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THE JOURNAL OF CHEMICAL PHYSICS VOLUME 54, NUMBER 3 1 FEBRUARY 1971 

Dielectric Polarization and Alignment and the Structure of Polar Fluids* 

J. D. RAMSHAW,t D. w. SCHAEFER,t AND J. S. WAUGH 

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

AND 

J. M. DEUTCH§ 

Department of Chemistry, Princeton University, Princeton, Ne:w Jersey 08540 

(Received 19 December 1969) 

An analysis is made of the information about the structure of dense polar fluids which resides in the 
dielectric constant, the Kerr constant, and the nuclear magnetic resonance (NMR) quadratic electric 
field effect. The inadequacy of the "local-field" model for liquids is discussed. The existence of a nonzero 
molecular hyperpolarizability is shown to destroy an equivalence which would otherwise exist between 
the Kerr and NMR experiments, and can easily account for apparent discrepancies between the reported 
Kerr and NMR data for nitrobenzene and nitromethane. A method is presented for removing dielectric 
boundary effects from statistical averages, so that the averages can be computed locally. 

I. INTRODUCTION brackets ("')E denote an average over the positions 
and orientations (RN, (ON) of all N molecules in the 

It has long been realized that measurements of the sample, weighted by the Boltzmann factor appropriate 
dielectric constant provide a means of investigating to equilibrium in the presence of E. It is clear that these 

intermolecular forces and the local order which these quantities provide a description of how single molecules 
forces produce in dense polar fluids. In order to inter- are aligned by the field.3 We are particularly interested 
pret the dielectric constant on the basis of the purely in (COS01)E and (P2 (COS01) )E, which we refer to as the 
local microscopic structure of the fluid (i.e., the short- polarization and alignment, respectively. We will 

range correlations between a representative molecule presently show that the dielectric constant can be 
and its nearest neighbors) it is necessary to separate the regarded as a measure of the polarization, while the 

local-order contributions from the apparently macro- NMR electric-field effect is a measure of the alignment 
scopic contribution of shape-dependent boundary and the Kerr effect measures a linear combination of 

effects. Kirkwood! developed an approximate method the two. 
of effecting this separation. Since laboratory electric fields are weak in comparison 

The dielectric constant, however, is not the only to typical molecular fields, we are normally interested 
observable quantity associated with the interaction in the low-field limit of (Pn(COS01) )E; that is, in the first 
between a polar fluid and an applied electric field. Two nonzero term in a Taylor series expansion about E= O. 

other "electric-field effects" of interest are the Kerr This limit is implicit throughout the paper unless 

effect and the quadratic electric-field effect in NMR. otherwise stated. We therefore specifically exclude 
One is led to wonder whether an extension or modifica- saturation phenomena from our discussion, although 
tion of Kirkwood's approach would make it possible their inclusion would in principle present no difficulty. 

to obtain additional information about the local struc- By exploiting the rotational transformation properties 
ture of fluids from these experiments or from other of a tensor of arbitrary rank2 and making use of a 

electric-field experiments. The present paper provides spherical average (see Sec. VI), one can show, in 

an affirmative answer to this question, and is devoted general, that (Pn(COS01)E is of order En in the low-field 
to a detailed examination of the dielectric, Kerr, and limit. Thus the polarization and alignment are linear 

NMR experiments from a unified viewpoint. Our and quadratic in the field, respectively. 
treatment reveals explicitly the interrelation between A word about electric fields is in order. We denote 
these experiments and the different kinds of structural by E the uniform externally applied electric field, whose 
information which can be obtained from them. sources are external to the sample material and are 

We begin by considering a spherical sample in assumed fixed. It is the field E with which the sample 
vacuum. In order to eliminate the boundary effects must be considered to interact. The macroscopic 
associated with this sample geometry, we will later Maxwell electric field, obtained by solving the macro­
transform to the case of a spherical sample immersed scopic Maxwell equations subject to the usual electro­
in an infinite medium of the same sample material. In static boundary conditions, is denoted by Em. For a 
either case, we have isotropy in the absence of the sphere in vacuum, it is well known that Em=3E/(~+2), 
applied field. We shall be concerned with quantities where ~ is the dielectric constant. 
of the form (Pn(COS01) )E, where 01 is the angle between For simplicity, we will limit our discussion to mole­
the permanent dipole moment of a representative cules of axial symmetry. The molecular configuration 
molecule 1 and the (uniform) externally applied field of the sample, over which statistical averages are to be 
E, P,.(z) is the nth Legendre polynomial,2 and the performed, is considered to consist only of the set 

1239 
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1240 RAMSHAW, SCHAEFER, WAUGH, AND DEUTCH 

(RN, (l)N) of all molecular positions and orientations; 

all other degrees of freedom, including molecular 

vibration, are considered to be "internal" molecular 

coordinates. All molecular parameters, such as the 

permanent dipole moment and the polarizability, are 

implicitly regarded as the appropriate averages over 

these internal coordinates. 

In Appendix A we review for convenience the conven­

tional description of the polarization of an isolated 

molecule by a uniform electric field. 

II. THE DIELECTRIC CONSTANT 

In order to reveal the dependence of the dielectric 

constant on the polarization, we consider the average 

net dipole moment per unit volume, P. In general, P is 

a function of position P(r), but for a sphere in vacuum 

both P and Em are uniform within the sample. Then 

P= V-l(M)E= V-l(L: J.Lk)E= p(J.Ll)E, (1) 
k 

where M is the instantaneous total electric dipole 

moment of the sample, produced by a particular 

configuration of the molecules, J.Lk is the dipole moment 

of molecule k, and P is the number density. The con­

stitutive relations of electrostatics (D = fErn = Em+ 

41rP) and the spherical geometry then imply that 

(f-l)/(f+2)[3/(47rp)]= (J.Ll·ell)EE-l, (2) 

where ell is a unit vector in the direction of E. The 

moment J.Ll is the sum of the permanent moment J.LIO 

(i.e., the moment of the isolated molecule in zero field) 

and the moment induced by the external field and by 

interaction with all the other molecules; it therefore 

has to be written as J.Ll(T, E), where T is a short-hand 

notation for the molecular configuration (RN, (l)N). 

In the low-field limit, we may write 

(J.Ll'ell)E= (J.Ll(T, 0) ·ell)E 

+ ([OJ.Ll(T, E) /aE]E~: ellell )0E. 

Let (el, e2, ea) be a set of orthogonal unit vectors fixed 

with respect to molecule 1, with el taken along the 

symmetry axis (permanent moment direction). Then 

(J.Ll(T, 0) ·ell)E= L: ([J.Ll(T, 0) ·ei](eWei) )E. 
i 

We now neglect fluctuations of each component of 

J.Ll(T,O) in the molecular frame about its mean value, so 

that the above average can be factored. Then in the 

low-field limit we have 

([J.Ll(T, 0) ·ei](eWei) )E= (J.Ll(T, 0) ·ei)O(eWei)E 

since (eWei)O=O. But clearly (J.Ll(T, 0) ·ei)O is zero 

unless i= 1, so that (2) becomes finally 

[(f-1) / (f+ 2) ] (3/4n-p) =,u.[ (COSOl)E/ E]+a., (3) 

where 

,u.= (J.Ll·el)O, (4a) 

3a.= (Tr[aJ.Ll(T, E)/aE]E=O)O, (4b) 

and we have used the equivalence of the x, y, and z 
laboratory axes in zero field to simplify the term a •. 
The quantities,u. and a. can be regarded as the effective 
permanent moment and mean molecular polarizability 

of molecule 1. These quantities, particularly the effec­

tive moment ,ue, can differ appreciably from their gas­

phase values since in a liquid molecule 1 is in strong 

interaction with its neighbors for almost all probable 

configurations. In large part, this strong interaction 

may be regarded as a reaction-field effect: The reaction 

field results from moments induced in the surrounding 

medium by the field of molecule 1, and acts to polarize 

molecule 1 further even in the absence of the applied 

field. The qualitative nature of this effect is well 

represented in the Onsager model4 of a polar liquid. 

