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The static properties of the dielectric response function for an electron liquid, obtained 
previously by one of the authors, is investigated. It is shown that the resulting pair corre
lation function has the correct long-range and short-range behaviors so that the correlation 
energy calculated therefrom reproduces the known exact values to the order of e2, when an 
expansion with respect to the plasma parameter E is carried out. The compressibility sum 
rule is satisfied to the order of e2 ln E. It is found that within the accuracy stated above 
the short-range behavior of the pair correlation function is not ,sensitive to the form of the 
ternary correlation function. 

§--1. Introduction 

In a previous publication,ll hereafter referred to as I, one of the authors 

has calculated a dielectric response function for a strongly correlated electron 

liquid from a solution of the second equation of the Bogoliubov-Born-Green

Kirkwood-Yvon (BBGKY) hierarchy.2l Thy dielectric response function has been 

expressed as a functional of both the single-particle distribution function and the 

static form factor of the plasma. The static form factor is related to the static 

dielectric response function through the fluctuation-dissipation theorem. One 

thereby obtains a self-consistent scheme of determining the static form factor or 

, the pair correlatio1;1 function of an electron liquid in thermodynamic equilibrium. 

In the present paper, we extend the foregoing line of approach and carry 
out a detailed stu-dy of the thermodynamic properties of a plasma as described 

by the dielectric response function of I. We particularly note the existence of 
a number of exact calculations for such thermodynamic properties3l-5l based on 

expansions with respect to tpe plasma parameter e = ( 4rcn) 1/ 2e8T-s;2, where n is 

the number density of electrons and T is the temperature in energy units. We 

thus compue , our calculations with those exact results by carrying out a similar 

expansion with respect to the plasma parameter. From such a comparison, we 

find that the dielectric re-sponse function obtained in I reproduces those known 

results exactly. We then examine the compressibility sum rule ; 6l it will be found 

analytically that the dielectric response function satisfies this sum rule up to the 

terms involving e2 ln s. These agreements in the analytical expressions enable 
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us to secure a concrete footing of calculations for a nearly ideal plasma ; we may 
now extend the numerical calculations of the thermodynamic quantities into the 
domain of nonideal plasmas where an expansion with respect to e is no longer 
a useful concept. The purpose of the present paper is to show analytically how 
those exact relationships can be reproduced from the dielectric response function 
obtained in I. 

§ 2. Integral equation for correlation function 

We consider a classical system containing n identical particles of charge e 
and mass m in a box of unit volume. We assume a smeared-out background of 
opposite charge such that the average space-charge field of. the system vanishes. 
The system can be described by the BBGKY hierarchy ; the first two equations 
of the hierarchy are 

[gt +L(1) ]F(1) = s d2V(12)[F(1)F(2) +G(12)], 

[~+L(1) +L(2)JG(12) =_!.__[V(12) + V(21)][F(1)F(2) +G(12)] ot n 

.f- s d3V(13)[F(1)G(23)+F{3}G(12)] 

+ s d3V(23)[F(2)G(31) +F(3)G(12)] 

+ Jd3[V(13) + V(23)]H(123). 

(l) 

(2) 

Here, F(1), G (12) and H(123) denote the first three correlation functions; 
i= (ri, vi) represents the position and the velocity of the i-th particle; and the 
operators L(i) and V(ij) are defined so that 

L(i) =v··_!__ • or, ' 

V( . . ) _ ne2 f) I fJ ZJ ---
m fJri I ri- ril fJvi 

We are dealing with a homogeneous, isotropic system m thermodynamic equi
librium. Hence, we may set 

F(1) =JCv1), 

G (12) =F(1)F(2) g (I r1- r2l), 

H(123) =F(1)F(2)F(3)h(lrl-r21, lr2-rsl, lrs-rll), .(3) 

where the single-particle distribution function is a Maxwellian 
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( m ) 3/2 ( mv2 ) f(v) = -- exp ---. 
2nT 2T 

The static form factor S (k) is related to the radial part of the pair correla
tion function via 

g(r) =l_ L;[S(k) -1]exp(ik·r). (4) 
n k 

In I, we have introduced an ~nsatz for the radial part of the ternary correlation 
such that 

h([r1-r2l, [r2-ra[, [ra-rJ[) =g([rl-r2[)g([r2-ra[) 

+ g ([ r2- rs[) g ([rs- r1[) + g ([ ra- r1[) g ([ r1- r2[) 

+ n S dr4g([rl-r4[)g ([r2- r4[) g ([ra- r4[). (5) 

We arrived at this ansatz, guided by the form of the lowest-order solution for 
h in the plasma-parameter expansion in the long-range domain.6> Substituting 

