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Abstract: The phenomenon of optical superoscillation provides an unprecedented way to solve
the problem of optical far-field label-free super-resolution imaging. Numerous optical devices that
enable superoscillatory focusing were developed based on scalar and vector diffraction theories in
the past several years. However, these reported devices are designed according to the half-wave zone
method in spatial coordinates. In this paper, we propose a dielectric metalens for superoscillatory
focusing based on the diffraction of angular Bessel functional phase modulated vector field, under
the inspiration of the tightly autofocusing property of a radially polarized high-order Bessel beam.
Based on this kind of metalens with a numerical aperture (NA) of 0.9, the linearly polarized light is
converted into a radially polarized one and then focus into a superoscillating focal spot with the size
of 0.32λ/NA. This angular spectrum modulation theory involved in this paper provides a different
way of designing superoscillatory devices.

Keywords: superoscillation; vector beam; metalens; polarization; diffraction

1. Introduction

The development of optical imaging technology has significantly promoted the inno-
vation and technological development of physics, chemistry, materials, biomedicine, and
other fields. However, limited by the optical diffraction limit, namely, Abbe’s diffraction
limit [1], it is difficult for conventional optical imaging systems to achieve sub-diffractive
resolution in these applications. In recent years, many milestone super-resolution tech-
niques have emerged [2–8], such as fluorescence microscopy [6] and near-field scanning
imaging technologies [2], to overcome the critical limit and improve the imaging resolution
of optical systems. Whereas, for far-field label-free optical imaging, the imaging resolution
is still a challenge to further improve [9]. The discovery of the optical superoscillation
phenomenon opens up a new avenue to overcome this problem [10].

Optical superoscillation refers to the phenomenon that the coherent superposition of
light fields with lower spatial frequencies form a structured light field in which the local
oscillation frequency is greater than its maximum frequency [11,12]. Since the local spatial
frequency is greater than the maximum frequency of the system [13], superoscillating
light fields can produce a focal spot with a subdiffraction limit scale in the far-field local
area without relying on evanescent wave extraction and fluorescent labeling [14–16]. In
2006, Berry and Popescu firstly proposed that light field diffracted through subwavelength
grating can generate arbitrarily small spatial energy regions without relying on evanescent
waves, which theoretically proved the feasibility of using superoscillation methods to
improve the resolution of imaging systems [10]. Lately, Zheludev first experimentally
demonstrated this typical phenomenon by observing a focal spot of size 0.44λ generated
from the diffraction of a quasi-periodic metal nano-hole array screen [17]. Subsequently,
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various devices and design methods for generating superoscillating light fields have been
continuously proposed [18–25].

Recently, the rapidly developed metasurfaces, which are made of 2D arrays with
anisotropic units and enable the simultaneous modulation of multiple parameters on a
subwavelength scale [26,27], bring new opportunities for the development of superoscilla-
tory focusing devices [16,28–34]. For example, Qin et al. proposed a metalens with binary
amplitude modulation capacity, which can generate a needle spot with a length of 12λ
and size of 0.42λ for the incidence of azimuthally polarized light field carrying vortex
phase [35]. In 2019, Yuan et al. produced a plasmonic metalens with an effective numerical
aperture (NA) of 1.52, which can create a superoscillating hotspot with a size of 0.33λ in
free space [36].

In this paper, we propose a type of superoscillatory focusing metalens based on
the diffraction characteristics of angular Bessel functional phase modulated vector field.
By utilizing the tightly autofocusing property of radially polarized high-order Bessel
beam [37,38], as well as the Richard–Wolf vector diffraction theory, a dielectric metalens
with the capacity of simultaneous modulation of polarization and phase is designed, to
create superoscillating focal field with a size that is considerably smaller than the diffraction
limit. As a theoretical prediction and experimental demonstration, dielectric metalenses
with NA = 0.9, as well as hotspots as small as 0.32λ/NA in size, are reported.

2. Theory and Method

The generation principle of the superoscillating light field is shown in Figure 1. As
shown, a linearly polarized beam is incident on the metalens that enables the polarization
conversion and phase modulation effects. The transmitted light field is converted into a
radially polarized one, whose local polarization direction changes along the radial and
azimuthal directions simultaneously, as the yellow arrows show in Figure 1, and then is
focused into a focal field with a superoscillatory hotspot.
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Figure 1. Schematic illustration of the superoscillatory focusing metalens. The arrows depict the
instantaneous directions of electric component of the light field input and output from the metalens.

To design the metalens, we take the advantage of the tightly autofocusing property
of higher-order vector Bessel beams. First, considering that the cylindrical vector light
field can break the optical diffraction limit under the tightly focusing condition [39,40], the
radially polarized vector beam is used as the incident beam. Second, in order to further
reduce the size of the focal spot, a phase-type diffractive optical element is introduced
to control the wavefront of the tightly focusing vector beam [41–43]. Since the incident
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beam is a fundamental-order one, the modulation phase of the diffractive optical element
is designed to be a high-order angular Bessel function, which can be written as:

Φ0(θ) = {1+sgn[J10(kr f tan(θ))]}π/2, (1)

where J10(·) is the 10th order Bessel function of the first kind; sgn(·) denotes the sign
function; kr is the transverse wave number; f is the focal length of the tightly focusing lens;
and θ is the discrete opening angle in the focusing model. Different from the traditional half-
band principle that has uniform width [12], the width of the half-band here is dependent
on the angular function of Equation (1).

