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Dielectric properties of perovskite crystals

B 8§ SEMWAL and N § PANWAR
Physics Department, Garhwal University, Srinagar 246 174, India

Abstract. The soft mode dynamical moedel has been used to sludy the dielectric properties
of Perovskite-type crystals. The model Hamiltonian proposed by Pytte has been modified
and designed in terms of ereation and annihilation operators. The correlations appearing
in the dynamical equation have been evaluated using double time thermal retarded Green's
function and Dyson’s equation. Withaut any decoupling the higher order correlations have
been evaluated using the renormalized Hamiltonian and thus, all possible interactions ameng
phonons have been taken into account. The expressions {or phonon frequencies and widths
have been.caleulated. Using appropriate parameters the softening of different modes at
different transition temperatures give rise 1o a series of transitions from cubic to tetragonal,
orthorhombic or trigonal phases. The significantly temperature-dependent modes are
considered responsible for damping constant, dielectric constant, tangent loss and attenuation
constant for these crystals. The dielectric properties are directly related to the optical phonon
Irequencies and widths and acoustic attenuation to the acoustic and optical phonon widths.
Using suitable approximations, the model explains the experimental tesults on dielectric
properties and acoustic attenuation reported for LiNbO,, 8rTi0,, BaTiO; and LaAlO,.

Keywords. Scft mode; frequency shift and width; diclectric constant; loss tangent; acoustic
attenuation.

1. Introduction

The oscillations of atoms in a solid are responsible for different characteristics such
as gpecific heat, optical, dielectric and electrical properties. The anharmonicity in
solids is responsible for the existence of thermal expansion, temperature dependence
of elastic constants, lattice thermal conductivity, variation of specific heat at different
temperatures, etc. Many attempts have been made theoretically and experimentally
to explain these phenomena in terms of anharmonicity. Extensive reviews (Semwai
1972; Semwal and Sharma 1972, 1974) are available discussing the contribution of
anharmonicity in various properties of crystais.

In displacive dielectrics, the transitions are associated with the displacement of a
whole sublattice of ions of one type relative to another sublattice. The atomic
displacements at the transition point are small compared to the unit cell dimensions,
In displacive compounds the phonon coordinate is the order parameter and the
critical fluctuations of the ordering quantity are carried by the soft phonons—the
phonon modes which are significantly temperature-dependent and cease at the
transition temperature, In the other types of transitions, which are called order-
disorder type, as KH,PO,, the transition is associated with the tunnelling of proton
through a barrier between two positions of minimum potential energy in the double
well potential in the hydrogen bond at the transition temperature (Kobayashi 1968).
The displacive-type crystals with ABQ, structure (where A is a first, second, fourth
or even fifth group of jons of appropriate valency and B is a transitional metal ion
such as Ti, Nb, Ta, Zr) in which the transition occurs due to the rotation of BOg
octahedra are known as perovskite type, e.g. SrTiO,, PrAlO,;, KMnF;, LaAlO,,
BaTiO,, PbTiQ, and various solid solutions. These transitions are associated with
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a phonon instability {Cochran 1939; Anderson 1960) more specifically with the
condensation of different sets of modes at the Brillouin zone centre (at g = 0) in the
case of ferroelectrics e.g. BaTiO; or at the zone boundary (at g =(1/2, 1/2, 1/2)} in
the case of antiferroelectrics e.g. $rTi0O,. One may use a set of three basic modes
corresponding o rotations of BOg4 octahedra around the three cube axes. In SrTiO,,
one of the triply degenerate modes condenses (Cowley et ol 1969) and in LaAlQO; a
linear combination of all three modes (Cochran and Zia 1968). The rotation of BO,
octahedra about different cube axes give different structures in the distorted phase.
For example, in SrTi0,, the cubic high temperature structure undergoes a tetragonal
distortion at the transition temperature (106°K) corresponding to the rotation of
TiO4 octahedra about a cube axis. In LaAlQ; it undergoes a trigonal distortion,
described by the rotation of oxygen octahedra ahout the cube diagonal. In some
materials a series of transitions from high- to low-symmetry structures are observed,
e.g. BaTiO, undergoes a ferroelectric wransition at 121°C from cubic to tetragonal
structure and goes further to the orthorhombic (5°C) and trigonal structure {(— 80°C),

It is revealed experimentally and theoretically that the soft mode plays a
fundamental role in perovskite crystals because the dielectric constant, loss tangent,
acouslic attenuation and Curie temperature depend explicitly on the soft mode
frequency.