Eqs. (3) ~ (5) into Eq. (2), we obtain the integral equation for S (k): 

S(k) -1=- ko2 {t(k) +S(k)[w(k) -u(k)]}, 
k2 + ko2t (k) 

(6) 

where 

1 k·q 
t(k) =1+u(k) =1+- L; ~2 [S([k-q[) -1], 

n q q 
(7) 

1 k·q 
w(k) =- L; ~2 S(q)[S([k-q[) -1], 

n q q 
(8) 

Equation (6) corresponds to a static evaluation of the dielectric response function 

obtained in I ; one applies the fluctuation-dissipation theorem to the static response 

function in order to derive the integral equation (6) for the pair correlation 

function. 

§ 3. Long-range and short-range behavior 

In the long-range domain such that r-:?> e2 /T or k 4::. T / e2, the solution of Eq. 

(6) can be expressed to the first order in the plasma-parameter expansion: 

S(k)-1=- ko2 +_.£ ksko [!!.__-tan-1(~)]. (9) 
. k2-:+-ko2 2 (k2+ko2)2 2 k 

In the shortcrange domain such that r <(_ kr/ or k-:?> k0 , such an expansion is 

not applicable. Instead, we rewrite Eq. (6) into the form 
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[S(k)-1]{1+ kn2 [w(k)-u(k)J}·=- kn2 t(k) 
k2 + kn2t (k) k2 + kn2 

X ·{1+ w(k) -u(k)} {1 + k0 2 _ k0 2(k2+k0 2) }·. 

t(k) k2 k2[P-i-k0 2t(k)] 

We then note that in the short-range domain the relationships 

I kn2 t(k)l< kn2 ~1 
k2 -k2 ' (10) 

lw(k) -u(k) I ~it(k) I (11) 

hold true ; these are proved in Appendix A. The integral equation for the 
correlation function therefore reduces to 

(12) 

The solution of this equation appropriate to the short-range domain has been 
obtained by O'Neil and Rostoker; 5l it is 

g (r) = -1 + exp [- ;~ exp (- kor)], (13) 

whence 

S(k) -1 =a(~) Sooodxx {exp[-! exp (-ax) J -1} sin( a~:). (14) 

The short-range behavior of the pair correlation function is, in fact, quite 
insensitive to the choice of the ansatz for the ternary correlation function. For 
example, in place of (5), we may choose 

or even 

h(lr1-r2l, ir2-rsl, lrs-rli) =g(jrl-r2j)g(jr2-rsl) 

+ g (I r2- rsl) g (Irs- r1l) + g (irs- r1i) g (I r1- r2i) 

+ g (I r1- r2i) g (I r2- rsl) g (Irs -r11), 

h(lr1-r2l, lr2-rsl, lrs-rli) =0. 

(15) 

(16) 

These ansatz lead correspondingly to 

[S(k) -1] {1+ kn2 [w(k) -u(k)J} 
k2 +kn2t(k) 

=- kn2 t(k)[1+v(k)]h+k.n2_ ko2(k2+kn2)} (17) 
k2+k0 2 · t(k) l k2 k2[k2+k0 2t(k)J 

or 
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(18) 

where 

1 k·q 
v(k) =- I:;-2 t(q)[S(q) -1]S(Ik-ql). 

n q q 

Equation (18) 1s identical to Eq.- (12). Equation (17) also reduces to Eq. (12), 

because 

lv(k)l<lt(k)l (19) 

is proved in Appendix A. The long-range behavior of the pair correlation function 

obtained from the ansatz (15) or (16) is, however, significantly different from 

the correct values given b,Y Eq. (9). 

§ 4. Correlation energy 

The density Ec of the correlation energy and the pressure P of the system 

may be calculated according to the following formula, as soon as the radial part 

g(r) of the pair correlation function or the static form factor S(k) is known: 

Ec = 3 (£ - 1) 
nT nT 

=__Q_ drrg(r) =- -[S(k) -1]. k 2 100 s 100 dk 
2 0 noko 

(20) 

Abe8l and O'Neil and Rostoker6l calculated these quantities by dividing the radial 

integration into two parts. Here, we alternatively carry out the k integration 

with the aid of the results obtained in the previous section. 

