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Dielectric relaxation dynamics of water and methanol solutions associated 

with the ionization of N,N-dimethylaniline: Theoretical analyses 

Koji Ando and Shigeki Kato 
Department o/Chemistry, Faculty o/Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606, 

Japan 

(Received 20 June 1991; accepted 5 July 1991) 

The solvation dynamics associated with the ionization of N,N-dimethylaniline (DMA) in 

water and methanol solutions has been studied theoretically. Potential energy surfaces of 

DMA and DMA + were computed by ab initio molecular orbital (MO) methods. 

Intermolecular pair potential functions between DMA and H 2 0 were developed with the aid 

of the electron distributions of DMA and H2 0 and the results of MO calculations for the 

DMA-H20 system. Potential functions between DMA and MeOH were also determined 

empirically using the parameters for DMA-H2 0 interaction. Equilibrium and nonequilibrium 

molecular dynamics calculations were carried out for the DMA-water and DMA-methanol 

solutions. The simulation results were analyzed comparing two solvents in order to obtain a 

realistic molecular model for the solvation dynamics of DMA in polar solvents. The solvation 

coordinate was defined by the potential energy difference between neutral and cation states and 

free energy curves along it were constructed using the umbrella sampling method. They were 

found to be well described by parabolas and nonlinear effects such as the dielectric saturation 

were not observed. The fluctuation-dissipation relation was also examined. It was found that 

the present systems follow the linear response to a reasonable approximation. In order to 

provide a kinematic foundation for the choice of the solvation coordinate, the generalized 

Langevin equation (GLE) for the motion along the solvation coordinate is derived utilizing 

the reaction path model originally developed to describe photochemical processes in the gas 

phase. The mechanism of the dielectric relaxation dynamics was discussed on the basis of the 

quantities in the GLE deduced from the molecular dynamics (MD) calculations. 

I. INTRODUCTION 

The dielectric relaxation dynamics of polar solvents is 

one of the most fundamental subjects in solution phase 

chemistry and has been an active area of research particular­

ly connected with the topic of electron transfer reactions in 

polar solvents. I-5 Among theoretical studies on electron 

transfer in solution, Marcus pioneered to focus on the impor­

tance of solvent reorganization free energy in describing the 

reaction process.6
•
7 Since the solution phase chemical reac­

tion is a complex process involving both solute species and a 

vast number of solvent molecules, it is practically more con­

venient to examine the reaction free energy surfaces than the 

potential energy surfaces themselves.8 Apart from the early 

theories which stand on the macroscopic continuum approx­

imation, many of current theoretical studies treating nona­

diabatic processes such as electron transfer have been apply­

ing the potential energy difference between reactant and 

product states as the microscopic reaction coordinate and 

examining the free energy curves along it.9-12 For example, 

electron transfer reaction in polar solvents may be consid­

ered as a surface hopping process between reactant and 

product surfaces driven by the thermal fluctuation of the 

solvent. The tunneling of an electron becomes possible when 

the fluctuation of solvent polarization makes the potential 

energies of two states coincide with each other. Almost the 

same theoretical framework can be applied to describe the 

photoexcitation and ionization processes of solute molecules 

in solutions using the dressed state representation. 13 

Several theoretical models have been advanced to de­

scribe the dielectric relaxation dynamics at a molecular lev­

el, e.g., the dynamical mean spherical approximation 

(MSA) theory,I4-16 the Smoluchowski-Vlasov equation 

(SVE) theory,I6-18 and the model by van der Zwan and 

Hynes,19 and have provided important clues to understand 

the solvation dynamics. In particular, the model based on 

the generalized Langevin equation (GLE)8 is closely relat­

ed to the interpretation of solvation processes in terms of the 

free energy curves mentioned above. With this model, the 

solvation dynamics is represented as the propagation of the 

system on the free energy curves under the influence of fric­

tion and random forces. It must be noted that these theoreti­

cal models have been derived on the basis of linear response 

(LR) theory, in which the dissipation of energy in the non­

equilibrium solvation dynamics is replaced by the fluctu­

ation in the equilibrium dynamics. Therefore, it would be a 

critical test for these theories to examine whether the LR 

relation holds or not in realistic systems. 

Molecular dynamics (MD) simulations will be the most 

profitable way for such purposes. Several simulation studies 

on the dielectric relaxation dynamics, which is the subject of 

the present work, have been reported in recent years. Rao 

and Berne20 have observed the nonequilibrium relaxation of 

the structure of aqueous solvent around an ion just after 

ionization. Maroncelli and Fleming21 have analyzed the re­

sults of relaxation dynamics of aqueous solvent cluster in 
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terms of the LR theory. Karim et a/.22 have observed the 

relaxation of solvent water after a sudden change of solute 

dipole moment and discussed the importance of molecular 

aspects of the solvent. A simulation study related to electron 

transfer reaction has been reported by Bader and Chan­

dler.23 They have investigated the solvent relaxation just 

after a ferric-ferrous electron transfer in an aqueous solution 

and examined the LR relation. In the course of the present 

work, alternative polar solvents other than water have also 

been examined. Maroncelli24 has studied acetonitril because 

it is a simple aprotic solvent and suitable for comparison 

with analytical models. It seems that both acetonitril and 

water have been found to follow the LR to a reasonable ap­

proximation. On the other hand, the breakdown of the LR 

relation in methanol (MeOH) solution has been reported by 

Fonseca and Ladanyi. 25 In all of these studies, solute species 

are structureless simple spheres or diatomics and some of 

them with arbitrary potential parameters. Undoubtedly, 

more extensive works on realistic models of solute species 

such as polyatomic molecules will be needed. 

In the present work, molecular dynamics (MD) trajec­

tory calculations have been carried out for N,N-dimethylani­

line (OMA) in water and methanol solutions. We focused 

on the solvation dynamics associated with the ionization of 

OMA. The solute OMA is known as a prototype of donor 

molecules in the experimental studies on the photoinduced 

electron transfer reaction,26 which is one of the important 

subjects in organic photochemistry. Besides the interest con­

nected with electron transfer, we can find a significance of 

examining DMA as the solute, i.e., it may be regarded as an 

appropriate model of realistic polyatomic organic molecule 

since it contains an aromatic ring, hydrophobic methyl 

groups, and an amino N atom which can participate in the 

hydrogen bonding with protic solvents. 

The reason for choosing water and methanol as solvents 

would be rather obvious. They are most standard and impor­

tant polar protic solvents studied extensively, both experi­

mentally and theoretically. Although they have close values 

in intermolecular interaction energies and therefore are ex­

pected to show similar static features, the dynamical proper­

ties are known to be very different from each other. The 

qualitative trend of different features between them has been 

attributed to the longitudinal relaxation time 1"L,2,27 0.5 ps 

for H2 0 and 7,7 ps for MeOH,28 respectively, The time con­

stant 1" L is, however, suitable to interpret the relaxation pro­

cess with a longer time scale since it is essentially related to 

macroscopic parameters such as the bulk dielectric relaxa­

tion time T D and the static and optical dielectric constants, 

As is known from many experimental and theoretical 

works,29,30 more fast components of dielectric relaxation 

play an important role in describing the dynamics in solu­

tions, It would be, therefore, necessary to examine the mi­

croscopic interactions such as the structural forms of the 

hydrogen bonding network for a satisfactory understanding 

of the dynamical properties of these solvents, 

One of the purposes of the present work is to provide a 

realistic model for the solvation dynamics ofDMA in polar 

solvents. For this purpose, ab initio molecular orbital (MO) 

calculations were carried out to obtain the intra- and inter-

molecular potential energy functions, We incorporated the 

large amplitude motions of the internal degrees of freedom 

of DMA in the dynamics calculations. Such a calculation 

based on the realistic model is, to our knowledge, virtually 

nonexistent despite a number of MD studies that have been 

performed so far. The other purpose is to analyze the results 

of MD simulation calculations in terms of the concept of 

reaction free energy curves, This would give a physically 

graspable insight into the solvation dynamics, Since the pres­

ent system is related to the photoinduced electron transfer 

reactions of organic molecules, this work can be regarded as 

a first step for the studies on electron transfer reactions in a 

further stage, 

In Sec. II, the intra- and intermolecular potential energy 

functions are presented. The potential energy surfaces of the 

isolated DMA and DMA + were constructed by ab initio 

MO calculations. With the aid of the electron distribution of 

DMA (DMA +) and H 2 0 and the results ofMO calcula­

tions for the DMA-H2 0 system, we have determined 

DMA-H20 pair interaction potential functions. The poten­

tial functions for DMA-MeOH interaction were also deter­

mined empirically using the potential parameters for the 

DMA-H2 0 interaction. With the potential energy func­

tions developed in Sec, II, we have performed equilibrium 

and nonequilibrium MD trajectory calculations for DMA­

water and DMA-methanol solution systems. The method of 

calculations, simulation results, and a series of statistical me­

chanical analyses are presented in Sec, III. In Sec. IV, we 

discuss the results focusing mainly on the fluctuation-dissi­

pation (FD) relation and the nature of the free energy 

curves. The generalized Langevin equation (GLE) for the 

surface hopping process as in the present case is derived uti­
lizing the reaction path model originally developed for pho­

tochemical processes in the gas phaseY The mechanism of 

dielectric relaxation processes are discussed on the basis of 

the GLE derived here. The summary and conclusion of the 

present work are given in Sec. V. 

