~TOF! have been grown by a large
variety of physical vapor deposition and chemical vapor
deposition ~CVD! processes, including ion beam
sputtering,22,23magnetron sputtering,2,7,9,24~low temperature!
thermal oxidation,9,25 anodization,26 ion plating,1,27 electron-
beam evaporation,4,27 laser ablation,28,29 low pressure
CVD,14,30 photo-CVD,31,32 atomic layer deposition,33 and
plasma-enhanced CVD.12,16,34A metalorganic solution depo-
sition technique6 was also used to grow TOF. Low tempera-
ture grown TOFs tend to be amorphous. Postannealing of the
amorphous samples at elevated temperatures above 700 °C
causes crystallization.16 Depending on the annealing history,a!Electronic mail: franke@engrs.unl.edu
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either orthorhombic6,8,15,29or hexagonal14 phases can be ob-
tained.

Earlier TOF studies concentrated on electrical proper-
ties, such as the static dielectric constant and the leakage
current across the films. Many reports also focused on TOF
optical properties in the near infrared~NIR!–UV spectral
region from 1 to 5 eV.1,2,12,22,23,27,31,33,35Transmission and
reflectance data were analyzed to study the dispersion of in-
dex of refractionn and extinction coefficientk, and position
of the fundamental band-gap transition. Rubioet al.2 re-
ported a strong increase ofn and k for short wavelengths
l(l,0.4mm), and assigned a phonon-assisted indirect elec-
tronic transition atEg54.07 eV. A second band-to-band
transition feature was found atEg54.5 eV. Demiryont
et al.23 investigated optical properties of TOFs with different
stoichiometries. The authors found that an increasing oxygen
deficiency is related to highern andk values. This is particu-
larly evident ink where the extinction coefficient is almost
zero below the band gap for stoichiometric films and raises
to values close to 0.1 for cermet films~TOF with metallic Ta
cluster!. The onset of absorption inn andk due to the band
gap within the stoichiometric film is rather sharp, whereas
the substoichiometric and cermet films show a smoother dis-
persion with increasing oxygen deficiency. The position of
the fundamental band gap is reported to be slightly compo-
sition dependent:Eg54.3 eV for stoichiometric andEg

54.0 eV for substoichiometric TOFs. The band gap in cer-
met films depends on the cluster concentration, and varies
from Eg53 eV to almost metallic behavior. The influence of
stoichiometry on the optical properties was also studied in
Refs. 12 and 22. Therein the authors also report increasedn
values for oxygen deficient TOFs. The refractive indexn was
also shown to be a function of the deposition
temperature,12,31,33and total gas pressure24,31 during sample
growth. Because temperature and total gas pressure affect the

thin-film porosity,24 the TOF refractive index also increases
by thin-film densification. Hence, an effective refractive in-
dex of TOF results from growth conditions, and may range
from n52.06 ~evaporation!27 to n52.25 ~ion plating!27 at
l5550 nm. The differences inn are mostly due to different
thin-film porosity,22,27 which is known to be higher for films
grown by evaporation than by ion plating. It was also shown
that mixtures of substoichiometric and stoichiometric tanta-
lum oxide causes lowern values in TOFs.27

Porqueraset al.4 and Kukli et al.33 studied the funda-
mental band-to-band transition energy as a function of
growth temperature. TOFs investigated by Porqueraset al.4

were highly transparent below the band gap, which was re-
ported as a direct electronic band-to-band transition. The
square of the absorption coefficienta52pk/l versus pho-
ton energyE was found to increase almost linearly withE.
Band-gap values of 4.53 and 4.71 eV were reported for films
grown at 100 and 200 °C, respectively.4 In contrast to Porqu-
eraset al.4 Kukli et al.33 observed a (E2Eg)2 dependence
for the absorption coefficient in TOFs and concluded an in-
direct electronic band-to-band transition mechanism. Mixed-
phase TOFs grown at higher temperatures reveal two band-
to-band transition features at Eg154.0 eV and
Eg254.5 eV.33 The origin of Eg1 and Eg2 was assigned to
contributions of TaO2 and Ta2O5, respectively. A summary
of the band-gap values obtained for TOFs deposited by vari-
ous growth techniques is given in Table I.