In the present study, the model Hamiltonian proposed by Pytte {1372) and designed
in terms of creation and annihilation operators was modificd by considering ali
possible interactions among different vibrational modes. The correlation functions
were evaleated using the Green's function technique and Dyson’s equation. The higher
order correlations appearing in the dynamical equation were not decoupled but
evaluated using a renormalized Hamiltonian, expressions for phonon frequencies and
widths and hence the dielectric constant, loss tangent and acoustic attenuation were
obtained. Pytte (1972} decoupled the correlations in the very beginning and could
not obtain the frequency shifts and widths and hence the related properties.

2. The model Hamiltomian and Green’s function

The model Hamiltonian in the operator form is obtained as

1
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where the symbols are the same as used by Pytte (1972).
The correlations appearing in the phonon response function can be evaluated using
the double time thermal retarded Green’s function (Zubarev 1960)

Glt~1)= ((5,1,[93}:=S;'__,(q4)r_>>
= —J8lt — )< [81,(a5):8L, () 1D, (3)

where the angular brackets denote the average over the large canonical ensemble and
(¢) is the Heaviside step function having properties

8(f) =1 for t >0 and 0 for £ <0, j=(— D)V~

Differentiating (3) twice with respect to ¢, using the Hamiltonian (1} and taking
Fourier transfotmation, one obtains

@~ B )60y = el Pilen | Dullolp, @
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where

AFEL
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and the higher order Green's functions
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Here, v,, &,, 8, etc. are the corresponding values of y, &, 8, etc. from (2) obtained
by evaluating the respective commutations appearing in the Green’s function (3).

Flw) is calculated by differentiating (6) twice with respect to ¢ using Hamiltonian
(1) and then taking Fourier transformation, one obtaing
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Substituting the value of F(w) from (8) in (4) and using Dyson’s equation (Gairola
and Semwal 1977) one obtains

i) = ot (ay
ﬁ[ﬂ’z - ﬁi.(‘h) - —A—:_EELF(@)]

where the renormalized frequency is
QF,(g4) = Qi) + F. (12)

The higher order Green's functions F(w) are calculated using the renormalized
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Hamiltonian
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Using these expressions the value of the Green's function (14) can be written in a
convenient form

(16g)

Lim G{w + je) = G'(w)— jG" (e} )
=0
where ‘
G'(@) = Qu(q.)w? — Qi (@)l {0® — 2.3(92)}* + Q44T 5. 0s, cu}él.-8 )
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where A, (g4, @} and T {g,.®) represent phonon frequency shift and width respectively
and ,,(g,) is the soft mode frequency which is given by

525%4[?4, (.LJ) = Qid(‘l‘t) + Ql.(%)ﬁh(%: w)' [19)
The phonon frequency shift and width are given by

7
Q.h (qd)AJH (q4! CU) = ‘221 G’ii{‘h, Cﬂ), (20]
and
7
Qg 5la00) = T GF*(gu,w) @y

where G*(g,, w) and G}*{g,,, ), the real and imagjinary parts of G¥(q,, @} are obtained
by using the formula

1_.
sl-r-ré i Fjndix). 22)
The phonon frequencies and widths are obtained for different modes in different

phases by using the parameter values given by Pytte (1972), Here, for example, the
tetragonal phase has been taken.
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3. Optical phonon frequencies and widths in tetragonal structure

For the tetragonal distortion corresponding to a static displacement of ions along
cube axis, only one of the components of the soft mode coordinates is different from
zero and one sets

AJ. = Aais

bix=0urs
where 3-axis has been chosen as the c-axis
=0fori>3 and e, =e, #e,.