II. POTENTIAL ENERGY SURFACES 

A. Method of calculations 

The potential energy surfaces of the isolated DMA and 

DMA + were calculated by ab initio MO methods with the 

restricted Hartree-Fock (RHF) and the unrestricted Har­

tree-Fock (UHF) approximations,32 The basis sets we em­

ployed are the 3-21G(N*) set and the 6-31G(N*) set. In 

these basis sets, a set of d-polarization functions with the 

exponent of 0.8 on the N atom is added to the standard 3-

21G and 6-31G sets.33 It is indispensible for describing the 

amino lone pair orbital of the neutral DMA. 

The 3-21G(N*) set was used for the geometry optimi­

zations. The geometries were optimized in Cs symmetry us­

ing the analytic energy gradient method for the HF wave 

function, The optimized wagging angle of the dimethyla­

mino group (e) was 32,6° for neutral DMA and 0° (planar) 

for cation DMA. An optimization of the neutral DMA con­

strained in a planar geometry was also performed, Besides 

the wagging angle e, there was little difference in bond dis­

tances and bond angles among the results of these calcula-
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tions. The most distinct differences in the cation geometry 

compared with the neutral one were as follows (Fig. 1): ( 1 ) 

the NC I bond becomes shortened by 0.05 A and concommi­

tantlytheC I C2 and Cl C3 bonds are extended by 0.03 A; (2) 

the NMel and NMe2 bonds are extended by 0.02 A; (3) the 

Mel NMe2 bond angle becomes smaller by 2·. The bond dis­

tances and the bond angles obtained by these calculations 

were averaged to be used in the MD trajectory calculations. 

The more reliable 6-3lG(N*) set was used for the con­

struction ofthe potential energy surfaces. They are calculat­

ed as a function of two internal coordinates; the wagging 

angle (J and the torsional angle around the NC I bond 1". 

These calculations are carried out at 23 points of ((J, 1"); 

(J = 0·, 10·, 20·, 30·, 40·, 50°, and 60· for 1" = o· and 8 = 0°, 

20.,40°, and 60· for 1" = 22.5",45°,67.5", and 90·. The geo­

metrical parameters other than (J and 1" are fixed to the aver­

aged values as mentioned above. The number of basis func­

tions is 109. 

B. Potential energy functions of DMA and DMA + 

We constructed the potential energy functions of the 

ground states of DMA and DMA + using the results of ab 

initio MO calculations described above. Calculated energies 

were least-squares fitted to the analytic functions 

3 3 

v DMA (8,1") = I I anm cos 2nr8 2m
• (2.1) 

n=Om=O 

As is generally expected, the HF approximation employed 

here underestimates the ionization potential (I.P.). The cal­

culated adiabatic I.P. was 5.5 eV, whereas the experimental 

value is reported to be 7.6 eV. 34 We therefore modified the 

potential energy functions of DMA + to reproduce the ex­

perimental adiabatic I.P. by adding a constant correction 

term 2.1 eV. By this correction, the verticall.P. was estimat­

ed to be 8.2 eV. The contour maps of the potential energy 

surfaces are shown in Fig. 2. 

The neutral surface is a double well potential for 8, 

which has a minimum at (8,1") = (36·,39·) as seen in Fig. 2. 

The inversion barrier for wagging motion of the dimethyla­

mino group ((J) was 2.5 kcallmol. The barrier heights for 

the internal rotation around the NC I bond (1") were 1.3 

kcallmol for the 1" = 40° -+ 90· -+ 140· direction and 2.6 kcall 

H\ 1.072 1.068 HI 

(\fO)1.381 (1.0~( 
1.38~ 4 (1.383) 2~401 

(1.401) (1.435) 'C 

1.071 118.0 117.2 a --e-·-
H5(1.071)C6~(118.8) (11~.4) C1 N~~-u_ 

121.2 121.2 1.399 \ '~, r"e2 
121.11 (:l0.8) (1.349) 1.458 114.2 
C5/TC3 (1.481) (111.5)" 

L 118.8 118.5\. tv1el " 
H.. (119.0) (118.2JH2 

FIG. 1. Geometrical parameters and optimized geometries of DMA and 

DMA + • Bond distances are in A and angles in degrees. 

cil 
(!.I 

~30 

CD 

(8) 

dl 

30 60 
1: (deg.) 

1-----8.9 

~ 30 .J-----_ 
CD 

90 

O+--,-.--~-.--+--.~.--.L-~ 

o 30 60 90 

Ib) 1: (deg.J 

FIG. 2. Contour maps of potential energy surfaces of (a) DMA and (b) 

DMA + . Energy at the minimum of the DMA + potential surface is 7.6 eV. 

Contour spacings are 0.05 and 0.2 eV for DMA and DMA + potential sur­

faces, respectively. 

mol for the 1" = 40· -+0° -+ - 40° direction, respectively. 

The cation surface is a single well potential for 8 and is 

rather steep compared with the neutral surface along both 

angles. It has a minimum at (8,1") = (0°,0.) and the rotation 

barrier for the torsional mode was 16.2 kcallmol. The pa­

rameters for the neutral and cation potential functions are 

summarized in Table I. 

C. Intermolecular potential functions 

The intermolecular pair potentials between DMA and 

H2 0 were developed with the aid of electron distributions 

obtained from the MO calculations presented in the previous 

section. We assumed that the DMA-H2 0 interaction poten­

tial was described by the sum of the electrostatic and the 

exchange-exclusion part. The computation of these two 

parts was implemented by the effective point charge model 

and the Gordon-Kim model,3s respectively. Details of these 

methods have been presented in Ref. 12. We will summarize 

them below. 

The effective point charge model represents the electro­

static term as a sum of Coulombic interactions between the 
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TABLE I. Parameters of potential energy functions. 

DMA 

aoo 
. 0.1800 

a lO 
. 0.0816 

a20 " -0.0504 

all) " - 0.0154 

aOI 
b -0.3457 

all 
b - 0.2618 

a21 
b -0.0248 

a'l 
b -0.0068 

a02 
c 0.5639 

au 
c 0.0916 

a22 
c 0.0198 

a '2 
c 0.0018 

aOl 
d 0.0856 

au 
d 0.0143 

a2l 
d 0.0676 

all 
d - 0.0180 

"Given in eV. 
bGiven in eV rad -2. 

C Given in eV rad -'. 

dGiven in eV rad - •. 

DMA+ 

7.6000 

0.3641 

- 0.0756 

- 0.0142 

0.8351 

- 0.1937 

0.0373 

-0.0583 

0.4689 

- 0.0481 

- 0.0235 

0.1007 

0.0625 

0.2987 

- 0.0395 

- 0.0388 

net charges placed on each atom of two molecules. We first 

calculated the electrostatic potentials ofDMA and DMA + 

using the electron density matrices obtained from the MO 

calculations. The effective charges to be placed on each atom 

of DMA (DMA +) were then determined by the least­

squares fitting procedure so as to reproduce the calculated 

electrostatic potentials. We used the values of electrostatic 

potential at about 500 points around DMA or DMA + . The 

contributions from methyl groups were represented by the 

effective charges on the methyl C atoms. 

The exchange-exclusion potential was computed by the 

Gordon-Kim model. This describes the interaction energy 

as a function of electron densities of two molecules applying 

the electron gas model. The electron densities of DMA 

(DMA +) and H 2 0 molecules were approximated by a su­

perposition of net atomic densities using the procedure given 

in Ref. 12. The methyl groups and CH groups in the phenyl 

ring ofDMA were regarded as the extended atoms. The pair 

exchange-exclusion potentials were then least-squares fitted 

to the 12-6 Lennard-Jones functions. 