A band-gap value of 5.11 eV has been obtained for
CVD-grown polycrystalline TOFs.6 In spite of the results by
Joshi and Cole6 it was claimed that a phase transition from
amorphous to crystalline causes a decrease in band gap.33

No theoretical studies are reported for the band structure
of amorphous tantalum oxide. The available experimental
results for the lowest band-to-band transition mechanism are
contradictory. It is very likely, that the absorption properties

TABLE I. Band-to-band transition energies obtained from tantalum oxide thin films grown by different deposition techniques (am5amorphous,
pol5polycrystalline, refl5reflectance, tran5transmission)

Growth technique Phase Optical method
Band gap

@eV# Remarks

reactive sputtering refl, and tran 4.07(Eg1)a!

4.5(Eg2)
electron-beam evaporation tran 4.53(Eg1)b! TOF grown at 100 °C

4.71(Eg1) TOF grown at 200 °C
ion-beam sputtering am tran 4.0(Eg1)c! substoichiometric

4.3(Eg2) stoichiometric
metalorganic solution technique pol refl-ellipsometry 5.11d!

photoinduced CVD pol tran 4.2e!

atomic layer deposition am and tran 4.0(Eg1)f! substoichiometric
pol 4.2(Eg1) amorphous

3.9...4.5 polycrystalline
magnetron sputtering am refl-ellipsometry 4.62...4.88(Eg1)g!

5.44...5.52(Eg2)

a!Ref. 2, two band-to-band transition features were assigned asEg1 andEg2 .
b!Ref. 4, two films grown at different substrate temperatures were studied.
c!Ref. 22, the features atEg1 andEg2 were assigned to substoichiometric and stoichiometric phases, respectively.
d!Ref. 6, band-gap value was assigned to crystalline TOF.
e!Ref. 31.
f!Ref. 33, a large range of band-to-band transitions was found for polycrystalline TOFs.
g!Present work.
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of TOFs will depend on their phase composition and stoichi-
ometry.

To the best of our knowledge no data exist for the opti-
cal constants~n, k! or the dielectric functions (e1 ,e2) of
amorphous and crystalline tantalum oxide in the IR spectral
region. IR transmission intensity spectra fromv5400 to
4000 cm21 of amorphous and crystalline TOFs are shown in
Refs. 13 and 29–31. No line-shape analysis of the IR spectra
to extract the dielectric function was performed. A strong
absorption feature nearv5635 cm21 was assigned to the
transverse optical~TO! phonon of amorphous tantalum
oxide.13,29 After sample annealing, the absorption peak
moved to lower frequencies nearv5520 cm21 possibly due
to crystallization of the films.13,29 Substoichiometric TOFs
reveal a broad absorption band betweenv5700 and 1100
cm21.29,31 Moisture adsorption in as-grown TOFs was de-
tected with characteristic H2O absorption lines within the IR
spectra.31 No published optical data for tantalum oxide are
available for photon energies from 5.5 to 8.5 eV.

In this work we study the optical properties of amor-
phous tantalum oxide thin films grown by rf magnetron sput-
tering on @001# silicon. Growth temperature, oxygen flux,
and total gas pressure was varied, and films with different
microporosities were obtained. For measurement of the TOF
optical properties we utilize spectroscopic ellipsometry for
photon energies from 0.03 to 8.5 eV. The ellipsometry data
are analyzed with parametric dielectric function models
throughout the spectral region investigated. An effective me-
dium approach36 is employed to explore the optical effect of
the thin-film porosity, which was studied by assuming that
all micropores are filled by adsorbed water content~moisture
fraction!. As a result we present the optical dielectric func-
tion spectra of amorphous tantalum oxide for photon ener-
gies from 0.03 to 8.5 eV~wavelengths from 40mm to 145
nm!.

The TOFs microstructure was studied by glancing angle-
of-incidence x-ray diffraction~XRD! investigations, and
atomic force microscopy~AFM!. Results for surface rough-
ness obtained by ellipsometry and AFM measurements are
compared to each other.

II. EXPERIMENT

Amorphous TOFs were grown by reactive rf magnetron
sputtering onto@001# Si substrates in a high vacuum chamber
with a basis pressure of 131026 Torr. A metal tantalum
target was sputtered using an argon–oxygen mixture of 22%
or 40% oxygen content. rf power was held constant atP
5100 W during deposition of all samples. Oxygen fluxf O2,
growth temperature, and total pressureptot were varied to
obtain different film microporosities. Sample deposition pa-
rameters are summarized in Table II.