The neglect of fluctuations in the development lead­

ing to Eq. (3) is essentially equivalent to approxima­

tions made by Kirkwood! and by Harris and Alder5
; 

these approximations have been discussed by Harris.6 

We note from Eq. (4a) that the effective permanent 

moment is simply the average projection of the total 

moment on the permanent moment direction. This 

definition was also introduced by Harris.6 

We see from Eq. (3) that measurement of the 

dielectric constant allows one to determine the polariza­

tion provided that ,ue and ae are known or can be 

estimated. There are at least two useful ways of ob­

taining an approximate value for ae: (a) If we require 

that Eq. (3) reduce to the Clausius-Mossotti equation 

for nonpolar molecules (note that ,ue is zero if ,u0 is 

zero), we are led to identify ae with a, the mean 

polarizability of the isolated molecule. This approxima­

tion is equivalent to the use of the Lorentz local field1 

F= (f+2)Em/3 in the defining Eq. (4b). (b) The most 

common way of dealing with a. is to introduce another 

macroscopic parameter, the high-frequency dielectric 

constant E",. If we apply a sinusoidal electric field whose 

angular frequency w is both high enough that (cos81)E 

is zero (i.e., the molecules do not have time to line up 

with the field) but low enough that a. differs negligibly 

from its zero-frequency value (assuming that it is 

possible to satisfy both conditions simultaneously), 

then 

a.= [( f",-1) / (Ew+ 2)] (3/ 47rp), 

where f., is the dielectric constant at angular frequency 

w. Equation (3) can then be written as 

(
_3 )(f-f"')(~) =,ue (COS81)E . (5) 
Ew+2 E+2 47rp E 

As a good working approximation, we can identify 

E", with n2, the square of the optical index of refraction. 

By doing this, we conclude that for typical highly 

polar liquids the a. term in (3) contributes roughly 

25% of the total. 
The estimation of ,u. is a much more difficult problem. 

If something is known about the local structure of the 

liquid, the reaction field can be estimated by the pro-
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STRUCTURE OF POLAR FLUIDS 1241 

cedure used by Kirkwood! for water, and the induced 

moment calculated from this field and the relevant 

electrical parameters (e.g., polarizability, first hyper­

polarizability, etc.) of the molecule. In the absence of 
other information, /J.e may be estimated using the 

On sager model,4 for which 

/J.e= JLO
[ (n2+ 2)(2E+ 1) J/[3 (2E+n2

) J. (6) 

Equation (6) can be expected to provide only the 

crudest estimate of JLe, since the Onsager model takes 
no account of molecular shape, hyperpolarizability, or 

short-range order. Each of these effects would be 

expected to influence JLe appreciably. 

III. THE NMR ELECTRIC-FIELD EFFECT 

The occurrence of the alignment rather than the 
polarization in NMR effects can be regarded as arising 

from the fact that magnetic dipole and electric quad­
rupole interactions of the nuclei, rather than electric 

dipole interactions, are involved. The spin Hamil­

tonians which appear in NMR can in general be written8 

(7) 

where Fq is a function, expressible in spherical tensor 

form, of the orientation of the nuclear surroundings in 
the external magnetic field Ho, and A (q) is a collection of 

spin angular momentum operators. The part of Hs 

which must be kept to calculate the steady-state radio­

frequency absorption spectrum of a fluid is obtained by 
averaging the appropriate Fq over all molecular posi­
tions and orientations representative of the fluid.8 As a 

single example, we give Hs for a nucleus of spin I?1 

whose quadrupole moment is coupled to an axially 
symmetric electric field gradient, such as might exist 

if the nucleus resides in a single covalent chemical 
bond: 

Hs= [e2qQ/4I(21-1) J(P2(COSlh) )(I·I-3I.2)+Z. (8) 

Here e2qQ is the quadrupole coupling constant, 1/;1 is the 
angle between H o and the axis of symmetry of the 
molecular electric-field gradient, and Z is the Zeeman 
energy, assumed large. Similar expressions can be 
written for many other observable nuclear interactions, 
including the direct magnetic dipole-dipole coupling, 
the anisotropic chemical shielding, etc. 

In an ordinary fluid, many interactions, including 
that of Eq. (8), vanish because of the isotropy of the 
fluid; 

(P2(COS1/;1) )0=0. 

Here the subscript indicates that the average is to be 
taken in the unperturbed fluid. However, a fluid, 
especially a polar fluid, subject to an externally applied 
electric field E is slightly aligned. Applying the addition 
theorem for spherical harmonics2 and making use of the 
axial symmetry of the problem, we see that NMR 
spectra now contain information about the molecular 

alignment through 

(P2 (COS1/;1) )E= (P2(cos(h) )EP2 (cosc/» P2(coso) , (9) 

where c/> is the angle between E and Ho and 0 is the 
angle in the molecule between the permanent moment 

1L10 and the field-gradient axis referred to above. The 
possibility of observing NMR effects of this kind has 
been suggested by a number of authors,9--!3 and they 

have recently been convincingly demonstrated experi­
mentallyJ4 

Our interest in such experiments lies in the fact that, 

for molecules of known structure (0) and properties 

(e.g., e2qQ), they provide a measure of the molecular 
alignment (P2(cos(h»E which is caused by an electric 

field. The significance of this information, when coupled 
with measurements of the dielectric constant, may be 
illustrated as follows!·: Consider a fluid in which the 

effects on each molecule of the applied field E, the 
fields of surrounding dipoles, and all other intermolec­

ular forces can be represented by the action of a single 

constant "effective" field F proportional to Em. This 
approximation is of course trivially correct for very 

dilute gases, where F= E= Em, but is frequently made 
for dense systems,16 where a more complicated relation­

ship is said to exist between Em and F.17 The angular 

distribution of the molecules is then governed by the 
Boltzmann factor 

exp{,8ClLo·F+!F. a·F+fl(F3) J}' 

where 1L0 and a are by hypothesis the ordinary gas­
phase permanent moment and polarizability, and 

,8= 1/kT. Now for axially symmetric molecules, a 
standard rotational transformation!8 yields 

IJP· F= JLoF cosO!, 

F· a·F= [a+ (2/3) (all-aJ.)P2 (cOSOl) JF2, 

where a= (1/3) Tra, all = a: elel, and aJ.= a: e2e2. An 
elementary calculation then yields for the polarization 
and alignment 

(COSOl)E= (l/3),8JLoF, (lOa) 

(P2(COSOl) )E= (l/15),8F2[,BJL02+ (all-aJ.) J, (lOb) 

where the low-field limit has again been invoked. If 
only one of these quantities were measured experi­
mentally, through the dielectric constant by means of 
(5) or through NMR effects by means of (9), it could 

be fitted into a consistent picture by suitable choice of 
the effective field F. If both are measured, this freedom 
is lost. Define 

Since (all-aJ.) is typically much less than ,8JL02, the 
constant effective field model predicts that 7] be very 
close to 0.60, independent of the relation of F to Em. 
Moreover, if this model is valid, then 7] should be 
independent of temperature, even if the local field F is 

Downloaded 11 Jun 2012 to 131.252.4.4. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



1242 RAMSHAW, SCHAEFER, WAUGH, AND DEUTCH 

temperature dependent. We have considered in this 

discussion only local fields F which are proportional to 

Em; if we also allowed for a reaction field, as On sager 

did, the effect would be to replace 110 and ° by appro­
priate effective parameters (not necessarily the same 

as those previously defined), but this does not affect 

7] since the parameters cancel out. 