It was found that the effective charges and the param­

eters of Lennard-Jones functions are rather insensitive to the 

geometry ofDMA (DMA +). We have therefore taken the 

values at the geometry (0,..,.) = (40°,0°) for DMA and 

(0°,0°) for DMA + and assumed that these values are inde­

pendent of the angles ° and..,.. The results are summarized in 

Table II. The dipole moment of DMA computed from the 

resulted effective point charges was 1.5 D, which reproduces 

the value obtained from the MO calculation. The dipole mo­

ment at the geometry (0,..,.) = (40°,45°) was 1.2 D from the 

MO calculation and 1.5 D from the effective charges ob­

tained here, respectively. They are in good agreement with 

the experimental value of 1.6 D.36 

TABLE II. Effective point charges on DMA and DMA + . 

DMA DMA+ 

N - 0.5029 0.1366 

C I 0.4727 0.5539 

C2•l -0.4508 - 0.6597 

C •. S -0.0307 0.0215 

c. - 0.2561 -0.0027 

H I•2 0.2120 0.3158 

Hl.4 0.1372 0.1664 

Hs 0.1475 0.1258 

Me l •2 0.2017 0.2492 

The solute-solvent pair interaction energy was then ex­

pressed in the following form: 

V int = L L {qaqb + 4Eab[(O'ab)12 _ (O'ab)6]}, 
a b rab rab rab 

(2.2) 

where the subscripts a and b denote the atoms or extended 

atoms in DMA and H 2 0, respectively. We applied the 

TIP3P (transferable interaction potential) model of liquid 

water37 
( - 0.834 and 0.417 e for the 0 and H atoms, respec­

tively) for the effective charges on the H 2 0 molecule (q b ). 

Further we have performed a series of MO calculations 

for the DMA-H2 0 system. We first determined several im­

portant configurations ofthe DMA-H2 0 complex using the 

intermolecular potential functions developed as above. The 

DMA molecule was put in the planar geometry with its phe­

nyl ring on the xz plane. Three types of configuration of the 

H 2 0 molecule were taken into consideration: (A) the C2 

axis of H 2 0 coincided with that ofDMA (z axis) and the 

H 2 0 approach from the methyl side ofDMA; (B) similar to 

type (A), but the approach was from the opposite side; (C) 

the H 2 0 molecule is constrained on the Cs plane (yz plane) 

ofDMA. The resulting stable configurations for the neutral 

DMA were as follows: (1) for type (C), one of the H atoms 

in H20 is coordinated to the amino lone pair (hydrogen 

bonding) and the other H atom to the phenyl ring; (2) in 

terms of the dipole-dipole interaction, the type (A) water 

coordinates to DMA in profitable direction, whereas the 

type (B) water is in a disadvantageous direction due to the 

local attraction from phenyl CH moiety (see Table II). 

For the cation case, the 0 atom of H 2 0 coordinates to 

DMA + commonly with three types due to the electrostatic 

attraction from the positive charge which locates mainly on 

the amino N atom. 

Next, we altered the position of the H2 0 molecule from 

the stable point by ± 0.5, ± 1.0, ± 1.5, and ± 2.0 bohrs 

along the z axis [types (A) and (B)]. For type (C), only the 

y coordinate of the H 2 0 molecule was changed as well and 

the other degrees of freedom (z coordinates and orienta­

tional parameters) were optimized. For the configurations 

of the DMA-H20 complex thus prepared, a series of ab 

initio MO calculations with RHF and UHF approximations 

were carried out. The basis set used was the 6-31 G (N*) set 

for DMA and the 6-31 G(O*) for H 2 0, where a set of d-

J. Chern. Phys., Vol. 95, No.8, 15 October 1991 
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5970 K. Ando and S. Kato: Dielectric relaxation dynamics 

polarization functions with the exponent 0.8 is augumented 

on the 0 atom. The number of basis funcions is 128. The 

intermolecular interaction energies were obtained by 

~nt = E(DMA-H2 0) - E(DMA) - E(H2 0). (2.3) 

The results were utilized to correct the length and energy 

parameters a and €' in the Lennard-Jones functions (2.2). 

After small corrections, we obtained the intermolecular po-

tential curves shown in Fig. 3. The revised Lennard-Jones 

parameters are summarized in Table III. 

In many of the experimental and theoretical studies, sol-

ute molecules were conveniently modeled by simple spheres. 

Considering that the solute radius can be crucial to these 

approximations, we estimated the effective radius of the sol-

ute DMA molecule using the pair potential functions for 

DMA-H20 and DMA + -H20 developed here. First, the 

interaction potential excluding the Coulomb term was com-

puted and the length and energy parameters a and €' were 

evaluated as functions of direction coordinates. The effective 

mean values of a and €' were computed by the procedure 

similar to the two-dimensional numerical integration on a 

surface of sphere using the 26-point quadrature,38 i.e., 

_1_2 f 1 j(x,y,z)da-;::::, i (UJ(Xj,YitZj), 
417'h l: i = 1 

(2.4 ) 

};:x2 + r + ~ = h 2. 

Using the same weights (Uit the mean values were computed 

by 

26 
Xeff = L (UjXUth direction) (X= a,€'). (2.5) 

i= 1 

The results were a eff = 5.0 A, €'eff = 0.17 kcal/mol for 

DMA-H20 and a eff = 5.0 A, €'eff = 0.14 kcal/mol for 

DMA + -H20, respectively. The parameter a was approxi-

mately the same between DMA-H20 and DMA +-H2O. 

The effective radius of DMA was computed using the Lor-

entz-Berthelot combining rules. With aOMA-H20 = 5.0 A 
and a H20-H

2
0 = 3.15 A, aOMA-OMA was evaluated by 

aOMA-OMA = oiMA-H,o/aH20-H,o = 7.9 A, thus we get 4.0 

A for the effective radius of DMA. This will be used for 

comparison between the simulation results and the con tin-

uum approximation in Sec. III B and for the normalization 

of the solvent shell components of the polarization in Sec. 

III D. 

We have also developed the DMA-MeOH and 

DMA + -MeOH intermolecular potential functions empiri-

cally, using the Lennard-Jones parameters of DMA-H2O, 

H2 0-H2 0, and MeOH-MeOH interaction potential func-

tions. For example, the length parameter a was obtained by 

~c = ~b ace' (2.6) 
a bb 

where the sUbscripts a, b, and c denote the atoms or the 

extended atoms in the DMA, H20, and MeOH molecules, 

respectively. We used the parameters developed by Jorgen­

sen et al.26 for the solvent-solvent intermolecular potential 

functions;qo = -0.834e,qH =0.417e,aoo =3.15A,and 

€'oo = 0.15 kcal/mol for the H2O-H20 interaction and 

qMe = 0.265e, qo = 0.700e, qH = 0.435e, aMeMe = 3.775 A, 
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FIG. 3. DMA(DMA + )-H2 0 intermolecular potential energy curves. 

Symbols 0 (solid lines) are computed values from MO calculations and 0 

(dashed Jines) by Eq. (2.2) with optimized potential parameters. The ab­
scissas denote the distance from the 0 atom in H 2 0 to (A) the midpoint of 

two methyl e atoms; (B) the e. atom in the phenyl ring; and (e) the Net 
line of the DMA molecule, respectively. For the types of configurations 
(A), (B), and (e), see the text. 
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TABLE III. Lennard-Jones parameters for DMA and DMA + . 

DMA DMA+ 

0'" 

N 4.584 

C 5.258 

CH 4.978 

Me 4.114 

a Given in A. 
bGiven in kcallmol. 

t!' a" t!' 

0.000 60 3.691 0.00332 

0.00104 4.046 0.00766 

0.011 15 4.730 0.011 31 

0.03881 4.828 0.00397 

0'00 = 3.07 A, £MeMe = 0.207 kcal/mol, and £00 = 0.17 

kcal/mol for the MeOH-MeOH interaction, respectively. 

III. MOLECULAR DYNAMICS CALCULATION 

A. Method 

Both the eqUilibrium properties and the nonequilibrium 

relaxation process of ionic solvation were investigated by the 

classical MD trajectory calculations. The simple three point 

models of water and methanol, as noted in the previous sec­

tion, were used as solvents. 37 The solvent molecule is treated 

as a rigid body. Quaternion parameters were used as the 

generalized orientational coordinates in order to avoid the 

singularities in the rotational equations of motion. 39,40 For 

the solute DMA, we dealt with two internal degrees of free­

dom explicitly; the wagging angle of the dimethylamino 

group (J and the torsional angle around NC l bond 7. Both of 

them represent the large amplitude vibrational motions. The 

internal coordinates other than (J and 7 were fixed to the 

averaged values determined by the procedure described in 

Sec. II A. 