Glancing angle-of-incidence XRD measurements were
performed in order to obtain the TOF microstructure and
phase compositions. The measurements were taken with a
commercial diffractometer using CuKa radiation. The dif-
fraction angle was scanned between 20°<2u<60°. Diffrac-
tion peaks related to crystalline phases of tantalum oxide are
expected within this region.7

Surface scans were performed in contact mode using a
commercial AFM instrument in order to study morphology
of the TOFs. We register the root mean square~rms! value
~standard deviation of the measured height values, i.e., the
standard deviation of the elongation of the AFM cantilever
tip! as a measure of the surface roughness. The rms value
was determined for sample surface scan ranges of 2mm.

All samples were measured at room temperature using
commercial variable angle-of-incidence spectroscopic ellip-
someters~SE! for photon energiesE from 0.03 to 8.5 eV. A
rotating-analyzer ellipsometer equipped with a 75 W xenon
lamp as a light source was employed for the spectral region
from 0.75 to 5.5 eV, i.e., from the NIR to the UV. Measure-
ments were taken at multiple angles of incidenceFa565°,
70°, 75°, and 80°. The NIR–UV ellipsometer system is fur-
ther equipped with an automated compensator which allows
accurate determination of ellipsometric parameterD.

Spectroscopic ellipsometry experiments within the IR
~IR–SE! were carried out in the wave number range from
300 to 8000 cm21 ~0.03–1 eV! at one angle of incidence
Fa565°. A commercial rotating-polarizer, rotating-
compensator, Fourier-transform based variable angle-of-
incidence ellipsometer was used.

For measurements in the vacuum-UV~VUV ! spectral
region ~5–8.5 eV, wavelengths 248–145 nm! the samples
were placed in a chamber purged with dry nitrogen. A
rotating-analyzer ellipsometer with automated VUV com-
pensator, and VUV polarizers was attached to the chamber
~VUV–SE!. A deuterium lamp was used as the light source.
Measurements were taken at a single angle of incidence of
Fa575°.

III. THEORY

Ellipsometry can be used to determine the dielectric
functione and thickness of thin films by comparing the mea-
sured data with a model calculation. The standard ellipso-
metric parameters are defined byC andD. They are related
to the complex reflectance ratior with

r5
Rp

Rs
5tanC exp~ iD!, ~1!

whereRp andRs are the reflection coefficients for light po-
larized parallel~p! and perpendicular~s! to the plane of in-
cidence, respectively.37 The pseudodielectric function̂e& is a
common representation of the ellipsometric dataC andD via
a ~ambient-substrate! model37

TABLE II. Sample growth parameters used in this work. Argon flux was 20
sccm for all samples, and rf power was 100 W.

Sample
Temperature

@°C# f O2 @sccm# @ptot# @mTorr#

Ta1 20 4.5 15
Ta2 20 8.0 15
Ta3 100 4.5 15
Ta4 200 4.5 15
Ta5 20 4.5 17
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^e&5ea~@~12r!/~11r!#2 sin2 Fa1cos2 Fa!tan2 Fa .
~2!

The ambient dielectric functionea is unity. The ellipso-
metric parameters depend on the photon energyE, the
sample layer structure, the material dielectric functions, and
the angle of incidenceFa . A model calculation is needed for
sample analysis.38 We use a two-layer model that includes
the Si substrate, the TOFs, the surface roughness, and the
ambient. The optical response of TOF is represented by an
effective medium approach36 in order to distinguish the tan-
talum oxide dielectric functioneTa from the amount of water
adsorbed in the TOF micropores. The same effective me-
dium approximation model can simulate the effect of surface
roughness for short wavelengths. The IR data did not reveal
sensitivity to surface roughness, because scattering becomes
inefficient for long wavelengths. The IR and the NIR–VUV
experimental data are analyzed independently. Tabulated di-
electric function values are used to model the optical re-
sponse of silicon.39 H2O optical constants were taken from
Palik40 for NIR–VUV wavelengths, and from Tiwaldet al.41

for the IR spectral region. Values for tantalum oxide dielec-
tric function, TOF thickness, film and moisture fractions, and
the surface roughness layer thickness remain as unknown
parameters. A regression analysis is used to vary the model
parameters until the calculated and measured data match as
closely as possible. This is done by minimizing the following
mean square error function, which is weighted to the esti-
mated experimental errors

j25
1

2s2k (
i 51

s F S C i2C i
c

s i
s D 2

1S D i2D i
c

s i
D D 2G . ~3!