To date positive results for the NMR electric field 

experiment have been obtained for the following 

liquids: p-nitrotoluene, nitrobenzene, nitromethane, 

deuteronitrobenzene, acetonitrile, propionitrile, iso­

butyronitrile, and chloroacetonitrile.19
•
l4 Dielectric data 

are also available for most of these compounds, but in 

order to estimate (cosfh)E from the dielectric constant, 

we must first estimate J.l.e [see Eq. (5) J. As previously 

mentioned, the Onsager model can be expected to pro­

vide only a crude estimate of the magnitude of J.l.e. Since 

7] involves (cosfh)E squared, it is clearly necessary to 

consider the value of J.l.e with some care if one wishes to 

obtain reliable 7] values by combining experimental 

dielectric and NMR data. Since J.l.e must be separately 

considered for each substance, any attempt to obtain 

reasonable J.l.e values for the above substances would 

represent a long digression which would take us away 

from the central relationships which we wish to clarify. 

We therefore make no attempt here to extract reliable 

7] values from the experimental data. However, rather 

crude considerations suffice to indicate the inadequacy 

of the effective-field model. Define 7]0 as the value of 7] 

implied by the experimental dielectric and NMR data 

when the dielectric data are interpreted by replacing 

J.l.e by J.l.0 and neglecting lXe in Eq. (3). It is clear that 

7]0 is a poor approximation to 7], since as previously 

mentioned lXe is typically about 25% of the right-hand 

side of (3), and since the Onsager model indicates that 

J.l.e is somewhere in the neighborhood of 1.3 J.l.0 or 1.4 J.l.0 

in typical cases. Both of these effects tend to make 11 

greater than 110, typically by a factor of two or three. 

Now 110 can readily be calculated; one finds that for 
p-nitrotoluene at about 70°C 110=4.2, while for nitro­

benzene, nitromethane, acetonitrile, propionitrile, and 

isobutyronitrile at room temperature the 110 values 

duster between 0.58 and 0.82. Even in so crude a 

discussion, three points deserve mention: (a) The 

behavior of p-nitrotoluene is highly anomalous in com­

parison with the behavior of the other liquids. (b) The 

110 values for the other liquids are fortuitously near the 
value of 11 appropriate to the effective-field model. 

(c) Since 11 is probably at least 2110, none of the above 
compounds appears to be adequately described by the 
effective-field model. This would seem to indicate that 
short-range intermolecular forces are involved in an 
essential way, and that experimental values of both 
the polarization and alignment taken together provide a 

sensitive means of investigating them. 

IV. THE KERR EFFECT 

The Kerr effect has sometimes been considered to be 
sensitive to the alignment in the same fashion as the 

NMR experiment. In this section we will derive an 

expression for the Kerr constant and will show that the 

Kerr effect is sensitive to the polarization as well. 

The molecular Kerr constant K is customarily 
defined20 by 

K=6n/[p(n2+2)2(E+2)2] lim [(nll-nJ.)/Em2], (12) 
Em ...... O 

where nil and nJ. are the refractive indices for light 

polarized parallel and perpendicular to Em, respectively, 

and n= (1/2) (nll+nJ.). The quantity (nll-nJ.) is 
called the birefringence. 

There are now two external electric fields in the 

problem, the static field E and the optical field E", of 

the incident light wave. We therefore must write 

III as Ill(r, E, E",); we cannot write Ill(r, E+E",) 

because of the difference in frequency of the two 

electric fields. At optical frequencies the dielectric 

constant is the square of the refractive index and 

(COS(h)E is zero, so that a trivial modification of Eq. (3) 
yields 

[(np2-1) / (ni+2) ] (3/411'p) 

= ([dlll(r, E, E",)/aE"']E~~O:epep)E' (13) 

where ep is a unit vector in the direction of polarization 

of a plane-polarized light beam and np is the refractive 

index in the presence of the static field for light of this 

polarization. Here ep may be either ell or eJ., where eJ. 

is a unit vector orthogonal to both ell and the k vector 

of the incident light beam. Now from (12) and (13) 

we obtain 

where o",(r, E) is the high-frequency differential 

polarizability of molecule 1 in the presence of the other 

molecules and the field E, defined by 

o",(r, E) = [dlll(r, E, E",)/aE"']E~~O' (15) 

We now expand o",(r, E) in powers of E to obtain 

o",(r, E) = o",(r) +E·B",( r) + ••• , (16) 

where 
0", (r) = o",(r, 0), (17a) 

B",(r) = [il2Ill(T, E, E",)/aEilE"']E=E~=O. (17b) 

Unlike the ordinary first hyperpolarizability of Appen­

dix A, BOler) need not be symmetric, but we will assume 
for simplicity that it can be replaced by an equivalent 
symmetric tensor. From (14) and (16), we have 

K = (411'/27) [(o",(r) :e)E/ P+ (eIl'B",(r) :e)E/ EJ, (18) 

where e= ellell-eJ.eJ.. Now just as in Sec. II we expand 
the above in the molecular basis set {ed and break the 
average, which means that we neglect fluctuations in the 
components of o",(r) and BOler) in the molecular frame 
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STRUCTURE OF POLAR FLUIDS 1243 

about their mean values. Then, we have 

(a",(r) :e)E= L (a",(r) :eiej)E(e:eiej)E, 
ii 

ijk 

The quantity (e:eiej)E is of order E2 in the low-field 
limit, since it vanishes for E=O and is invariant to 

reversal of the field. It is also clear that «ell" ek) X 
(e:eiej»O is zero, so that in the low-field limit the 

above can be written 

(a",(r) :e)E= L (a",(r) :e;ej)o(e:eiej)E, 
1j 

We now define effective optical-frequency polarizability 

and first hyperpolarizability tensors a",. and B",. by 

a",.= L eiej(a",(r):e;ej)o, 
ii 

ijk 

(19a) 

(19b) 

Because of the axial symmetry, each of these tensors 
has only two independent components in the molecular 

frame,21. given by 

We now have 

{3",.11 = B",.: elelel, 

{3", • .J.= B",.: ele2e2. 

(a",(r) :e)E= (a",.:e)E, 

(B",(r) :eell)E= (B",.:eell)E, 

and a standard rotational transformation18 yields 

(a",.:e)E=&r.,.(P2(Cos81) )E, (20a) 

(B",.:eell)E= (2/3)P",.(cos81)E, (20b) 
where 

&r.,.= (a,.,."_a,., • .J.), (21a) 

P",.= (3/5) ({3",."+ 2fj", • .J.) • (21b) 

We have neglected in (20b) a term proportional to 
(Pa( co881»E since it is of order E and is therefore 
negligible in the low-field limit. Our final equation for 
the Kerr constant now becomes 

K= (4/1/27) {&r.,.[(P2(cos81) )E/.E2J 

+f-P...( (COS81)E/ E) }. (22) 

Equation (22) shows that the existence of molecular 
hyperpolarizability destroys the equivalence of the 
Kerr and NMR experiments. It is qualitatively ap­
parent that the hyperpolarizability term may be signif­
icant since it comes into the Kerr effect through the 
polarization (cos81)E, which is linear in the field. 