The motion of the solute DMA was described by a clas­

sical Hamiltonian 

H= ~m +fpG-lp + !'roI«(J,7)ro + W, (3.1) 

( 

faxr axr f axr axr) 
;= 1 a(J a(J ;= 1 a(J a7 

G = N axb axb N axb axb ' 'p = (Pe,Pr)' 

r-'-' r-'-' 
i = 1 a7 a(J i = 1 a7 a7 

where TIm is the translational kinetic energy, Pe and Pr are 

the conjugate momen ta of (J and 7, I «(J, 7) is a 3 X 3 diagonal 

inertia tensor, and xr is the body-fixed coordinate in the 

frame of the principal axis of inertia with the origin at the 

center of mass of DMA. The body-fixed coordinate xf is 

represented by 

x~( (J,7) = U «(J,7)X?( (J,7) , (3.2) 

where x? is the reference coordinate defined in terms of the 

principal axes at the planar configuration «(J,7) = (0°,0°) 

and U«(J,7) a unitary matrix which diagonalizes the inertia 

tensor obtained from the coordinate x? U «(J, 7) is a unit ma­
trix for «(J,7) = (0°,0°) and otherwise represented by 

(3.3 ) 

where Rx denotes the rotation matrix around the x axis. 

Three rotation parameters in U«(J,7) and the principal mo­

ments of inertia in 1(0,7) were represented by two-dimen-

sional spline functions of (J and 7. By this procedure, the 

Coriolis coupling between the vibrational motions of (J,1" and 

the rotational motion of the DMA molecule in space are 

eliminated and the Hamiltonian is written in the form given 

by Eq. (3.1). The quaternion parameters are utilized to de­

scribe the rotational motion of the body-fixed frame of the 

DMA molecule. 

Integration of the equation of motion was performed by 

the Gear-predictor--corrector method initiated by the fourth 

order Runge-Kutta method. The five- and four-value Gear 

algorithms41 were applied for the first- and second-order 

equations of motion, respectively. The periodic boundary 

condition was applied. Each cubic cell contains one DMA 

and 250 H20 or 216 MeOH molecules. The mass density 

was set to be 1.0 and 0.759 g/cm3 for water and methanol 

solutions, respectively. The value for methanol is taken from 

Ref. 37(b), where the mass density has been calculated by 

the constant pressure Monte Carlo simulation using the 

same potential functions as used in the present work. The 

simulation box lengths were then 19.7 (water) and 24.9 A 
(methanol), respectively. The long-ranged Coulomb term 

in the solvent-solvent interaction potential was calculated 

using the Ewald's summation technique. The surface term 

was included in the sum in which the experimental values of 

the dielectric constant were used (78.4 and 33.7 for water 

and methanol, respectively). 

As is generally recognized, it is not adequate to apply 

the periodic boundary condition to the calculations of the 

solute-solvent interaction especially for such systems as the 

present in which the total charge in the simulation box is not 

zero. We have implemented the potential tapering method42 

for the computation of the solute-solvent interaction and 

estimated the energetic contribution from outside the ta­
pered sphere by the continuum approximation. The tapering 

function we adopted was 

{

I for S' <0 

O'(S')= 1-S'3[1O-S'Cl5-6s)] 

o for s> 1 

for O<s < 1, 

(3.4 ) 

where R c .m . denotes the distance between the centers of mass 

of the solvent and solute molecules. We took the cut-off dis­

tanceR e at half of the simulation box length and RT = 0.9 

Re. The function O'(s) smoothly damps the bare atom-atom 

pair potential function Vby 

(3.5) 

We have estimated the contribution from the region outside 

the tapered sphere by the continuum approximation (Born 

formula), in which we used the experimental values for the 

dielectric constant and the computed value for the dipole 

momentofDMA (1.5 D) and (Re + R T )/2 for the radius 

of the sphere, respectively. 

The equilibrium MD calculations consisted of 20 (wa­

ter) and 40 ps (methanol) runs after several lOps of cooling 

and equilibration runs. The time steps used were 0.4 and 0.5 

fs for water and methanol solutions, respectively. Good en­

ergy conservation (AE < 0.3 kcallmol) was achieved. We 
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found that the most part of errors comes from cutting off the 

short-ranged (Lennard-Jones) term in the solvent-solvent 

pair interaction potential with the minimum image conven­

tion. No temperature control algorithm was used in all the 

equilibrium and nonequilibrium simulations. 

B. Static properties 

Before proceeding to the dynamics, we are going to pres­

ent the results of the equilibrium simulations and discuss the 

static properties of the present systems. A summary of the 

results obtained are listed in Table IV. 

The difference between the solvation energies of DMA 

and DMA + , given as the average ofthe solute-solvent inter­

action energy, were 104.2 and 91.9 kcal/mol in water and 

methanol solvent, respectively. We have also estimated the 

solvation energies using the continuum approximation and 

compared them to the simulation results. The solvation en­

ergies of a dipole and an ion in a spherical cavity with radius 

R which is immersed in the continuum dielectric with the 

static dielectric constant € were computed by 

(3.6) 

(3.7) 

When we adopt 4.0 A and 1.5 D for the effective radius (R) 

and the dipole moment (/1) ofDMA (Sec. II C), the solva­

tion energies are largely underestimated as shown in Table 

IV. These deviations are naturally attributable to the contri­

bution from the local or microscopic interactions between 

the DMA molecule and the nearest-neighbor solvent mole­

cules. 

The structural character of solvation will be reflected in 

the solute-solvent radial distribution functions (rdfs). 

Though we have computed all the atom-atom rdfs, only the 

center-of-mass (c.m. )-c.m rdfs are presented in Fig. 4. The 

solid and dashed lines correspond to DMA and DMA +, 

respectively. The radial distribution for the DMA-H2 0 sys­

tem has a first main peak centered at 5.8 A, .which is a rea­

sonable value since the effective radii of DMA and H20 

were estimated as 4.0 and 1.6 A, respectively. Behind this 

peak is seen a minimum located at about 7.0 A, which was 

adopted for the definition of the first solvation shell bound­

ary (rshell ). We can also see in the figure that the distribution 

for DMA-H2 0 has a tail or shoulder in the region from 3 to 

4 A. This is due to the hydrogen bonding of H2 0 molecules 

TABLE IV. Results from equilibrium MD simulations. 

Solvent H2 O MeOH 

solute DMA DMA+ DMA DMA+ 

Temperature' 300± 8 298 ±9 297 ±9 299 ± 9 
( v;nt}b - 10.4 -114.6 -6.8 -98.7 
( vco",}b -0.5 - 82.0 -0.5 -80.6 

(N'hell > 41 ±2 40±2 23 ± 2 24±2 

'Given in K. 
bGiven in kcallmol. 
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FIG. 4. Radial distribution functions between centers of mass of 

DMA(DMA +) and (a) H2 0 and (b) MeOH. Solid and dashed lines cor· 

respond to DMA and DMA + , respectively. 

to the amino N atom and the aromatic ring of DMA. 

A splitting of the main peak was observed in the radial 

distribution for the DMA + -H20 system. These peaks are 

centered at 4.5 and 5.9 A, respectively. The former reflects 

the coordination of water molecules at above the aromatic 

ring plane of DMA + . The latter peak partly comes from a 

relatively pronounced coordination around the methyl 

groups ofDMA +. 

The rdfs for DMA-MeOH and DMA + -MeOH sys­

tems have roughly similar features to those observed in the 

case of aqueous solution. The first peak in DMA-MeOH 

radial distribution is centered at 6.3 A and the minimum 

behind it at 7.8 A (r.hell)' Two peaks are found at 4.8 and 6.1 

A in the DMA + -MeOH distribution. In contrast to the 

DMA-H2 0 case, tails or shoulders in the small r region 

were not observed in the DMA-MeOH radial distribution 
curve. 