S denotes the number of measured (C i ,D i) data pairs,k is
the number of real-valued fit parameters, andC i

c , D i
c are the

calculated ellipsometric parameters at photon energyEi .42,43

The random experimental errors (s i
C , s i

D) were appropri-
ately propagated into the error bars on the fit parameters. The
error bars also represent finite correlation values between the
fit parameters~see Jellison,38 see also Ref. 44!.

Model dielectric functions~MDFs! can greatly reduce
the number of free parameters. Simple parametric MDFs
such as the Cauchy model for dielectrics,38 or the Zollner
model for semiconductors native oxides45 are often
utilized.43,46 Separate MDFs are employed in this work for
the tantalum oxide IR and NIR–VUV dielectric function
spectra, respectively. For the NIR–VUV data a general para-
metric functional model based on the Kim and Garland
approach47–49 is used to describe and fiteTa for amorphous
tantalum oxide. The mathematical details of this model are
discussed elsewhere.50 Briefly, the key elements of this
model are Kramers–Kronig correct functions with Gaussian
broadenings. These functions allow superposition of critical
point structures, which are composed of continuous polyno-
mial sections. For this model, 28 internal parameters were
used in the fitting process. Some correlation exists among the
parameters values. This means that multiple parameter sets
exist which all provide the same line shape. However, be-
cause we are interested in the final dielectric function rather
the final internal model parameter values the fact that mul-

tiple parameter sets can produce nearly identical dielectric
functions is not a limiting concern. Note that the dielectric
function line shape is uniquely determined by the ellipsomet-
ric experiment. We have further fitted the line shapes of stan-
dard Lorentz oscillator approximations38 to the ellipsometric
data locally within the spectral region of the fundamental
band-to-band transitions. For this procedure we also allowed
the structural parameters~surface roughness layer and mois-
ture content in the films! to vary independently~see Sec. IV!.
We thereby obtained the transition energies and broadening
values within the standard Lorentz oscillator critical-point
approach for tantalum oxide.38

Contributions toeTa due to resonant polar bond vibra-
tions in the IR spectral region (eL) are approximated by
classical Lorentz oscillator lineshapes

eL5e` FvLO
2 2v22 ivGLO

vTO
2 2v22 ivGTO

G , ~4!

wheree` is the high-frequency dielectric constant, andvTO,
vLO , andGTO, GLO are the transverse optical~TO! and lon-
gitudinal optical~LO! phonon frequencies, and broadening
parameters, respectively.51

IR-active modes with low polarity can be treated as
Lorenztian line shapes with small TO–LO splitting values
dv25vLO

2 2vTO
2 !vTO

2 .52 The IR dielectric function can be
factored into the lattice contributioneL and impurity contri-
butions as follows:

eTa5eL•)
i 51

j S 11
idg iv2dv i

2

v21 ig IM, iv2v IM, i
2 D , ~5!

with the center frequenciesv IM, I and broadening parameter
g IM, I of the impurity modes.52 The line shape parameterdg I

accounts for anharmonic coupling effects for spectrally adja-
cent modes.51,52

IV. RESULTS AND DISCUSSION

XRD spectra of the tantalum oxide thin films did not
reveal reflections from tantalum oxide lattice planes. We
therefore consider our TOF sample as ‘‘x-ray’’ amorphous.
The surface morphology of the TOF samples was studied by
AFM ~Fig. 1!. We found that an increase of deposition tem-
perature and oxygen flux rate improved the surface quality
resulting in lower rms values. Figure 1 shows AFM micro-
graphs of the TOF surface morphology for Ta1~a! and Ta2
~b!, which reveal the highest and lowest rms values, respec-
tively. rms values from all samples are summarized in Table
III.

