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Abstract
Insulating materials filled with conducting particles permit tailoring of
electrical, electromagnetic and thermal properties of the resulting
composite. When the filler particles are small and metallic, a dielectric
relaxation due to interfacial polarization is commonly observed at optical or
smaller wavelengths. Here, experimental results are presented in which the
dielectric relaxation is shifted to microwave frequencies as a result of using
metal-coated dielectric particles with a nano-scale coating thickness. The
results are analysed in the context of effective medium theory adapted for
multi-layer particles. Such a large shift in relaxation frequency, compared
with that for a similar composite with solid metal filler particles, is shown to
be a function of both the coating geometry and a thin-film-related reduction
in the conductivity of the metal. The observed broadening of the relaxation
peak is attributed to non-uniformity of the coating thickness and a
consequent distribution of coating conductivity.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Composites formed from a mixture of conducting particles

in an insulating host medium are widely studied for tailored

electrical or electromagnetic functionality [1]. In many

applications, especially those related to use up to microwave

frequencies, this functionality is determined by electrical

conduction processes related to the formation of connected

networks of conducting filler particles. The properties of such

composites can be described using percolation theory [2, 3].

A percolating composite undergoes a dramatic insulator-to-

conductor transition as the filler concentration is increased

above some critical value that is well below the close-packing

limit. At this critical concentration, known as the percolation

threshold, the conductivity of the composite increases,

3 Present address: Physical Sciences Department, Dstl, Rm 14, Bldg 352,

Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK.

possibly by many orders of magnitude. Furthermore, in this

transition region both the real and imaginary components

of permittivity are highly dispersive over a broad frequency

range. The high frequency limit to this dispersion is set

by the interfacial polarization (or Maxwell–Wagner–Sillars)

relaxation frequency [4]. For conductor–insulator composites,

this limiting frequency is determined primarily by the

conductivity of the filler. For metallic fillers the interfacial

relaxation is observed well into the optical region of the

spectrum [5]. It is this relaxation process that is the subject

of this paper.

The design of composite materials with prescribed

electromagnetic properties is hindered by the fact that it

is difficult to accurately parametrize the complex dielectric

response of a composite experimentally. This is because the

critical dielectric features of the system, one of which is the

interfacial relaxation, are commonly distributed over a very
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wide region of the frequency spectrum (perhaps from dc to

light). There is no single instrument or sample geometry that

can be used to capture the dielectric response over the entire

spectrum, even though measurements from ∼10−5 to ∼109 Hz

are possible (see, e.g. [6]). A potential way around this

characterization difficulty is to find fillers whose conductivity

is lower than that of typical metals, so that the interfacial

relaxation frequency is shifted into the microwave region and

the composite material can be parametrized by standard means.

In practice, however, the choice of filler conductivity is limited.

Even the conductivity of graphitic carbons (e.g. carbon blacks,

graphite powder), of the order of 105 S m−1, is too high

to produce relaxation at microwave frequencies. Certainly

there is no continuum of conductivity readily available

through naturally occurring materials. This paper presents

the use of filler particles composed of nano-scale metal

coatings on micron-scale dielectric particles as a means

of observing dielectric relaxation at microwave frequencies.

The experimental methods and results are described in

sections 2 and 3. The relevant effective medium theory

is described in the context of the experimental results in

section 4. Section 5 explores the observed broadening of

the relaxation peak in terms of distributions of the particle

size and coating thickness. The conclusions are summarized

in section 6.

2. Experimental methods

The particles studied are hollow glass micro-spheres (3M

ScotchliteTM S60 glass microbubbles) coated with tungsten

and then overcoated with a protective, insulating layer of

Table 1. Physical properties of coated particles.

Parameter Value Source/comment

Coated particle
Density (g cm−3) 0.62 [8], value used in formulating composites

0.539 ± 0.026 Measured by helium pycnometer
Crush pressure (MPa) 69 [7]

Core particle Glass microbubble 3MTM ScotchliteTM S60
Density (g cm−3) 0.60 [9]
Mean radius (µm) 15 [9]
10th centile radius (µm) 7.5 [9]
90th centile radius (µm) 27.5 [9]
Shell material Soda-lime-borosilicate glass [9]
Shell density (g cm−3) 2.5 [10], estimated from values for A and E glass
Shell thickness (µm) 1.311 Calculated from particle and shell densities

for mean particle size
Shell real permittivity 4.8 [11], Pyrex, 25˚C, 10 GHz
Shell loss tangent (×104) 98 [11], Pyrex, 25˚C, 10 GHz
Core material Air Assumed

Tungsten coating
Thickness (nm) 20 [8], mean value
Bulk conductivity (S m−1) 1.77e7 [12]
Bulk plasma frequency, ωp (eV) 7.6 [13], theoretical
Bulk relaxation time, τbulk (s) 173.133/ωp Calculated from bulk conductivity
Bulk Fermi velocity, vF (m s−1) 9.6e5 [14], theoretical

Alumina outer coating
Thickness (nm) 3 [8]
Real permittivity 8.79 [11], Coors, 25˚C, 10 GHz
Loss tangent (×104) 18 [11], Coors, 25˚C, 10 GHz

alumina [7]. The tungsten thickness is nominally 20 nm and

the alumina thickness nominally 3 nm [8]. The alumina outer

layer stabilizes the tungsten, preventing oxidation, and has the

additional benefit of preventing percolation in the mixture.