Once again we have the problem of how to approxi­
mate the effective molecular parameters. We first 

consider ~a,., •. Again, two possible approaches suggest 

themselves: (a) By evaluating (13) for the case E=O, 

we obtain the following expression for the ordinary 
refractive index: 

=i Tra",.~a", •. 

If we require this to be consistent with the Lorenz­

Lorentz equation, we are led to identify a... with a"" 
the mean optical polarizability of the isolated molecule. 
It is therefore not unreasonable to equate ~a",. with 
~a,." the polarizability anisotropy for the isolated 

molecule. (b) A better approach is to introduce the 
refractive index as a macroscopic parameter. It is 

necessary to assume that the relative anisotropy is the 
same for both the effective and gas-phase optical 
polarizabili ties: 

~a",./a",.= ~a",/a",. 

This assumption was also implicit in (a) above. Then 

we have 

~a,.,.= (~a",)(n2-1)(~) . (23) 
a", n2+2 4?rp 

For axially symmetric molecules, (~a,.,/a",) can be 

obtained directly by measuring the depolarization 
ratio ~ for light scattered from the ideal gas22

: 

(~a,.,/a..) = [45~/ (6-7~) J1I2. 
There is unfortunately no very satisfactory method of 

approximating P", •. If we were to assume that 

«a21Lt/aEaE",) 0: eiejek)~( (a~l/aE",aE",)o: eiejek)O, 

then we could relate P",. to the quadratic coefficient of 
optical-frequency dielectric saturation; but, since this 
quantity is not well known there seems little advantage 

in doing this. We may obtain a very rough estimate of 

P",. by using the Onsager cavity field4 3eEm/ (2e+ 1) for 
the static local field seen by molecule 1 and the Lorentz 
local fieW (n2+ 2) E_/3 for the optical local field seen 
by molecule 1 in the defining Eq. (17b). The result of 
doing this is 

P",~P",[9E/(2e+l) (e+2)J, (24) 

where POI is the gas-phase value of the mean optical 
molecular first hyperpolarizability. Because of the 
local-field approximations made in its derivation, 

Eq. (24) cannot be trusted to give more than a crude 
estimate of the magnitude of P ... ; it is somewhat 
analogous to Eq. (6). 

Combining (22) with (5) and making the approxi­
mation (23), we see that the dielectric constant, the 
Kerr constant, and the NMR experiment are inter­
related according to (25): 

K= [(e+2) (n2+2)pJ-l [(n2-1)(~) (P2(cos81) )E 
e+2 a,., Em2 

2 (POI') ] +"9 p.. (e-n2
) , (25) 
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TABLE 1. Apparent discrepancies between Kerr and NMR data." 

(P2)E/Em2 

X 108 (esu) 

(P2)E/Em2 from Kerr Very 

X 108 (esu) data; using approximate 

awX1024 /law X 1024 fromNMR (25) with fj",./ ,... fj",X 1028 

Substance n ,..0 (D) (esu) (esu)b data fj",,=O X 1012 (esu) (esu) " 

Nitromethane 37d 1.38f 

Nitrobenzene 3Se 1.S6f 

a. All data at room temperature. 

b Approximated by all - (a,,+a,,) /2. 
• Obtained by using (6) and (24). 

3.46" 4.8-

4.22" 12.9h 

d Handbook of Chemistry. edited by N. A. Lange (McGraw-Hill. New 

York. 1961). 10th ed. 

e Handbook of Chemistry and Physics. edited by R. W. Weast (Chemical 

Rubber. Cleveland. Ohio. 1969). 50th ed. 

where we have identified tw with n2 and have converted 

from E back to Em. In the next section, we use (25) to 

explain the apparent disagreement between some ex­

perimental Kerr and NMR alignment values. 

V. COMPARISON OF EXPERIMENTAL KERR 

AND NMR RESULTS 

Recently Hilbers and MacLean14 have successfully 

performed the NMR electric-field experiment and have 

used the results to infer reliable alignment values for a 

number of liquids, including nitrobenzene and nitro­

methane. Since the Kerr constants of these substances 

are also known,23 it becomes possible to compare align­

ment values inferred from two different sources. In the 

past, Kerr constants have often been interpreted under 

the assumption that #we is zero, partly because of the 

lack of reliable information about its size. This is what 

Hilbers and MacLean have done, and they find the 

Kerr alignment values thus obtained to differ from their 

NMR values. If we attribute the disagreement to the 

existence of a nonzero molecular hyperpolarizability, 

we can readily solve (25) for the value of (#we/ J.le) 
which resolves the discrepancy. In Table I we sum­

marize the apparent discrepancies and the required 

values of (#we/ J.le). We have also obtained very approxi­

mate values of #w by making use of the crude approxima­

tions (6) and (24) to relate the effective permanent 

moment and hyperpolarizability to their gas-phase 

values. The values of #w obtained in this way are 
certainly of the expected order of magnitude; except for 

Kielich's deduction24 of #= 2X 10-28 esu for CHCla, 

both experimental25 and theoretical25 .26 values of # for 

small molecules are of the order of 10-29 to 10-ao esu. 

The larger value in the case of nitrobenzene is not 

unexpected in view of the greater size and complexity of 

the molecule. We note that in the case of nitromethane 

a small value of (#we/ J.le) suffices to explain an apparent 

disagreement of a factor of 4. This is because the very 

small value of ..:law for this substance causes the #we term 

to be relatively important by default. 

0.8< 0.36i 0.088 -1.33 -5.2 

7.3h 0.97 i 0.61 -11.0 -56 

f A. L. McClellan. Tables of Experimental Dipole Moments (Freeman. 

San Francisco. 1963) . 

g Reference 27. 

h Reference 28. 

i Reference 14. 

; Reference 23. 

The values of (#we/ J.le) given in Table I should not, 

however, be taken too seriously, since we have, for 

simplicity, treated nitrobenzene and nitromethane as 

axially symmetric molecules, and since we have used 

the approximation (23). The former restriction could 

readily be alleviated, but there are more serious prac­

tical difficulties. Published values of the principal 

polarizabilities are customarily taken from experimental 

Kerr constants and depolarization ratios interpreted 

under the assumption that #w= 0.27.28 It is already 

apparent that # may make an important contribution 

to the Kerr effect, and Buckingham and Stephen29 have 

shown that it also contributes significantly to the 

depolarization ratios of polar substances. Thus presently 

available principal polarizabilities must be regarded 

with a certain amount of suspicion, and until these 

parameters become more reliably known, more com­

plete interpretation of Kerr data will not be possible. 

Fortunately, measurement of the temperature depen­

dence of the Kerr constant of a dilute polar gas can in 

principle be used to separate the contribution of the 

molecular polarizability from that of the hyper­

polarizabilities,21 and other methods are also available 

for the experimental study of #.25 Of course, even if the 

gas-phase parameters are well known, we still have the 

problem that the true relation between them and the 

corresponding effective parameters is not known. 