The real@^e1&; ~a!# and imaginary@^e2&; ~b!# parts of
the pseudodielectric function̂e& from our amorphous TOF
samples are shown in Fig. 2 in the spectral region from 0.75
to 8.5 eV. The graphs are shifted for convenience. The sym-
bols refer to the experimental NIR–VUV–SE data, and the
solid lines correspond to the best-fit calculation. Near and
below the band-gap energyEg ~see also Table III! the
pseudodielectric function spectra are dominated by multiple
reflections within the film interfaces, whereas differences in
film thickness result in different interference patterns. Note
that the best-fit calculation accurately matches the experi-
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mental data, especially in the near-band-gap region. The ex-
perimental data were analyzed using a two-layer model. An
effective medium approach was used to model the optical
properties of the TOF and the surface roughness layer. For
TOF the effective dielectric functione follows from

05 f m

em2e

em12e
1~12 f m!

eTa2e

eTa12e
, ~6!

where em , eTa, and f m , f Ta5(12 f m) are the dielectric
functions and volume fractions of H2O(m) and tantalum ox-

ide ~Ta!, respectively. The same formalism can be used to
effectively model surface roughness assuming an average
void fraction (v) of 50% within a virtual top layer with
thicknessdrough(ev51). The dielectric function spectraeTa

were obtained using a generalized parametric semiconductor
dielectric function model.47–50 This model possesses high
flexibility with respect to arbitrary but Kramers–Kronig con-
sistent line shapes of the real (e1) and imaginary (e2) parts
of eTa.

Dielectric function line shape for amorphous tantalum
oxide, TOF thickness, percentage of moisture fraction and
thickness of the surface roughness layer were then obtained
from the regression analysis of the experimental data~see
Table III!. Table III also contains the index of refractionn at
l5550 nm (E52.48 eV). Except for Ta3 we obtain a highly
consistent index value of approximately 2.13...2.16 from all
samples despite their different microstructures. The surface

FIG. 1. AFM images from the surface morphology of TOF samples Ta1~a!
and Ta2~b!. The rms values of 2.76 and 1.25 nm for Ta1 and Ta2, respec-
tively, were considered as a measure of the surface roughness.

TABLE III. Sample structure parameters and band-gap energies obtained from NIR–VUV–SE data and AFM
analysis.

Sample
t

@nm#
Eg1

@eV#
Eg2

@eV#
n

l5550 nm
f m

@%#
t rough @nm#

~SE!
rms @nm#
~AFM!

Ta1 42665 4.6560.05 5.4360.06 2.13 1662 9.160.2 3
Ta2 17563 4.8960.08 5.2660.09 2.14 261 4.460.1 1
Ta3 31665 4.6860.03 5.4560.04 2.04 261 8.160.1 2
Ta4 39465 4.7360.03 5.5160.04 2.16 461 6.360.1 2
Ta5 46565 4.6360.03 2.16 261 5.860.1 2

FIG. 2. Pseudodielectric function̂e&5^e1&1 i ^e2& of amorphous tantalum
oxide thin films. The solid lines correspond to the best fit of the experimen-
tal data@symbols,Fa565° ~squares!, 70° ~diamonds!, 75° ~up triangles!#.
Parameters obtained from regression analysis are summarized in Table III.
The experimental data reveal the onset of absorption due to the band gap at
4.5 eV. Below the band gap the material is transparent. Above the band gap
the material is absorbing with no higher energy transitions observed. Experi-
mental VUV data for Ta5 are not available. Graphs are shifted for conve-
nience.@^e1&: ~a!, ^e2&: ~b!#.
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roughness layer thickness compares well with the percentage
of void fraction and the rms value obtained by AFM~Table
III !. The TOF with the largest~smallest! surface roughness
layer thickness also shows the largest~smallest! rms value,
respectively. A similar tendency is observed for the rms val-
ues and the percentage of void fraction.