This means that the interfacial polarization process can be

studied in isolation from conduction effects. The physical

properties of the particles are summarized in table 1. The

matrix material used consisted of paraffin wax flakes (Aldrich)

with a density of 0.899 g cm−3.

Master batches for composites with filler concentrations

in the range 0–55 vol% were prepared by hand mixing pre-

weighed quantities of the two components at a temperature

above the melting point of the paraffin wax (about 60˚C). The

mixture was removed from the heat and mixing continued

during cooling until the mix solidified. Test samples were

subsequently prepared by cold-pressing pellets of appropriate

cross-sectional dimensions at pressures of approximately

63 ± 8 MPa for the coaxial samples and 58 ± 8 MPa for

the WG22 and WG24 waveguide samples. The pressure

was applied for 30 s using a KBr press. These pressures

were chosen to maximize consolidation and minimize

trapped air whilst not exceeding the crush strength of the

micro-bubbles.

The microwave complex permittivity of the compos-

ites was determined by measuring the complex reflection

and transmission coefficients of a sample placed in a sec-

tion of transmission line. A number of methods are

available for measuring complex permittivity at microwave

frequencies [15], the method used here being the reflec-

tion/transmission (RT) method described by Baker-Jarvis [16]

with the assumption that the composites are non-magnetic.

(The validity of this assumption was confirmed by first using
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the Nicholson–Ross–Weir (NRW) method [16] to derive both

the complex permittivity and permeability of the samples

from the same measured reflection and transmission coeffi-

cients. For non-magnetic materials, the RT method is preferred

because it reduces measurement uncertainty and can improve

loss resolution.) A 7 mm coaxial transmission line was used

for measurements over the frequency range 1–18 GHz and a

rectangular waveguide was used for measurements over the fre-

quency ranges 33–40 GHz (WG22) and 40–60 GHz (WG24).

Due to the different cross-sectional geometry for the two trans-

mission line types, separate sets of test samples were required

for the three frequency ranges. This leads to the possibility

of a systematic shift between the data sets due to small dif-

ferences in filler dispersion and the pressure applied during

pelletization, despite the fact that the same master batch was

used to make samples for each of the three frequency ranges.

Figure 1. Real and imaginary components of the permittivity for paraffin wax, derived from measured reflection and transmission
coefficients with (RT method) and without (NRW method) the assumption that the material is non-magnetic.

The method for determining the measurement uncertainty for

the coaxial system has been described elsewhere [17].

3. Experimental results

Figure 1 presents the measured dielectric response of paraffin

wax over the frequency range 1–18 GHz. Values derived from

both the NRW and RT methods are presented to demonstrate

the improvement in measurement uncertainty that can be

obtained by making the assumption that the material under

test is non-magnetic, which is obviously true for this material.

The measured values are in agreement with those reported

by von Hippel [11] (εm = 2.25(1 − j2.5/104) at 10 GHz)

and it is noted that the imaginary component is less than the

typical resolution (∼±0.05) of this broadband measurement

technique. It is noted that there is some ripple on the measured
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Figure 2. Real and imaginary components of the permittivity for 10 vol% composite, derived from measured reflection and transmission
coefficients with (RT method) and without (NRW method) the assumption that the material is non-magnetic.

data, and this is attributed to residual mis-matches after

calibration that occur when the sample cell is reconnected to

the test-port cables between measurements. Nevertheless, this

‘connector-repeatability’ has been included in the uncertainty

budget and it is observed that the magnitude of the ripple is

indeed smaller than the quoted measurement uncertainty.

Figures 2 and 3 present the measured dielectric response

of composites with low and high filler concentrations (10 and

50 vol%) to provide an indication of typical measurement

uncertainties achieved with the NRW and RT methods. In most

cases, making the assumption that the composites are non-

magnetic enables a reduction in measurement uncertainty, with

the exception of the uncertainty in the imaginary component

at high filler concentrations. Figure 4 presents the measured

magnetic response for the same composites derived using the

NRW method. This serves to demonstrate the validity of

making the non-magnetic assumption, although it is noted that

there is possibly a small diamagnetic effect at the highest filler

concentrations. Nevertheless, this is very small compared with

the diamagnetic effect previously observed in silver-coated

micro-sphere-filled composites [3], and it could equally be

attributed to covariance between permittivity and permeability

inherent to the NRW method. Hence, the RT method has been

used in all subsequent experimental data.