To select the kr, we numerically calculated the focal field according to the Richards–
Wolf vectorial diffraction integral [44,45], whose electric components are expressed as:Ex

Ey
Ez

 = − ik0 f
2π

θmax∫
0

2π∫
0

A(θ, ϕ)
√

cos θP(θ, ϕ)eik0[r sin θ cos (ϕ−φ)+z cos θ] sin θdθdϕ, (2)

where the polarization vector P(θ,ϕ) is:

P =

a
[
1 + cos2 ϕ(cos θ − 1)

]
+ b[sin ϕ cos ϕ(cos θ − 1)]

a[sin ϕ cos ϕ(cos θ − 1)] + b
[
1 + sin2 ϕ(cos θ − 1)

]
a(− sin θ cos ϕ) + b(− sin θ sin ϕ)

, (3)

Here, (r,φ,z) are the cylindrical coordinates in the focal region, sinθmax = NA, A(θ,ϕ)
corresponds to the uniform complex amplitude of input beam under the modulation of
phase Φ0(θ), a = cos(ϕ) and b = sin(ϕ) are the x- and y-polarized components corresponding
to the radial vector beams. Figure 2a shows the modulation phase of such a diffractive
optical element when kr = 0.43k0 with k0 = 2π/λ the wave number, and the interval of θ is
0.1 radian. Figure 2b and 2c exhibit the numerically calculated intensity distributions of the
total field and its longitudinal component by using the Richards–Wolf vector diffraction
theory. The wavelength is 633 nm and the NA of the focusing lens is 0.9. Figure 2d shows
the intensity distribution of the total light field along the radial direction. Clearly, the
full width at half maximum (FWHM) of the central hotspot is about 0.29λ/NA, which is
significantly smaller than the criterion of 0.38λ/NA [12], indicating the superoscillation
phenomenon. Figure 2e illustrates the intensity distributions of focal fields corresponding
to the metalens designed from 20th and 50th order Bessel functions of the first kind with
kr = 0.68k0 and 0.66k0, respectively. It can be seen that for high-order Bessel functions,
superoscillation can be generated by finding a suitable kr. Here, we use the 10th-order
Bessel function with a different kr to demonstrate our approach.

Considering the integratable and compact advantages of the metasurface, we assemble
multiple functions of polarization conversion, phase modulation of the diffractive optical
element, and tightly focusing to design the metalens. Because of the independence of phase
and polarization modulations, we first integrate the diffractive optical element with the tightly
focusing lens, of which the phase distribution is expressed as Φ(r) = −k0(

√
r2 + f 2− f ), and

then generate the combined modulation phase of the metalens, whose profile is shown in
Figure 2f. In order to realize polarization modulation, we select geometries whose phase
retardation of two orthogonal eigenstates is π, namely, half-wave retardant meta-atoms,
as the meta-atom, under the premise of the incidence of linear polarization. For the case
of horizontally polarized incidence, the metalens thus can be equivalent to a half-order
q-plate with a rotation angle of local meta-atom characterized as α = ϕ/2.
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Figure 2. Generation of superoscillatory focal field from the tightly focusing of vector light field.
(a) Binary phase of the diffractive optical element designed from angular Bessel function with
kr = 0.43k and NA = 0.9; (b) Simulated total intensity distribution of the focal field; (c) The intensity
distribution of the longitudinal component Iz at the focal plane; (d) Intensity distribution along the
radial direction. (e) Intensity distributions of focal fields corresponding to the metalens designed
from 20th and 50th order Bessel functions of the first kind with kr = 0.68k0 and 0.66k0, respectively;
(f) Modulation phase of the metalens generated from the combination of tightly focusing phase and
binary phase in 2a.

According to this principle, we chose polycrystalline silicon (poly-Si) and SiO2 as high
refractive index materials and substrates to fabricate the metalens, whose meta-atom is
schematically shown in Figure 3a. As shown, the meta-atom consists of a poly-Si rectangle
nanopillar deposited on the glass substrate. The height and period of the nanopillar are
H = 570 nm and P = 450 nm, respectively, and the refractive index is n = 3.36329 + 0.01162i.
We calculated the response of the meta-atom by using a finite-difference time-domain
(Lumerical software, Ansys Canada Ltd., Vancouver, Canada) simulation and selected
16 geometric configurations meeting the polarization and phase modulation conditions,
that is, two linearly polarized eigenstates (Ex and Ey) that keep a π phase retardation
difference, i.e., δ = |ϕx – ϕy| = π, while the propagation phase increases linearly in an
interval of 2π, i.e., ϕn