VI. STATISTICAL AVERAGES IN THE 

UNPERTURBED FLUID 

In order to investigate the influence on either the 

polarization or the alignment of intermolecular forces 

and short-range correlations, it is now necessary to 

reduce the various averages in the presence of the field, 

denoted by < ... )E, to zero-field averages ( ... )0' 
Before doing this, however, we emphasize two im­

portant points: (a) We are considering a sphere of 

dielectric fluid of macroscopic size suspended in vacuum 

in a uniform applied dielectric field E. The spherical 

sample is chosen for reasons of mathematical con-
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venience, and does not correspond to the usual experi­

mental geometry for dielectric, Kerr, and NMR 

experiments, in which the dielectric fluid fills the region 

between the plates of a parallel-plate capacitor. How­

ever, we assume that the field Em describes completely 
the macroscopic state of the dielectric, so that the 

dielectric constant, the Kerr constant, (P2( COS01) )E/ Em2, 

and (COS01)E/ Em are properties of the sample material, 

independent of sample shape.30 We are therefore free 

to use any convenient geometry for their calculation. 

(b) Although we will deal only with the polarization 

and alignment in what follows, we emphasize that the 

effective parameters J.L., OW" and Bw. are also defined as 
statistical averages in zero field, and they also depend 

upon short-range correlations and intermolecular forces. 

The definition of the average value of any dynamical 

variable G(r, E) is given by 

( ( ) 
_ JdTG(r, E) exp[ -(3U(r, E)J 

G r, E) E- Jdr exp[ -(3U(T, E)J ' 
(26) 

where U(r, E) is the total potential energy of the 

sample in the configuration r and in the presence of E. 

It can be shown in general that 

U(r, E) = Uo(r) - fE M(r, E') ·dE', (27) 
o 

where Uo( T) is the potential energy of the configuration 

r in zero field. This expression is quite generally valid 

for any molecular model, and automatically includes 

changes in dipole-dipole interaction energy induced by 

the field and intramolecular energy associated with 

field-induced molecular deformation. Since E is assumed 

uniform, only the dipole term appears in (27). 

We now expand M in powers of E, so that (27) 
becomes 

U(r, E) = Uo(r) -M(r, O)'E 

-!EE:aM(r, E)/aE IE=O+ .. ·. (28) 

For rigid dipolar molecules, the expansion (28) ends 

with the linear term. For molecules with a~O but 

with B and higher-order hyperpolarizabilities equal to 

zero, the expansion ends with the quadratic term, and 
so on. 

Using (26) and (28) and expanding ( •.. )E in powers 

of E, it is easy to show that, in the low-field limit, 

(COS01)E= «(3E) « e1' ell) (M· ell) )0, (29) 

<P2(COS01) )E= t(3E2[ (P2( e1'ell) (aM/aE) :ellell)O 

+(3(P2(el'ell) (M·ell)2)0]. (30) 

We have used the fact that zero-field averages ("')0 
must be invariant to the substitution ew-~- ell to 
eliminate terms which are identically zero from (29) 
and (30). 

Since the sample is spherical, there is no preferred 
direction in the absence of the field. All the zero-field 

averages ( ... )0 are therefore independent of the direc­

tion of ell and are unchanged by averaging the quantity 

within the brackets over this direction. Performing this 

"spherical average" on Eqs. (29) and (30) yields 

(COS01)E/ Em =t[ (€+ 2) /3J(3(e1·M)0, (31) 

(P2( COS01) )E/ Em2= -to[ (E+ 2) /3J2(3{(3[3 « e1·M) 2)0 

- (M·M)oJ+3(aM/aE: e1e1)0- (TraMjaE)ol, (32) 

where we have converted from E to Em so that the 

left-hand sides of the above equations can be considered 

independent of sample geometry. 

To proceed further we must adopt a molecular model, 

so that M(T, E) can be explicitly written down and 

dealt with, or adopt further simplifying assumptions. 

In the spirit of our previous approximations, we will 

neglect fluctuations in each molecular dipole moment 

about its average value in the quantities being averaged 

in (31) and (32). That is, we replace M by the sum of 

effective permanent molecular dipole moments. Then 

the last two terms in (32) vanish and the equations can 

be rewritten in a form which clearly displays the 

angular averages involved: 

(COS01)E/ Em =![ (E+ 2) /3J(3J.L.[1 + (N -1) (COS'Y12)OJ, 

(33) 

[(P2( COS01) )EJ/ Em2= -h[ (E+ 2) /3J2«(3J.Le) 2 

X[l+ (N -1) (P2(COS'Y12)0 

+t (N -1) (N - 2) (COS'Y12 COS'Y13)0 

-teN-l) (N-6) (COS'Y12)OJ, (34) 

where "Iij is the angle between the principal axes 

(permanent moments) of molecules i andj. 

The left-hand sides of (33) and (34) are supposed 

independent of sample geometry. However, we have 

evaluated them for the particular choice of a spherical 

sample in vacuum, and this fact is reflected in their 

right-hand sides. In particular, we emphasize that for 

these expressions to be valid the zero-field averages 

( ..• )0 must be performed over a spherical sample in 

vacuum. If we could rigorously perform such averages, 

our problem would be solved and the results (if our 
assumptions are valid) would be equally applicable to 

all experimental geometries. It is apparent that the 

evaluation of the averages in (33) and (34) would 

require knowledge of the two- and three-particle angle­

dependent distribution functions. 31 Rigorous evaluation 

of these distribution functions is not feasible for dense 
systems. Moreover, the approximation and interpreta­
tion of expressions containing them is complicated by 

the fact that they appear to contain, in addition to the 
short-range correlations between a molecule and its 

nearest neighbors, long-range correlations (i.e., cor­
relations between molecules separated by macroscopic 

distances) due to shape-dependent boundary effects 
(see Sec. VII). In our judgment, the macroscopic 
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shape-dependent effects on fluid distribution functions 

due to long-range dipolar forces is a subject that has 

not been sufficiently investigated. 

In order to arrive at expressions which are more 

easily approximated and which can be interpreted 

entirely on the basis of local-order considerations, it is 

desirable to deal with averages and distribution func­

tions from which boundary effects are absent. To this 

end, we discuss in the next section the transformation of 

averages over a spherical sample in vacuum into 

averages devoid of boundary effects. We emphasize 

that this transformation is desirable purely from the 

standpoint of obtaining alternative expressions which 

can be more easily approximated and interpreted than 

(33) and (34). The expressions (33) and (34) are, 

within the framework of our assumptions, rigorous as 

they stand, and do not, for example, require modifica­

tion in order to make the boundary effects which they 

contain correspond more closely to those present in the 

actual experimental geometry. 

VII. BOUNDARY EFFECTS 

We must now deal with a problem which has led to a 

great deal of confusion in studies of dielectrics, not 

excepting the present one. We refer to the dependence 

of averages in a molecular theory upon the shape of 

the region over which they are performed, a dependence 

which arises basically from the long-range nature of the 

dipolar field. The existence of shape-dependence im­

plies that the averages cannot be computed on the basis 

of local-order considerations alone. Some means must 

be found to separate out the shape-dependence if our 

goal of obtaining information about the purely local 

microscopic structure of the fluid is to be realized. Since 

sample shape is a macroscopic property of the system, 

it should not greatly surprise us if such a separation can 

be effected by suitable macroscopic considerations. 

Kirkwood1 has dealt with just this problem. He 

developed a procedure for transforming the average 
(el·M)o over a sphere in vacuum in zero field into an 

average (el·M)"" over a sphere in zero field immersed 
in an infinite medium of the same sample material. 