Figure 3 shows a magnification of the real~a! and imagi-
nary parts~b! of ^e& from Ta3 for photon energies from 4 to
8.5 eV. Absorption within the amorphous TOF occurs due to
the onset of band-to-band transitions in this spectral region.
The insets in Figs. 3~a! and 3~b! further enlarge the band-gap
region from 4.5 to 6.0 eV. The vertical arrows indicate the
two band-to-band transition energies, which were identified
from line shape analysis of the amorphous tantalum oxide
dielectric functioneTa. Spectra foreTa were extracted during
analysis of the ellipsometry data using a generalized para-
metric dielectric function model.50 The symbols in Fig. 3
refer to the experimental data points, and the solid lines are
the best-fit calculations employingeTa ~see also Fig. 8!, and
TOF thickness and void fractions and surface roughness
layer thickness as discussed above~see Table III!. Note the
excellent agreement between experimental and best-fit model
data. The energies of the band-to-band transitions were ob-
tained by locally fitting Lorentzian line shapes to the experi-
mental ellipsometry spectra from 4.2 to 6 eV. The solid lines
within the insets of Figs. 3~a! and 3~b! refer to the best-fit
line shape using two Lorentz oscillators. In this spectral re-
gion the Lorentz line shapes are almost identical to that ob-
tained by the generalized parametric dielectric function
model @solid lines in Figs. 3~a! and 3~b!#. The center fre-
quencies of the Lorentz line shapes are treated here as char-
acteristic band-to-band transition energies for our TOF films.

The structural parametersf m and t rough were also allowed to
vary during the local Lorentz line shape analysis, but found
to be stable inside their error range~see Table III! with re-
spect to the results obtained using the general parameter
function set and the NIR–VUV wavelength range fit.Eg1

and Eg2 vary slightly for different samples, and the results
are summarized in Table III. Note that no experimental VUV
data were available for sample Ta5 because the TOF peeled
off the substrate soon after deposition, which prevented de-
termination ofEg2 for Ta5.

Figures 4~a!and 4~b! present experimental~symbols! and
generated~solid lines! IR ellipsometry spectra from samples
Ta1 to Ta4 for wave numbers fromv5300 to 8000 cm21.
@0.03–1 eV;C: ~a!, D: ~b!; spectra are shifted for conve-
nience.# Surface roughness, when affecting UV–VUV ellip-
sometry data to some extent only, is not significant for long
wavelength investigations. The experimental data were
therefore analyzed employing the same model as used for the
NIR–VUV data except for the surface roughness layer. The
generated data of Figs. 4~a! and 4~b! correspond to the best-
fit model calculation ofeTa using Lorentzian line shapes. The
amorphous tantalum oxide dielectric function parameters are
vTOa, vLOa, GTOa, GLOa, e` , frequencies (v IMP) and
broadening values (G IMP) of several impurity modes, and a
long-tail contribution from polar resonance absorption with
center frequency near zero (vTO050). TOF thickness and
percentage of void fraction are further model parameters.
The best-fit results are summarized in Table IV. Similar ton
in the NIR–VUV spectral region the TOF samples, except
Ta3, show a highly consistente` value, in spite of different
microporosities. Amorphous tantalum oxide phonon reso-
nances~dotted line in Fig. 4! and impurity modes are located
in the wave number region betweenv5600 and 1300 cm21.

FIG. 3. Experimental~symbols! and generated~solid line! pseudodielectric
function ^e& for Ta3 in the UV–VUV spectral region@^e1&: ~a!, ^e2&: ~b! of
^e&#. The insets enlarge the fundamental band-gap region. Two transitions
were found as indicated by arrows. The solid lines within the insets are the
best-fit Lorentz oscillator line shapes obtained from analysis of the experi-
mental data forE54.5...6 eV.

FIG. 4. Experimental~symbols! and generated IR ellipsometry data~solid
lines! obtained from sample Ta1 to Ta4 in the wave number region from 300
to 8000 cm21 ~0.03–1 eV! @~a!: C; ~b!: cos(D); Fa570°]. The spectra for
Ta1, Ta3, and Ta4 show near to the thickness interference a broad absorp-
tion near 3600 cm21 due to water incorporation as indicated by dashed-
dotted line~M!. The dotted line~T! refers to the amorphous tantalum oxide
phonon resonance. Graphs are shifted for convenience, and ‘‘D’’ spectra are
transformed into the ‘‘cosD’’ presentation to keep graphs bound between
21 and 1.
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Additional small resonance structures are caused by mois-
ture, and were detected within samples Ta1, Ta3, and Ta4
nearv53600 cm21 ~dash-dotted line in Fig. 4!. The features
above 1100 cm21 with a long period are due to thickness
interference effects within the TOF samples. The phonon
resonance parametersvTOa, andvLOa do not change signifi-
cantly for samples grown under different conditions. Depo-
sition parameters only influence the growth rate~film thick-
ness! and therefore the porosity and the TOF moisture
incorporation. Note that TOF thickness obtained from IR and
NIR–VUV data analysis are the same within the experimen-
tal error bars. The IR void fraction reveals a similar trend
with deposition parameters as that obtained from the NIR–
VUV data. Note also that the IR–SE data were measured
after taking the NIR–UV and UV–VUV data, and moisture
absorption may have increased between experiments.