0 = (ϕn
x+ ϕn

y )/2 = nπ/16. Figure 3b depicts the transmission amplitude,
propagation phase ϕ0, and retardation difference δ of these 16 configurations. In addition,
for the central singularity, we picked out a configuration with near zeroth transmission
amplitudes, i.e., Ex ≈ Ey ≈ 0. Its geometric parameters are L = 276 nm and W = 234 nm. We
fabricated the metalens with a transmission-type configuration by using standard electron-
beam lithography and inductively coupled plasma etching [46,47]. Figure 3c shows the
scanning electron microscope images of the metalens and its local structure. The sample is
composed of 800 × 800 elements with a lattice constant of 450 nm along the x- and y-axes.
The experiment is carried out with the setup shown in Figure 3d. A linearly polarized
beam from the He-Ne laser is converted into a horizontal one after passing through the
half-wave plate, and then a normal incident into the metalens. The superoscillating focal
field is generated at the focal plane of the metalens, we used a microscopic measurement
system consisting of a 100× objective lens (Mitutoyo, NA = 0.9), tube-lens, and a CCD
camera (DMK, 23U445) to observe the focal field.
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Figure 3. Design and characterization of the metalens. (a) Schematic illustration of an element
consisting of a poly-Si nanopillar and glass substrate. The geometric parameters of the element
are denoted as H (height), L (length), W (width), and P (period), the rotation angle is denoted as α;
(b) Transmission amplitude (Ex and Ey) and phase retardation [δ = ϕx − ϕy and ϕ0 = (ϕx + ϕy)/2] of
eigenstates within 16 selected elements; (c) Scanning electron microscope images of the metalens and
its local structure. The sample is composed of 800 × 800 elements with a lattice constant of 450 nm
along x- and y-axes. The scale bar is 500 nm; (d) Sketch of experimental setup, HWP: half-wave plate.

3. Results

Figure 4 shows the measured intensity distribution near the back face of the metalens,
namely, the intensity of the transmitted light field when the metalens is illuminated by
a horizontally polarized beam, where these three panels correspond to the total field
and its horizontal and vertical polarization components, respectively. As the measured
intensity patterns show, the transmitted field presents transverse intensity distribution and
variations the same as the radial vector beam, indicating the successful transformation of
incident polarization.
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Figure 4. Intensity distribution of light field transmitted from the metalens in the case of horizontally
polarized beam incidence. (a) Total intensity; (b) Horizontal component; (c) Vertical component. The
arrows depict the orientation of polarization analyzer.

In the experiment, we designed three superoscillatory metalenses (named SOL1, SOL2,
and SOL3) according to Equation (1), of which the transverse wave vectors are chosen as
kr = 0.08k0, 0.29k0, and 0.43k0, respectively. The simulated and measured intensity distribu-
tions of the focal fields are shown in Figure 5a–c. Figure 5d gives the line-scan intensity
profiles corresponding to the simulated (red) and measured (black) results indicated by
the dashed lines. All results are obtained with the same incident condition and normal-
ized by the maximum intensity. From these simulated results, it can be seen that the
central hotspots in three cases both present the superoscillation phenomenon, as shown
in Figure 5d. Among them, for the case of kr = 0.29k0, the FWHM of the superoscillating
hotspot can be reduced to 0.25λ/NA. However, the relative intensity of this hotspot with
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the sideband is the smallest. In this case of kr = 0.43k0, although the resulting hotspot
has the largest field of view and the lowest relative intensity of the nearest sideband, the
size of the central hot spot is the largest, with a magnitude of about 0.29λ/NA. These
results illustrate that the adopted angular Bessel modulation method has high applicability,
and can generate superoscillating focal fields for various requirements by optimizing its
parameters. Comparing the theoretical and experimental results, one can find that the
experimental results are basically consistent with the theoretical predictions. In practice,
the smallest size of the hotspot is about 0.32λ/NA when kr = 0.29k0, which is still smaller
than the superoscillatory criterion of 0.38λ/NA, indicating the superoscillatory focusing
capability of this type of metalens. In addition, we would like to note that the sizes of the
measured focal spots are greater than these theoretical ones. The reason is mainly due to
the non-uniform transmission and direct transmission components due to the phase delay
errors caused by the fabrication errors and imperfections of the chosen geometry, as shown
in Figure 4.
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Figure 5. Experimental results of three superoscillatory metalenses. (a–c) Intensity distributions of
the simulated and measured focal fields generated by metalenses with parameters of kr = 0.08k0,
0.29k0, and 0.43k0; (d) Normalized line-scan intensity profiles at the focal plane (indicated by dashed
lines): simulation (red) and experiment (black).

4. Conclusions

In conclusion, we proposed a dielectric metalens with independent polarization and
phase modulation effects to realize superoscillatory focusing. The metalens was designed
based on the tightly autofocusing property of a radially polarized high-order Bessel beam.
For the incidence of the linearly polarized beam, it can transform the uniform beam
into a radially polarized one with angular Bessel functional phase structures and then
produce a superoscillating focal field with a hotspot size as small as 0.32λ/NA. Our
method offers a different design idea for an optical device for applications such as far-field
super-resolution imaging.
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