To do so, we arbitrarily select a wave number k1 such that 

(21) 

The domain of the k integration is then divided into two parts: O<k<k1 and 

k1<k. In the former domain, we may use the long-range expression (9) ; in the 

latter, we may use Eq. (14). After a ~eries of calculations described in Appendix 

B, we obtain 

1 lkt dk 1 -1 ( kl ) [ 1 ( kl ) 1 J - -[S(k) -1] =--tan - +s - ln -- -- , 
7! o k0 7! k0 4 3k0 24 

(22) 

l_ foo dk [S(k) -1}= _l_ + l_ tan- 1 ( ~) -s [_!_ ln (~s) + _r_ _1_], 
7! Jk, k0 2 7! , k0 4 k0 2 8 

(23) 

where r = 0.57721 .. · is Euler's constant. Substitution of (22) and (23) into Eq. 

(20) yields the -correct expression for the correlation energy to the order of e2 : 
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(24) 

§ 5. Compressibility sum rule 

According to the compressibility sum rule,6> the frequency and wave-vector 
dependent dielectric response function c (k, w) is related to the isothermal sound 
velocity c of the plasma via 

( k ) 2 Tjm lim - [c(k, 0) -1] =--. 
k~O kD C2 

(25) 

Equivalently, with the aid of the fluctuation-dissipation theorem, Eq. (25) may 
be transformed as 

lim (l!s!__)- 4 {(__1!_) 2 -S(k)} =-c2 
• 

k~o k kD T/m 
(26) 

On the other hand, one calculates the sound velocity thermodynamically from 
the isothermal compressibility of the system : 

mnc2=- v(8P) av T 

=nT 1+-c 1+-c- . · --[S(k) -1] . { 1 ( 1 d ) i= dk } 
2n · 3 de , o kD 

(27) 

It then becomes important to see if the two mutually-independent evaluations of 
the sound velocity, Eqs. (26) and (27), would in fact agree with each other. 
The calculation of c in Eq. (26) involves only the values of S(k) in the limit 
of k----'>0, while Eq. (27) calls for an integrated value of S(k) over the entire k 
space. 

Substituting (22) and (23) into Eq. (27), we :fi~st obtain 

(28) 

This, therefore, is the exact expression for the sound velocity to the order c2 in 
the plasma-parameter expansion. 

The calculation of the sound velocity from Eq. (26) is facilitated by noticing 
the behavior of w (k) in the limit of small k: 

w(k)----'>-c- _2_[S(q} 2 -1]. - 1 ( k ) 2 i= d 
3n kD o kD 

Equation (26) then becomes 

(29) 
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The calculation of this integral is shown in Appendix C. The result 1s 

(30) 

We here see that the compressibility sum rule is satisfied in our formalism up 
to the terms of the order of e2 ln e. in the plasma-parameter expansion. 

Recently, Vashishta and Singwi7l introduced a dielectric response function 
which satisfies the compressibility sum rule in the sense that the sound velocities 
calculated from Eqs. (26) and (27) agree with each other. The values of the 
sound velocity so obtained in their formalism, however, differ from the exact 
values of Eq. (28) in the ·terms involving e2 ln e. 

§ 6. Concluding remark 

We have thus shown that the dielectric response function 

s(k,w)=1- ¢(k)x(k,w) 
. 1-¢(k)w(k)x(k,w) 

(31) 

with 

¢(k) =4ne2/k2, 

X (k, w) = _ _!!_ S dv 1 . k · of 
m w-k·v+zO 8v 

reproduces the rigorous calculations of the thermodynamic quantities in a very 
satisfactory manner. The utility of the dielectric response function (31), as was 
remarked in I, lies in its ability to treat those plasmas for which the plasma 
parameter may no longer be considered as a small expansion parameter. · Nu
merical calculations of thermodynamic quantities for such nonideal plasmas are 
in progress. 

Appendix A 

Proof of the inequalities (1 0), (11) and (19) 

.We. substitute (14) into (12) to find an expression for t (k). 
we find after partial integrations 

t(k)::::::: -exp -- =1. l oodx ( 1) 
o x 3 x 

(A·1) 

As k increases, the value of t(k) decreases because of the oscillatory behavior 
of the integrand. Hence, the inequality (10) has been proved. 

In order to prove the inequalities (11) and (19), we construct the integrals 

(A·2) 
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760 H. Totsuji and S. Ichimaru 

Since 10 = [w(k) -u(k)]/t(k) and 11 =v(k)/t(k), the proof will be completed as 
soon as Jlml ~1 is shown for m=O and m=l. 