From (12) and the form of the interaction potential v,,.(¢), it follows that pure
longitudinal and transverse modes are obtained for the propagation vector i in 1,2 plane
and along the 3-axis. For g LC there are two dilferent transverse modes Qn [E{T0)]
and Ll3r[A (T0)] and one longitudinal mode QlL[E(LO}] Forg | ¢ there is a doubly

degenerate mode Q”[E(TU)] and one longitudinal mode QgL[A (LO}].
The free energy is given by

F=(H)— TS, 23)
where {H'y is the average Hamiltonian and
S = ka?_,[(l + n,(@hn(t + n;(q)) — nug) Inn,(g)] (24)
X

is the entrapy of the system and #,(g) the Bose occupation number. In the extremum
condition the derivatives of free energy with respect to order parameter 4 and strain
coefficients are zero. Using this condition, the normal mode frequencies from (12) for
tetragonal structure are obtained as

(2, =20, —T,) 4%+ (20, — 3T, )(&; — A, + 2(e; — €, G 1z — Giy)

+Z(Qi11 —gij3)(ee;+ Dyj), (25a)
with
o;(uq) e, (uq)coth(Bo,(q)/2)
D..
v % . 20,09
and N
OQ2,.=2T",4%, with &, = (2ﬁ;]" teoth(88,/2), A=1,3 {25b)

It can be noted that ﬁ” has a complicated temperature dependence whereas f'!n
is proportional to 4 and thus the polarization, which is proportional to (T — T,)*/?
(Pytte 1972). Using parameters given above the phonon frequency shifts and widths
for different modes can be calculated from (20) and (21) respectively.

4. Acoustic phonon frequencies and widths

The acoustic phonon frequency widths and shifts which lead to the expressions for
acoustic attenuation, are obtained analogousty from acoustic phonon Green'’s function

Gyt =)= €8,,(a): 5, (gad D, (26)
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which gives
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where n,, the phonon occupation number

w1

(29d)

w =
= ?iCOth(ﬁmk;z)
&y
and
ﬁ = (kﬁ T] - l)

kg being the Boltzmann constant and T the absolute temperature.
The real and imaginary parts of p, (g,,) are obtained by using (22) and the
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acoustic phonon widths are obtained as
T
ijl(Qd')

The expression for acoustic attenuation constant is given by

[gs,0)= Imp,(qq, o) (30)

o:,u (q’ CU] = rp{qv GJ)HC;.(QL (3 I}

where C (g} is the velocity of acoustic wave, u = L for Jongitudinal and T for transverse
wave.

%, Comparison with experiments and discussion
5.1 Dielectric constant and tangent loss

Following Kubo (1957) and Zubarev (1960} the r¢al part of dielectric constant 1s given
by
K(w)—1=—8a> Ny’ G'(w), (32)

where s the effective dipole moment per unit cell and N is the number of cells in
the sample.

The dielectric loss (tand) is defined as the ratio of imaginary and real parts of
dieleciric constant and can be written as

tan § = G (w)/ ¢ (w). (33)

Thus the retarded one-phonon Green’s function is enough to determine the dielectric
constant and loss tangent. Using (32) and (18a), the real part of the dielectric constant
can be written as

k(o) — 1 = — 8aN 2 Qi) 0? ~ Q.3@)/[{w? — D3@)* + % @)Tie ff(ig]-)
4

For the perovskite crystals the microwave or lower frequency is much smaller than
the optical soft mode frequency §3gon{w/§3 2 107°) and no relaxation eflects are
observed. Due to this appreciable difference between « and the optical soft mode
frequency, (34} can be written as

K'{w) = 8aNu* (/L3 (g),  as K'(w)>» 1, (35)

In the vicinity of the transition temperature (25b} with the shift term gives
Susor o (T — T,)Y%, and (35} becomes

k'(¢) = constant/(T — T.). (36}

This s the Curie-Weiss law.
The tangent loss is given by

tan § = [, (¢, w)/[w? - 2.3(a)], (37)
where T",(g, w) is given by (21). For o <« £2,(g), (37) becomes
tand = — T,(g, o)/ L2{g, @) = 0(a + BT+ yT*UT— T.), - (38)
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where ¢ is harmonic and defect contribution, § and y are due to three and four phonon
anharmonic interaction terms of the lattice.