The boundary effects must be absent from ( .•• )"" 

since the boundary effectively disappears, and it is 

assumed proper to compute such averages entirely on 

a local basis. Kirkwood's analysis yields 

(el·M)O= [3/ (e+2) J[3e/ (2e+ 1) J(el·M)"". (35) 

We note that elimination of the boundary effects is 
associated with multiplication by a factor depending 

only upon the dielectric constant, a macroscopic param­
eter, and not upon other molecular averages. Using 
(35) in (31) yields, instead of (33), 

[(cosfh)E/ .E".J= 1t3l-1.[3e/ (2e+ 1) J 

X[1 + (N -1) (COS')'12)""J. (36) 

Kirkwood used (36) and (3) and a local-order estima-

tion of (COS')'12)"" to estimate the dielectric constant of 

water. It is important to note that 3eEm/(2e+1) is the 

Onsager cavity field. In fact, it can easily be shown that 

if the short-range angular correlation term (COS')'12)00 is 

neglected in (36) and the result combined with (3) 

using the Onsager values7 for 1-1. and ae, the Onsager 

equation is obtained. 

In order to deal with (P2)E, given by (32), we need 

the transformation corresponding to (35) for the 

average « el' M) 2)0' It turns out, however, that it is 
more convenient to deal with Eq. (30), the first term 

of which is now zero since we are replacing molecular 

dipole moments by effective permanent moments, and 

then perform the spherical average after the trans­

formation ( ... )0-+('" )00 has been made. In Appendix 
B, we present a method for effecting the transformation 

from (P2(el·ell) (M·ell)2)0 to (P2(el·ell) (M·ell)2)"". 
In the process we rederive (35) in a way which we hope 

clarifies the legitimacy of Kirkwood's use of macroscopic 

electrostatics. The result is 

(P2 ( el' ell) (M· ell) 2)0= [9e/ (2e+ 1) (e+ 2) J2 

X (P2(e1·ell) (M'ell)2)00, 
so that (30) becomes 

(P2( COSOI) )E/ Em2= !J32[3e/ (2e+ 1) J2 

X (P2(e1·ell) (M·ell)2)"". 

We now perform the spherical average to obtain 

(P2 (cosfJr) )E/Em2= (1/30)t32[3e/(2e+1)J2 

X[3«e1·M)2)",,- (M·M)",]. (37) 

In terms of short-range angular correlations, (37) 

becomes, instead of (34), 

(P2 ( COSOl) )8/ Em2= (1/15) (131-1.) 2[3e/ (2e+ 1) J2 

X[I+ (N -1) (P2(COS')'12) )",,+HN -1) (N-2) 

X (COS')'12 cos')'13)",-!(N -1) (N -6) (COS')'12)",]. (38) 

Equations (36) and (38) reveal explicitly the effect of 

short-range angular correlations on the polarization 

and alignment.32 

Expressions for the dielectric and Kerr constants in 

terms of short-range angular correlations in the un­

perturbed fluid are readily obtained by substituting 

(36) and (38) into (5) and (22). 
We re-emphasize that the distribution functions 

needed for the calculation of the averages ("')00 are 
those in which only local correlations are present. From 

(33) and (36~ we note that (COS')'12)O;;z! (COS')'12)",' Since 
the quantities being averaged are the same, the im­

plication is that the difference must be due to a differ­
ence in the two-particle distribution functions appro­

priate to the two physical situations. 

VIII. APPROXIMATE EVALUATION OF AVERAGES 

The calculation from first principles of the two- and 
three-particle angular distribution functions (either 
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ordinary or local) for liquids is an extremely com­

plicated task and to our knowledge has not yet been 

attempted. This circumstance forces us to adopt further 

approximate procedures. 

A. Zero Correlation Approximation 

The simplest approximation which one might make is 

to assume that there is no short-range correlation 

whatever between the orientations of neighboring 

molecules. Then (36) becomes 

(cos81)E/.E".= !~.,8[34 (2E+ 1) J, (39) 

and, as previously mentioned, this leads to the Onsager 

result for the dielectric constant. In a similar manner 

(38) becomes 

(P2(cosfh) )E/Em2=-h(.8~.)2[3E/(2E+l)J2. (40) 

Note that Eqs. (39) and (40) would have been obtained 

from Eqs. (10) by replacing ~o by ~. and by choosing 

F to be the Onsager cavity field 3EEm/ (2E+ 1) [the 

polarizability term in (lOb) does not appear because 

we have replaced molecular dipole moments by effective 

permanent moments]. 

It is of interest to obtain an approximate expression 

for the Kerr constant which is in some sense analogous 

to the Onsager expression4 for the dielectric constant. 

To do this we do the following: (a) We substitute (39) 

and ( 40) in to (22). This corresponds to neglecting 

short-range angular correlations. (b) We use the 

Lorenz-Lorentz formula to relate a", to n: 

[(n2-1) /(n2+2) J(3/41rp) = a",. 

(c) We use the approximate expressions (6) and (24). 

The result of all this is 

x [~ (n2+ 2)( 2E+ 
1 

) .B2~02t:.aw+ 2.8P",~O] . 
5 3 2E+n2 ( 41) 

It is of interest to compare Eq. (41) with the corre­

sponding approximate expression of Buckingham and 

Raab20 obtained from their equations (34), (35), and 
(41) : 

+ CE+2)9~2E+l)) 2.8p",~OJ. (41') 

The only difference is seen to be in the hyperpolariz­
ability term-our p", term must be multiplied by a factor 

R= (E+2) (2E+1)/9E in order to agree with the cor­
responding term in KBR• But since R is just the ratio 

of the Lorentz local field to the Onsager cavity field 

and since we have explicitly used the Onsager cavity 

field in this term in order to estimate P",., it is clear that 

the approximations of Buckingham and Raab are 

equivalent to the use of the Lorentz local field in the 

p", term. The Lorentz local field, of course, is known to 

be somewhat less than adequate to the description of 

polar liquids.I.7 The ultimate comparison of (41) and 

(41') must of course be based upon experiment; the 

absence of reliable data precludes such a comparison 

at present. 

B. Superposition Approximation 

Equation (38) can be simplified somewhat by assum­

ing that whenever dipoles 2 and 3 are substantially 

correlated, the direction of dipole 1 is uncorrelated 

with them. Then averaging over the orientations of 

dipole 1 gives (COS'Y12 COS'Y13),.,= (1/3) (COS'Y12),." so that 
(38) becomes 

(P2( cos(1) )E/ Em2= -h(.8~.) 2[3E/ (2E+ 1) J2 

X [1 + (N -1) (P2 ( cos'Y12) ),.,+ 2(N -1) (COS'Y12),.,]. 

Now only the two-particle local distribution function is 
required. 