Figure 5 presents the measured dielectric response of

the composites over the frequency ranges 1–18, 33–40 and

40–60 GHz. There is clear evidence of a dielectric relaxation

covering the measured frequency range, both from the

dispersive nature of the (frequency dependent) real permittivity

and the increasing loss shown by the imaginary component

of the permittivity over the frequency range 1–18 GHz. The

existence of a loss peak becomes more obvious as the filler
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Figure 3. Real and imaginary components of the permittivity for 50 vol% composite, derived from measured reflection and transmission
coefficients with (RT method) and without (NRW method) the assumption that the material is non-magnetic.

concentration is increased (this is consistent with effective

medium theory as will be demonstrated in section 4) with

a maximum value visible for filler concentrations in excess

of 30 vol%. The higher frequency, 33–60 GHz, data help

us to bound the relaxation process by providing evidence of

decreasing loss (again shown by the imaginary component

of the permittivity) above the relaxation frequency. It is

noted that this is despite the increased challenge for obtaining

good quality test results at these higher frequencies and

the existence of systematic shifts in the data between the

two frequency ranges for the reasons stated in section 2.

Both data sets support the observation that the limiting high

frequency permittivity (above the relaxation) and the relaxation

amplitude increase with increasing filler concentration, as

expected [5].

Most interestingly, these experimental results demonstrate

a dramatic reduction in the relaxation frequency, by

approximately five orders of magnitude, compared with that

expected for similar composites with solid tungsten particles

exhibiting bulk conductivity. This aspect will now be explored

using effective medium theory in sections 4 and 5.

4. Effective dielectric properties

4.1. Background

The effective dielectric properties of composite materials have

been of scientific and engineering interest for many years,

dating back to at least the times of Lord Rayleigh [18] and

Maxwell [19]. ‘Effective medium theories’ (EMTs) or mixture

laws are used to predict the properties of a composite from

those of its components. The theories or models grouped under

this category are numerous [5, 20] and they continue to attract

much interest due to the mathematical simplicity with which

dielectric properties can be optimized. The classical basis of a

number of these models is the Clausius–Mossotti model for the
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Figure 4. Real and imaginary components of the permeability for 10 and 50 vol% composites, derived from measured reflection and
transmission coefficients using the NRW method (i.e. without the assumption that the materials are non-magnetic).

local field, the result of which is reproduced here as equation (1)

(with ε the permittivity of the medium, ε0 the permittivity of

free space, αn (n = 1, 2, . . .) the polarizabilities of the different

dipoles contained in the medium and Nn the number of dipoles

(of polarizability αn) per unit volume)

ε − 1

ε + 2
=

1

3ε0

∑

n

Nnαn. (1)

It is noted that the polarizable species in this model are

assumed to reside in free space. If this is not the case and the

background medium has a permittivity εb, then equation (1)

becomes
ε − εb

ε + 2εb

=
1

3ε0

∑

n

Nnαn. (2)

Two of the most popular EMTs are derived from this equation

by using the Clausius–Mossotti model to provide expressions

for the permittivity of the individual components (termed

matrix and filler here, with intrinsic permittivities εm and εf ).

It can thus be shown that the following generic formula can

be derived by expanding the right-hand side of equation (2)

in terms of the expressions for the permittivities of these

two constituent materials and replacing the number density

of the polarizable species with the volume fractions of the

constituents (vm and vf).

ε − εb

ε + 2εb

= vm

εm − εb

εm + 2εb

+ vf

εf − εb

εf + 2εb

. (3)

The construction of equation (3) embodies a critical

assumption common in most EMTs: that the polarizabilities

of adjacent filler particles are uncoupled. This implies that the

mixture is dilute. In addition to the dilute filler approximation,

limitations are also incurred because of the use of specific filler

particle shapes and spatial arrangements to permit analytic

solutions. (Indeed, the derivation of equation (3) represents the
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Figure 5. Measured real and imaginary components of the
permittivity for composites with filler concentration in the range
0–55 vol% over the frequency ranges 1–18, 33–40 and 40–60 GHz.

case of spherical particles.) For example, the Rayleigh mixture

formula follows by setting the permittivity of the background

medium equal to that of the matrix (εb = εm). Explicitly,

ε − εm

ε + 2εm

= vf

εf − εm

εf + 2εm

. (4)

On the other hand, the (symmetric) Bruggeman EMT is

obtained from equation (3) by applying the condition of

self-consistency, that is, by setting the permittivity of the

background medium equal to the required or resulting

effective permittivity of the composite (εb = ε). Despite

the assumptions, the Rayleigh and symmetric Bruggeman

models form a good basis for exploring the effective properties

of conducting-particle-filled composites. The former is

appropriate for isolated particle microstructures and is most

relevant to the experimental results presented in this paper.