Thus a possible explanation of the origin of temperature dependence of microwave
and lower frequency loss tangent and diclectric constant is possible if the paraelectricity
of ABO, perovskires is regarded as originating from the temperature dependent
optical soft phonon frequency. A transverse radiation fleld derives the soft transverse
optical made of the material on the forced vibration. Energy is transferred from the
electromagnetic field to this lattice mode and is degraded into other vibrational modes.
Equations (36) and (38) describe the behaviour of §TiO, and BaTiO, (Rupprecht
and Bell 1962; Benedict and Durand 1958) quite well. Paletto ez af (1974) measured
the variation of permittivity and tand of BaTiO, with temperature. The anomaly
near the transition temperature can be explained by the fact that the optical mode
frequency softens near the transition temperature giving a large vaiue of dielectric
constant and loss near the transition points (36) and (38).

Similarly, the phonon frequency and damping constant in the first approximation
comes out to be

DU =+ PT+yT? (39
and
CTig) =o'+ BT+ T, {40)

which on fitting with the experimental results obtained by others for BaTiO; (Lupsin
et al 1980), SrTi0, and LaAlQ, (Feder and Pytte 1970) give the values of «, f and
s for different modes in different phases as listed in tables 1 and 2.

The Curie-Weiss behaviour of tangent loss in SrTiQ; and SrTiQ; doped with
impurity (Rupprecht and Bell 1962) shows that this contribution is due to the
temperature-independent term o in (38). This suggests that tmperfections cause

Table 1. Vatues of z, fand y obtained by fitting (39) with experimental results (figeres 1,2, 3).

BaTiC, SrTiO,
Cubic phase Tetragonal Cubie Tetragonal
Fy4(s0ft mode) E(TO) F.. E(T0) A, (1)
xem”! - 632 ~ 7648 ~ 5359 17:59 44-7%
Pem 'K 0-2865 0-57 0137 — 00915 048
yem™ tK7? —84x10°°  —612x107* —149x% 1077 32 1074 —25x 1077

Tabie 1. (Continued)

LaAiO,
Cubie Trigonal
Fi E(T0j A(TO)
aem ™! —-101-82 12805 - 3703
fem TR 02096 00534 - 0009

yem~ K2 - 631 x107° 187 x 1074 — 41 x 107F
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damping. The imperfections couple the soft mode to other modes and provide a
mechanism for scattering energy out of the driven mode. At higher mperatures the
loss deviates strongly from the Curie-Weiss type behaviour and increases linearly
with temperatare, This assutnes that at higher temperature lattice, anharmonicity is
responsible for the observed loss. This discussion also applies to BaTiO, in the

>3 BaTiOg ‘
180
- 50 |
E '
S
545 — 140
|
w
o —]
€ 40
L .
—1{ 100
35 |
|
30' i — 60
293 k 333 f
. | 1 |1 L
300 700 1100 1500

Temp. (°K}
Figure i. Temperature dependence of E(TO} and F,, modes for BaTiO;. and ¢ points
represent experimental results and the solid lines tepresent (39} with a, 8, y from table 1,

&
>
[ak]
E
> 4
ch
T
[
L
[ =t
2 2
w}
i
o
O 0.5 10 1-5 20
T/Te

Figure 2, Temperature dependence of optical phonon frequency for S£Ti0,. The points o,
and + are experimental results (o, Fleury et al; |, Shirane and Yamada; a, Cowley
et af) and the solid curves represent (39) with a, £, y from table 1,
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Pronon energy (meV)

&5 -G 15 20
T/
Figure 3. Temperature dependence of aptical phonon frequencies for LaAlQ;. o and &

represent experimental resclis (@, Axe et af, O, Socott) and solid curves represent (39) with
2, f, v from table 1.