Figures 5~a! and 5~b! show details of experimental~open
cycles! and generated~solid lines! C and D spectra from
sample Ta1 for wave numbers fromv5350 to 2250 cm21.
The model function for the generated data include one
Lorentzian absorption line shape atvTOa5648 cm21 with
vLOa5734 cm21, GTOa, GLOa, and e`54.2. Two impurity
modes were further included atv IM15778 cm21 and v IM2

5977 cm21. A long-tail background absorption was neces-

sary to account for the increase in Im$eTa% and the decrease
in Re$eTa% for long wavelengths~See also Figs. 7 and 8!.
This absorption was modeled by a Lorentzian line shape with
center energy set to infinite wavelength (vTO050 cm21). To
reveal the origin of this long-tail contribution ellipsometry
investigations should be performed at much longer wave-
lengths than at those measured here. Tantalum oxide is
known as a material with a large static dielectric constant.
Therefore Im$eTa% should be zero and Re$eTa% should be
large and positive at zero photon energy. This can only be
achieved in our model ifvTO0.0 cm21. This would indicate
a strong but polar optical mode at long wavelengths in amor-
phous tantalum oxide. On the other hand, free carriers within
the TOF samples could screen the polar lattice bond reso-
nances, and the long-tail contribution would then be due to
IR-optical free-carrier effects. Up to this point we are unable
to differentiate between both effects, as the IR investigations
were limited to 0.03 eV. The LO0 frequencies~in Table IV!
and the broadening parameters may be regarded here as nec-
essary parameters to account for the low-frequency behavior
of our IR data.

The spectral position of another weak impurity-like
mode (v IM3) is indicated in Fig. 5~a!. However, the small
contributions due tov IM3 were not considered during analy-
sis of samples Ta1–Ta4. Figures 6~a! and 6~b! present details
of experimental~open cycles! and generated~solid lines! C
and D spectra from sample Ta5 for wave numbers fromv
5350 to 2250 cm21. This sample had already been peeled
off the substrate before the IR data were measured, and it
was necessary to modify the model assumptions for ellip-
sometry data analysis. In addition, absorption features due to
native silicon oxide (TOSiO2), two additional impurity-like
modes (v IM3 ,v IM4) were necessary to model the strong
changes inC and D between 1000 and 1500 cm21. The
resulting parameters forvTOa, vLOa, e` ,vLO0, and the four
impurity modes are given in Table IV as well. The origins
for the impurity-like modes are still unknown. At least we
tentatively assignv IM3 andv IM4 to Ta–OH or Ta–H bond-
ing absorptions because reactions of hydrogen and hydroxyl
with tantalum may occur at dangling bonds in the amorphous
tantalum oxide network. The increased intensity ofv IM3 and
v IM4 in sample Ta5 can be explained by the increased reac-
tion surface after the film has peeled off the substrate.

The best-fit amorphous tantalum oxide optical function
spectra for sample Ta2 is shown as an example in Figs. 7 and
8 in terms of the real~Fig. 7~a!: e1 ; Fig. 8~a!: n! and imagi-

TABLE IV. Phonon mode frequencies and sample structure parameters obtained from IR–SE data analysis.