J. Chem. Phys., Vol. 95, No.8, 15 October 1991  Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.54.110.33 On: Mon, 31

Oct 2016 00:45:13

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



K. Ando and S. Kato: Dielectric relaxation dynamics 5973 

As mentioned above, the first solvation shell boundary 

was defined using the minima in the rdfs of the neutral sys­

tems. With this shell radius 'shell' we have estimated the aver­

aged number of solvent molecules (Nshell ) inside the first 

solvation shell. There were about 40-41 H2 0 or 23-24 

MeOH molecules inside the first shell around the solute 

DMA molecule. 

c. Potentials of mean force 

Beginning with the electron transfer reaction, chemical 

reactions in solution are discussed on the basis of the reac­

tion free energy surfaces rather than the potential energy 

surfaces. We have investigated the potentials of mean force, 

or the free energy curves along the solvation coordinate s 

which is defined by 

s =/(R,r) = WI (R,r) - Wo (R,r), (3.8) 

where Wo and WI are the potential energies for the system 

with neutral and cation DMA, and Rand r the coordinates 

of solute and solvent molecules, respectively. The potential 

energy consists of three terms 

WI = VS01V(r) + V?MA(R) + v~nl(R,r) (1=0,1). 

(3.9) 

With the definition (3.8), the potential energies of two states 

always coincide at s = O. 

The eqUilibrium MD calculations are carried out with 

the Hamiltonian 

(3.10) 

With a = 0 and 1, the system evolves on the neutral and 

cation potential surfaces, respectively. As will be described 

below, the interpolation between the two free energy curves 

(neutral and cation) becomes feasible with 0 <a < 1, which 

may be regarded as the umbrella sampling method. 

The probability density for the solvation coordinate s 

including a as a parameter is 

P 
S15[s - /(R,r) ]exp{ -.B [Wo + a( WI - Wo ) ]}dR dr 

(s;a) = , (3.11 ) 
Za 

Za = f exp{-.B[Wo +a(WI - Wo)]}dRdr, 

where.B = 1/ k B T and k B the Boltzmann constant. We can 

compute P(s;a) directly from the equilibrium simulation on 

the potential Wo + a( WI - Wo )' The free energy curve 

F(s;a) for the coordinate s is defined by 

F(s;a) -F(s;O) = -kBTln[Q(s;a)/Q(s;O)], (3.13) 

where the partition function Q(s;a) is given by 

Q(s;a) = f 15[s - /(R,r)] 

xexp{ -.B [Wo + a( WI - Wo ) ]}dR dr. 

(3.14) 

From Eqs. (3.8)-(3.14), the following simple but important 

relation is derived: 

F(s;a) - F(s;O) = as. (3.15 ) 

It is computationally convenient to use P(s;a) than Q(s;a). 

We get . 

F(s;a) - F(s;O) = - kB Tln[P(s;a)/P(s;O)] + C, 
(3.16) 

c = - k B TIn < exp [ - (Ja (WI - Wo )]) 0 

= + k B TIn < exp [ + (Ja (WI - Wo )]) a' (3.17 ) 

We now consider the crossing between two free energy 

curves; one for the cation state and the other for the photon 

dressed neutral state. With 

Q(s;O') = f D[s - /(R,r)] 

xexp[ - (J( Wo + Vpholon) ]dR dr (3.18) 

and 

(3.12) 

Q(s;O) = f 15[s-/(R,r)]exp( -(JWo)dRdr, (3.19) 

we obtain the relation 

F(s;O') = F(s;O) + Vpholon' (3.20) 

Suppose we have computed F(s;O) by 

F(s;O) = - kB TIn P(s;O) and found its minimum ats = So 

[Fig. 5(b)]. The ionization potential (LP.) in solution is 

defined by the value of Vpholon necessary to make F(s;O') 

cross at its minimum with F(s; 1), as shown schematically in 

Fig. 5(a), under an assumption that the energy of the emit­

ted electron is zero. We can derive a simple relation I.P. = So 

straightforwardly. [From Eq. (3.15), F(s;l) and F(s;O') 

cross at s = O. Thus replacing s by s - so, we make F(s;O') 

cross with F(s; 1) at its minimum. This means 

s = WI - (Wo + so) which shows that So is just the photon 

energy needed.] The computed values of the I.P. ofDMA in 
solution were 6.5 and 7.0 eV in water and methanol solu­

tions, respectively. Compared with the verticalLP. for the 

isolated DMA (8.2 eV), the I.P.'s are lowered by the inter­

action with the solvents in solutions. 
Figure 6 shows the free energy curves F(s; 1) and 

F(s;O'). The dressing energy for F(s;O') was taken so that the 

neutral curve crosses with the cation curve at s = Sl as 

shown in Fig. 5(b), which is regarded as the thermal thresh­

old for transition. The interpolation between two curves was 

realized by the umbrella sampling method with a = 0.5. The 

symbols D, 6, and X correspond to the equilibrium simula­

tions with the charge parameters a = 0, 1, and 0.5, respec­

tively. The free energy differences LlFbetween the crossing 

point and the minimum of the cation curve were 1.5 (water) 

J. Chern. Phys., Vol. 95, No.8, 15 October 1991 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.54.110.33 On: Mon, 31

Oct 2016 00:45:13

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



5974 K. Ando and S. Kato: Dielectric relaxation dynamics 

>. 
01 
..... 
<II 
C 

W 

<II 
<II 
..... 

I..J... 

(a) 

>. 
01 
..... 
<II 
C 

W 

<II 
<II 
..... 

LL 

(bl 

\ I 

\ F(s;1} 
\ 

F(s;O'} 
I 

I I 
I 

\ 

\ 

\ 

\ 
\ 

\ , , 

\ 

F(s;O}\ 

solvation 

F(s;O} 

I 

.... / 
"- ..-

coordinate 

/ 
/ 

/ 

s 

~ 

I 
I 

I 

- - - - - - - - - - - -]- --

kaT 
------- - --

s 
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and 1.4eV (methanol). The changes of the solvation coordi­

nate as were 3.4 (water) and 3.2 eV (methanol). 

We have estimated the force constants, or curvatures of 

the free energy curves by least-squares fitting. As is obvious 

from Eq. (3.15), the force constants for the neutral and ca­

tion curves must be the same if the curves are exactly para­

bolic. We have attempted a fitting to describe the whole re­

gion of two curves by parabolas with a single force constant 

using Eq. (3.15). The fitted curves were presented by the 

dashed lines in Fig. 6, the force constants of which were 0.25 

(water) and 0.27 eV -I (methanol). Recently, the validity 

of two assumptions, the parabolic free energy curves and the 

solute independence of force constants, has been examined 

by several authors. These assumptions have been predicted 

from the continuum dielectric models and commonly adopt­
ed in many of the early works. Carter and Hynes 13

,43 and 

Kakitani et al.44 have discussed the nonlinearity of solvation 

related to the electron transfer in solution. As seen in Fig. 6, 

the free energy curves F(s;O) and F(s;1) are well approxi­

mated by parabolas with the same force constants and non­

linear effects such as the so-called dielectric saturation are 

not observed for both the solvents in the present calcula­

tions. It is noted that nonparabolic free energy curves can be 

obtained for the case where the charge distribution in solute 
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ted parabolas. 

molecule depends strongly on its geometry. 12 

We can see in Fig. 6 that the curves for the two solvents 

are quite similar to each other. As seen from the definition 

(3.8 )-( 3.14), the free energy curve reflects the thermal fluc­

tuation of the solvation coordinates. The difference between 

the absolute values of both the solute-solvent and solvent­

solvent pair interaction energies in these two solvents is 

small, which may be rationalized from the values of the di­

pole moment of these molecules (1.94 and 1.69 D for H 2 0 

and MeOH, respectively). Thus the static properties such as 

the solvent free energy curve are expected to exhibit similar 

features. In the same manner, the I.P. in solution for these 

solvents, which is the net value of the solvation coordinate, 

have resulted in close values. 
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Do Dielectric relaxation dynamics 

The MD trajectory calculation enables us to investigate 

the nonequilibrium process of the solvation (dielectric relax­

ation) as well as the equilibrium properties. First, the config­

urations (R,r) and velocities CR,r) of the system, which are 

to be adopted as the initial condition for the nonequilibrium 

trajectory calculations, were sampled in the course of the 

equilibrium run on the neutral potential WOo We assumed 

that the emission of an electron from the DMA molecule 

becomes possible when the potential energies of two states 

the cation potential WI (R,r) and the photon dressed neutral 

potential Wo (R,r) + Vpholon coincide with each other. Thus 

the configurations and velocities were sampled when the sol­

vation coordinate s satisfied the condition 

s = WI (R,r) - [Wo (R,r) + Vpholon] = O. (3.21 ) 

The photon energy Vpholon was taken so that the crossing 

point locates at the thermal threshold (Fig. 6). The values 

are 6.0 and 6.6 eV for water and methanol solvent, respec­

tively. In many of the previous calculations on the dynamics 

of solvent relaxation induced by the ionization or excitation 

of solute species, the initial conditions had been sampled 

randomly from the equilibrium trajectories on the ground 

state surface. The procedure presented here would be more 

realistic in describing the ionization process in solution than 

those employed before. Furthermore, it is appropriate for 

our aim to study the dielectric relaxation process in connec­

tion with the electron transfer reaction. About 30 configura­

tions were sampled with at least alps interval in order to 

obtain mutually independent ones. In the course of these 

nonequilibrium simulation calculations, the temperature in 

the simulation box has increased by 9-10 K for both systems. 