The latter is appropriate when particles have a tendency to

agglomerate, forming clusters and connected networks [3].

The effective properties of a conducting-particle-filled

composite as a function of filler concentration and frequency

may be obtained by solving equation (4) after substituting for

the matrix and filler permittivities (which will typically be

complex). In Maxwell–Garnett form, equation (4) is written

ε = εm + 3εm

S

1 − S
, (5)

wherein

S = vf

εf − εm

εf + 2εm

. (6)

Figure 6. Real and imaginary components of the permittivity
calculated using the Maxwell–Garnett EMT for paraffin wax filled
with solid tungsten particles exhibiting bulk conductivity.

In general, it will not be a severe approximation to treat

the matrix permittivity as frequency independent, unless the

specific matrix material has intrinsic molecular processes

that give rise to their own dielectric relaxation response in

the frequency range of interest. For paraffin wax, over the

frequency range of interest here, no such processes exist;

hence, the value of the permittivity at 10 GHz given in section 3

will be used in all calculations presented. The permittivity of

conducting particles at microwave (or lower) frequencies can

be approximated from the Drude model in terms of the bulk dc

conductivity of the conductor (σf) and the angular frequency

(ω = 2π f ) [21]. This approximation is valid for ωε′ ≪ σ and

is given by equation (7)

εf = 1 − j
σf

ωε0

. (7)

Figure 6 presents the effective real and imaginary components

of the permittivity for paraffin wax filled with solid tungsten

particles exhibiting bulk conductivity over the concentration

range 5–50 vol% and calculated using equations (5) to (7).

Figure 7 presents the variation of relaxation frequency and

relaxation amplitude with filler concentration, confirming the

trends observed in the experimental data, figure 5. However,

there is a massive difference of at least six orders of magnitude

between the predicted and measured relaxation frequencies.

Clearly, the particles under investigation are not behaving as

solid tungsten particles.

4.2. Multi-layer particles

The next step is to consider the influence of the coated particle

geometry on the relaxation frequency. The analysis used here
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Figure 7. Filler concentration dependence of relaxation frequency
and amplitude for the data presented in figure 6.
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Figure 8. Geometry of four-layer particle.

is that of Sihvola and Lindell for an N -layer spherical filler

particle, in which the Rayleigh mixing formula is generalized

to deal with layered filler particles [22]. In the case of a

four-layer particle, figure 8, the result is

ε − εm

ε + 2εm

= vf

(ε1 − εm) + (2ε1 + εm)g4(εi, ai)

(ε1 + 2εm) + 2(ε1 − εm)g4(εi, ai)
, i ∈ [1, 4]

g4 =
{

(ε2 − ε1)

(

a3
2

a3
1

)

+ (2ε2 + ε1)

{[

(ε3 − ε2)

(

a3
3

a3
1

)

+(2ε3 + ε2)
(ε4 − ε3)(a

3
4/a

3
1)

ε4 + 2ε3

][

(ε3 + 2ε2) + 2(ε3 − ε2)

×
(ε4 − ε3)(a

3
4/a

3
3)

ε4 + 2ε3

]−1}}{

(ε2 + 2ε1) + 2(ε2 − ε1)

×
{[

(ε3 − ε2)

(

a3
3

a3
2

)

+ (2ε3 + ε2)
(ε4 − ε3)(a

3
4/a

3
2)

ε4 + 2ε3

]

×
[

(ε3 + 2ε2) + 2(ε3 − ε2)
(ε4 − ε3)(a

3
4/a

3
3)

ε4 + 2ε3

]−1}}−1

.

(8)

Figure 9 compares the result from using equation (8) for a

50 vol% particle concentration, assuming that the 20 nm thick

tungsten layer retains bulk conductivity, with the equivalent

result in figure 6 for solid tungsten particles. It is observed

that the layered structure itself accounts for approximately half

of the downward logarithmic frequency shift in the relaxation

frequency towards the experimental value (∼10 GHz, figure 5).

It is also noted that the relaxation amplitude is slightly reduced
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Figure 9. Imaginary permittivity calculated using a four-layer
Sihvola–Lindell EMT for paraffin wax filled with 50 vol%
tungsten-coated particles and the Maxwell–Garnett EMT for
paraffin wax filled with 50 vol% solid tungsten particles (in both
cases the tungsten is assumed to exhibit bulk conductivity).
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Figure 10. Dependence of relaxation frequency and amplitude on
the thickness of the tungsten layer calculated using a four-layer
Sihvola–Lindell EMT (all other model parameters as for figure 9).

for the layered particle model. Figure 10 demonstrates how the

relaxation frequency and amplitude vary with the thickness of

the tungsten layer. It is observed that the relaxation amplitude

is invariant with coating thickness over the range 1–20 nm.