TOa @cm21# LOa @cm21# IM1 @cm21# IM2 @cm21# IM3 @cm21# IM4 @cm21# e`

LO0

@cm21# t @nm# f m @%#

Ta1 64763 77862 73462 97762 4.260.1 58769 42261 1861
Ta2 63163 79462 73463 98062 4.260.1 504614 16561 061
Ta3 63162 78763 73362 97662 3.860.1 56267 31261 661
Ta4 63962 78762 73462 97962 4.360.1 53566 39461 1061
Ta5 64762 77862 73562 104862 125361 130661 ¯

a! 503611 ¯

a!
¯

a!

a!TOF thickness,e` and moisture fractionf m parameter are not given for Ta5. Although it was fitted for those parameters, they did not characterize real sample
properties, because the sample was peeled off the substrate.

FIG. 5. Experimental~circles! and generated IR ellipsometry data~solid
line! obtained from sample Ta1. Arrows indicate the spectral position of the
amorphous tantalum oxide phonon modes atvTO5648 cm21~TOa), and
vLO5778 cm21~LOa), and the spectral positions of the impurity modes at
v IM15734 cm21, andv IM25977 cm21. Note thatv IM3;1251 cm21 was not
fitted during data analysis.
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nary ~Fig. 7~b!: e2 ; Fig. 8~b!: k! parts of the dielectric func-
tion or optical constants, respectively. Significant model pa-
rameters are listed in Tables III and IV. Below the band gap
the TOF sample is transparent. The region of transparency is
limited in the long-wavelength range by resonant bonding
absorption, and in the short-wavelength region by the onset
of absorption due to electronic band-to-band transitions. A
rather sharp onset of the band-to-band absorption is observed
in all of our TOF samples. As discussed above, the increase
~decrease! in e2(e1) below the tantalum oxide phonon reso-

nance near;0.09 eV is due to a strong polar absorption
mechanisms with center wavelength much longer than used
for our investigations here. Note that the optical function
spectra extracted from the IR and the NIR–VUV data per-
fectly match within the experimental error bars.

V. CONCLUSIONS

The dielectric functione5e11 ie2 and the critical point
parameters, such as the band-gap energy, and the spectral
position of transverse and longitudinal optical phonon are
reported for amorphous tantalum oxide thin films in the pho-
ton energy range fromE50.03 to 8.5 eV. The samples were
grown with different oxygen flux, deposition temperatures,
and deposition pressures. XRD measurements revealed their
amorphous structure. AFM investigations provided a mea-
sure of sample surface roughness.

The NIR–VUV–SE data were analyzed using a two-
layer model, one layer for the tantalum oxide optical proper-
ties including the thin film moisture fraction employing an
effective medium approach, and a surface roughness layer.
Two band-gap energies were found at (Eg1;4.7 eV), and at
Eg2;5.4 eV for all samples.

The IR–SE spectra revealed the transverse and longitu-
dinal optical phonon frequencies for amorphous tantalum ox-
ide at vTO5631 cm21 and vLO5787 cm21, respectively.
Additional weak absorptions were treated as impurity modes,
and found atv IM15733 cm21 and v IM25976 cm21. Two
further impurity modes were observed atv IM351253 cm21

and v IM451306 cm21 within a sample where the tantalum
oxide film peeled off from the substrate.

Refractive indexn fit in NIR–VUV, and high-frequency
dielectric constante` fit in the IR, are consistent for the
tantalum oxide films, despite different sample microporosi-
ties.

Results from ellipsometry analysis for film thickness,
surface roughness, and volume fraction of moisture incorpo-

FIG. 6. Experimental~circles! and generated IR ellipsometry data~solid
line! obtained from sample Ta5. Contribution from the native SiO2 layer at
vSiO25470 cm21, andvSiO251070 cm21 were found, because the film had
many cracks and partly peeled off from the substrate. Arrows indicate the
spectral position of the amorphous tantalum oxide phonon modes, and the
spectral positions of four impurity modes observed here.

FIG. 7. Dielectric functione5e11 i e2 of amorphous tantalum oxide thin
films, extracted from line shape analysis of experimental ellipsometry data,
@~a!: e1 , ~b!: e2]. Note the sharp onset of absorption caused by the band
gap. The imaginary parte2 between the phonon region and the onset of
electronic band-to-band transition is too small to be measured by spectro-
scopic ellipsometry and at least less than the experimental error bar on each
e2 value (e2,0.01).

FIG. 8. Same as Fig. 7 forN5n1 ik, @~a!: n, ~b!: k#.
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ration are consistent between models for IR and NIR–VUV
data analysis, as well as with AFM results.
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