Figures 7-9 show the nonequilibrium simulation re­

sults. In addition to the solvation coordinate s(t), we have 

examined the radial component of the polarization P r (t): 

Pr(t) = I (.1jOU j (t), (3.22 ) 

where (.1, denotes the dipole unit vector of the ith solvent 

molecule and U j is the unit vector directed from the center of 

mass of OM A to that of the ith solvent molecule. The polar­

ization Pr (t) thus defined extracts the orientational relaxa­

tion of the solvent dipole under the electrostatic field from 

DMA I- separating out the translational component of re­

laxation. This is also related to the traditional dielectric con­

tinuum approximation. 

In examining these variables, we have divided the con­

tributions from solvent molecules into first and second shell 

conponents. Shell boundaries were defined using the minima 

(r,hell) in the radial distribution function between the 

centers of mass of neutral DMA and solvent molecules (Sec. 

III B). The first shell is defined by 0 < r < rshell and the sec­

ond shell by rshell < r < L 12, where L is the simulation box 

length. Dividing the shell contributions, the polarization 

Pr (t) was normalized by the shell width ar. Assuming the 

homogeneous dipolar solvent, the number of solvent dipoles 

in the shell region between rand r + ar increase proportion­

ally to r 2 [n (r) ar = p41ir 2ar] and the ion-dipole pair inter-
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FIG. 7. Nonequilibrium simulation results for the DMA-H2 0 solution. 

(a) Solvent shell components of the solvation coordinate s(t). (b) s(t) di­
vided into the inter- and intramolecular terms. (c) Solvent shell compo­

nents of the polarization P, (t). In (a), (b), and (c), solid lines are total s(t) 

or P,(t). Dashed and dashed-dotted lines correspond to first and second 

shell components in (a) and (c), and to V',nt 
- v~nt and VpMA - V~MA in 

(b). 

action energy is proportional to 1/ r 2 

(V;on-dipoJe = qj.l cos e Ir2), where r is the distance between 

an ion and a point dipole. Therefore, it would be proper to 

normalize the contributions from the solvent shell by ar 
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FIG. 8. Nonequilibrium simulation results for the DMA-MeOH solution. 

(a), (b), and (c) are similar to Fig. 7. 

when examining Pr (I) in relation to the continuum approxi­

mation. The shell widths of the first and second shells were 

ilT1 = Tshell - TDMA and ilT2 = L /2 - Tshell' respectively. 

The value for TDMA was taken as 4.0 A (Sec. II C). In Figs. 

7(b) and 8 (b), the solvation coordinate s(t) was also divid-
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FIG. 9. Vibrational relaxation of e and 'T in Ca) water and (b) methanol 
solutions. Solid and dashed lines correspond to e and 'T, respectively. 

ed into two components vit - v~n' = il V in, and 

V?MA _ V~MA = ilVDMA. The nonequilibrium simulation 

results shown in Figs. 7-9 are the averaged ones over 30 

trajectories. 

Figures 7(a) and 7(b) monitor the nonequilibrium re­

laxation of s(t) in the DMA-H2 0 system. As seen in the 

figure, it exhibits a fast relaxation on a time scale of 0.1-0.2 

ps and attendant remarkable oscillations with characteristic 

frequency of about 830 em - I. This oscillatory behavior 

comes mainly from the solute-solvent interaction term 

(ilV in,). Figure 7(c), which shows the response of the po­

larization Pr(t), suggests that this oscillation in s(t) can be 

attributed to the librational mode of the solvent water mole­

cules. The first shell solvent molecules dominate the fast and 

oscillatory relaxation of s(l). However, the second shell 

component is not negligible. The librational oscillation in the 

second shell occurs coherently to that in the first shell [Fig. 

7 (c)] and the slowly relaxing tail (t> 0.3 ps) in the total 

relaxation of s(t) seems to be dominated by the second shell 

component. The coherent excitation of the libration is due to 

the long-ranged nature of the solvent-solvent interaction. 

Such behavior is commonly observed in the studies of the 

liquid water.2
0-

23 
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Figure 8 displays the response of the DMA-MeOH sys­

tem. Compared to the case of the water solvent, the DMA­

MeOH system shows slower decay on a time scale of 0.5-0.7 

ps with less oscillatory behavior. The small oscillation ac­

companying to the relaxation of the total set) comes from 

the component AVDMA, the contribution from the intramo­

lecular vibration of the solute D MA. It should be noted that 

we have treated only two internal degrees offreedom (J and l' 

explicitly. Thus the intra- and intermolecular vibration-vi­

bration ( V-V) energy transfer, which may occurin a picose­

cond, was not incorporated (see Sec. III A). It can therefore 

be presumed that the relaxation of the real DMA-MeOH 

system exhibits more overdamped behavior. The response of 

the polarization Pr (t) in the DMA-MeOH system is pre­

sented in Fig. 8 (c). As seen in the figure, a small librational 

oscillation occurs in the very initial stage of the relaxation in 

this system too. However, the excitation oflibration is weak 

and the reorientation of the methanol solvent shows a much 

overdamped relaxation compared with the case of the water 

solvent. We can see in Fig. 8 (a) that the second shell compo­

nent of the relaxation ofs(t) in the DMA-MeOH system is 

comparable to that of the first shell, in contrast to the DMA­

H 2 0 system in which the fast initial relaxation is dominated 

largely by the first solvent shell [Fig. 7 (a)]. 

Some molecular theories of solvation predict the mul­

tiexponential decay for the dielectric relaxation. I
4-16 These 

time constants have been attributed to the shell contribu­

tions from the nearest-neighbor solvent molecules to the dis­

tant bulk solvent. The collective relaxation of the bulk sol­

vent was expected to be fast with the time constant of the 

longitudinal dielectric relaxation time 1'L and the slower 

component of relaxation was assumed to come from the 

reorientation of solvent molecules in the vicinity of the solute 

(Onsager's snowball picture) .14-16.4
5 The simulation results 

shown in Figs. 7-8 indicate that these models or pictures do 

not adequately describe the relaxation dynamics of the pres­

ent system. This might be due to the complexities of the 

present systems especially of the particular forms of the sol­

vent-solvent interaction, which is difficult to be incorporat­

ed into those simple models. 

It is interesting to compare the shell contributions in 

s(t) and Pr(t). The distinction between the first and second 

shells can be seen clearly in the energetic contributions s(t), 

whereas in the normalized Pr (t), which reflect the reorienta­

tion of solvent dipoles, the characteristics of the relaxation 

dynamics are roughly independent from the solvent shell 

distance. 

E. The vibrational relaxation of the solute DMA 

As is expected from the nature of the potential energy 

surface of DMA and DMA + (Fig. 2), the intramolecular 

vibration of (J and l' will be strongly excited when the ioniza­

tion ofDMA takes place. In order to examine how the vibra­

tional relaxation takes place during the solvation process, we 

have calculated the autocorrelation functions for the vibra­

tional coordinates (J and 1': 

{
X(O)X(t) ) 

X(0)2 
(x = (),1'), (3.23) 

where the bracket ( > denotes the average over 30 trajector­

ies. They are shown in Fig. 9. 

As seen in the figure, the damping effect is larger in 

water than in methanol. The relaxation of the vibration of () 

exhibits a typical damped oscillation and the time scale of 

the decay is 0.8-1.0 ps in water and 1. 6-1. 8 ps in methanol, 

respectively. However, we found that a sudden stepwise 

damp is actually induced by the collision of the solvent mole­

cules in each trajectory. The relaxation of the internal rota­

tion 1" in water shows a fast (0.1-0.2 ps) and remarkably 

overdamped decay, whereas in methanol it also exhibits an 

overdamped behavior, but more irregular motion like a dif­

fusion. 