Moreover, it is concluded that order of magnitude changes in

the layer thickness would be required to reduce the relaxation

frequency to match the experimental value. Hence, changes

in other model parameters are sought to account for the

experimental data. The most obvious candidate is the coating

conductivity since the relationship between filler conductivity

and relaxation frequency is well known [5] and the nano-scale

thickness of the tungsten coating may justify a modification to

this parameter as the layer thickness approaches the electron

mean free path.

Figure 11 compares the result from using equation (8)

for a 50 vol% particle concentration, with reduced coating

conductivity, with the equivalent experimental data. It is

observed that reducing the tungsten conductivity from the bulk

value of 1.77 × 107 to 2330 S m−1 for the 20 nm thick layer

enables a good fit to the experimental relaxation frequency.

However, it is clear that the amplitude and width of the

relaxation are not well reproduced. It would appear that

there is a significant degree of broadening of the relaxation

process in the experimental data. Nevertheless, it is concluded

that both the thickness and conductivity of the tungsten layer

are instrumental in producing the observed reduction in the
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imaginary components of permittivity for a filler concentration of
50 vol% (calculation with four-layer Sihvola–Lindell EMT and a
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relaxation frequency, compared with that of a solid tungsten

filler particle of the same size.

4.3. Two-layer simplification

Before considering relaxation broadening mechanisms, it is

worth considering the extent to which the multi-layer particle

model may be simplified. For instance, is it possible to replace

the four-layer model with a two-layer model, arguing that all

layers other than the tungsten layer are essentially low-loss

dielectrics? Figure 12 demonstrates that it is possible to make

a good representation of the four-layer system by using a
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Figure 13. Comparison of real and imaginary components of the
permittivity (calculated using a two-layer Sihvola–Lindell EMT and
a two-layer multi-pole method for a filler concentration of 50 vol%
and a filler conductivity of 2330 S m−1).

two-layer analogue in which the outermost alumina layer is

omitted and in which the core is replaced by an effective

core whose permittivity has itself been estimated using the

Maxwell–Garnett EMT, εcore = 1.72 − j(8.3 × 10−3) and

acore = 15 µm. Sihvola and Lindell’s result for a two-layer

particle is given by equation (8), but now g4 is replaced by

g2 =
ε2 − ε1

ε2 + 2ε1

(

a2

a1

)3

. (9)

4.4. Multi-pole contributions

A final point worth considering at this stage is the significance

of the inherent assumption that the filler particles are

non-interacting (the dilute filler particle approximation). This

can be viewed semi-quantitatively by comparing calculations

made using equation (8) with those of a multi-pole expansion

method in which spherical filler particles are arranged on a

simple-cubic lattice [23]. Figure 13 compares calculations

for the two-layer particle approximation of those under

investigation. The multi-pole model does not account for

dielectric losses in the particle core or the matrix phase.

However, these are small for the materials used here. The

comparison suggests that the Sihvola–Lindell model under-

estimates both the downward shift in the relaxation frequency

and the magnitude of the relaxation amplitude. The level

of discrepancy between the two models can be expected to

increase with filler concentration. Hence, since the data

presented in figure 13 are for a filler concentration of 50 vol%,

the comparison presented in the figure represents a reasonable
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upper limit to any systematic error introduced by using the

Sihvola–Lindell model in this paper.

5. Relaxation broadening

5.1. Mechanisms

First, consider which of the model parameters may be better

represented by a distribution of values rather than being single-

valued or represented by a mean value. For example, it is

apparent from the manufacturer’s literature [9] that the core

S60 particles exhibit a distribution of radii, quantified in table 1.

This is also clear from a micrograph, figure 14 [8], showing

the coated particles. The tungsten coating thickness also varies

somewhat [8] as a consequence of the coating process, in

which the core particles are tumbled in vacuum while being

sputter coated with tungsten vapour [7]. Variations in the

coating thickness itself may give rise to relaxation broadening.

In addition, variations in the tungsten conductivity in these

nano-scale coatings, due to variations in the coating thickness,

are likely to contribute to relaxation broadening. The filler

particle concentration is also likely to be locally variable, but

this effect is not considered here since the model deals with

macroscopic averages. Finally, it is possible that inter-particle

interactions provide a further broadening mechanism, but these

will not be considered here. (For the interested reader, Barrera

et al [24] have considered such a situation in terms of dipolar

fluctuations, introducing a renormalized polarizabilty to the

Maxwell–Garnett EMT.)
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Figure 14. Micrograph and measured particle size distribution of
coated particles. The marked square in the micrograph is
100 µm × 100 µm.