C. Weakly Correlated Clusters 

We now consider a model which explicitly reveals 

the effects of strong short-range anisotropic forces and 

the short-range correlations which they produce. The 

N dipoles of the fluid are assumed to "condense" into 

n identical stable, rigid s mers (N = sn). Some indica­

tion of the cluster structure that one might wish to 

adopt for a particular system might be obtained from 

the structure of the solid. Such an approach was taken 

by Kirkwood1 to estimate the dielectric constant of 

water. Each cluster is assumed to have a net dipole 

moment, denoted for a representative cluster 1 by ill, 

that interacts with the external field and other clusters 

according to the theory described previously. Then we 
can write, from (36) and (38), 

(Cos8m)E/.E". = !.8il[3E/ (2E+ 1) J[1 + (n-l) (COS'Y12),.,'J, 

(42) 

(P2( cos8m) )E/ .E".2= -l"5"(.8fl){34 (2E+ 1)2J 

X[I+ (n-l) (P2(COS'Y12) ),.,' 

+Hn-l) (n- 2) (cos-Y12 COS-Y13),.,' 

-!en-1) (n-6) (COS-Y12),.,'J, (43) 

where 8m refers to the angle between the external 
electric field and the net dipole moment of cluster 1, 

-Yif refers to the angle between the net dipole moments 
of clusters i and j, and the primed brackets indicate 
that the average is over the positions and orientations 
of the clusters only. If we call ai the angle in a cluster­

fixed frame between il and a constituent dipole Ili, 
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TABLE II. Polarization and alignment for certain rigid noninteracting clusters.-

Model 

1. s parallel dipoles j j •••• j 

2. s alternating dipoles 

j 1 j····(sodd) 

3. Case 2 but seven 

4. Umbrella with one stem and 

(s-l) equidistant spokes 

perpendicular to it. s~3 

s 

l/s 

o 
l/s 

application of the addition theorem of spherical har­

monics and the symmetry of the problem yields for the 

two quantities of interest 

8 

(cos81)E= (COS81R)ES-1 L COSC¥i, 
i~l 

8 

(44a) 

(P2( cos81) )E= (P2( COS81R) )ES-1 L P2( COSC¥i). (44b) 
i~l 

Consequently, within the framework of this model of 

the liquid, we have a prescription for finding (cos81 )E 

and (P2(cos81) )E, given a knowledge of the structure 

of the cluster and of the short-range angular correla­

tions between different clusters. Note that the inter­

molecular forces play an important role in determining 

both of these factors. 

If we assume the correlation between different 

clusters to be negligible, (42) and (43) become 

(COS8IR)E/ Em = !i3P[3t/ (2e+ 1)], 

(P2(cos81R) )E/ Em2=ls(i3M2[3t/ (2e+ 1) J2, 

and 7/ becomes 

8 8 

7/= (!s)[ L P2(cosc¥;)/( L COSC¥;)2]. 
i=l i=l 

In Table II we give the polarization and alignment 

calculated for various special types of clusters under 

the assumption of negligible correlation between 

clusters. We also give the values of 7/ which result. We 

note that while the polarization does not distinguish, 

for example, between the arrangements of cases 2 and 
4, the alignment does. It is clear that the experimentally 
accessible quantity 7/ is quite sensitive to the type of 
local order which is present. 

In this section we have restricted our attention to 
the perhaps artificial situation in which a single type of 

rigid cluster is important. It would be quite possible to 
generalize this approach to a fluid consisting of a mix­
ture of clusters of various sizes and kinds in chemical 
equilibrium with one another. At the expense of intro­

ducing new adjustable parameters, one could then no 
doubt fit any experimental measurements into the 
framework of the present theory. However, the crudity 

s' 

o ® 
![(3-s)/sJ }s(3-s) 

of the cluster model is such that a detailed examination 

of this idea does not seem justified. 

IX. IMPERFECT GASES AND RELATED 

GENERAL DISCUSSION 

It is well known that the two- and three-particle 

distribution functions can be simply related to pairwise 

intermolecular potentials through a density expan­

sion.33
,34 In fact, measurements of the second virial 

coefficients of the dielectric and Kerr constants can and 

do yield useful information about anisotropic inter­

molecular potentials.3s We will not perform density 

expansions of the results in this paper, since rigorous 

theories of the dielectric and Kerr constants have been 

written20 ,36-38 and these are the proper starting place for 

density expansions. Being rigorous, they lead to exact 

expressions for the virial coefficients, while our expres­

sions, being approximate, would yield approximate 

virial coefficients. 

The difference in philosophy between our treatment 

and more rigorous ones is that our treatment has been 

mainly oriented toward application to liquids, and to 

this end we have neglected fluctuations in the effective 

molecular dipole moment, polarizability, and hyper­

polarizability at several key points in our derivations of 

expressions for the dielectric and Kerr constants. Our 
motivation in doing this was to reveal the dependence 

of these quantities upon the quantities (Pn(cos81) )E' 

One intuitively feels that such a description must be 

possible, at least to some degree of approximation since 

one feels that the primary physical process behind the 

Kerr effect and dielectric polarization is the lining up 
of single molecules with the electric field. When this 
idea is pursued, it is found that the equations take a 
pleasingly intuitive form-the effects can indeed be 
regarded as the lining up of single molecules possessing 
effective permanent moments, polarizability anisot­
ropies, etc., given by well-defined statistical expressions. 
This sort of physical insight is for the most part lacking 
in the results of the more formal rigorous theories, which 
are not readily simplified to reveal the roles of the 
polarization and alignment and which may not be 

applied to liquids without drastic assumptions anyway. 
In the case of slightly imperfect gases, however, the 
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complexity of the rigorous theories decreases to a 

manageable level, so that rigorous results for the virial 

coefficients can be obtained from them; there is there­

fore no need to neglect fluctuations and no reason to 

do so. 
We remark that our results for the dielectric and Kerr 

constants, derived in Secs. II and IV, can be obtained 

from a rigorous theory which provides explicit expres­

sions for the fluctuation terms which we have neglected. 

This theory will be the subject of a future communica­

tion. We also note that it has not been necessary to 

specify a molecular model (such as a conventional 

permanent moment plus isotropic harmonic-oscillator 

polarizability) at the outset in order to make progress. 

For example, the expression (4a) for the effective 

moment is quite general, and makes no reference to the 

existence of the various parameters describing the 

distortion of molecule 1 by its neighbors. The full com­

plexity of this distortion is retained until such time as 

one attempts to evaluate the expression for p.o. 

APPENDIX A: ISOLATED MOLECULE IN A 

UNIFORM FIELD 

We here review the conventional description and 

terminology of the interaction between an isolated 

molecule and a uniform external electric field. 2 The 

dipole moment of the molecule, IL, may be expanded in 

powers of the applied field E; 

1L=lLo+c"E+tB:EE+""". (AI) 

Here lLo is the permanent moment of the molecule, 

o is the (ordinary) polarizability, B is the first hyper­

polarizability, and so on. These quantities are respec­

tiv~ly tensors of rank one, two, three, and so on. These 

tensors may be shown to be symmetric. They may 

readily be expressed as derivatives of IL with respect to 
E: 

In a polar liquid, the field acting on a molecule due to 

its neighbors is much stronger than typical laboratory 

electric fields, so that the customary linear polarization 

law is not adequate. Moments are also induced by field 

gradients and by short-range molecular interactions, 

so the situation in an actual polar liquid is very complex. 

In general, the fields due to nearby molecules are not so 

strong that terms higher than the quadratic need to be 
retained in (AI), although each case should be sepa­
rately investigated. The B term, however, is often 
important. 

APPENDIX B: REMOVAL OF 

BOUNDARY EFFECTS 

Consider a large macroscopic spherical sample (of 
radius b) in vacuum and divide its interior into two 

regions: Region 1 is the volume within a smaller but 

still macroscopic sphere (of radius a) centered within 

the large sphere, and region 2 is the volume exterior 

to the small sphere. We assume that molecules are not 

allowed to pass from one region to the other and that 

the number density is the same in both regions. Mole­

cule 1 is chosen to be in region 1. No loss of generality is 

incurred by these restrictions. The limit b / a---'> 00 is 

ultimately to be taken; in this limit, region 1 can be 

considered to be a sphere immersed in an infinite 

medium of the same sample material. 

The configuration of the total system is (Tl, 72), 

where Ti is the configuration of the molecules in region 

i. The total moment M of the system is the sum of the 

moments of the two regions: M=M1+M2• Because of 

our replacement of each molecular moment by an 

effective permanent moment, the moment of region i, 

Mi, depends only upon Ti- Then we have 

(el"M)o= (el" (M1+M2) )0. 