The mechanism of vibrational relaxation in solution has 

been extensively studied so far. 4
6-48 The intra- and intermo­

lecular near resonant V-V transfer has been recognized to be 

important to account for the vibrational relaxation of polya­

tomie solute molecules in polyatomic solvents as in the pres­

ent case. It should be kept in mind that we have incorporated 

only the () and l' vibrations and ignored the remaining small 

amplitUde vibrations ofDMA as well as the vibrational mo­

tions of solvent molecules in the present calculations. The 

relaxation of () will presumably occur much faster in the real 

system. However, for the internal rotation 1", the over­

damped diffusive nature seen in the present calculations 

would be appreciably realistic. 

IV. DISCUSSION 

A. Fluctuation-dissipation relation 

It would be important to examine whether the fluctu­

ation-<iissipation (FD) relation holds or not even for a real­

istic system as the present, because many theoretical mod­

els 14-19 utilized to analyze the experimental results are based 

on the LR assumption. With the definition (3.8), we can see 

the following relation: 

Ho = T + Wo = HI - s or HI = Ho + S, (4.1 ) 

where Ho and HI denote the Hamiltonian of the system con­

taining DMA and DMA + ,respectively. The solvation coor­

dinate s can be considered formally as a perturbation. 

Figure 10 shows the comparison between the nonequi­

librium response function and the eqUilibrium time correla­

tion function of s. The response functions are similar to those 

presented in Figs. 7-8, but normalized as 

set) = (s(1» - (s(oo» , 

(s(O» - (s( 00 » 
(4.2) 

where the braket ( > denotes the average over nonequilibri­

urn trajectories, but (s( 00 ) > was computed from the equilib­

rium simulation on WI' The normalized time correlation 

functions are given by 

C 
(s(O)s(t» I - (S(0»7 (8s(0)8s(t» I 

l(t) = =-----'-
(S(0)2) I - (S(0»7 (8s(0)2) I 

(l = 0,1), (4.3) 

where I = 0 and 1 correspond to the equilibrium simulations 

on the neutral and cation potential surfaces, respectively. 

As seen in the figure, the relaxation of the DMA-H2 0 

system follows the FD relation to a good approximation. A 
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FIG. 10. A comparison between the nonequilibrium response function S( t) 

and the equilibrium time correlation functions Co (t) and C, (t) for (a) 

DMA-H2 0 and (b) DMA-MeOH solutions. Solid, dashed, and dashed­

dotted lines correspond to S( t), Co (t) and C, (t), respectively. 

large amplitude oscillation with a frequency of about 250 

cm -I observed in Co (t) comes from the component of the 

intramolecular potential V DMA
• Taking this into account 

and focusing on the solvent contribution, the agreement 

among S(t), Co (t), and C I (t) in aqueous solutions can be 

considered reasonablly well. In particular, the coincidence 

between Set) and C I (t) is remarkable, both of which exhibit 

the fast initial relaxation accompanying a characteristic os­

cillation [libration of water (see Sec. III 0) ]. 

The acceptability of LR theory in aqueous solution ob­

served here is consistent with the previous works. Maron­

celli and Fleming21 examined the FO relation for the system 

containing a simple spherical ion in the solvent water cluster. 

They also studied the solute size dependence ofthe dynamics 

and found that the larger solute satisfies LR to better ap­

proximation, naturally because the electrostatic perturba­

tion becomes smaller. The relaxation dynamics just after a 

ferric-ferrous electron transfer in an aqueous solution was 

calculated by Bader and Chandler. 23 They observed that the 

LR is also well satisfied despite that the solute species are 

highly charged small ion (Fe2 
+ and Fe3 +). The present 

results indicate that the aqueous solution follows the LR 

relation even when the solutes are polyatomic molecules 

having the multipole moments and the large amplitude vi­

brational modes. It is particularly interesting that Set) and 

C I (t) in the OMA-H2 0 system coincide well with each 

other including the remarkable oscillation due to the libra­

tion of water. This characteristic of the librational oscillation 

was not averaged out by the complexities of the polyatomic 

organic solute. 

It seems rather difficult to judge the validity of LR for 

the case of the OMA-MeOH system. As seen in Fig. lO(b), 

the time correlation function for the cation state CI (t) 

agrees well with the response function Set) except for the 

small oscillation of set) coming from the wagging vibration 

of solute OMA +. However, a deviation between Co (t) and 

S(t) is observed to some extent. We may say that the LR 

relation obtained for the cation state is because the response 

function Set) was calculated from the nonequilibrium tra­

jectories on the same potential surface WI as CI (t) and the 

perturbation - sin Eq. (4.1) can be regarded to be small. It 

should be noted that Fonseca and Ladanyj25 have shown 

that the LR breaks down clearly for a model diatomic mole­

cule in methanol. Considering this, further studies will be 

apparently required for methanol. 

B. Generalized Langevin analyses 

We examined the dynamics of dielectric relaxation pro­

cesses by representing it as the propagation of systems along 

the solvation coordinate s which was defined by the differ­

ence of the potential energies of two states. Such motion can 

be described by the stochastic equation of motion because it 

is regarded as the projection of complicated interactions in 

solutions onto one-dimensional motion. It would be mean­

ingful to derive the stochastic equations of s for the processes 

including the surface hopping as in the present case. 

For the surface hopping, the crossing of potential sur­

faces plays a critical role. It is natural to choose the transi­

tion state point to be the minimum energy point on the cross­

ing surface 

I(x) = WI (x) - Wo (x) = 0, ( 4.4) 

where x is the coordinate and the reaction coordinate to be 

the steepest descent path passing through this point in the 

mass-weighted Cartesian coordinate space. With this defini­

tion, we obtain two branches of reaction coordinates, one on 

the surface Wo (x) and the other on WI (x). It is proved 

easily that the directions of these two branches coincide with 

each other and are normal to the crossing surface at the mini­

mum energy point.3t(a) We can therefore use the reaction 

coordinate and the normal coordinates perpendicular to it to 

describe the dynamics near the transition state. 

As seen above, the free energy curves are almost para­

bolic along the solvation coordinate and the LR relation 

seems to be satisfied at least qualitatively. It would therefore 

be worth examining the harmonic model in describing the 

dynamics of the present systems. The potential energies are 

then expressed as 
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WI (x) = r 21 w;x; + r gfXj + WI (0) 
I I 

(l = 0,1), 

(4.5) 

where the photon energy Vpholon is included in Wo (0). For 

these potential functions, the minimum energy crossing 

point x~ is given by 

XI = Wj-2{~ wj -
2(.g?gJ -g:gJ)(gJ - gJ) + (.g? - gJ) 

X[WI(O) - Wo(O)]}/[~Wj-2(gJ_gJ)2] (4.6) 

and the direction vector of reaction coordinate 

's=(SI,s2, .. ·)by 

_ dX j Agj 

s·=-=----
I as (I.jAgJ) 112 ' 

(4.7) 

with 

/lgj = g) -.g? 

If we take the coordinate S as a linear line with the direction 

of8, 

(4.8) 

where x is the displacement measured from the minimum 

energy crossing point 

(4.9) 

As is easily seen, the potential energy difference of two states 

is proportional to the coordinate S defined here 

s= WI (x) - Wo(x) = (I AgJ)I12S. (4.10) 
j 

It is straightforward to derive the GLE for the motion along 

the eneJ:gy difference coordinate s. Using the projection op­

erator P with the element 

(4.11 ) 

"'- "'-
and the usual matrix partitioning technique with Q = I - P, 

the resultant GLE is derived as 

S + [(;]2 - s(O) ]s + f-l- I12g + f s( r)s(t - r)dr 

+s(t)s(O) =f-l-I12R(t), (4.12) 

where f-l is the factor connecting the coordinate S and the 

solvation coordinate s, f-l - 1/2 = (I. k /lgi ) 1/2 and may be re­

garded as the effective mass [see Eq. (4.18) below]. The 

friction kernel Set) is given formally as 

(4.13) 

and is related to the random force R (t) by the second FD 

theorem 

(R(O)R(t» = sCt)kBT. (4.14) 

In Eq. (4.12), the average quantities (;)2 andg are 

( 4.15) 

and 

g = L (~ + ltlixi )Sk' ( 4.16) 
k 

respectively. The elements of column vector (j)~p and matrix 

(j)~Q are given by 

-2 (2 -2)- (4 17 ) 
WQP,i = Wj - W Sj' • a 

@~Q,ij = W78 ij + «(;)2 - w7 - wJ) S jS)' ( 4.17b ) 

The raw vector (j)~Q is the transpose of (j)~p. It is noted that 

the projected frequency matrix ro~ has only one zero eigen­

value corresponding to the motion along s. 
The present MD calculations provide several quantities 

in the GLE (4.12). The components of direction vectors are 

related to the velocity autocorrelation function 

k T 
(s(O)s(t) > = _B_ I s;cos w;t. 

f-l j 

(4.18 ) 

Figure 11 shows the components of8, Sj, computed from the 

Fourier transform of the correlation functions for the cation 

state. The components Sj of the DMA-H2 0 system exhibits 

a band at about the 750-900 cm -I region and a small hump 

at about 600 cm - I. The former consists of the librational 

mode of water. A flat tail at the low frequency region can 

also be seen, which would be the contribution from the trans­

lational mode. The component 5j of the DMA-MeOH sys­

tem has a main band centered at about 650 cm - I, the libra­

tional mode of the methanol O-H part. There also exist 

certain components at the small frequency region with a 

hump at about 100-150 cm - I. As seen in Fig. 11, the main 

band for the water solution is composed of several separated 

narrow peaks while that for the methanol solution does not 

have distinguished structures. This result comes from the 

oscillatory nature of H 2 0 relaxation dynamics observed in 

Fig. 7. Although we can make some physical speculation on 

the origin of each mode, detailed information will be ob­

tained by the analyses of the potential surfaces around the 

crossing seam. 