5.2. The effect of particle size distributions

A number of researchers have considered the effect of particle

size distributions on the effective dielectric properties of

composites. Barrera et al [25] demonstrate a broadening

of absorption peaks compared with that predicted using

Maxwell–Garnett EMT. Spanoudaki and Pelster [26] show that

the filler concentration dependence changes from following the

Maxwell–Garnett EMT for monodisperse fillers to following

the Hanai–Bruggeman EMT [27] for broad particle size-

distributions. However, Fu et al [28] highlight that the

Hanai–Bruggeman result is inconsistent with an approach that

includes critical multi-pole terms that are non-zero for non-

spherically symmetric size distributions.

The particle size distribution of the coated particles,

measured using a Microtrac standard range particle analyser,

is shown in figure 14. The distribution is not well represented

by either a normal or a log-normal distribution, but it is

nevertheless broad and consistent with the manufacturer’s data

for the core S60 particles. Therefore, let us first consider the

use of the Hanai–Bruggeman EMT to fit the experimental data.

Adapting Hanai’s derivation [27] for coated filler particles

yields the following relation

(

ε − β2ε1

ε0 − β2ε1

)

(ε0

ε

)1/3

= 1 − vf ,

β2 =
ε2 + 2ε1 + 2(a2/a1)

3(ε2 − ε1)

ε2 + 2ε1 − (a2/a1)3(ε2 − ε1)
.

(10)

Figure 15 compares the Hanai–Bruggeman result for a filler

concentration of 50 vol% with the experimental data and the

Sihvola–Lindell calculation. This model inherently assumes
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Figure 15. Comparison of Hanai–Bruggeman predictions for
50 vol% filler concentration with Sihvola–Lindell prediction (see
figure 11) and experimental data.
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Figure 16. Comparison of filler concentration dependence of
relaxation frequency and amplitude for Sihvola–Lindell and
Hanai–Bruggeman models for a representative coating conductivity
of 2700 S m−1.

a constant ratio of coating thickness to particle radius and

predicts a relaxation with greater amplitude. It is further

noted that the coating conductivity is increased to maintain

a fit to the experimental relaxation frequency. It is only

possible to reduce the relaxation amplitude by artificially

reducing the filler concentration. Figure 15 demonstrates that

reducing the filler concentration to 37 vol% enables a close

match to the dispersion predicted by the Sihvola–Lindell model

for the real permittivity, whilst also broadening the loss peak.

To complete the comparison of the Sihvola–Lindell

and Hanai–Bruggeman models, figure 16 compares the

dependence of the relaxation frequency and relaxation

amplitude on filler concentration. It is observed that the

Hanai–Bruggeman model predicts a greater rate of reduction

in the relaxation frequency with increasing filler concentration,

coupled with a greater rate of increase in the relaxation

amplitude. However, returning to the comparison with

experimental data given in figure 15, it is concluded that

broadening due to a particle size distribution is not a significant

feature in the experimental data because the real permittivity is

not sufficiently enhanced for frequencies below the relaxation

frequency.

5.3. The effect of coating thickness distributions

Reverting to the Sihvola–Lindell formalism, given for a four-

layer filler particle in equation (8), relaxation broadening

due to a distribution of coating thickness is now considered.

Recalling the outcome of section 4.3, it is computationally

simpler to proceed with a two-layer analogue filler particle,

equation (9). In order to introduce a coating thickness

distribution, rewrite the result of equation (9) assuming n

spherical particles dispersed in a total volume V . Also expand

the filler volume fraction to reveal its dependence on the filler

particle radius. Then,

ε − εm

ε + 2εm

=
4πna3

1

3V

(ε1 − εm) + (2ε1 + εm)g2(εi, ai)

(ε1 + 2εm) + 2(ε1 − εm)g2(εi, ai)
,

i = 1, 2. (11)

If now the layer thickness on the particle changes but the

core radius remains fixed, a1 in equation (11) changes but a2

remains constant. It is convenient to make the substitution

a1 = a2 + t , with t being the coating thickness. For a

continuous distribution of t , it is possible to replace the right-

hand side of equation (11) with an integral (sum) over all t

following the reasoning adopted by Sihvola and Lindell for

the derivation of their equation (39) in [22]. The underpinning

assumption is that the filler particles are uncorrelated,

residing in a background medium with permittivity εm.

Rearranging equation (11) in Maxwell–Garnett form leads to

the following expression for the effective permittivity of a

dispersion of monodisperse coated particles with a distribution

of coating thickness:

ε = εm + 3εm

S

1 − S
,

S =
4π

3V

∫ ∞

0

p(t)(a2 + t)3

×
(ε1 − εm)(ε2 + 2ε1)(a2 + t)3 + (2ε1 + εm)(ε2 − ε1)a

3
2

(ε1 + 2εm)(ε2 + 2ε1)(a2 + t)3 + 2(ε1 − εm)(ε2 − ε1)a
3
2

dt,

(12)

where p(t) is the probability of a coating having thickness t .