For an estimation of the magnitudes of 1m, we may use Eq. (12) in place 
of S(k) -1 on the right-hand side of Eq. (A·2). For the solution of Eq. (12) 
yields correct values of the correlation function in the short-range domain, while 
it is accurate to the order of c0 in the long-range domain. Transforming the q 
summation into integration, we have 

1 = __!____ _c _ ko []C1l + ]C2l] 
m 2n; t (k) k m m ' 

(A·3) 

(A·4) 

(A·5) 

where 

(A·6) 

In (A·4), we may regard k/k0 'J;>x, because k/k0 )>1 and the integrand involves 
a weighting function [x(x2 + 1)]-1 ; hence 

J (k x) ::::::::2x (k/ko)! t(k). 
1 

' (k/ko)2+1 

We thus find 

(A·7) 

The integral Jifl in (A·5) may be estimated in the following way. For 
k/ko'J>1/c, we can assu~e k/k0 'J;>x, since the x integration has a cutoff at x:::::::::s-1 

arising from the factor [t (xk0 )] m+ 1 ; we obtain 

(A·S) 

For 1js>kjk0 '2;>1, t(k)::::::::1; we may approximate t(yk0 ) =1 in J 1• We thus find 

(A·9) 

The right-hand side of (A· 9) is a quantity of the order of unity. Combining 
the results of (A·7), (A·S) and (A·9) with (A·3), we see that Jlml <t1 for 
m=O and m=l. 
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Appendix B 

Calculations of Eqs. (22) and (23) 

We begin with the calculation of Eq. (22). With the aid of Eq. (9), we 
have 

(" 1 lk'dk 
l2=- -[S(k) -1] 

n ·o kn 

Noting that 

we obtain 

(B·1) 

Next, we consider 

(B·2) 

Since Eq. (14) can be rewritten as 

S(k)-1=- D +____Q_ dxxexp--exp(-x) k 2 k ioo { [ e J 
k2 + kn 2 sk · o . x 

-1 + : exp (- x) } sin ( ~ x), 

Eq. (B · 2) becomes 

I 1 1 -1 ( kl ) s=--+-tan -
2 n kn 

s loo ·· r [ o ( s \] 0 ( 8 )} -- · dtt{exp -- exp --t} -1+- exp --t si(t), 
no2 0 . : l t 0 ' t 0 

(B·3) 

where o=ekl/kn4;.1 and 

. ioo sin X s1(t) =- dx--. 
t X 

In the integrand of the last term in Eq. (B · 3), we may let e/ o = kn/ k1 ---'>0 by 
virtue of (21). 
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We calculate the integral in (B ·3) by dividing the range of integration into 
two parts: O<t<1 and 1 <t. The contribution from the first part can then be 
rewritten as 

e 11 1 (]2 e 11 
[ ( (J ) (J 1 ~2 J -- dt- -si(t) -- dtt exp -- -1+---- si(t). ntJ2 4 2 t ntJ2 4 t t 2 t 2 

We eventually let LI~O. The second term is calculated explicitly with the aid 
of the series expansion 

. n . ts t5 
Sl(t) = --+t---+---··· 

2 3·3! 5·5! 

and partial integrations; to the lowest-order terms in (J, we obtain 

Hence, we have 

_e r1dtt[exp(-_§_) -1+_§_]si(t) 
n(J2 Jo t t 

3 e ( 1 dt [ ( (J )• 2 . J = -se-4 Jo-t- exp -t -1--;sl(t) . (B·4) 

For the domain of integration 1 <t, we may use 

Thus, we have 

e 100 
[ ( (J ) (J J . . e 100 si (t) - dtt exp -- -1+- s1(t) =- dt--. ntJ2 1 t t 2n 1 t 

(B·5) 

Substituting (B · 4) and (B · 5) into (B · 3) and noting 

dx-- lnx= --r, 100 sin x n 
0 X 2 

we finally obtain 

la= _ _!_ + .!tan-1 (~) + e[_!_ fooexp( -x) dx-L + l_] 
2 n kD · 4 Jo x 4 8 

(B·6) 

Appendix C 

Calculation of Eq. (30) 
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With the aid of the wave number k1 introduced in (21), we divide the domain 
of the k integration .in Eq. (29) into two parts: O<k<k1 and k1<k. In the 
former domain, we may use Eq. (9) to calculate 

We thus obtain 

+_E_e[ln(~) -ln3-~J. 
2 · k0 18 

(C·1) 

For k1<k, we rewrite the integral as 

In the light of (A ·1), we calculate 

foodk [S(k)2-1J =2 foodk [S(k) -1] + foodk ( ko2 \2 
Jk, k0 Jk, ko Jk, ko P + k02 J 

__ 3 + 3 t -1 \/ k1 )' _ 1 k1ko - -n - an - - --=----==---
4 2 k0 2 k12 +k0 2 

- ~e[ln(e :J+2r- ~J. (C·2) 

Summation of (C ·1) and (C · 2) yields Eq. (30). 
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