Once we have obtained the components So the frequen­

cy components of the friction kernel set) can be computed 

straightforwardly. The matrix @~Q [Eq. (4.17)] was first 

diagonalized and the vectors @~p and @~Q were then unitary 

transformed using the eigenvectors corresponding to the 

.ri 
L-
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0. 
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FIG. 11. Components of the reaction coordinate vector 57 and frequencies 

(t), ofDMA + -H2 0 (upper) and DMA +-MeOH (lower). 
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nonzero eigenvalues. By this procedure, the friction kernel 

;(t) was expressed as 

(CU~,i)2 A 

;(t) = 2: 2 cos(CUQQ,J) = 2: ;(CUQQ,i) 
i CUQQ,i i 

( 4.19) 

where CU~,i is the eigenvalue and CU~Q,i is the component of 

the transformed vector. The resultant friction kernels both 

for H20 and MeOH solutions are displayed in Fig. 12. 

We obtain the effective frequency .0 for the harmonic 

free energy curve by 

( CU2 )2 
n2=(ij2 _ ;(0) = (ij2 - 2: PQ,i (4.20) 

i CU~,i 

and they are calculated to be 417 and 196 cm - 1 for H20 and 

MeOH solutions, respectively. It is pointed out that the ef­

fective frequency .0 can also be calculated directly from the 

equilibrium MD simulations with the Gaussian approxima­

tion 

(4.21) 

and the resultant frequencies .0 are 440 and 190 cm - 1 for 

H20 and MeOH, respectively, which are in good agreement 

with the values from Eq. (4.20). The effective mass fl was 

calculated to be 0.42 X 10 - 4 and 1.99 X 10 - 4 pS2 e V-I for 

H20 and MeOH solutions, respectively. In Sec. III C, the 

force constants of the free energy curves were found to have 

close values in these two solvents reflecting the static interac­

tion energies. The difference of the relaxation times between 

them can be ascribed to the values of the effective mass. As 

can be seen easily, the obtained values of fl, .0, and the force 

constants presented in Sec. III C are consistent with each 

other. 

The present GLE analyses provide important insight 

into the mechanism of dielectric relaxation of the present 

systems. As seen in Fig. 12, the time-dependent friction ;(t) 

for the MeOH solution falls off very rapidly and is followed 

by an oscillation with a very low frequency -167 cm -1 and 
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FIG. 12. Time-dependent friction kernel ;(t) in units of ps - 2. Solid and 

dashed lines correspond to DMA + -H2 0 and DMA + -MeOH solutions, 

respectively. 

the time scale of the initial decay of;( t) is much shorter than 

that of the dielectric relaxation shown in Fig. 8. In such a 

case, the relaxation dynamics can be described by the Lange­

vin equation (LE) at least qualitatively in which the friction 

kernel is approximated by 

;(t) = tt5(t) (4.22a) 

and 

t = 1'0 ;(t)dt. (4.22b) 

The overdamped behavior observed in Fig. 8 may be inter­

preted from this result because an overdamped relaxation 

dynamics is characterized by the LE description. In contrast 

to the methanol solution, the time-dependent friction of 

aqueous solution decays with the time scale comparable to 

that of the relaxation dynamics (Fig. 7) and shows a very 

long tail as seen in Fig. 12. In such a situation, the dynamics 

may be well understood by the converted form of GLE 

S + (ij2s - f;( r)s(t - r)dr + fl- 112g = fl- 1I2R (t), 

(4.23a) 

where 

;(t) = ro~roQ(;/sin(roQQt)ro~p (4.23b) 

and the short time dynamics will be dominated by the poten­

tial with the frequency.,ffJ2. Using Eq. (4.15), the frequency 

was calculated to be 794 cm - 1, which is close to the charac­

teristic frequency for the oscillatory behavior observed in the 

DMA + -H20 solution. 

Apparently, more careful analysis will be needed in or­

der to elucidate the detailed mechanism of solvation dynam­

ics. In principle, specific characteristics should be solely con­

tained in the G LE form ( provided that the harmonic 

assumption is valid). Above all, the nature of the friction 

kernel ;(t) will playa critical role. Although we have per­

formed at present a simple analysis using the time progres­

sion of the solvation coordinate s(t) computed from the 

equilibrium MD simulation, more direct information will be 

achievable by the analyses of the potential energy surfaces on 

the basis of the GLE formalism presented here. 

V. SUMMARY AND CONCLUSION 

In the present work, we have carried out the MD trajec­

tory calculations on DMA in water and methanol solutions 

to explore the mechanism of dielectric relaxation dynamics 

induced by the ionization of DMA. The potential energy 

surface ofDMA and the interaction potentials with the sol­

vent molecules were derived from the ab initio MO calcula­

tions on DMA and DMA-H20 systems. Although we fo­

cused on the ionization of DMA, the results obtained here 

would provide important information on the photoinduced 

electron transfer reactions because DMA is a prototype of 

donor molecules in those reactions. For intermolecular elec­

tron transfer with a large donor-acceptor distance, the sol­

vation dynamics associated with electron transfer can be de­

scribed as a convolution of dynamics of donor and acceptor 

systems. We are now working on the dynamics of photo in-
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duced electron transfer reactions as an extension of the pres­

ent work. 

The dielectric relaxation dynamics has been analyzed in 

terms ofthe free energy curves of solvations; the potentials of 

mean force for the solvation coordinate defined by the differ­

ence of potential energies. It was found that the free energy 

curves are almost parabolic both for the aqueous and metha­

nol solutions and nonlinear effects such as the dielectric sat­

uration were not observed in the present case. The static 

energy relations were also found to be very similar in both 

solutions as expected from the dielectric constants of H2 0 

and MeOH. 

The dynamical behaviors of these two solvents were 

much different from each other. For the aqueous solution, 

the dielectric relaxation was very fast on the time scale of 

0.1-0.2 ps and a remarkable oscillation with the frequency of 

about 830 cm -I, -0.04 ps, was observed. A large part of 

energy relaxation is achieved in the period of the initial oscil­

lation. On the other hand, any notable oscillation originated 

from the solvent motion was not seen in the relaxation dy­

namics of methanol solution. The time scale of solvation 0.7-

0.8 ps was slower than that of the H2 0 case. It should be 

noted, however, that the dielectric relaxation of methanol is 

generally slow considering the longitudinal dielectric relaxa­

tion time r L of - 8 ps. The present calculations revealed that 

there is a very fast time scale even for MeOH and the relaxa­

tion with this time scale accounts for the major part of the 

potential energy lowering in the relaxation process. 

In order to obtain a deeper insight into the dielectric 

relaxation dynamics treated by the present MD calculations, 

we have derived the G LE for the case of surface hopping. 

The harmonic potentials were assumed because the free en­

ergy curves are almost parabolic and the LR relation seems 

to be a good approximation as discussed in Sec. IV A. In 

deriving the GLE, we applied the reaction path model for the 

surface hopping process originally developed in the gas 

phase photochemical processes. With this model, the com­

ponents of the solvation coordinate and the friction kernel 

were deduced from the MD calculations which are impor­

tant to elucidate the mechanism of dielectric relaxation dy­

namics. The reaction path model presented here can be con­

structed from the potential energy surface of solute-solvent 

systems and will provide useful information on the nature of 

the coupling between the solvation coordinate and the bath 

modes. Weare now planning to proceed with the work along 

this line. 
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