Assuming a normal (or Gaussian) distribution of t leads to the

following expression for p(t):

p(t) =
1

σ
√

2π
exp

(

−
1

2

(

t − t̄

σ

)2
)

, (13)

where t̄ is the mean value of t and σ is the standard deviation.

A normal distribution of t gives rise to a finite probability of

a coating thickness less than zero, which cannot be permitted

physically. Cutting off the normal distribution at t = 0, as in

equation (12), implies that

∫ ∞

0

p(t) dt < 1. (14)

Explicit normalization of S, to account for the fact that the

integral over the probability distribution is less than unity, is

not necessary, however, since the expression for V in terms of

p(t) is also cut off at t = 0,

V =
4π

3vf

∫ ∞

0

p(t)(a2 + t)3 dt . (15)

Figure 17(a) shows how the relaxation frequency first

decreases, with increasing standard deviation in the layer

thickness distribution, until the lower limit of zero thickness

is reached when the standard deviation is approximately half

of the mean coating thickness. This behaviour is consistent
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Figure 17. (a) The influence of a distribution of coating thickness
on the relaxation peak frequency and amplitude for a mean
coating thickness of 20 nm. (b) Comparison of predicted
relaxation peak with experiment for selected thickness
distributions with a mean thickness of 20 nm and specified
coating conductivity.

with the definition that 95% of coatings have a thickness

in the range t̄ ± 2σ . For broader thickness distributions

the relaxation frequency increases with increasing standard

deviation. The relaxation amplitude is observed to decrease

rapidly until the standard deviation equals the mean thickness,

and then the rate of decrease in the relaxation amplitude tends

to zero. Figure 17(b) presents some calculated examples

of the relaxation peak in the frequency domain for a filler

concentration of 50 vol%, for various values of σ and coating

conductivity. As σ increases, the coating conductivity must

be reduced to maintain a match between the predicted and

experimental relaxation frequency. The relaxation peak

broadens and is reduced in amplitude, improving the fit

between theory and experimental data. However, the fact that

the rate of decrease in the relaxation amplitude tends to zero

as σ increases (figure 17(a) means that a further source of

broadening must be sought in order to better fit the relaxation

amplitude of the experimental data.

5.4. Influence of the nano-scale

The analysis presented so far has assumed that a greatly

reduced tungsten conductivity is necessary and realistic in

accounting for a significant degree of downward shift in

the relaxation frequency. In this section we consider the

justification for this assumption by reviewing the validity of

representing the permittivity of the tungsten coating with a

low frequency approximation of the Drude model. The Drude
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Figure 18. Demonstration of the validity of the low frequency
Drude approximation for the permittivity of the tungsten coating
across the frequency range 0.1–1000 GHz.

model is more normally given by equation (16),

εf = 1 −
ω2

p

ω(ω − j/τ)
, (16)

where ωp is the plasma frequency and τ is the electronic

relaxation time. Representative values for the parameters

appearing in equation (16) are quoted in table 1, for bulk

tungsten. Figure 18 compares the real and imaginary

components of the permittivity of tungsten obtained from

equations (7) and (16) when σf and τ , respectively, have been

adjusted to fit the relaxation frequency of the experimental data

for a filler concentration of 50 vol%. It is observed that the real

component differs by less than 0.1% and that the imaginary

components are identical. Hence, the figure demonstrates the

validity of using the low frequency approximation in this work.

In the low frequency model, σf has been multiplied by a factor

of approximately 1.3 × 10−4 to achieve a fit. In the full-Drude

model, τ = τbulk (as given in table 1) has been multiplied by

the same factor to achieve a fit. This adjustment represents a

very significant reduction in the mean time between electron

scattering events.

It is worth pursuing the detailed representation of the

tungsten permittivity further to explore the physical origins

of the reduced relaxation time. The next step is to consider

the appropriate conduction electron scattering mechanisms.

As the physical thickness of the tungsten coating is reduced

to the nano-scale, the thickness approaches the bulk electron

mean free path (lbulk = vFτbulk, vF being the Fermi velocity),

estimated as 14 nm for tungsten. Under such conditions surface
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scattering of the conduction electrons can occur. Alternatively,

electron scattering can occur due to presence of impurities or

even defects in such thin coatings. Hence, additional relaxation

times associated with these extra processes will contribute

to the overall response. Provided the separate processes are

independent of one another, a new overall relaxation time is

defined by following Matthiessen’s rule [29]:

1

τ
=

1

τbulk

+
1

τ1

+ · · · . (17)

In equation (17) it is implicitly assumed that the plasma

frequency and the Fermi velocity remain unchanged. Surface

scattering is introduced in this way by many authors

[25, 30, 31], through a size dependent term as shown in

equation (18):
1

τ
=

1

τbulk

+ A
vF

lpath

, (18)

where A is a parameter that represents the degree of chemical

interaction between the matrix material and the conduction

electrons in the metal [31] and lpath is the mean free path.