Clearly (el"M1)0= (el"M)co. Thus we need only con­

sider (el" M2 )0. Let f( Tl, T2) dndT2 be the probability 

that the configuration of the system is in dndT2 at 

(71, T2). By the fundamental theorem of conditional 

probability, we have 

f(Tl, T2) = f(Tl)f(TI I T2), 

where f(Tl)dTI is the probability that the molecules of 

region 1 are in dTI at Tl regardless of the configuration 

of the molecules of region 2, and f (71 I T2) dT2 is the 

probability that the molecules of region 2 are in dT2 at T2 

given that the molecules of region 1 are in dn at Tl. 

Then 

(el"M2)0= JdTIf(Tl)el" JdT2f(Tll T2)M2(T2)., 

But JdT2f(TI I T2)M2(T2) is the mean moment of region 

2 for fixed Tl. Fixing Tl also fixes the field with which 

region 2 interacts. Therefore JdT2f(n I T2)M2h) is 

merely the statistical average of the macroscopic 

moment M2 of region 2 in a fixed external field, namely 

that produced by the molecules of region 1 at fixed 

TIo The point to appreciate now is that this quantity 

may be calculated by the use of macroscopic electro­
statics (that is, by treating region 2 as a continuum of 

dielectric constant E) since macroscopic averages obey 

the macroscopic equations. The result of a straight­

forward electrostatic calculation similar to that of 
Kirkwood1 is that 

fdT2f(TI I T2)M2(T2) =c(e)Mlh) 

in the limit b»a, where l+c(e) =9E/[(2e+l) (e+2)]. 
Implicit in the above is the assumption that the field due 
to the molecules in region 1 is not large enough to 
produce nonlinear behavior (i.e., dielectric saturation) 

in region 2. This condition is satisfied except for rare 
configurations Tl. 
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Combining the above results yields 

which is identical with (35). 
We must now carry out the above procedure for the 

average (P2(el oell) (M oell)2)0. We have 

(P2(el oeil) (M oell)2)0= (P2(eloell) (M1oell)2)0 

+2(P2(eloell) (M1oell) (M2oell)0 

+(P2(eloell) (M2oell)2)0. 

Clearly (P2(eloell) (Mloell)2)0= (P2(el oell) (M oell)2) .. , 
and a trivial reapplication of the arguments leading to 
(B1) yields 

(P2(el oell) (M1oell) (M2oell»0 

=C(E) (P2(eloell) (M oell)2) ... 

We therefore need only to consider (P2(eloell) X 
(M2 oell)2)0: 

(P2( el O ell) (M2o ell)2)0= f dTlj(Tl) P2( el O ell) 

XfdT.J(nl T2)[M2(T2) oell]2, 

By considering the linear response of region 2, in the 

presence of region 1 at fixed Tl, to an externally applied 
field E, it is possible to show that 

fdnj(Tll T2)[M2(T2) oeIIJ2-[JdT2j(Tll T2)M2(T2) oell]2 

= {rl[aM2' (E) jaE]B_O: ellell, 

where M2'(E) is the mean moment which region 2 
would have in the presence of E if the molecules of 

region 1 were removed; that is, if region 1 were an 
empty cavity of radius a. The right-hand side of the 
above is therefore independent of Tl. Since 

fdTI!(n)P2(eloell) =0, 

we then have 

(P2(eloell) (M2 oell)2)0=C2(E) (P2(eloell) (M oell)2) ... 

We have again made the implicit assumption that the 
field due to the molecules in region 1 is not large enough 
to produce dielectric saturation in region 2. Our final 
result is 

(P2(el o ell) (Mo ell)2)0= [1+2c(E)+C2(E)] 

X (P2(eloell) (M oell)2) .. 

= {9E/[(2E+1) (E+2)]}2 

X (P2(eloell) (M oell)2)... (B2) 

We emphasize that our treatment has been a molecular 
one, since both the small sphere and its surroundings 
were treated from the beginning on a molecular basis. 
However, it is clear that the above developments could 
not have been carried out without using the fact that 
the moment of region i, M i , depends only on Ti, which 

was a consequence of our replacement of molecular 

dipole moments by effective permanent moments. If 
this approximation is not made and the molecules are 

polarizable, then both Ml and M2 depend on both 

Tl and T2. In such a case, it may be a useful approxima­
tion merely to replace the molecules in region 2 by a 

true continuum of dielectric constant E, even though it is 
unclear how to justify such a procedure on a molecular 

basis. The above development justifies this procedure 
for the case of rigid dipoles, for in that case Mi depends 
only on Ti; this was pointed out by Buckingham.39 In 
the case of polarizable dipoles (which are all that exist 

in the real world) the precise nature of this "continuum" 
approximation and the limits of its validity are not at 

present known. 
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Light Scattering from Chemically Reactive Fluids. IV. Intensity Calculations for the 
Eulerian Fluid with One Reaction* 
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The hydrodynamic equations for the reactive Eulerian fluid (zero transport coefficients, one chemical 
reaction) have been used in the thermodynamic approach to calculate in detail the spectrum of scattered 
light. The mathematical technique employed was the matrix eigenvalue formulation previously introduced 
[L. Blum and Z. W. Salsburg, J. Chem. Phys. 48, 2292 (1968)]. The method focuses on a particular matrix 
which is easily derived from the linearized hydrodynamic equations. The fluctuations of the set of in­
dependent variables are resolved into normal modes of relaxation. Each mode contributes one peak to 
the spectrum; the position and half-width of the peak are furnished directly by the eigenvalue, while the 
intensity is calculated from the corresponding normal mode projection matrix. Some general relationships 
between positions and half-widths are derived. The Rayleigh peak due primarily to chemical reaction 
relaxation is considered in detail. Various intensity ratios involving this peak are calculated, and simple 
criteria are set forth for determining whether it will be intense enough to be experimentally observed. 
If it is observable, the reaction rate constant can be obtained from measurements of its half-width. Two 
other chemical relaxation effects, dispersion of the sound speed and skewing of the Brillouin peaks, are 
also examined. For small scattering angles and very fast reactions, the rate constant may be extracted 
from measurements of the sound speed dispersion. The range of relaxation times for which experiments 
seem feasible is 10-'--10-11 sec. 

I. INTRODUCTION 

In recent years a number of articles have been written 
on the theory of the spectral distribution of light 

scattered from a chemically reactive fluid. 1- 7 The 

theoretical work on this problem has been much more 
extensive than the experimental work,8,9 partially 
because the theoretical papers have offered little 
guidance for the experimentalists. 

Some of the analyses1 ,3,8,9 have been limited in scope 

and are primarily elementary model calculations which 

illustrate the major effects of the chemical reaction 
processes. These calculations tend to ignore hydro­
dynamic fluctuation effects. The more general 

papers2,4,5,7 are quite formal in nature and present the 

results in such abstract form that it is almost impossible 

to apply them. 
The complete hydrodynamic fluctuation analysis, 

which forms the core of these phenomenological 
theories of light scattering, is rather involved and leads 

to complicated expressions describing the intensity of 
the scattered light. One of the challenges which still 

remains is to carry the analysis to the point where one 
can make detailed calculations for real chemical sys­

tems and at the same time give a presentation which is 
comprehensible by both the experimentalist and the 

theoretician. 
This article is intended as a step toward accomplish-
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