Table 2. Values of o, f, v obtained by [itting {40} with experimental
results, figures 4, 5, {for BaTiO,.

Fy, (soft mode) A, (TG E(T0)
eem! 13475 1859 9R-34
Fem™ K1 &3 - 11-784 — M
yem K2 —-975%107* 0019 125 % 10™*

300 |
|
|
- ]
IE 200 |
E |
£ |
2 |
% 100k P
|
|
Tl
0 B ! C‘
20 60 100 140
Temp. (°C)
Figure 4. Temperature dependence of width of A,(T0) mode in BaTiO,. & show
experimentai tesults and the solid curve is represented by (40) with &, §, v [from
table 2.

paraelectric phase. The observed loss tangent of BaTiQ;, however, is some orders of
magnitude larger than the SrTi0, value (Benedict and Durand 1958; Stern and Luric
1961). The temperature dependence of loss tangent is a reflection of temperature
dependence of frequency of the transverse polarization mode—the optical soft mode.
The high loss of polycrystaliine samples of (Ba~Sr)TiO mixture and single crystalline
samples of BaTiO, (Stern and Luric 1961) exhibit the loss tangent represented by
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I
| BaTiO, 2
|
|
|
|
200~ |
=
5=
= 100}
i
, | 100
1 : | L (-
! i 293 333 373
ol L1 l | |
300 ¢ 200 1500
Temp. (°K)

Figure 5. Temperature dependence of damping of F,, and E(T0) modes in BaTiO,;. O
and e represent cxperimental results and solid curves are represented by (40) with
o, ¥, 7 [rom table 2,

(38). Other perovskites, e.g., CaTiO, (Linz and Harrington 1358), KTaO;, KTa0Q,:
NaTaQ, (Agrawal and Rao 1970) also exhibit the same behaviour.

The frequency dependence of loss tangent for perovskites is linear and so is the
temperature dependence at higher temperatures. The resultant increase in loss is not
due to the buik electronic semiconduction because this would in turn lead to a
reciprocal frequency dependence of loss tangent. The temperature dependence of loss
does not appear to be exponential. Thus, third and fourth order anharmonicity may
be responsible for the observed behaviour of loss tangent.

52  Acoustic attenuation

Expression for acoustic attenuation coefficient is given by (31). In the vicinity of the
transition temperature o, (T — T.)'2 and the temperature dependence of damping
constant of the acoustic wave near the transition temperature, can be expressed as

Ax0) ", o) ),
(T_ Tt)l.l’l (T_ Tc):”z

Ag(w) A ()
T {As(“’”(T— A T.:)Z} TZ]’ .

where A,(w} are temperature independent terms.

Acoustic wave velocity decreases anomalously (Naithani and Semwal 1980) in the
vicinity of the transition temperature. This also contributes to the anomalous increase
of the attenuzation constant near transition temperature of the displacive ferroelectrics.
These results agree with the results of Tani and Tsuda (1969). At the temperature

Ig,w)= [Al(w)'l' {Az(a’) +
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which is away from the Curie temperature, the soft mode frequency is mnearly
temperature-independent and so is the acoustic wave velocity. Thus, the acoustic
attepuation constant can be written as

[, (g, m)= A (g, 0} + Ay(g, @) T+ A3(g, 0) T7, (42)

This type of behaviour has been observed for LINbO, (Lemanov et al 1969}, BaTiO,
(Hueter and Neuhaus 1955) and SrTiO, {Nava et al 1969) experimentally which
confirms that higher order anharmonicity dominates at higher temperatures. Thus
the experimental and theoretical results reveal that the binding forces between atoms
do not show the ideal spring behaviour and consequently the restoring forces are
proportional to higher powers of displacement as well.
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