The minimum value of A reported in references [25, 30, 31]

is 0.25 for silver particles in vacuum, and it is observed that A

increases with the level of interaction.

For solid nano-particles the mean free path is generally

taken to be the particle radius, but for metallic shells the

following expression has been proposed [32]. Using the

notation for our two-layer particles,

lpath = 3

√

(a1 − a2)(a
2
1 − a2

2), (19)

yielding a value of 229 nm in this case. If it is assumed that

the mean free path is constrained between this value and the

coating thickness, then the effective relaxation time lies in the

range 0.58 � τ/τbulk � 0.94, assuming A = 1.

Taking the best case, that the mean free path equals the

coating thickness, and representing the permittivity of tungsten

in equation (12) and equation (16) with (18) and (19), it is

possible to explore whether any further broadening occurs

through the inclusion of the coating thickness in the expression

for the coating permittivity. Figure 19 demonstrates that

reducing the mean coating thickness to 10 nm with a standard

deviation of 13 nm can yield a very close fit to the experimental

data if the parameter A is permitted to vary freely. Here,

A = 4500, orders of magnitude greater than we have seen

elsewhere in the literature [25, 30, 31]. Such a value is justified

by noting that it simply reflects the presence of stronger free

electron scattering than expected from the nominal values

(provided by the manufacturer) of the parameters describing

the particle geometry and composition. Stronger free electron

scattering is plausible since very little is actually known at

the present time about the true quality of the nano-scale

coating. For comparative purposes, figure 19 also contains

a prediction based on equation (12) with the low frequency

Drude approximation for the tungsten permittivity, and a

prediction assuming no distribution of coating thickness.

To complete the analysis, figure 20 presents fits to

experimental data for three filler concentrations spanning the

tested range. It is observed that the quality of the fit is good at

50 vol% and acceptable at 15 and 30 vol%. The remaining
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Figure 19. Demonstration that a prediction using a coating
thickness distribution (mean thickness = 10 nm, standard
deviation = 13 nm) and the full Drude permittivity function for the
coating incorporating the nano-scale free electron surface scattering
effect (with A = 4500) can fit experimental data for a dielectric
relaxation peak (for a filler concentration of 50 vol%). Predictions in
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highlight the successive broadening of the relaxation peak due to the
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Figure 20. Comparison of fit using a coating thickness distribution
(mean thickness = 10 nm, standard deviation = 13 nm) and the full
Drude permittivity function for the coating incorporating the
nano-scale free electron surface scattering effect (with A = 4500)
with experimental data for filler concentrations of 15, 30 and
50 vol%.

difference between theory and experiment is considered to

be related to inaccuracies in the predicted rate of change

of the relaxation frequency with filler concentration. The

Sihvola–Lindell model gives too small a rate of change

for this system. It is possible that including higher order
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multi-pole interaction terms would increase this rate of change

and improve the agreement between theory and experiment.

Implementation of the renormalization method of Barrera

et al [24], dealing with inter-particle correlation, could be

considered to obtain a further improved fit. An alternative view

is that an intermediate position between the Sihvola–Lindell

and Hanai–Bruggeman models is needed; in other words, the

presence of a particle size distribution acts to increase the rate

of change of relaxation frequency with filler concentration.

In addition, a preliminary study, in which the tungsten

layer is modelled as a two-dimensional percolating network

of connected islands, also yields an encouraging fit to the

experimental data. Direct observation of the tungsten coating

is planned, perhaps using transmission electron microscopy, in

order to further develop the model.

6. Conclusions

Through theoretical modelling it can be shown that a

composite with nano-scale tungsten-coated filler particles

exhibits dielectric relaxation due to interfacial polarization

many frequency decades below that of a similar composite

with solid metal particles. Experimentally it is observed that

the relaxation frequency also occurs several decades below the

frequency predicted by theory for a composite with layered

filler particles, if a bulk conductivity value for the metal shell

is used in the calculation. These observations can be explained

by reasoning that the conductivity of the thin metal coating is

severely reduced due to nano-scale effects such as reduction of

the mean free path of the conduction electrons due to surface

scattering [33]. It may be the case that the tungsten coating is

not continuous, since similar work on continuous gold nano-

shells at optical frequencies does not find a similarly large

downward shift in the relaxation frequency [34]. Modelling

suggests that the observed broadening of the relaxation is

due largely to a distribution of metal coating thickness, and

associated distribution of the coating conductivity, rather than

the polydispersity of the filler particles. This interpretation is

in line with observations on smaller (100–250 nm diameter)

metal shells at optical frequencies [34].
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